1
|
Yang F, Lv J, Huang Y, Ma W, Yang Z. A supramolecular assembly strategy for the treatment of rheumatoid arthritis with ultrasound-augmented inflammatory microenvironment reprograming. Biomaterials 2025; 316:123006. [PMID: 39675142 DOI: 10.1016/j.biomaterials.2024.123006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 12/05/2024] [Accepted: 12/09/2024] [Indexed: 12/17/2024]
Abstract
As regulators and promotors of joint erosion, pro-inflammatory M1-like macrophages play pivotal roles in the pathogenesis of rheumatoid arthritis (RA). Here, we develop a supramolecular self-assembly (PCSN@MTX) of molybdenum (Mo) based polyoxometalate (POM), β-cyclodextrin (β-CD), and methotrexate (MTX), in which the MTX is loaded by host-guest interaction. PCSN@MTX shows inhibition of synovial M1-like macrophages polarization to alleviate RA. PCSN@MTX has demonstrated ultrasound (US) augmented catalytic behavior in consuming ROS and generating oxygen (O2) with accelerated conversion of Mo5+ to Mo6+ in the POM. In the collagen-induced arthritis mouse model, after systemical administration, the pH-responsive PCSN@MTX shows enhanced accumulation in the acidic joints by in-situ self-assembly. The host-guest complexation between MTX and β-CD is broken via US, achieving an on-demand burst release of MTX. The released MTX and ROS-scavenging synergistically facilitate the M1-to-M2 macrophage phenotype switching, which effectively alleviates RA disease progress under US irradiation. This study provides a paradigm for RA therapy with a promising US-augmented strategy.
Collapse
Affiliation(s)
- Fuhong Yang
- Strait Institute of Flexible Electronics (SIFE, Future Technologies), College of Photonic and Electronic Engineering, Fujian Key Laboratory of Flexible Electronics and Strait Laboratory of Flexible Electronics (SLoFE), Fujian Normal University, Fuzhou, 350117, China
| | - Jingqi Lv
- Strait Institute of Flexible Electronics (SIFE, Future Technologies), College of Photonic and Electronic Engineering, Fujian Key Laboratory of Flexible Electronics and Strait Laboratory of Flexible Electronics (SLoFE), Fujian Normal University, Fuzhou, 350117, China
| | - Yanli Huang
- Strait Institute of Flexible Electronics (SIFE, Future Technologies), College of Photonic and Electronic Engineering, Fujian Key Laboratory of Flexible Electronics and Strait Laboratory of Flexible Electronics (SLoFE), Fujian Normal University, Fuzhou, 350117, China
| | - Wen Ma
- Strait Institute of Flexible Electronics (SIFE, Future Technologies), College of Photonic and Electronic Engineering, Fujian Key Laboratory of Flexible Electronics and Strait Laboratory of Flexible Electronics (SLoFE), Fujian Normal University, Fuzhou, 350117, China.
| | - Zhen Yang
- Strait Institute of Flexible Electronics (SIFE, Future Technologies), College of Photonic and Electronic Engineering, Fujian Key Laboratory of Flexible Electronics and Strait Laboratory of Flexible Electronics (SLoFE), Fujian Normal University, Fuzhou, 350117, China.
| |
Collapse
|
2
|
Shao A, Li R, Li Y, Zhang X, Jiang Y, Lin A, Ni J. Construction of HaloTag-based macromolecular probe for multiple logic gates and photoactivatable bioimaging. Int J Biol Macromol 2024; 278:135043. [PMID: 39182891 DOI: 10.1016/j.ijbiomac.2024.135043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 08/21/2024] [Accepted: 08/22/2024] [Indexed: 08/27/2024]
Abstract
Protein bioconjugation has emerged as one of the most valuable tools for the development of protein-based biochemical assays. Herein, we report a fluorescent macromolecular probe RF12_POI, in which the coumarin derivative RF12 is specifically conjugated onto the HaloTag fused protein of interest (POI) to achieve a dual stimuli-mediated fluorescence response. RF12 is first obtained by installing a photo-cleavable 1-ethyl-2-nitrobenzyl group onto the C7 hydroxy moiety of coumarin fluorophore with a HaloTag ligand attaching to the acid-labile 1,3-dioxane moiety. Upon stimulation, RF12_Halo exhibits a sequential fluorescence response to photon/H+ on both liquid and solid interfaces. Through the conjugation of RF12 onto the GFP_Halo protein, RF12_GFP_Halo presents a fluorescence resonance energy transfer (FRET) from photo-cleaved RF12 to GFP in the protein complex. Furthermore, by utilizing the stimuli-responsive fluorescence characteristics of coumarin derivatives RF12 (photon/H+) and RF16 (H2O2/H+), we construct RF12/RF16_POI based protein films and achieve multiple applications of logic circuits, including AND, OR, XOR, INHIBIT, Half-adder or Half-subtractor. In these circuits, the output value of I/I0 is dependent on the input sequence of photon, H2O2, and H+. Additionally, we evaluate the fluorescence labeling ability of RF12 to intracellular IRE1_Halo protein and demonstrate that RF12 containing the HaloTag ligand could be precisely retained in cells to track IRE1_Halo protein. Hence, we provide a unique structural design strategy to construct fluorescence dual-responsive macromolecules for information encryption and cellular protein visualization.
Collapse
Affiliation(s)
- Andong Shao
- School of Life Sciences and Health Engineering, Jiangnan University, Wuxi 214122, China.
| | - Runqi Li
- School of Life Sciences and Health Engineering, Jiangnan University, Wuxi 214122, China
| | - Yaxi Li
- Department of Radiology, Jiangnan University Medical Center (JUMC), Wuxi 214002, China
| | - Xuekun Zhang
- School of Life Sciences and Health Engineering, Jiangnan University, Wuxi 214122, China
| | - Yu Jiang
- School of Life Sciences and Health Engineering, Jiangnan University, Wuxi 214122, China
| | - Ang Lin
- Vaccine Center, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing 211198, China.
| | - Jianming Ni
- Department of Radiology, Jiangnan University Medical Center (JUMC), Wuxi 214002, China.
| |
Collapse
|
3
|
Kommidi SSR, Atkinson KM, Smith BD. Steric protection of near-infrared fluorescent dyes for enhanced bioimaging. J Mater Chem B 2024; 12:8310-8320. [PMID: 39101969 DOI: 10.1039/d4tb01281j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/06/2024]
Abstract
Near-fluorescent (NIR) dyes that absorb and emit light in the wavelength range of 650-1700 nm are well-suited for bioimaging due to the improved image contrast and increased penetration of the long-wavelength light through biological tissue. However, the imaging performance of NIR fluorescent dyes is limited by several inherent photophysical and physicochemical properties including, low fluorescence quantum yield, high chemical and photochemical reactivity, propensity to self-aggregate in water, non-specific association with off-target biological sites, and non-optimal pharmacokinetic profiles in living subjects. In principle, all these drawbacks can be alleviated by steric protection which is a structural process that surrounds the fluorophore with bulky groups that block undesired intermolecular interactions. The literature methods to sterically protect a long-wavelength dye can be separated into two general strategies, non-covalent dye encapsulation and covalent steric appendage. Illustrative examples of each method show how steric protection improves bioimaging performance by providing: (a) increased fluorescence brightness, (b) higher fluorophore ground state stability, (c) decreased photobleaching, and (d) superior pharmacokinetic profile. Some sterically protected dyes are commercially available and further success with future systems will require experts in chemistry, microscopy, cell biology, medical imaging, and clinical medicine to work closely as interdisciplinary teams.
Collapse
Affiliation(s)
| | - Kirk M Atkinson
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556, USA.
| | - Bradley D Smith
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556, USA.
| |
Collapse
|
4
|
Liao L, Qi J, Gao J, Qu X, Hu Z, Fu B, Wu F. Nitrogen-Doped Carbon Quantum Dots with Photoactivation Properties for Ultraviolet Ray Detection. ACS APPLIED MATERIALS & INTERFACES 2024; 16:42632-42640. [PMID: 39082213 DOI: 10.1021/acsami.4c07741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/16/2024]
Abstract
Photoactivation is a phenomenon that could enhance the photoluminescence (PL) and photostability upon UV/vis light exposure, which is usually observed in CdSe/ZnS quantum dots (QDs). However, the photoactivation phenomenon has been scarcely reported in fluorescent carbon quantum dots (CQDs). Herein, the nitrogen-doped carbon quantum dots (N-CQDs) were prepared through a facile solvothermal approach with naphthalenetracarboxylic dianhydride and serine as precursors. Upon simple UV light irradiation for 10 min, the fluorescence quantum yield (QY) of N-CQDs could increase up to 10-fold. Based on this phenomenon, the N-CQDs were explored as an ultraviolet (UV) light sensor to assess the intensity of ultraviolet radiation in sunlight and indirectly evaluate the UV-blocking efficiency of various sunscreen products. Thus, this contribution not only provided an insight into developing a low-cost UV detector but also opened a door for the development of carbon quantum dots with converse-photobleaching properties.
Collapse
Affiliation(s)
- Linhong Liao
- Hubei Key Laboratory of Novel Reactor and Green Chemical Technology, Key Laboratory of Novel Biomass-Based Environmental and Energy Materials in Petroleum and Chemical Industry, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan 430072, P. R. China
| | - Junchao Qi
- Hubei Key Laboratory of Novel Reactor and Green Chemical Technology, Key Laboratory of Novel Biomass-Based Environmental and Energy Materials in Petroleum and Chemical Industry, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan 430072, P. R. China
| | - Jie Gao
- Hubei Key Laboratory of Novel Reactor and Green Chemical Technology, Key Laboratory of Novel Biomass-Based Environmental and Energy Materials in Petroleum and Chemical Industry, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan 430072, P. R. China
| | - Xiaowei Qu
- Hubei Key Laboratory of Novel Reactor and Green Chemical Technology, Key Laboratory of Novel Biomass-Based Environmental and Energy Materials in Petroleum and Chemical Industry, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan 430072, P. R. China
| | - Zhiyuan Hu
- Hubei Key Laboratory of Novel Reactor and Green Chemical Technology, Key Laboratory of Novel Biomass-Based Environmental and Energy Materials in Petroleum and Chemical Industry, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan 430072, P. R. China
- National Center for Nanoscience and Technology, Beijing 100190, P. R. China
| | - Boyi Fu
- Hubei Key Laboratory of Novel Reactor and Green Chemical Technology, Key Laboratory of Novel Biomass-Based Environmental and Energy Materials in Petroleum and Chemical Industry, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan 430072, P. R. China
| | - Fengshou Wu
- Hubei Key Laboratory of Novel Reactor and Green Chemical Technology, Key Laboratory of Novel Biomass-Based Environmental and Energy Materials in Petroleum and Chemical Industry, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan 430072, P. R. China
| |
Collapse
|
5
|
Wu J, Wu J, Wei W, Zhang Y, Chen Q. Upconversion Nanoparticles Based Sensing: From Design to Point-of-Care Testing. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2311729. [PMID: 38415811 DOI: 10.1002/smll.202311729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Revised: 01/29/2024] [Indexed: 02/29/2024]
Abstract
Rare earth-doped upconversion nanoparticles (UCNPs) have achieved a wide range of applications in the sensing field due to their unique anti-Stokes luminescence property, minimized background interference, excellent biocompatibility, and stable physicochemical properties. However, UCNPs-based sensing platforms still face several challenges, including inherent limitations from UCNPs such as low quantum yields and narrow absorption cross-sections, as well as constraints related to energy transfer efficiencies in sensing systems. Therefore, the construction of high-performance UCNPs-based sensing platforms is an important cornerstone for conducting relevant research. This work begins by providing a brief overview of the upconversion luminescence mechanism in UCNPs. Subsequently, it offers a comprehensive summary of the sensors' types, design principles, and optimized design strategies for UCNPs sensing platforms. More cost-effective and promising point-of-care testing applications implemented based on UCNPs sensing systems are also summarized. Finally, this work addresses the future challenges and prospects for UCNPs-based sensing platforms.
Collapse
Affiliation(s)
- Jizhong Wu
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, 212013, P.R. China
- Department of Biomedical Engineering, Faculty of Engineering, National University of Singapore, Singapore, 117583
| | - Jiaxi Wu
- Department of Biomedical Engineering, Faculty of Engineering, National University of Singapore, Singapore, 117583
| | - Wenya Wei
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, 212013, P.R. China
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen, 361021, P.R. China
| | - Yong Zhang
- Department of Biomedical Engineering, City University of Hong Kong, Kowloon, 999077, Hong Kong
| | - Quansheng Chen
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, 212013, P.R. China
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen, 361021, P.R. China
| |
Collapse
|
6
|
Sun R, Wang Y, Shi W, Zhang H, Liu J, He W. Acidity-Triggered "Sticky Spotlight": CCK2R-Targeted TME-Sensitive NIR Fluorescent Probes for Tumor Imaging In Vivo. Bioconjug Chem 2024; 35:528-539. [PMID: 38514970 DOI: 10.1021/acs.bioconjchem.4c00040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/23/2024]
Abstract
Cancer which causes high mortality globally threatens public health seriously. There is an urgent need to develop tumor-specific near-infrared (NIR) imaging agents to achieve precise diagnosis and guide effective treatment. In recent years, imaging probes that respond to acidic environments such as endosomes, lysosomes, or acidic tumor microenvironments (TMEs) are being developed. However, because of their nonspecific internalization by both normal and tumor cells, resulting in a poor signal-to-noise ratio in diagnosis, these pH-sensitive probes fail to be applied to in vivo tumor imaging. To address this issue, a cholecystokinin-2 receptor (CCK2R)-targeted TME-sensitive NIR fluorescent probe R2SM was synthesized by coupling pH-sensitive heptamethine cyanine with a CCK2R ligand, minigastrin analogue 11 (MG11) for in vivo imaging, in which MG11 would target overexpressed CCK2Rs in gastrointestinal stromal tumors (GISTs). Cell uptake assay demonstrated that R2SM exhibited a high affinity for CCK2R, leading to receptor-mediated internalization and making probes finally accumulated in the lysosomes of tumor cells, which suggested in the tumor tissues, the probes were distributed in the extracellular acidic TME and intracellular lysosomes. With a pKa of 6.83, R2SM can be activated at the acidic TME (pH = 6.5-6.8) and lysosomes (pH = 4.5-5.0), exhibiting an apparent pH-dependent behavior and generating more intense fluorescence in these acidic environments. In vivo imaging showed that coupling of MG11 with a pH-sensitive NIR probe facilitated the accumulation of probe and enhanced the fluorescence in CCK2R-overexpressed HT-29 tumor cells. A high signal was observed in the tumor region within 0.5 h postinjection, indicating its potential application in intraoperative imaging. Fluorescence imaging of R2SM exhibited higher tumor-to-liver and tumor-to-kidney ratios (2.1:1 and 2.3:1, respectively), compared separately with the probes that are lipophilic, pH-insensitive, or MG11-free. In vitro and in vivo studies demonstrated that the synergistic effect of tumor targeting with pH sensitivity plays a vital role in the high signal-to-noise ratio of the NIR imaging probe. Moreover, different kinds of tumor-targeting vectors could be conjugated simultaneously with the NIR dye, which would further improve the receptor affinity and targeting efficiency.
Collapse
Affiliation(s)
- Ruiqi Sun
- Medical Chemistry and Bioinformatics Center, College of Basic Medical Sciences, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Yuxin Wang
- Medical Chemistry and Bioinformatics Center, College of Basic Medical Sciences, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Wenhui Shi
- Medical Chemistry and Bioinformatics Center, College of Basic Medical Sciences, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Hongfu Zhang
- Medical Chemistry and Bioinformatics Center, College of Basic Medical Sciences, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Jianhua Liu
- Medical Chemistry and Bioinformatics Center, College of Basic Medical Sciences, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Weina He
- Medical Chemistry and Bioinformatics Center, College of Basic Medical Sciences, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| |
Collapse
|
7
|
Banerjee M, Anoop A. Exploring the Theoretical Foundations of Thermally Activated Delayed Fluorescence (TADF) Emission: A Comprehensive TD-DFT Study on Phenothiazine Systems. Chemistry 2024; 30:e202304206. [PMID: 38319588 DOI: 10.1002/chem.202304206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 01/28/2024] [Accepted: 02/06/2024] [Indexed: 02/07/2024]
Abstract
This study conducts a thorough theoretical investigation of Thermally Activated Delayed Fluorescence (TADF) in phenothiazine-based systems, examining ten molecular configurations recognized experimentally as TADF-active. Employing Time-Dependent Density Functional Theory (TD-DFT), our analysis spans the investigation of singlet-triplet energy gaps (ΔEST), spin-orbit coupling, and excitation characteristics using Multiwfn. This approach not only validates the adherence to El Sayed's rule across these systems but also provides a detailed understanding of charge transfer dynamics, as visualized through heat maps. A significant aspect of our study is the exploration of different oxidation states of sulfur and site substitutions on phenothiazine. This systematic variation aims to identify additional TADF-active compounds, drawing parallels with properties characterizing other known TADF emitters. Our investigation into Reverse Intersystem Crossing (rISC) rates and the analysis of dihedral angles in relation to ΔEST values offer nuanced insights into the TADF behaviours of these molecules. By integrating rigorous computational analysis with practical implications, we provide a foundational understanding that enhances the design and optimization of phenothiazine-based materials for optoelectronic applications. This work not only advances our theoretical understanding of TADF in phenothiazine derivatives but also serves as a guide for experimentalists and industry professionals in the strategic design of new TADF materials.
Collapse
Affiliation(s)
- Moumita Banerjee
- Department of Chemistry, Indian Institute of Technology Kharagpur, West Bengal, 721302, India
| | - Anakuthil Anoop
- Department of Chemistry, Indian Institute of Technology Kharagpur, West Bengal, 721302, India
- School of Digital Sciences, Kerala University of Digital Sciences, Innovation and Technology, Thiruvananthapuram, Kerala, 695317, India
| |
Collapse
|
8
|
Aztatzi-Mendoza MA, Porras-Núñez EL, Rivas-Galindo VM, Carranza-Rosales P, Carranza-Torres IE, García-Vielma C, Hernández Ahuactzi IF, López-Cortina S, López I, Hernández-Fernández E. Green synthesis of ethyl cinnamates under microwave irradiation: photophysical properties, cytotoxicity, and cell bioimaging. RSC Adv 2024; 14:2391-2401. [PMID: 38213976 PMCID: PMC10783162 DOI: 10.1039/d3ra06443c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Accepted: 12/22/2023] [Indexed: 01/13/2024] Open
Abstract
A simple and green method for the synthesis of six ethyl cinnamates was performed via Horner-Wadsworth-Emmons reaction under microwave irradiation. The photoluminescent properties of all compounds in ethyl acetate solutions were evaluated demonstrating that all compounds exhibit fluorescence. Five compounds exhibited blue emissions in the 369-442 nm range, and another compound exhibited blue-green emission at 504 nm. This last compound showed the largest Stokes shift (134 nm), and the highest quantum yield (17.8%). Two compounds showed extinction coefficient values (ε) higher than 30 000 M-1 cm-1, which are appropriate for cell bioimaging applications. In this sense, cytotoxicity assays were performed using Vero cells at different concentrations; the results showed that these compounds were not cytotoxic at the highest concentration tested (20 μg mL-1). Finally, the analysis by fluorescence microscopy for localization and cellular staining using Vero cells demonstrated that the compounds stained the cytoplasm and the nuclei in a selective way.
Collapse
Affiliation(s)
- Miguel Angel Aztatzi-Mendoza
- Universidad Autónoma de Nuevo León, UANL, Facultad de Ciencias Químicas Pedro de Alba s/n, Ciudad Universitaria 66450 San Nicolás de los Garza Nuevo León Mexico +52-81-83294000 +52-81-83294000 ext. 6293
| | - Edgar Leonel Porras-Núñez
- Universidad Autónoma de Nuevo León, UANL, Facultad de Ciencias Químicas Pedro de Alba s/n, Ciudad Universitaria 66450 San Nicolás de los Garza Nuevo León Mexico +52-81-83294000 +52-81-83294000 ext. 6293
| | - Verónica M Rivas-Galindo
- Universidad Autónoma de Nuevo León, UANL, Facultad de Medicina Fco. I. Madero s/n, Mitras Centro 64460 Monterrey Nuevo León Mexico
| | - Pilar Carranza-Rosales
- Centro de Investigación Biomédica del Noreste, Instituto Mexicano del Seguro Social Monterrey 64720 Nuevo León Mexico
| | - Irma Edith Carranza-Torres
- Centro de Investigación Biomédica del Noreste, Instituto Mexicano del Seguro Social Monterrey 64720 Nuevo León Mexico
| | - Catalina García-Vielma
- Centro de Investigación Biomédica del Noreste, Instituto Mexicano del Seguro Social Monterrey 64720 Nuevo León Mexico
| | - Iran F Hernández Ahuactzi
- Centro Universitario de Tonalá, Universidad de Guadalajara Av. Nuevo Periférico 555, Ejido San José Tatepozco Tonalá 45425 Jalisco Mexico
| | - Susana López-Cortina
- Universidad Autónoma de Nuevo León, UANL, Facultad de Ciencias Químicas Pedro de Alba s/n, Ciudad Universitaria 66450 San Nicolás de los Garza Nuevo León Mexico +52-81-83294000 +52-81-83294000 ext. 6293
| | - Israel López
- Universidad Autónoma de Nuevo León (UANL), Facultad de Ciencias Químicas, Centro de Investigación en Biotecnología y Nanotecnología, Laboratorio de Nanociencias y Nanotecnología Autopista al Aeropuerto Internacional Mariano Escobedo Km. 10, Parque de Investigación e Innovación Tecnológica 66629 Apodaca Nuevo León Mexico +52-81-83294000 +52-81-83294000 ext. 4202
| | - Eugenio Hernández-Fernández
- Universidad Autónoma de Nuevo León, UANL, Facultad de Ciencias Químicas Pedro de Alba s/n, Ciudad Universitaria 66450 San Nicolás de los Garza Nuevo León Mexico +52-81-83294000 +52-81-83294000 ext. 6293
| |
Collapse
|
9
|
Chen Z, Yang L, Xu W, Xu F, Sheng J, Xiao Q, Song X, Chen W. Homoadamantane-Fused Tetrahydroquinoxaline as a Robust Electron-Donating Unit for High-Performance Asymmetric NIR Rhodamine Development. Anal Chem 2023; 95:3325-3331. [PMID: 36716181 DOI: 10.1021/acs.analchem.2c04445] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Rhodamines have emerged as a useful class of dye for bioimaging. However, intrinsic issues such as short emission wavelengths and small Stokes shifts limit their widespread applications in living systems. By taking advantage of the homoadamantane-fused tetrahydroquinoxaline (HFT) moiety as an electron donor, we developed a new class of asymmetric NIR rhodamine dyes, NNR1-7. These new dyes retained ideal photophysical properties from the classical rhodamine scaffold and showed large Stokes shifts (>80 nm) with improved chemo/photostability. We found that NNR1-7 specifically target cellular mitochondria with superior photobleaching resistance and improved tolerance for cell fixation compared to commercial mitochondria trackers. Based on NNR4, a novel NIR pH sensor (NNR4M) was also constructed and successfully applied for real-time monitoring of variations in lysosomal pH. We envision this design strategy would find broad applications in the development of highly stable NIR dyes with a large Stokes shift.
Collapse
Affiliation(s)
- Zhipeng Chen
- Guangxi Zhuang Autonomous Region Ecological and Environmental Monitoring Centre, Nanning 530028, PR China
| | - Lei Yang
- Shandong Provincial Key Laboratory of Detection Technology for Tumor Markers, College of Chemistry and Chemical Engineering, Linyi University, Linyi 276000, China
| | - Wenju Xu
- Guangxi Key Laboratory of Natural Polymer Chemistry and Physics, College of Chemistry and Materials Science, Nanning Normal University, Mingxiu Rd. 175, Nanning 530001, China
| | - Feifei Xu
- Shandong Provincial Key Laboratory of Detection Technology for Tumor Markers, College of Chemistry and Chemical Engineering, Linyi University, Linyi 276000, China
| | - Jiarong Sheng
- Guangxi Key Laboratory of Natural Polymer Chemistry and Physics, College of Chemistry and Materials Science, Nanning Normal University, Mingxiu Rd. 175, Nanning 530001, China
| | - Qi Xiao
- Guangxi Key Laboratory of Natural Polymer Chemistry and Physics, College of Chemistry and Materials Science, Nanning Normal University, Mingxiu Rd. 175, Nanning 530001, China
| | - Xiangzhi Song
- College of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan Province 410083, P. R. China
| | - Wenqiang Chen
- Guangxi Key Laboratory of Natural Polymer Chemistry and Physics, College of Chemistry and Materials Science, Nanning Normal University, Mingxiu Rd. 175, Nanning 530001, China
| |
Collapse
|
10
|
Kniazev K, Guo T, Zhai C, Gamage RS, Ghonge S, Frantsuzov PA, Kuno M, Smith B. Single-molecule characterization of a bright and photostable deep-red fluorescent squaraine-figure-eight (SF8) dye. DYES AND PIGMENTS : AN INTERNATIONAL JOURNAL 2023; 210:111031. [PMID: 36643871 PMCID: PMC9835836 DOI: 10.1016/j.dyepig.2022.111031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Squaraine Figure Eight (SF8) dyes are a unique class of deep-red fluorescent dyes with self-threaded molecular architecture that provides structural rigidity while simultaneously encapsulating and protecting the emissive fluorochrome. Previous cell microscopy and bulk phase studies of SF8 dyes indicated order of magnitude enhancements in photostability over conventional pentamethine cyanine dyes such as Cy5. Studies conducted at the single molecule level now reveal that these ensemble level enhancements carry over to the single molecule level in terms of enhanced emission quantum yields, longer times to photobleaching, and enhanced total photon yields. When compared to Cy5, the SF8-based dye SF8(D4)2 possesses a three-fold larger single molecule emission quantum yield, exhibits order of magnitude longer average times before photobleaching, and exhibits twenty times larger photon yields. Additional features such as water solubility, fluorochrome encapsulation to protect it against nucleophilic attack, and selective biomarker targeting capability make SF8-based dyes promising candidates for biological labeling and microscopy applications and single molecule tracking.
Collapse
Affiliation(s)
- Kirill Kniazev
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN 46556
| | - Tianle Guo
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN 46556
| | - Canjia Zhai
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN 46556
| | - Rananjaya S. Gamage
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN 46556
| | - Sushrut Ghonge
- Department of Physics, University of Notre Dame, Notre Dame, IN 46556
| | - Pavel A. Frantsuzov
- Voevodsky Institute of Chemical Kinetics and Combustion, Siberian Branch of the Russian Academy of Science, Institutskaya 3, Novosibirsk, 630090, Russia
| | - Masaru Kuno
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN 46556
- Department of Physics, University of Notre Dame, Notre Dame, IN 46556
| | - Bradley Smith
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN 46556
| |
Collapse
|
11
|
Zhu J, He G, Chen PH, Zhang Y, Zhang Y, Lei S, Zhang Y, Li M, Huang P, Lin J. Terpyridine-Grafted Nitrogen-Terminal Endowing Cyanine with Metal-Ion-Regulated Photophysical Properties for Cancer Theranostics. RESEARCH (WASHINGTON, D.C.) 2023; 6:0061. [PMID: 36930757 PMCID: PMC10013959 DOI: 10.34133/research.0061] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Accepted: 01/09/2023] [Indexed: 01/22/2023]
Abstract
Heptamethine cyanines (Cy7) are one of the most important dyes in bioimaging and phototherapy, but they often suffer from poor photostability or limited photothermal conversion efficiency. Here, a facile molecular engineering approach to regulating the photophysical properties of Cy7 by metal ions is demonstrated. By innovatively modifying the nitrogen with functional groups, a novel terpyridine-grafted nitrogen-terminated Cy7 scaffold (denoted as CydtPy) was synthesized and exhibited tunable photophysical properties when chelating with various metal ions (Mn2+, Fe2+, etc.). In comparison with metal-ion-free PEGylated CydtPy (LET-11), Mn2+-chelated LET-11 (namely, LET-11-Mn) exhibited the increased fluorescence emission intensity, and Fe2+-chelated LET-11 (namely, LET-11-Fe) showed the enhanced photostability with ~2-fold increase in photothermal conversion efficiency. By simply switching the chelated metal ion species, LET-11-Mn or LET-11-Fe could be used for near-infrared fluorescence imaging, magnetic resonance imaging, or photoacoustic imaging. Furthermore, LET-11-Fe displayed superior synergistic efficacy of photothermal therapy and chemodynamic therapy both in vitro and in vivo. This work not only provides a new strategy for regulating the photophysical properties of cyanine dyes but also establishes a versatile nanoplatform for cancer theranostics.
Collapse
Affiliation(s)
- Junfei Zhu
- Marshall Laboratory of Biomedical Engineering, International Cancer Center, Laboratory of Evolutionary Theranostics (LET), Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen 518060, China
| | - Gang He
- Marshall Laboratory of Biomedical Engineering, International Cancer Center, Laboratory of Evolutionary Theranostics (LET), Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen 518060, China
| | - Peng-Hang Chen
- Marshall Laboratory of Biomedical Engineering, International Cancer Center, Laboratory of Evolutionary Theranostics (LET), Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen 518060, China
| | - Yajie Zhang
- Marshall Laboratory of Biomedical Engineering, International Cancer Center, Laboratory of Evolutionary Theranostics (LET), Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen 518060, China
| | - Yafei Zhang
- Marshall Laboratory of Biomedical Engineering, International Cancer Center, Laboratory of Evolutionary Theranostics (LET), Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen 518060, China
| | - Shan Lei
- Marshall Laboratory of Biomedical Engineering, International Cancer Center, Laboratory of Evolutionary Theranostics (LET), Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen 518060, China
| | - Yu Zhang
- Marshall Laboratory of Biomedical Engineering, International Cancer Center, Laboratory of Evolutionary Theranostics (LET), Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen 518060, China
| | - Meng Li
- Marshall Laboratory of Biomedical Engineering, International Cancer Center, Laboratory of Evolutionary Theranostics (LET), Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen 518060, China
| | - Peng Huang
- Marshall Laboratory of Biomedical Engineering, International Cancer Center, Laboratory of Evolutionary Theranostics (LET), Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen 518060, China
| | - Jing Lin
- Marshall Laboratory of Biomedical Engineering, International Cancer Center, Laboratory of Evolutionary Theranostics (LET), Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen 518060, China
| |
Collapse
|
12
|
Zhang Y, Williams GR, Lou J, Li W, Bai C, Wang T, Niu S, Feng C, Zhu LM. A new chitosan-based thermosensitive nanoplatform for combined photothermal and chemotherapy. Int J Biol Macromol 2022; 223:1356-1367. [PMID: 36379285 DOI: 10.1016/j.ijbiomac.2022.11.068] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 10/30/2022] [Accepted: 11/08/2022] [Indexed: 11/14/2022]
Abstract
Targeting the delivery of anti-cancer drugs to a tumor site is essential for effective treatment and to ensure minimal damage to healthy cells and tissues. In this work, a chitosan-based nanoplatform was constructed for combined photothermal therapy and chemotherapy of breast cancer. The pH-sensitive and biocompatible biopolymer chitosan (CS) was grafted with N-vinylcaprolactam (NVCL) and modified with biotin (Bio), imparting it with temperature sensitive property and also the ability for active targeting. The polymer self-assembled to give nanoparticles (NPs) loaded with indocyanine green (ICG) and doxorubicin (DOX). When the NPs are exposed to near-infrared (NIR) laser irradiation, ICG converts the light to heat, inducing a significant phase transition in the NPs and facilitating the release of the drug cargo. In addition, the solubility of chitosan is increased in the slightly acidic microenvironment of the tumor site, which also promotes drug release. A detailed analysis of the NPs both in vitro and in vivo showed that the carrier system is biocompatible, while the drug-loaded NPs are selectively taken up by cancer cells. Particularly when augmented with NIR irradiation, this leads to potent cell death in vitro and also in an in vivo murine xenograft model of breast cancer.
Collapse
Affiliation(s)
- Yanyan Zhang
- College of Biological Science and Medical Engineering, Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, Donghua University, Shanghai 201620, PR China
| | - Gareth R Williams
- UCL School of Pharmacy, University College London, 29-39 Brunswick Square, London, WC1N 1AX, UK
| | - Jiadong Lou
- College of Biological Science and Medical Engineering, Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, Donghua University, Shanghai 201620, PR China
| | - Wanting Li
- Yunnan Key Laboratory of Stem Cell and Regenerative Medicine, Science and Technology Achievement Incubation Center, Kunming Medical University, Kunming 650500, PR China
| | - Cuiwei Bai
- Yunnan Key Laboratory of Stem Cell and Regenerative Medicine, Science and Technology Achievement Incubation Center, Kunming Medical University, Kunming 650500, PR China
| | - Tong Wang
- College of Biological Science and Medical Engineering, Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, Donghua University, Shanghai 201620, PR China
| | - Shiwei Niu
- Yunnan Key Laboratory of Stem Cell and Regenerative Medicine, Science and Technology Achievement Incubation Center, Kunming Medical University, Kunming 650500, PR China
| | - Chun Feng
- Department of Otolaryngology, the First People's Hospital of Yunnan Province, the Affiliated Hospital of Kunming University of Science and Technology, Kunming 650032, PR China.
| | - Li-Min Zhu
- College of Biological Science and Medical Engineering, Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, Donghua University, Shanghai 201620, PR China.
| |
Collapse
|
13
|
Al Kelabi D, Dey A, Alimi LO, Piwoński H, Habuchi S, Khashab NM. Photostable polymorphic organic cages for targeted live cell imaging. Chem Sci 2022; 13:7341-7346. [PMID: 35799823 PMCID: PMC9214840 DOI: 10.1039/d2sc00836j] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Accepted: 06/01/2022] [Indexed: 11/21/2022] Open
Abstract
Fluorescent microscopy is a powerful tool for studying the cellular dynamics of biological systems. Small-molecule organic fluorophores are the most commonly used for live cell imaging; however, they often suffer from low solubility, limited photostability and variable targetability. Herein, we demonstrate that a tautomeric organic cage, OC1, has high cell permeability, photostability and selectivity towards the mitochondria. We further performed a structure–activity study to investigate the role of the keto–enol tautomerization, which affords strong and consistent fluorescence in dilute solutions through supramolecular self-assembly. Significantly, OC1 can passively diffuse through the cell membrane directly targeting the mitochondria without going through the endosomes or the lysosomes. We envisage that designing highly stable and biocompatible self-assembled fluorophores that can passively diffuse through the cell membrane while selectively targeting specific organelles will push the boundaries of fluorescent microscopy to visualize intricate cellular processes at the single molecule level in live samples. In this article, we demonstrate the relatively unexplored potential of organic cages for use in targeted live cell imaging and highlight the importance of inter- and intramolecular interactions to stabilize and improve the performance of fluorophores.![]()
Collapse
Affiliation(s)
- Dana Al Kelabi
- Smart Hybrid Materials (SHMs) Laboratory, Advanced Membranes and Porous Materials Center, King Abdullah University of Science and Technology (KAUST) Thuwal 23955-6900 Kingdom of Saudi Arabia
| | - Avishek Dey
- Smart Hybrid Materials (SHMs) Laboratory, Advanced Membranes and Porous Materials Center, King Abdullah University of Science and Technology (KAUST) Thuwal 23955-6900 Kingdom of Saudi Arabia
| | - Lukman O Alimi
- Smart Hybrid Materials (SHMs) Laboratory, Advanced Membranes and Porous Materials Center, King Abdullah University of Science and Technology (KAUST) Thuwal 23955-6900 Kingdom of Saudi Arabia
| | - Hubert Piwoński
- King Abdullah University of Science and Technology, Biological and Environmental Science and Engineering Division Thuwal 23955-6900 Saudi Arabia
| | - Satoshi Habuchi
- King Abdullah University of Science and Technology, Biological and Environmental Science and Engineering Division Thuwal 23955-6900 Saudi Arabia
| | - Niveen M Khashab
- Smart Hybrid Materials (SHMs) Laboratory, Advanced Membranes and Porous Materials Center, King Abdullah University of Science and Technology (KAUST) Thuwal 23955-6900 Kingdom of Saudi Arabia
| |
Collapse
|
14
|
Qin S, Zou H, Hai Y, You L. Aggregation-induced emission luminogens and tunable multicolor polymer networks modulated by dynamic covalent chemistry. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2021.11.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
15
|
Abdellatif AAH, Younis MA, Alsharidah M, Al Rugaie O, Tawfeek HM. Biomedical Applications of Quantum Dots: Overview, Challenges, and Clinical Potential. Int J Nanomedicine 2022; 17:1951-1970. [PMID: 35530976 PMCID: PMC9076002 DOI: 10.2147/ijn.s357980] [Citation(s) in RCA: 51] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Accepted: 04/12/2022] [Indexed: 12/14/2022] Open
Abstract
Despite the massive advancements in the nanomedicines and their associated research, their translation into clinically-applicable products is still below promises. The latter fact necessitates an in-depth evaluation of the current nanomedicines from a clinical perspective to cope with the challenges hampering their clinical potential. Quantum dots (QDs) are semiconductors-based nanomaterials with numerous biomedical applications such as drug delivery, live imaging, and medical diagnosis, in addition to other applications beyond medicine such as in solar cells. Nevertheless, the power of QDs is still underestimated in clinics. In the current article, we review the status of QDs in literature, their preparation, characterization, and biomedical applications. In addition, the market status and the ongoing clinical trials recruiting QDs are highlighted, with a special focus on the challenges limiting the clinical translation of QDs. Moreover, QDs are technically compared to other commercially-available substitutes. Eventually, we inspire the technical aspects that should be considered to improve the clinical fate of QDs.
Collapse
Affiliation(s)
- Ahmed A H Abdellatif
- Department of Pharmaceutics, College of Pharmacy, Qassim University, Buraydah, 51452, Saudi Arabia
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Al-Azhar University, Assiut, 71524, Egypt
| | - Mahmoud A Younis
- Department of Industrial Pharmacy, Faculty of Pharmacy, Assiut University, Assiut, 71526, Egypt
| | - Mansour Alsharidah
- Department of Physiology, College of Medicine, Qassim University, Buraydah, 51452, Saudi Arabia
| | - Osamah Al Rugaie
- Department of Basic Medical Sciences, College of Medicine and Medical Sciences, Qassim University, Unaizah, Al Qassim, 51911, Saudi Arabia
| | - Hesham M Tawfeek
- Department of Industrial Pharmacy, Faculty of Pharmacy, Assiut University, Assiut, 71526, Egypt
| |
Collapse
|
16
|
Soavi G, Pedrini A, Devi Das A, Terenziani F, Pinalli R, Hickey N, Medagli B, Geremia S, Dalcanale E. Encapsulation of Trimethine Cyanine in Cucurbit[8]uril: Solution versus Solid‐State Inclusion Behavior. Chemistry 2022; 28:e202200185. [PMID: 35201658 PMCID: PMC9313864 DOI: 10.1002/chem.202200185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Indexed: 11/10/2022]
Abstract
Inclusion of polymethine cyanine dyes in the cavity of macrocyclic receptors is an effective strategy to alter their absorption and emission behavior in aqueous solution. In this paper, the effect of the host‐guest interaction between cucurbit[8]uril (CB[8]) and a model trimethine indocyanine (Cy3) on dye spectral properties and aggregation in water is investigated. Solution studies, performed by a combination of spectroscopic and calorimetric techniques, indicate that the addition of CB[8] disrupts Cy3 aggregates, leading to the formation of a 1 : 1 host‐guest complex with an association constant of 1.5×106 M−1. At concentrations suitable for NMR experiments, the slow formation of a supramolecular polymer was observed, followed by precipitation. Single crystals X‐ray structure elucidation confirmed the formation of a polymer with 1 : 1 stoichiometry in the solid state.
Collapse
Affiliation(s)
- Giuseppe Soavi
- Department of Chemistry Life Science and Environmental Sustainability University of Parma Parco Area delle Scienze 17/A 43124 Parma Italy
| | - Alessandro Pedrini
- Department of Chemistry Life Science and Environmental Sustainability University of Parma Parco Area delle Scienze 17/A 43124 Parma Italy
| | - Anjali Devi Das
- Department of Chemistry Life Science and Environmental Sustainability University of Parma Parco Area delle Scienze 17/A 43124 Parma Italy
| | - Francesca Terenziani
- Department of Chemistry Life Science and Environmental Sustainability University of Parma Parco Area delle Scienze 17/A 43124 Parma Italy
| | - Roberta Pinalli
- Department of Chemistry Life Science and Environmental Sustainability University of Parma Parco Area delle Scienze 17/A 43124 Parma Italy
| | - Neal Hickey
- Centre of Excellence in Biocrystallography Department of Chemical and Pharmaceutical Sciences University of Trieste Via L. Giorgieri 1 34127 Trieste Italy
| | - Barbara Medagli
- Centre of Excellence in Biocrystallography Department of Chemical and Pharmaceutical Sciences University of Trieste Via L. Giorgieri 1 34127 Trieste Italy
| | - Silvano Geremia
- Centre of Excellence in Biocrystallography Department of Chemical and Pharmaceutical Sciences University of Trieste Via L. Giorgieri 1 34127 Trieste Italy
| | - Enrico Dalcanale
- Department of Chemistry Life Science and Environmental Sustainability University of Parma Parco Area delle Scienze 17/A 43124 Parma Italy
| |
Collapse
|
17
|
Wu P, Zhou L, Zhen Z, Xia S, Yu L. Doped organic charge-transfer cocrystal with tunable fluorescence of wide band emission. J Photochem Photobiol A Chem 2022. [DOI: 10.1016/j.jphotochem.2021.113727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
18
|
Sivagnanam S, Das K, Basak M, Mahata T, Stewart A, Maity B, Das P. Self-assembled dipeptide based fluorescent nanoparticles as a platform for developing cellular imaging probes and targeted drug delivery chaperones. NANOSCALE ADVANCES 2022; 4:1694-1706. [PMID: 36134376 PMCID: PMC9417502 DOI: 10.1039/d1na00885d] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Accepted: 02/13/2022] [Indexed: 06/16/2023]
Abstract
Self-assembled peptide-based nanostructures, comprised of naturally occurring amino acids, display excellent biocompatibility, biodegradability, flexible responsiveness, and synthetic feasibility and can be customized for various biomedical applications. However, the lack of inherent optical properties of peptide-based nanoparticles is a limitation on their use as imaging probes or drug delivery vehicles. To overcome this impediment, we generated Boc protected tyrosine-tryptophan dipeptide-based nanoparticles (DPNPs) with structure rigidification by Zn(ii), which shifted the peptide's intrinsic fluorescent properties from the ultraviolet to the visible range. These DPNPs are photostable, biocompatible and have visible fluorescence signals that allow for real-time monitoring of their entry into cells. We further show that two DPNPs (PS1-Zn and PS2-Zn) can encapsulate the chemotherapeutic drug doxorubicin (Dox) and facilitate intracellular drug delivery resulting in cancer cell killing actions comparable to the unencapsulated drug. Finally, we chemically modified our DPNPs with an aptamer directed toward the epithelial cell surface marker EPCAM, which improved Dox delivery to the lung cancer epithelial cell line A549. In contrast, the aptamer conjugated DPNPs failed to deliver Dox into the cardiomyocyte cell line AC16. Theoretically, this strategy could be employed in vivo to specifically deliver Dox to cancer cells while sparing the myocardium, a major source of dose-limiting adverse events in the clinic. Our work represents an important proof-of-concept exercise demonstrating that ultra-short peptide-based fluorescent nanostructures have great promise for the development of new imaging probes and targeted drug delivery vehicles.
Collapse
Affiliation(s)
- Subramaniyam Sivagnanam
- Department of Chemistry, SRM Institute of Science and Technology SRM Nagar, Potheri, Kattankulathur Tamil Nadu 603203 India
| | - Kiran Das
- Centre of Biomedical Research, Sanjay Gandhi Post Graduate Institute of Medical Sciences (SGPGI) Campus Raebareli Road Lucknow Uttar Pradesh 226014 India
| | - Madhuri Basak
- Centre of Biomedical Research, Sanjay Gandhi Post Graduate Institute of Medical Sciences (SGPGI) Campus Raebareli Road Lucknow Uttar Pradesh 226014 India
| | - Tarun Mahata
- Centre of Biomedical Research, Sanjay Gandhi Post Graduate Institute of Medical Sciences (SGPGI) Campus Raebareli Road Lucknow Uttar Pradesh 226014 India
| | - Adele Stewart
- Department of Biomedical Science, Charles E. Schmidt College of Medicine, Florida Atlantic University Jupiter FL 33458 USA
| | - Biswanath Maity
- Centre of Biomedical Research, Sanjay Gandhi Post Graduate Institute of Medical Sciences (SGPGI) Campus Raebareli Road Lucknow Uttar Pradesh 226014 India
| | - Priyadip Das
- Department of Chemistry, SRM Institute of Science and Technology SRM Nagar, Potheri, Kattankulathur Tamil Nadu 603203 India
| |
Collapse
|
19
|
Zhao H, Xu J, Feng C, Ren J, Bao L, Zhao Y, Tao W, Zhao Y, Yang X. Tailoring Aggregation Extent of Photosensitizers to Boost Phototherapy Potency for Eliciting Systemic Antitumor Immunity. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2106390. [PMID: 34783098 DOI: 10.1002/adma.202106390] [Citation(s) in RCA: 62] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2021] [Revised: 10/30/2021] [Indexed: 06/13/2023]
Abstract
Phototherapy is effective for triggering the immunogenic cell death (ICD) effect. However, its efficacy is limited by low 1 O2 generation and photothermal conversion efficacy due to two irreconcilable obstacles, namely the aggregation-caused-quenching (ACQ) effect and photobleaching. In this work, a discretely integrated nanofabrication (DIN) platform (Pt-ICG/PES) is developed by facile coordination coassembly of cisplatin (Pt), photosensitizer molecules (indocyanine green (ICG)), and polymeric spacer (p(MEO2 MA-co-OEGMA)-b-pSS (PES)). By controlling the ICG/PES feeding ratio, the aggregation of ICG can be easily tailored using PES as an isolator to balance the ACQ effect and photobleaching, thereby maximizing the phototherapy potency of Pt-ICG/PES. With the optimized ratio of each component, Pt-ICG/PES integrates the complementarity of photodynamic therapy, photothermal therapy, and chemotherapeutics to magnify the ICD effect, exerting a synergistic antitumor immunity-promoting effect. Additionally, temperature-sensitive PES enables photothermally guided drug delivery. In a tumor-bearing mouse model, Pt-ICG/PES elicits effective release of danger-associated molecular patterns, dendritic cell maturation, cytotoxic T lymphocytes activation, cytokine secretion, M2 macrophage repolarization, and distal tumor suppression, confirming the excellent in situ tumor ICD effect as well as robust systematic antitumor immunity. Ultimately, a versatile DIN strategy is developed to optimize the phototherapeutic efficacy for improving antitumor effects and strengthening systemic antitumor immunity.
Collapse
Affiliation(s)
- Hao Zhao
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety and CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing, 100190, China
- Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medical, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Jiabao Xu
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Chan Feng
- Center for Nanomedicine and Department of Anesthesiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Jiayu Ren
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety and CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing, 100190, China
| | - Lin Bao
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety and CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing, 100190, China
| | - Yanbing Zhao
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
- Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medical, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Wei Tao
- Center for Nanomedicine and Department of Anesthesiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Yuliang Zhao
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety and CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing, 100190, China
- GBA Research Innovation Institute for Nanotechnology, Guangdong, 510530, China
| | - Xiangliang Yang
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
- Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medical, Huazhong University of Science and Technology, Wuhan, 430074, China
- GBA Research Innovation Institute for Nanotechnology, Guangdong, 510530, China
| |
Collapse
|
20
|
Miyagishi HV, Masai H, Terao J. Linked Rotaxane Structure Restricts Local Molecular Motions in Solution to Enhance Fluorescence Properties of Tetraphenylethylene. Chemistry 2022; 28:e202103175. [PMID: 34981571 DOI: 10.1002/chem.202103175] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Indexed: 01/02/2023]
Abstract
The restriction of local molecular motions is critical for improving the fluorescence quantum yields (FQYs) and the photostability of fluorescent dyes. Herein, we report a supramolecular approach to enhance the performance of fluorescent dyes by incorporating a linked rotaxane structure with permethylated α-cyclodextrins. Tetraphenylethylene (TPE) derivatives generally exhibit low FQYs in solution due to the molecular motions in the excited state. We show that TPE with linked rotaxane structures on two sides displays up to 15-fold higher FQYs. Detailed investigations with variable temperature 1 H NMR, UV-Vis, and photoluminescence spectroscopy revealed that the linked rotaxane structure rigidifies the TPE moiety and thus suppresses the local molecular motions and non-radiative decay. Moreover, the linked rotaxane structure enhances the FQY of the dye in various solvents, including aqueous solutions, and improves the photostability through the inhibition of local molecular motions in the excited TPE.
Collapse
Affiliation(s)
- Hiromichi V Miyagishi
- Department of Basic Science, Graduate School of Arts and Sciences, The University of Tokyo, 3-8-1, Komaba, Meguro-ku, Tokyo, 153-8902, Japan
| | - Hiroshi Masai
- Department of Basic Science, Graduate School of Arts and Sciences, The University of Tokyo, 3-8-1, Komaba, Meguro-ku, Tokyo, 153-8902, Japan
| | - Jun Terao
- Department of Basic Science, Graduate School of Arts and Sciences, The University of Tokyo, 3-8-1, Komaba, Meguro-ku, Tokyo, 153-8902, Japan
| |
Collapse
|
21
|
Gou G, Zhang Z, Fan T, Fang L, Liu M, Li L. Synthesis, optical properties and self-organization of blue-emitting butterfly-shaped dithienobenzosiloles. CHINESE CHEM LETT 2021. [DOI: 10.1016/j.cclet.2021.12.052] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|
22
|
Yang L, Chen S, Yi D, Chen Q, Zhang J, Xie Y, Sun H. Synthesis and fluorescence properties of red-to-near-infrared-emitting push-pull dyes based on benzodioxazole scaffolds. J Mater Chem B 2021; 9:8512-8517. [PMID: 34554170 DOI: 10.1039/d1tb01189h] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Fluorescence imaging with high temporal and spatial resolution has emerged as one of the most promising techniques to monitor biomolecules and biological processes in living systems. Among many kinds of small molecular fluorescent dyes, 2,1,3-benzoxadiazole (BD) derivatives have been widely applied in many chemical and biological applications due to their excellent photophysical properties. However, only a limited number of BD dyes with long emission wavelengths were reported. Herein, we have reported a new class of red-to near-infrared-emitting small molecular dyes 2a-3a based on benzodioxazole scaffolds, which are named VBDfluors. To bathochromically shift both absorption and emission, the conjugation system was extended by introducing electron-withdrawing group-substituted vinyl groups at position 7 via a Knoevenagel condensation reaction. The basic photophysical properties of VBDfluors were detected and summarized. The VBDfluors display excellent photophysical properties, including emission in the red-to-NIR region, large Stokes shifts, good stability/photostability and cell permeability. The geometry of the molecules was optimized by density functional theory (DFT) and time-dependent DFT (TDDFT) methods. Bioimaging results indicated that 2a and 3a exhibited excellent cell permeability and could be utilized for visualization of lipid droplets in living cells.
Collapse
Affiliation(s)
- Liu Yang
- College of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan, 410083, China.,Department of Chemistry and COSDAF (Centre of super-Diamond and Advanced Films), City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong, China. .,Key Laboratory of Biochip Technology, Biotech and Health Centre, Shenzhen Research Institute of City University of Hong Kong, Shenzhen, 518057, China
| | - Suyuan Chen
- Leibniz-Institut für Analytische Wissenschaften - ISAS - e.V., Otto-Hahn-Strasse 6b, 44227 Dortmund, Germany
| | - Dong Yi
- Department of Medicinal Chemistry, School of Pharmacy, Southwest Medical University, Luzhou 646000, China
| | - Qingxin Chen
- Department of Chemistry and COSDAF (Centre of super-Diamond and Advanced Films), City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong, China. .,Key Laboratory of Biochip Technology, Biotech and Health Centre, Shenzhen Research Institute of City University of Hong Kong, Shenzhen, 518057, China
| | - Jie Zhang
- Department of Chemistry and COSDAF (Centre of super-Diamond and Advanced Films), City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong, China. .,Key Laboratory of Biochip Technology, Biotech and Health Centre, Shenzhen Research Institute of City University of Hong Kong, Shenzhen, 518057, China
| | - Yusheng Xie
- Department of Pharmacology, School of Basic Medical Sciences, Shandong University, Jinan 250012, China.
| | - Hongyan Sun
- Department of Chemistry and COSDAF (Centre of super-Diamond and Advanced Films), City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong, China. .,Key Laboratory of Biochip Technology, Biotech and Health Centre, Shenzhen Research Institute of City University of Hong Kong, Shenzhen, 518057, China
| |
Collapse
|
23
|
Chandra A, Prasad S, Iuele H, Colella F, Rizzo R, D'Amone E, Gigli G, del Mercato LL. Highly Sensitive Fluorescent pH Microsensors Based on the Ratiometric Dye Pyranine Immobilized on Silica Microparticles. Chemistry 2021; 27:13318-13324. [PMID: 34231936 PMCID: PMC8518825 DOI: 10.1002/chem.202101568] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Indexed: 12/22/2022]
Abstract
Pyranine (HPTS) is a remarkably interesting pH-sensitive dye that has been used for plenty of applications. Its high quantum yield and extremely sensitive ratiometric fluorescence against pH change makes it a very favorable for pH-sensing applications and the development of pH nano-/microsensors. However, its strong negative charge and lack of easily modifiable functional groups makes it difficult to use with charged substrates such as silica. This study reports a methodology for noncovalent HPTS immobilization on silica microparticles that considers the retention of pH sensitivity as well as the long-term stability of the pH microsensors. The study emphasizes the importance of surface charge for governing the sensitivity of the immobilized HPTS dye molecules on silica microparticles. The importance of the immobilization methodology, which preserves the sensitivity and stability of the microsensors, is also assessed.
Collapse
Affiliation(s)
- Anil Chandra
- Institute of Nanotechnology of National Research Council (CNR-NANOTEC) c/o Campus Ecoteknevia Monteroni73100LecceItaly
| | - Saumya Prasad
- Institute of Nanotechnology of National Research Council (CNR-NANOTEC) c/o Campus Ecoteknevia Monteroni73100LecceItaly
| | - Helena Iuele
- Institute of Nanotechnology of National Research Council (CNR-NANOTEC) c/o Campus Ecoteknevia Monteroni73100LecceItaly
| | - Francesco Colella
- Institute of Nanotechnology of National Research Council (CNR-NANOTEC) c/o Campus Ecoteknevia Monteroni73100LecceItaly
| | - Riccardo Rizzo
- Institute of Nanotechnology of National Research Council (CNR-NANOTEC) c/o Campus Ecoteknevia Monteroni73100LecceItaly
| | - Eliana D'Amone
- Institute of Nanotechnology of National Research Council (CNR-NANOTEC) c/o Campus Ecoteknevia Monteroni73100LecceItaly
| | - Giuseppe Gigli
- Institute of Nanotechnology of National Research Council (CNR-NANOTEC) c/o Campus Ecoteknevia Monteroni73100LecceItaly
- Department of Mathematics and Physics “Ennio De Giorgi”University of Salentovia ArnesanoLecce73100Italy
| | - Loretta L. del Mercato
- Institute of Nanotechnology of National Research Council (CNR-NANOTEC) c/o Campus Ecoteknevia Monteroni73100LecceItaly
| |
Collapse
|
24
|
Borum RM, Moore C, Chan SK, Steinmetz NF, Jokerst JV. A Photoacoustic Contrast Agent for miR-21 via NIR Fluorescent Hybridization Chain Reaction. Bioconjug Chem 2021; 33:1080-1092. [PMID: 34406744 DOI: 10.1021/acs.bioconjchem.1c00375] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Nucleic acids are well-established biomarkers of cancer with immense value in diagnostics and basic research. However, strategies to monitor these species in tissue can be challenging due to the need for amplification of imaging signal from low analyte concentrations with high specificity. Photoacoustic (PA) imaging is gaining traction for molecular imaging of proteins, small biomolecules, and nucleic acids by coupling pulsed near-infrared (NIR) excitation with broadband acoustic detection. This work introduces a PA nucleic acid contrast agent that harnesses NIR fluorophore and quencher-tagged hybridization chain reaction (HCR) for signal amplification. This HCR probe was designed to enable contact quenching between NIR dye-quencher pairs by coercing their direct alignment when miR-21, a microRNA cancer biomarker, is detected. The probe demonstrated a ratiometric PA limit of detection of 148 pM miR-21, sequence specificity against one- and two-base mutations, and selectivity over other microRNAs. It was further tested in live human ovarian cancer (SKOV3) and noncancerous (HEK 293T) cells to exemplify in situ PA activation based on differences in endogenous miR-21 regulation (p = 0.0002). The probe was lastly tested in tissue mimicking phantoms to exemplify sustained contrast in centimeter-range depths and 85.3% photostability after 15 min of laser irradiation. The probe's miR-21-specific activation and its ability to maintain contrast in biologically relevant absorbing and scattering media support its consideration for live-cell PA microscopy and potential cancer diagnostics. Results from this probe also underscore the combined detection power between ratiometric PA signaling and strand amplification for more sensitive DNA-based PA sensors.
Collapse
Affiliation(s)
- Raina M Borum
- Department of NanoEngineering, University of California, San Diego, La Jolla, California 92093. United States
| | - Colman Moore
- Department of NanoEngineering, University of California, San Diego, La Jolla, California 92093. United States
| | - Soo Khim Chan
- Department of NanoEngineering, University of California, San Diego, La Jolla, California 92093. United States
| | - Nicole F Steinmetz
- Department of NanoEngineering, University of California, San Diego, La Jolla, California 92093. United States.,Department of Radiology, University of California, San Diego, La Jolla, California 92093. United States.,Department of Bioengineering, University of California, San Diego, La Jolla, California 92093. United States.,Center for Nano-ImmunoEngineering, University of California, San Diego, La Jolla, California 92093. United States.,Institute for Materials Discovery and Design, University of California, San Diego, La Jolla, California 92093. United States.,Moores Cancer Center, University of California, San Diego, La Jolla, California 92037. United States
| | - Jesse V Jokerst
- Department of NanoEngineering, University of California, San Diego, La Jolla, California 92093. United States.,Materials Science and Engineering Program, University of California, San Diego, La Jolla, California 92093. United States.,Department of Radiology, University of California, San Diego, La Jolla, California 92093. United States
| |
Collapse
|
25
|
A magnetic functionalized lanthanide fluorescent sensor for detection of trace zinc ion. RESEARCH ON CHEMICAL INTERMEDIATES 2021. [DOI: 10.1007/s11164-021-04472-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
26
|
Yang YY, Chen LS, Sun M, Wang CY, Fan Z, Du JZ. Biodegradable Polypeptide-based Vesicles with Intrinsic Blue Fluorescence for Antibacterial Visualization. CHINESE JOURNAL OF POLYMER SCIENCE 2021. [DOI: 10.1007/s10118-021-2593-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
27
|
Zhang S, Chen H, Wang L, Liu C, Liu L, Sun Y, Shen XC. A simple strategy for simultaneously enhancing photostability and mitochondrial-targeting stability of near-infrared fluorophores for multimodal imaging-guided photothermal therapy. J Mater Chem B 2021; 9:1089-1095. [PMID: 33427258 DOI: 10.1039/d0tb02674c] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Near-infrared fluorophores are emerging as promising molecular tools for cancer theranostics because of their inherent biodegradability, low toxicity, and synthetic flexibility. However, they still suffer from several limitations, such as poor photostability and insufficient organelle-targeting stability during photothermal therapy. In this work, we introduce an "aldehyde functionalization" strategy for simultaneously enhancing photostability and mitochondria-immobilization of near-infrared fluorophores for the first time. Based on the proposed strategy, representative near-infrared organic molecules, namely AF-Cy, were rationally designed and synthesized. Upon aldehyde modification, the AF-Cy dyes displayed both remarkable photostability and mitochondrial-targeting stability. The strong absorption in the near-infrared region confers the AF-Cy dyes with outstanding fluorescent/photoacoustic imaging and photothermal therapy capabilities. Finally, in vitro and in vivo studies revealed the enhanced performance in inhibiting the growth of breast tumors under NIR laser radiation, and these results suggested the strong potential of AF-Cy dyes as efficient multimodal imaging-guided photothermal therapy agents, further highlighting the value of this simple strategy in the design high performance near-infrared fluorophores for tumor theranostics.
Collapse
Affiliation(s)
- Shuping Zhang
- Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, College of Chemistry and Chemical Engineering, Guangxi Normal University, Guilin, 541004, P. R. China.
| | | | | | | | | | | | | |
Collapse
|
28
|
Chen D, Nie G, Dang Y, Liang W, Li W, Zhong C. Rational design of near-infrared fluorophores with a phenolic D–A type structure and construction of a fluorescent probe for cysteine imaging. NEW J CHEM 2021. [DOI: 10.1039/d1nj02459k] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The structural modulation of phenolic D–A type fluorophores and a NIR fluorescent probe for cysteine imaging in vitro and in vivo.
Collapse
Affiliation(s)
- Dugang Chen
- Key Laboratory for Green Chemical Process of Ministry of Education, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan 430205, P. R. China
| | - Gang Nie
- Hubei Key Laboratory of Nature Medicinal Chemistry and Resource Evaluation, Tongji Medical College of Pharmacy, Huazhong University of Science and Technology, Wuhan 430030, P. R. China
| | - Yecheng Dang
- Key Laboratory for Green Chemical Process of Ministry of Education, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan 430205, P. R. China
| | - Wenjie Liang
- Key Laboratory for Green Chemical Process of Ministry of Education, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan 430205, P. R. China
| | - Wanqing Li
- Key Laboratory for Green Chemical Process of Ministry of Education, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan 430205, P. R. China
| | - Cheng Zhong
- College of Chemistry and Molecular Science, Wuhan University, Wuhan 430072, P. R. China
| |
Collapse
|
29
|
Samanta S, Huang M, Li S, Yang Z, He Y, Gu Z, Zhang J, Zhang D, Liu L, Qu J. AIE-active two-photon fluorescent nanoprobe with NIR-II light excitability for highly efficient deep brain vasculature imaging. Theranostics 2021; 11:2137-2148. [PMID: 33500716 PMCID: PMC7797691 DOI: 10.7150/thno.53780] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2020] [Accepted: 11/17/2020] [Indexed: 12/13/2022] Open
Abstract
Aggregation induced emission (AIE)-active bright two-photon fluorescent probes with second near-infrared (NIR-II) light excitability can be used for efficient brain bioimaging studies, wherein the fabrication of water-dispersible nanoparticles by encapsulating the hydrophobic probes with amphiphilic polymer holds the key to ensuring biocompatibility and in vivo adaptability. However, barely any study has evaluated the structural requirements that can substantially affect the water-dispersible nanoparticle formation ability of an organic AIE-active dye with amphiphilic polymers. The present study systematically assessed the structural dependency of a well-known acrylonitrile based AIE system/fluorogenic core upon the formation of water-dispersible nanoparticles and elucidated how the structural modifications can impact the in vivo two-photon imaging. Methods: A total of four acrylonitrile-based aggregation induced emission (AIE)-active two-photon (TP) fluorescent probes (AIETP, AIETP C1, AIETP C2 and AIETP C3) have been judiciously designed and synthesized with structural variations to realize how the structural alterations could substantially influence the water-dispersible nanoparticle formation ability (with amphiphilic polymers) and photo-stability to impact the in vivo imaging. Results: It has been found that the incorporation of the phenyl-thiazole unit in AIETP, AIETP C2 and AIETP C3 facilitated the formation of water-dispersible nanoparticles (NPs) with amphiphilic polymers (Pluronic F127) whereas the presence of only phenyl moiety instead in AIETP C1 could not meet the suitable condition to form the NPs with good aqueous dispersibility. Rationally designed AIETP NPs that exhibited higher brightness, improved photostability and good two-photon absorption cross section was successfully employed for in vivo brain vasculature imaging. Conclusions: Robust noninvasive 2D and 3D two-photon (NIR-II light, 1040 nm) brain vasculature imaging with beneficial attributes such as outstanding penetration depth (800 µm) and exceptional spatial resolution (1.92 µm), were achieved by utilizing AIETP NPs in this study.
Collapse
|
30
|
Weinstain R, Slanina T, Kand D, Klán P. Visible-to-NIR-Light Activated Release: From Small Molecules to Nanomaterials. Chem Rev 2020; 120:13135-13272. [PMID: 33125209 PMCID: PMC7833475 DOI: 10.1021/acs.chemrev.0c00663] [Citation(s) in RCA: 307] [Impact Index Per Article: 61.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Indexed: 02/08/2023]
Abstract
Photoactivatable (alternatively, photoremovable, photoreleasable, or photocleavable) protecting groups (PPGs), also known as caged or photocaged compounds, are used to enable non-invasive spatiotemporal photochemical control over the release of species of interest. Recent years have seen the development of PPGs activatable by biologically and chemically benign visible and near-infrared (NIR) light. These long-wavelength-absorbing moieties expand the applicability of this powerful method and its accessibility to non-specialist users. This review comprehensively covers organic and transition metal-containing photoactivatable compounds (complexes) that absorb in the visible- and NIR-range to release various leaving groups and gasotransmitters (carbon monoxide, nitric oxide, and hydrogen sulfide). The text also covers visible- and NIR-light-induced photosensitized release using molecular sensitizers, quantum dots, and upconversion and second-harmonic nanoparticles, as well as release via photodynamic (photooxygenation by singlet oxygen) and photothermal effects. Release from photoactivatable polymers, micelles, vesicles, and photoswitches, along with the related emerging field of photopharmacology, is discussed at the end of the review.
Collapse
Affiliation(s)
- Roy Weinstain
- School
of Plant Sciences and Food Security, Faculty of Life Sciences, Tel-Aviv University, Tel-Aviv 6997801, Israel
| | - Tomáš Slanina
- Institute
of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo nám. 2, 166 10 Prague, Czech Republic
| | - Dnyaneshwar Kand
- School
of Plant Sciences and Food Security, Faculty of Life Sciences, Tel-Aviv University, Tel-Aviv 6997801, Israel
| | - Petr Klán
- Department
of Chemistry and RECETOX, Faculty of Science, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic
| |
Collapse
|
31
|
Gataullin RR. Advances in the Synthesis of Benzo‐Fused Spiro Nitrogen Heterocycles: New Approaches and Modification of Old Strategies. Helv Chim Acta 2020. [DOI: 10.1002/hlca.202000137] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Rail R. Gataullin
- Ufa Federal Research Centre Ufa Institute of Chemistry of the Russian Academy of Sciences Prospect Oktyabrya, 71 Ufa 450054 Russian Federation
| |
Collapse
|
32
|
Ren TB, Wang ZY, Xiang Z, Lu P, Lai HH, Yuan L, Zhang XB, Tan W. A General Strategy for Development of Activatable NIR-II Fluorescent Probes for In Vivo High-Contrast Bioimaging. Angew Chem Int Ed Engl 2020; 60:800-805. [PMID: 32918358 DOI: 10.1002/anie.202009986] [Citation(s) in RCA: 143] [Impact Index Per Article: 28.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 09/07/2020] [Indexed: 12/21/2022]
Abstract
Organic dye based NIR-II fluorescent probes, owing to their high signal-to-background ratio and deeper penetration, are highly useful for deep-tissue high-contrast imaging in vivo. However, it is still a challenge to design activatable NIR-II fluorescent probes. Here, a novel class of polymethine dyes (NIRII-RTs), with bright (quantum yield up to 2.03 %), stable, and anti-solvent quenching NIR-II emission, together with large Stokes shifts, was designed. Significantly, the novel NIR-II dyes NIRII-RT3 and NIRII-RT4, equipped with a carboxylic acid group, can serve as effective NIR-II platforms for the design of activatable bioimaging probes with high contrast. As a proof of concept, a series of target-activatable NIRII-RT probes (NIRII-RT-pH, NIRII-RT-ATP and NIRII-RT-Hg) for pH, adenosine triphosphate (ATP), and metal-ion detection, were synthesized. By applying the NIRII-RT probe, the real-time monitoring of drug-induced hepatotoxicity was realized.
Collapse
Affiliation(s)
- Tian-Bing Ren
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, P. R. China
| | - Zhi-Yao Wang
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, P. R. China
| | - Zhen Xiang
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, P. R. China
| | - Peng Lu
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, P. R. China
| | - Huan-Hua Lai
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, P. R. China
| | - Lin Yuan
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, P. R. China
| | - Xiao-Bing Zhang
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, P. R. China
| | - Weihong Tan
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, P. R. China
| |
Collapse
|
33
|
Ren T, Wang Z, Xiang Z, Lu P, Lai H, Yuan L, Zhang X, Tan W. A General Strategy for Development of Activatable NIR‐II Fluorescent Probes for In Vivo High‐Contrast Bioimaging. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202009986] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Tian‐Bing Ren
- Molecular Science and Biomedicine Laboratory (MBL) State Key Laboratory of Chemo/Biosensing and Chemometrics College of Chemistry and Chemical Engineering Hunan University Changsha 410082 P. R. China
| | - Zhi‐Yao Wang
- Molecular Science and Biomedicine Laboratory (MBL) State Key Laboratory of Chemo/Biosensing and Chemometrics College of Chemistry and Chemical Engineering Hunan University Changsha 410082 P. R. China
| | - Zhen Xiang
- Molecular Science and Biomedicine Laboratory (MBL) State Key Laboratory of Chemo/Biosensing and Chemometrics College of Chemistry and Chemical Engineering Hunan University Changsha 410082 P. R. China
| | - Peng Lu
- Molecular Science and Biomedicine Laboratory (MBL) State Key Laboratory of Chemo/Biosensing and Chemometrics College of Chemistry and Chemical Engineering Hunan University Changsha 410082 P. R. China
| | - Huan‐Hua Lai
- Molecular Science and Biomedicine Laboratory (MBL) State Key Laboratory of Chemo/Biosensing and Chemometrics College of Chemistry and Chemical Engineering Hunan University Changsha 410082 P. R. China
| | - Lin Yuan
- Molecular Science and Biomedicine Laboratory (MBL) State Key Laboratory of Chemo/Biosensing and Chemometrics College of Chemistry and Chemical Engineering Hunan University Changsha 410082 P. R. China
| | - Xiao‐Bing Zhang
- Molecular Science and Biomedicine Laboratory (MBL) State Key Laboratory of Chemo/Biosensing and Chemometrics College of Chemistry and Chemical Engineering Hunan University Changsha 410082 P. R. China
| | - Weihong Tan
- Molecular Science and Biomedicine Laboratory (MBL) State Key Laboratory of Chemo/Biosensing and Chemometrics College of Chemistry and Chemical Engineering Hunan University Changsha 410082 P. R. China
| |
Collapse
|
34
|
|
35
|
Kargozar S, Hoseini SJ, Milan PB, Hooshmand S, Kim H, Mozafari M. Quantum Dots: A Review from Concept to Clinic. Biotechnol J 2020; 15:e2000117. [DOI: 10.1002/biot.202000117] [Citation(s) in RCA: 83] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 07/10/2020] [Indexed: 01/30/2023]
Affiliation(s)
- Saeid Kargozar
- Tissue Engineering Research Group (TERG), Department of Anatomy and Cell Biology, School of Medicine Mashhad University of Medical Sciences Mashhad Iran
| | - Seyed Javad Hoseini
- Department of Medical Biotechnology and Nanotechnology, School of Medicine Mashhad University of Medical Sciences Mashhad Iran
| | - Peiman Brouki Milan
- Cellular and Molecular Research Centre Iran University of Medical Sciences Tehran Iran
- Institutes of Regenerative Medicine, Faculty of Advanced Technologies in Medicine Iran University of Medical Sciences Tehran Iran
- Department of Tissue Engineering and Regenerative Medicine, Faculty of Advanced Technologies in Medicine Iran University of Medical Sciences Tehran Iran
| | - Sara Hooshmand
- Pharmacological Research Center of Medicinal Plants Mashhad University of Medical Sciences Mashhad Iran
- Department of Pharmacology, Faculty of Medicine Mashhad University of Medical Sciences Mashhad Iran
| | - Hae‐Won Kim
- Institute of Tissue Regeneration Engineering (ITREN) Dankook University Cheonan Republic of Korea
- Department of Nanobiomedical Science & BK21 PLUS NBM Global Research Center for Regenerative Medicine Dankook University Cheonan Republic of Korea
- Department of Biomaterials Science, School of Dentistry Dankook University Cheonan Republic of Korea
| | - Masoud Mozafari
- Department of Tissue Engineering and Regenerative Medicine, Faculty of Advanced Technologies in Medicine Iran University of Medical Sciences Tehran Iran
| |
Collapse
|
36
|
Wang M, Guo Z, Teng S, Huang Z, Zhang P, Chen X, Yang W. Facile Synthesis, Enhanced Photostability, and Long-term Cellular Imaging of Bright Red Luminescent Organosilica Nanoparticles. ACS APPLIED BIO MATERIALS 2020; 3:5438-5445. [PMID: 35021717 DOI: 10.1021/acsabm.0c00829] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
We herein demonstrate a facile approach for the preparation of red luminescent organosilica nanoparticles (OSi NPs) via the addition reaction of indocyanine green (ICG) and (3-aminopropyl)trimethoxysilane (APTMS). Photoluminescent quantum yield (PLQY) of the resulting OSi NPs was tunable by simply changing the molar ratio of ICG and APTMS used in the reactions. Under the optimized molar ratio of ICG and APTMS, that is, 1:4, PLQY of the red luminescent OSi NPs was as high as 32%. The resulting OSi NPs presented greatly enhanced photostability, attributing to the promoted decay rate of the excited state and thus suppressed the generation of the reactive oxygen species in the OSi NPs. The integrated superiorities of high PLQY, enhanced photostability, low toxicity, and excellent biocompatibility endow the red luminescent OSi NPs extremely promising for long-term cellular imaging.
Collapse
Affiliation(s)
- Min Wang
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun 130012, China
| | - Zilong Guo
- Institute of Molecular Plus, Tianjin University, Tianjin 300072, China
| | - Shiyong Teng
- Department of Anesthesiology, The First Hospital, Jilin University, Changchun 130021, China
| | - Zhenzhen Huang
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun 130012, China
| | - Peng Zhang
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun 130012, China
| | - Xiangyu Chen
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun 130012, China
| | - Wensheng Yang
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun 130012, China.,Institute of Molecular Plus, Tianjin University, Tianjin 300072, China
| |
Collapse
|
37
|
Li Q, Yang X, Zhang L, Wang Y, Kong J, Qi W, Liang Y, Su R, He Z. Thermally Induced Structural Transition of Peptide Nanofibers into Nanoparticles with Enhanced Fluorescence Properties. Chempluschem 2020; 85:1523-1528. [DOI: 10.1002/cplu.202000116] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Revised: 06/24/2020] [Indexed: 01/09/2023]
Affiliation(s)
- Qing Li
- State Key Laboratory of Chemical Engineering School of Chemical Engineering and TechnologyTianjin University Tianjin 300072 P. R. China
| | - Xin Yang
- State Key Laboratory of Chemical Engineering School of Chemical Engineering and TechnologyTianjin University Tianjin 300072 P. R. China
| | - Liwei Zhang
- State Key Laboratory of Chemical Engineering School of Chemical Engineering and TechnologyTianjin University Tianjin 300072 P. R. China
| | - Yuefei Wang
- State Key Laboratory of Chemical Engineering School of Chemical Engineering and TechnologyTianjin University Tianjin 300072 P. R. China
- Tianjin Key Laboratory of Membrane Science and Desalination TechnologyTianjin University Tianjin 300072 P. R. China
| | - Jia Kong
- State Key Laboratory of Chemical Engineering School of Chemical Engineering and TechnologyTianjin University Tianjin 300072 P. R. China
| | - Wei Qi
- State Key Laboratory of Chemical Engineering School of Chemical Engineering and TechnologyTianjin University Tianjin 300072 P. R. China
- Collaborative Innovation Centre of Chemical Science and Engineering (Tianjin) Tianjin 300072 P. R. China
- Tianjin Key Laboratory of Membrane Science and Desalination TechnologyTianjin University Tianjin 300072 P. R. China
| | - Yaoyu Liang
- State Key Laboratory of Chemical Engineering School of Chemical Engineering and TechnologyTianjin University Tianjin 300072 P. R. China
| | - Rongxin Su
- State Key Laboratory of Chemical Engineering School of Chemical Engineering and TechnologyTianjin University Tianjin 300072 P. R. China
- Collaborative Innovation Centre of Chemical Science and Engineering (Tianjin) Tianjin 300072 P. R. China
- Tianjin Key Laboratory of Membrane Science and Desalination TechnologyTianjin University Tianjin 300072 P. R. China
| | - Zhimin He
- State Key Laboratory of Chemical Engineering School of Chemical Engineering and TechnologyTianjin University Tianjin 300072 P. R. China
| |
Collapse
|
38
|
Zhou X, Li H, Shi C, Xu F, Zhang Z, Yao Q, Ma H, Sun W, Shao K, Du J, Long S, Fan J, Wang J, Peng X. An APN-activated NIR photosensitizer for cancer photodynamic therapy and fluorescence imaging. Biomaterials 2020; 253:120089. [PMID: 32447103 PMCID: PMC7196320 DOI: 10.1016/j.biomaterials.2020.120089] [Citation(s) in RCA: 82] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Revised: 04/18/2020] [Accepted: 05/01/2020] [Indexed: 12/28/2022]
Abstract
Photodynamic therapy has been developed as a prospective cancer treatment in recent years. Nevertheless, conventional photosensitizers suffer from lacking recognition and specificity to tumors, which causing severe side effects to normal tissues, while the enzyme-activated photosensitizers are capable of solving these conundrums due to high selectivity towards tumors. APN (Aminopeptidase N, APN/CD13), a tumor marker, has become a crucial targeting substance owing to its highly expressed on the cell membrane surface in various tumors, which has become a key point in the research of anti-tumor drug and fluorescence probe. Based on it, herein an APN-activated near-infrared (NIR) photosensitizer (APN-CyI) for tumor imaging and photodynamic therapy has been firstly developed and successfully applied in vitro and in vivo. Studies showed that APN-CyI could be activated by APN in tumor cells, hydrolyzed to fluorescent CyI-OH, which specifically located in mitochondria in cancer cells and exhibited a high singlet oxygen yield under NIR irradiation, and efficiently induced cancer cell apoptosis. Dramatically, the in vivo assays on Balb/c mice showed that APN-CyI could achieve NIR fluorescence imaging (λem = 717 nm) for endogenous APN in tumors and possessed an efficient tumor suppression effect under NIR irradiation.
Collapse
Affiliation(s)
- Xiao Zhou
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, 2 Linggong Road, Dalian, 116024, PR China
| | - Haidong Li
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, 2 Linggong Road, Dalian, 116024, PR China
| | - Chao Shi
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, 2 Linggong Road, Dalian, 116024, PR China
| | - Feng Xu
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, 2 Linggong Road, Dalian, 116024, PR China
| | - Zhen Zhang
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, 2 Linggong Road, Dalian, 116024, PR China
| | - Qichao Yao
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, 2 Linggong Road, Dalian, 116024, PR China
| | - He Ma
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, 2 Linggong Road, Dalian, 116024, PR China
| | - Wen Sun
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, 2 Linggong Road, Dalian, 116024, PR China; Shenzhen Research Institute, Dalian University of Technology, Nanshan District, Shenzhen, 518057, PR China
| | - Kun Shao
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, 2 Linggong Road, Dalian, 116024, PR China; Shenzhen Research Institute, Dalian University of Technology, Nanshan District, Shenzhen, 518057, PR China
| | - Jianjun Du
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, 2 Linggong Road, Dalian, 116024, PR China; Shenzhen Research Institute, Dalian University of Technology, Nanshan District, Shenzhen, 518057, PR China
| | - Saran Long
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, 2 Linggong Road, Dalian, 116024, PR China; Shenzhen Research Institute, Dalian University of Technology, Nanshan District, Shenzhen, 518057, PR China
| | - Jiangli Fan
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, 2 Linggong Road, Dalian, 116024, PR China; Shenzhen Research Institute, Dalian University of Technology, Nanshan District, Shenzhen, 518057, PR China
| | - Jingyun Wang
- School of Life Science and Biotechnology, Dalian University of Technology, 2 Linggong Road, Dalian, 116024, PR China
| | - Xiaojun Peng
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, 2 Linggong Road, Dalian, 116024, PR China; Shenzhen Research Institute, Dalian University of Technology, Nanshan District, Shenzhen, 518057, PR China.
| |
Collapse
|
39
|
Behi M, Naficy S, Chandrawati R, Dehghani F. Nanoassembled Peptide Biosensors for Rapid Detection of Matrilysin Cancer Biomarker. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2020; 16:e1905994. [PMID: 32196143 DOI: 10.1002/smll.201905994] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Revised: 12/15/2019] [Accepted: 12/19/2019] [Indexed: 06/10/2023]
Abstract
Early detection of cancer is likely to be one of the most effective means of reducing the cancer mortality rate. Hence, simple and ultra-quick methods for noninvasive detection of early-stage tumors are highly sought-after. In this study, a nanobiosensing platform with a rapid response time of nearly 30 s is introduced for the detection of matrilysin-the salivary gland cancer biomarker-with a limit of detection as low as 30 nm. This sensing platform is based on matrilysin-digestible peptides that bridge gold nanoparticle (AuNPs) cores (≈30-50 nm) and carbon quantum dot (CDs) satellites (≈9 nm). A stepwise synthesis procedure is used for self-assembly of AuNP-peptide-CDs, ensuring their long-term stability. The AuNP-peptide-CDs produce ideal optical signals, with noticeable fluorescence quenching effects. Upon peptide cleavage by matrilysin, CDs leave the surface of AuNPs, resulting in ultra-fast detectable violet and visible fluorescent signals.
Collapse
Affiliation(s)
- Mohammadreza Behi
- The University of Sydney, School of Chemical and Biomolecular Engineering, Sydney, NSW, 2006, Australia
- Department of Energy Technology, KTH Royal Institute of Technology, Stockholm, SE-10044, Sweden
| | - Sina Naficy
- The University of Sydney, School of Chemical and Biomolecular Engineering, Sydney, NSW, 2006, Australia
| | - Rona Chandrawati
- The University of New South Wales, School of Chemical Engineering, Sydney, NSW, 2052, Australia
| | - Fariba Dehghani
- The University of Sydney, School of Chemical and Biomolecular Engineering, Sydney, NSW, 2006, Australia
| |
Collapse
|
40
|
Xi D, Xu Y, Xu R, Wang Z, Liu D, Shen Q, Yue L, Dang D, Meng L. A Facilely Synthesized Dual-State Emission Platform for Picric Acid Detection and Latent Fingerprint Visualization. Chemistry 2020; 26:2741-2748. [PMID: 31886910 DOI: 10.1002/chem.201905169] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Revised: 12/16/2019] [Indexed: 01/28/2023]
Abstract
To achieve a highly efficient, dual-state emission platform for picric acid (PA) detection and latent fingerprint (LFP) visualization, flexible alkyl chains have been facilely attached to the commercial organic dye 3,4,9,10-perylenetetracarboxylic dianhydride to provide the target perylenetetracarboxylate molecules PTCA-C4, PTCA-C6, and PTCA-C12. Interestingly, all these molecules exhibited impressive fluorescence characteristics with high photoluminescence quantum yields (PLQYs) of around 93.0 % in dilute solution. Also, emissive features were observed in the solid state because close molecular packing is prevented by the alkyl chains, especially for PTCA-C6, which has a high PLQY value of 49.0 %. Benefiting from its impressive fluorescence performance in both solution and as aggregates, PTCA-C6 was used as a dual-state emission platform for PA detection and also LFP visualization. For example, double-responsive fluorescence quenching in solution was observed in PA detection studies, resulting in high quenching constants (KSV ) and also low limit-of-detection values. Furthermore, the fingerprint powder based on PTCA-C6 also presented an impressive performance on various substrates in terms of fluorescence intensity and resolution, clearly providing the specific fine details of latent fingerprints. These results demonstrate that the facilely synthesized PTCA-C6 with efficient dual-state emission exhibits great potential in the real-world applications of PA detection and LFP visualization.
Collapse
Affiliation(s)
- Duo Xi
- School of Science, Xi'an Key Laboratory of Sustainable Energy Materials Chemistry, MOE Key Laboratory for Non-equilibrium Synthesis, and Modulation of Condensed Matter, Xi'an Jiao Tong University, Xi'an, 710049, P.R. China
| | - Yanzi Xu
- School of Science, Xi'an Key Laboratory of Sustainable Energy Materials Chemistry, MOE Key Laboratory for Non-equilibrium Synthesis, and Modulation of Condensed Matter, Xi'an Jiao Tong University, Xi'an, 710049, P.R. China
| | - Ruohan Xu
- School of Science, Xi'an Key Laboratory of Sustainable Energy Materials Chemistry, MOE Key Laboratory for Non-equilibrium Synthesis, and Modulation of Condensed Matter, Xi'an Jiao Tong University, Xi'an, 710049, P.R. China
| | - Zhi Wang
- School of Science, Xi'an Key Laboratory of Sustainable Energy Materials Chemistry, MOE Key Laboratory for Non-equilibrium Synthesis, and Modulation of Condensed Matter, Xi'an Jiao Tong University, Xi'an, 710049, P.R. China
| | - Daomeng Liu
- School of Science, Xi'an Key Laboratory of Sustainable Energy Materials Chemistry, MOE Key Laboratory for Non-equilibrium Synthesis, and Modulation of Condensed Matter, Xi'an Jiao Tong University, Xi'an, 710049, P.R. China
| | - Qifei Shen
- School of Science, Xi'an Key Laboratory of Sustainable Energy Materials Chemistry, MOE Key Laboratory for Non-equilibrium Synthesis, and Modulation of Condensed Matter, Xi'an Jiao Tong University, Xi'an, 710049, P.R. China
| | - Ling Yue
- School of Science, Xi'an Key Laboratory of Sustainable Energy Materials Chemistry, MOE Key Laboratory for Non-equilibrium Synthesis, and Modulation of Condensed Matter, Xi'an Jiao Tong University, Xi'an, 710049, P.R. China
| | - Dongfeng Dang
- School of Science, Xi'an Key Laboratory of Sustainable Energy Materials Chemistry, MOE Key Laboratory for Non-equilibrium Synthesis, and Modulation of Condensed Matter, Xi'an Jiao Tong University, Xi'an, 710049, P.R. China
| | - Lingjie Meng
- School of Science, Xi'an Key Laboratory of Sustainable Energy Materials Chemistry, MOE Key Laboratory for Non-equilibrium Synthesis, and Modulation of Condensed Matter, Xi'an Jiao Tong University, Xi'an, 710049, P.R. China.,Instrumental Analysis Center, Xi'an Jiao Tong University, Xi'an, 710049, P.R. China
| |
Collapse
|
41
|
Demchenko AP. Photobleaching of organic fluorophores: quantitative characterization, mechanisms, protection. Methods Appl Fluoresc 2020; 8:022001. [PMID: 32028269 DOI: 10.1088/2050-6120/ab7365] [Citation(s) in RCA: 125] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Photochemical stability is one of the most important parameters that determine the usefulness of organic dyes in different applications. This Review addresses key factors that determine the dye photostability. It is shown that photodegradation can follow different oxygen-dependent and oxygen-independent mechanisms and may involve both 1S1-3T1 and higher-energy 1Sn-3Tn excited states. Their involvement and contribution depends on dye structure, medium conditions, irradiation power. Fluorescein, rhodamine, BODIPY and cyanine dyes, as well as conjugated polymers are discussed as selected examples illustrating photobleaching mechanisms. The strategies for modulating and improving the photostability are overviewed. They include the improvement of fluorophore design, particularly by attaching protective and anti-fading groups, creating proper medium conditions in liquid, solid and nanoscale environments. The special conditions for biological labeling, sensing and imaging are outlined.
Collapse
Affiliation(s)
- Alexander P Demchenko
- Palladin Institute of Biochemistry, Leontovicha st. 9, Kyiv 01030, Ukraine. Yuriy Fedkovych National University, Chernivtsi, 58012, Ukraine
| |
Collapse
|
42
|
Das SS, Neelam, Hussain K, Singh S, Hussain A, Faruk A, Tebyetekerwa M. Laponite-based Nanomaterials for Biomedical Applications: A Review. Curr Pharm Des 2020; 25:424-443. [PMID: 30947654 DOI: 10.2174/1381612825666190402165845] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2018] [Accepted: 03/20/2019] [Indexed: 11/22/2022]
Abstract
Laponite based nanomaterials (LBNMs) are highly diverse regarding their mechanical, chemical, and structural properties, coupled with shape, size, mass, biodegradability and biocompatibility. These ubiquitous properties of LBNMs make them appropriate materials for extensive applications. These have enormous potential for effective and targeted drug delivery comprised of numerous biodegradable materials which results in enhanced bioavailability. Moreover, the clay material has been explored in tissue engineering and bioimaging for the diagnosis and treatment of various diseases. The material has been profoundly explored for minimized toxicity of nanomedicines. The present review compiled relevant and informative data to focus on the interactions of laponite nanoparticles and application in drug delivery, tissue engineering, imaging, cell adhesion and proliferation, and in biosensors. Eventually, concise conclusions are drawn concerning biomedical applications and identification of new promising research directions.
Collapse
Affiliation(s)
- Sabya S Das
- Department of Pharmaceutical Sciences and Technology, Birla Institute of Technology, Mesra, Ranchi-835215, Jharkhand, India
| | - Neelam
- Department of Pharmaceutical Sciences, NIMS University, Jaipur-303121, Rajasthan, India
| | - Kashif Hussain
- Gyani Inder Singh Institute of Professional Studies, Dehradun-248003, Uttarakhand, India
| | - Sima Singh
- School of Health Sciences, College of Health Sciences, University of KwaZulu-Natal, Durban 4000, South Africa
| | - Afzal Hussain
- Department of Pharmaceutical Sciences and Technology, Birla Institute of Technology, Mesra, Ranchi-835215, Jharkhand, India
| | - Abdul Faruk
- Department of Pharmaceutical Sciences, Hemwati Nandan Bahuguna Garhwal University, Srinagar, Uttarakhand, India
| | - Mike Tebyetekerwa
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Material Science, Donghua University, Shanghai, China
| |
Collapse
|
43
|
|
44
|
Chen W, Zhang C, Han X, Liu SH, Tan Y, Yin J. Fluorophore-Labeling Tetraphenylethene Dyes Ranging from Visible to Near-Infrared Region: AIE Behavior, Performance in Solid State, and Bioimaging in Living Cells. J Org Chem 2019; 84:14498-14507. [DOI: 10.1021/acs.joc.9b01976] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Weijie Chen
- Key Laboratory of Pesticide and Chemical Biology, Ministry of Education, Hubei International Scientific and Technological Cooperation Base of Pesticide and Green Synthesis, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University, Wuhan 430079, China
| | - Chen Zhang
- State Key Laboratory of Chemical Oncogenomics, Key Laboratory of Chemical Biology, The Graduate School at Shenzhen, Tsinghua University, Shenzhen 518055, Guangdong, China
| | - Xie Han
- Key Laboratory of Pesticide and Chemical Biology, Ministry of Education, Hubei International Scientific and Technological Cooperation Base of Pesticide and Green Synthesis, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University, Wuhan 430079, China
- School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan 430081, China
| | - Sheng Hua Liu
- Key Laboratory of Pesticide and Chemical Biology, Ministry of Education, Hubei International Scientific and Technological Cooperation Base of Pesticide and Green Synthesis, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University, Wuhan 430079, China
| | - Ying Tan
- State Key Laboratory of Chemical Oncogenomics, Key Laboratory of Chemical Biology, The Graduate School at Shenzhen, Tsinghua University, Shenzhen 518055, Guangdong, China
| | - Jun Yin
- Key Laboratory of Pesticide and Chemical Biology, Ministry of Education, Hubei International Scientific and Technological Cooperation Base of Pesticide and Green Synthesis, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University, Wuhan 430079, China
- State Key Laboratory of Chemical Oncogenomics, Key Laboratory of Chemical Biology, The Graduate School at Shenzhen, Tsinghua University, Shenzhen 518055, Guangdong, China
| |
Collapse
|
45
|
Zeng L, Zeng H, Jiang L, Wang S, Hou JT, Yoon J. A Single Fluorescent Chemosensor for Simultaneous Discriminative Detection of Gaseous Phosgene and a Nerve Agent Mimic. Anal Chem 2019; 91:12070-12076. [DOI: 10.1021/acs.analchem.9b03230] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Lintao Zeng
- Tianjin Key Laboratory of Organic Solar Cells and Photochemical Conversion, Tianjin University of Technology, Tianjin 300384, P.R. China
- School of Chemistry and Materials Science, Hubei Engineering University, Xiaogan 432000, P.R. China
| | - Hongyan Zeng
- Tianjin Key Laboratory of Organic Solar Cells and Photochemical Conversion, Tianjin University of Technology, Tianjin 300384, P.R. China
| | - Lirong Jiang
- Tianjin Key Laboratory of Organic Solar Cells and Photochemical Conversion, Tianjin University of Technology, Tianjin 300384, P.R. China
| | - Shan Wang
- School of Chemistry and Materials Science, Hubei Engineering University, Xiaogan 432000, P.R. China
- College of Chemistry and Chemical Engineering, Xinyang Normal University, Xinyang 464000, P.R. China
| | - Ji-Ting Hou
- School of Chemistry and Materials Science, Hubei Engineering University, Xiaogan 432000, P.R. China
- College of Chemistry and Chemical Engineering, Xinyang Normal University, Xinyang 464000, P.R. China
| | - Juyoung Yoon
- Department of Chemistry and Nano Science, Ewha Womans University, Seoul 03760, Korea
| |
Collapse
|
46
|
Jiao L, Zhang X, Cui J, Peng X, Song F. Three-in-One Functional Silica Nanocarrier with Singlet Oxygen Generation, Storage/Release, and Self-Monitoring for Enhanced Fractional Photodynamic Therapy. ACS APPLIED MATERIALS & INTERFACES 2019; 11:25750-25757. [PMID: 31245990 DOI: 10.1021/acsami.9b08371] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
At present, the intermittent photodynamic therapy (fractional PDT) for overcoming tumor hypoxia still have their own defects, such as irradiation-dependence and rapid metabolism of organic photosensitizers. Therefore, it is still a really formidable challenge to achieve efficient fractional PDT. Herein, a three-in-one functional silica nanocarrier (FSNC) with singlet oxygen (1O2) generating unit (protoporphyrin IX derivative), 1O2 storage/release unit (2-pyridone derivative), and 1O2 self-monitoring unit (cyanine derivative) was prepared by reverse microemulsion method. Also, it could be efficiently internalized in the HeLa cells because of an appropriate particle size (∼44.8 nm). In the presence of light, the endoperoxide is formed to achieve 1O2 storage together with 1O2 generated by 1O2 generating unit for traditional PDT. In the absence of light, the endoperoxide produces 1O2 through cycloreversion for continuous PDT. As a result, the fractional PDT process of the FSNC on the HeLa cells performed a higher phototoxicity than traditional photosensitizer protoporphyrin IX. Furthermore, this real-time release behavior of 1O2 can be visually captured by confocal laser scanning microscope via monitoring fluorescent bleaching of 1O2 self-monitoring unit. Therefore, this fluorescent imaging-guided fractional PDT process could effectively enhance the PDT effect compared with traditional PDT.
Collapse
Affiliation(s)
- Long Jiao
- State Key Laboratory of Fine Chemicals , Dalian University of Technology , No. 2 Linggong Road, High-tech District , Dalian 116024 , P. R. China
| | - Xiaoye Zhang
- Marine Engineering College , Dalian Maritime University , No. 1 Linghai Road, High-tech District , Dalian 116026 , P. R. China
| | - Jingnan Cui
- State Key Laboratory of Fine Chemicals , Dalian University of Technology , No. 2 Linggong Road, High-tech District , Dalian 116024 , P. R. China
| | - Xiaojun Peng
- State Key Laboratory of Fine Chemicals , Dalian University of Technology , No. 2 Linggong Road, High-tech District , Dalian 116024 , P. R. China
| | - Fengling Song
- State Key Laboratory of Fine Chemicals , Dalian University of Technology , No. 2 Linggong Road, High-tech District , Dalian 116024 , P. R. China
- Institute of Molecular Sciences and Engineering , Shandong University , Qingdao 266237 , P. R. China
| |
Collapse
|
47
|
Luo Y, Zhang L, Zhang L, Yu B, Wang Y, Zhang W. Multiporous Terbium Phosphonate Coordination Polymer Microspheres as Fluorescent Probes for Trace Anthrax Biomarker Detection. ACS APPLIED MATERIALS & INTERFACES 2019; 11:15998-16005. [PMID: 30951283 DOI: 10.1021/acsami.9b01123] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Lanthanide coordination polymers have been recently regarded as attractive sensing materials because of their selectivity, high sensitivity, and rapid response ability. In this research, the multiporous terbium phosphonate coordination polymer microspheres (TbP-CPs) were prepared as a novel fluorescent probe, which showed a fluorescence turn-on response capability for the detection of the trace anthrax biomarker dipicolinate acid (DPA). The morphology and chemical composition of as-prepared TbP-CPs were characterized in detail. The TbP-CPs have the vegetable-flower-like structure and microporous surface. In addition, the as-prepared TbP-CPs not only possess the merits of convenience and simple preparation with high yield but also have the excellent characters as fluorescent probes, such as high stability, good selectivity, and rapid detection ability within 30 s. This proposed sensor could detect DPA with a linear relationship in concentrations ranging from 0 to 8.0 μM and a high detection sensitivity of 5.0 nM. Furthermore, the successful applications of DPA detection in urine and bovine serum were demonstrated. As a result, the recovery ranged from 93.93-101.6%, and the relative standard deviations (RSD) were less than 5%.
Collapse
Affiliation(s)
- Yongquan Luo
- Shanghai Key Laboratory of Functional Materials Chemistry, School of Chemistry and Molecular Engineering , East China University of Science and Technology , Shanghai 200237 , China
| | - Lei Zhang
- Shanghai Key Laboratory of Functional Materials Chemistry, School of Chemistry and Molecular Engineering , East China University of Science and Technology , Shanghai 200237 , China
| | - Lingyi Zhang
- Shanghai Key Laboratory of Functional Materials Chemistry, School of Chemistry and Molecular Engineering , East China University of Science and Technology , Shanghai 200237 , China
| | - Bohao Yu
- Shanghai Key Laboratory of Functional Materials Chemistry, School of Chemistry and Molecular Engineering , East China University of Science and Technology , Shanghai 200237 , China
| | - Yajie Wang
- Department of Pharmacy , Anhui Medical College , Hefei 230601 , China
| | - Weibing Zhang
- Shanghai Key Laboratory of Functional Materials Chemistry, School of Chemistry and Molecular Engineering , East China University of Science and Technology , Shanghai 200237 , China
| |
Collapse
|
48
|
Xu W, Lee MMS, Zhang Z, Sung HHY, Williams ID, Kwok RTK, Lam JWY, Wang D, Tang BZ. Facile synthesis of AIEgens with wide color tunability for cellular imaging and therapy. Chem Sci 2019; 10:3494-3501. [PMID: 30996940 PMCID: PMC6432335 DOI: 10.1039/c8sc05805a] [Citation(s) in RCA: 76] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2018] [Accepted: 02/18/2019] [Indexed: 12/15/2022] Open
Abstract
Luminogens with aggregation-induced emission (AIE) characteristics are nowadays undergoing explosive development in the fields of imaging, process visualization, diagnosis and therapy. However, exploration of an AIE luminogen (AIEgen) system allowing for extremely wide color tunability remains challenging. In this contribution, the facile synthesis of triphenylamine (TPA)-thiophene building block-based AIEgens having tunable maximum emission wavelengths covering violet, blue, green, yellow, orange, red, deep red and NIR regions is reported. The obtained AIEgens can be utilized as extraordinary fluorescent probes for lipid droplet (LD)-specific cell imaging and cell fusion assessment, showing excellent image contrast to the cell background and high photostability, as well as satisfactory visualization outcomes. Interestingly, quantitative evaluation of the phototherapy effect demonstrates that one of these presented AIEgens, namely TTNIR, performs well as a photosensitizer for photodynamic ablation of cancer cells upon white light irradiation. This study thus provides useful insights into rational design of fluorescence systems for widely tuning emission colors with high brightness, and remarkably extends the applications of AIEgens.
Collapse
Affiliation(s)
- Wenhan Xu
- Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction , Department of Chemistry , Institute of Molecular Functional Materials , State Key Laboratory of Neuroscience , Division of Biomedical Engineering , Division of Life Science , The Hong Kong University of Science and Technology , Clear Water Bay , Kowloon , Hong Kong , China .
| | - Michelle M S Lee
- Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction , Department of Chemistry , Institute of Molecular Functional Materials , State Key Laboratory of Neuroscience , Division of Biomedical Engineering , Division of Life Science , The Hong Kong University of Science and Technology , Clear Water Bay , Kowloon , Hong Kong , China .
| | - Zhihan Zhang
- Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction , Department of Chemistry , Institute of Molecular Functional Materials , State Key Laboratory of Neuroscience , Division of Biomedical Engineering , Division of Life Science , The Hong Kong University of Science and Technology , Clear Water Bay , Kowloon , Hong Kong , China .
| | - Herman H Y Sung
- Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction , Department of Chemistry , Institute of Molecular Functional Materials , State Key Laboratory of Neuroscience , Division of Biomedical Engineering , Division of Life Science , The Hong Kong University of Science and Technology , Clear Water Bay , Kowloon , Hong Kong , China .
| | - Ian D Williams
- Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction , Department of Chemistry , Institute of Molecular Functional Materials , State Key Laboratory of Neuroscience , Division of Biomedical Engineering , Division of Life Science , The Hong Kong University of Science and Technology , Clear Water Bay , Kowloon , Hong Kong , China .
| | - Ryan T K Kwok
- Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction , Department of Chemistry , Institute of Molecular Functional Materials , State Key Laboratory of Neuroscience , Division of Biomedical Engineering , Division of Life Science , The Hong Kong University of Science and Technology , Clear Water Bay , Kowloon , Hong Kong , China .
| | - Jacky W Y Lam
- Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction , Department of Chemistry , Institute of Molecular Functional Materials , State Key Laboratory of Neuroscience , Division of Biomedical Engineering , Division of Life Science , The Hong Kong University of Science and Technology , Clear Water Bay , Kowloon , Hong Kong , China .
| | - Dong Wang
- Center for AIE Research , College of Materials Science and Engineering , Shenzhen University , Shenzhen 518060 , China .
| | - Ben Zhong Tang
- Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction , Department of Chemistry , Institute of Molecular Functional Materials , State Key Laboratory of Neuroscience , Division of Biomedical Engineering , Division of Life Science , The Hong Kong University of Science and Technology , Clear Water Bay , Kowloon , Hong Kong , China .
| |
Collapse
|
49
|
Silindir-Gunay M, Sarcan ET, Ozer AY. Near-infrared imaging of diseases: A nanocarrier approach. Drug Dev Res 2019; 80:521-534. [PMID: 30893508 DOI: 10.1002/ddr.21532] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Revised: 02/28/2019] [Accepted: 03/08/2019] [Indexed: 11/08/2022]
Abstract
Developments in fluorescence imaging, brought popularity to near infrared (NIR) imaging with far-red and NIR fluorophores applied for biosensing and bioimaging in living systems. Noninvasive NIR imaging gained popularity with the use of effective NIR dyes to obtain macroscopic fluorescence images. Several attributes of NIR dyes make them desirable agents, including high specificity, high sensitivity, minimized background interference, and the ability to easily conjugate with drug delivery systems. However, NIR dyes have some drawbacks and limitations, such as low solubility, low stability, and degradation. To overcome these issues, NIR dyes can be encapsulated in appropriate nanocarriers to achieve effective diagnosis, imaging, and therapy monitoring during surgery. Moreover, the vast majority of NIR dyes have photosensitizer features that can effectuate cancer treatment referred to as photodynamic therapy (PDT). In the near future, by combining NIR dyes with appropriate nanocarriers such as liposomes, polymeric micelles, polymeric nanoparticles, dendrimers, quantum dots, carbon nanotubes, or ceramic/silica based nanoparticles, the limitations of NIR dyes can be minimized or even effectively eliminated to form potential effective agents for imaging, therapy, and therapy monitoring of several diseases, particularly cancer.
Collapse
Affiliation(s)
- Mine Silindir-Gunay
- Department of Radiopharmacy, Faculty of Pharmacy, Hacettepe University, Sıhhiye, Ankara, Turkey
| | - Elif Tugce Sarcan
- Department of Radiopharmacy, Faculty of Pharmacy, Hacettepe University, Sıhhiye, Ankara, Turkey
| | - Asuman Yekta Ozer
- Department of Radiopharmacy, Faculty of Pharmacy, Hacettepe University, Sıhhiye, Ankara, Turkey
| |
Collapse
|
50
|
Chen K, Zhao J, Li X, Gurzadyan GG. Anthracene–Naphthalenediimide Compact Electron Donor/Acceptor Dyads: Electronic Coupling, Electron Transfer, and Intersystem Crossing. J Phys Chem A 2019; 123:2503-2516. [PMID: 30860843 DOI: 10.1021/acs.jpca.8b11828] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Kepeng Chen
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, E-208 West Campus, 2 Ling-Gong Road, Dalian 116024, P. R. China
| | - Jianzhang Zhao
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, E-208 West Campus, 2 Ling-Gong Road, Dalian 116024, P. R. China
- School of Chemistry and Chemical Engineering and Key Laboratory of Energy Materials Chemistry, Ministry of Education, Institute of Applied Chemistry, Xinjiang University, Urumqi 830046, Xinjiang, P. R. China
| | - Xiaoxin Li
- Institute of Artificial Photosynthesis, State Key Laboratory of Fine Chemicals, Dalian University of Technology, West Campus, 2 Ling-Gong Road, Dalian 116024, P. R. China
| | - Gagik G. Gurzadyan
- Institute of Artificial Photosynthesis, State Key Laboratory of Fine Chemicals, Dalian University of Technology, West Campus, 2 Ling-Gong Road, Dalian 116024, P. R. China
| |
Collapse
|