1
|
Xue L, Xiong X, Zhao G, Molina-Arocho W, Palanki R, Xiao Z, Han X, Yoon IC, Figueroa-Espada CG, Xu J, Gong N, Shi Q, Chen Q, Alameh MG, Vaughan AE, Haldar M, Wang K, Weissman D, Mitchell MJ. Multiarm-Assisted Design of Dendron-like Degradable Ionizable Lipids Facilitates Systemic mRNA Delivery to the Spleen. J Am Chem Soc 2025; 147:1542-1552. [PMID: 39742515 DOI: 10.1021/jacs.4c10265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
Abstract
Lipid nanoparticles (LNPs) have emerged as pivotal vehicles for messenger RNA (mRNA) delivery to hepatocytes upon systemic administration and to antigen-presenting cells following intramuscular injection. However, achieving systemic mRNA delivery to non-hepatocytes remains challenging without the incorporation of targeting ligands such as antibodies, peptides, or small molecules. Inspired by comb-like polymeric architecture, here we utilized a multiarm-assisted design to construct a library of 270 dendron-like degradable ionizable lipids by altering the structures of amine heads and multiarmed tails for optimal mRNA delivery. Following in vitro high-throughput screening, a series of top-dendron-like LNPs with high transfection efficacy were identified. These dendron-like ionizable lipids facilitated greater mRNA delivery to the spleen in vivo compared to ionizable lipid analogs lacking dendron-like structure. Proteomic analysis of corona-LNP pellets showed enhancement of key protein clusters, suggesting potential endogenous targeting to the spleen. A lead dendron-like LNP formulation, 18-2-9b2, was further used to encapsulate Cre mRNA and demonstrated excellent genome modification in splenic macrophages, outperforming a spleen-tropic MC3/18PA LNP in the Ai14 mice model. Moreover, 18-2-9b2 LNP encapsulating therapeutic BTB domain and CNC homologue 1 (BACH1) mRNA exhibited proficient BACH1 expression and subsequent Spic downregulation in splenic red pulp macrophages (RPM) in a Spic-GFP transgene model upon intravenous administration. These results underscore the potential of dendron-like LNPs to facilitate mRNA delivery to splenic macrophages, potentially opening avenues for a range of mRNA-LNP therapeutic applications, including regenerative medicine, protein replacement, and gene editing therapies.
Collapse
Affiliation(s)
- Lulu Xue
- Department of Bioengineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Xinhong Xiong
- Yangtze Delta Region Institute (Huzhou), University of Electronic Science and Technology of China, Huzhou, Zhejiang 313001, China
| | - Gan Zhao
- Department of Biomedical Sciences, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - William Molina-Arocho
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Rohan Palanki
- Department of Bioengineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Zebin Xiao
- Department of Biomedical Sciences, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Xuexiang Han
- Department of Bioengineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Il-Chul Yoon
- Department of Bioengineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
- Department of Materials Science and Engineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | | | - Junchao Xu
- Department of Bioengineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Ningqiang Gong
- Department of Bioengineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Qiangqiang Shi
- Department of Bioengineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Qinyuan Chen
- School of Dental Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Mohamad-Gabriel Alameh
- Department of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
- Penn Institute for RNA Innovation, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Andrew E Vaughan
- Department of Biomedical Sciences, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Malay Haldar
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Karin Wang
- Department of Bioengineering, Temple University, Philadelphia, Pennsylvania 19122, United States
| | - Drew Weissman
- Department of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
- Penn Institute for RNA Innovation, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Michael J Mitchell
- Department of Bioengineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
- Penn Institute for RNA Innovation, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
- Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
- Institute for Immunology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
- Cardiovascular Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19014, United States
- Institute for Regenerative Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| |
Collapse
|
2
|
Cui S, Murphy EA, Santra S, Bates FS, Lodge TP. Mesoscopic Morphologies in Frustrated ABC Bottlebrush Block Terpolymers. ACS NANO 2025; 19:1211-1221. [PMID: 39760286 DOI: 10.1021/acsnano.4c13416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2025]
Abstract
Bottlebrush block polymers, characterized by densely grafted side chains extending from a backbone, have recently garnered significant attention. A particularly attractive feature is the accessibility of ordered morphologies with domain spacings exceeding several hundred nanometers, a capability that is challenging to achieve with linear polymers. These large morphologies make bottlebrush block polymers promising for various applications, such as photonic crystals. However, the structures observed in AB diblock bottlebrushes are generally limited to simple lamellae and cylindrical phases, which restricts their use in many applications. In this study, we synthesized a library of 50 ABC bottlebrush triblock terpolymers, poly(DL-lactide)-b-poly(ethylene-alt-propylene)-b-polystyrene (PLA-PEP-PS), spanning a wide range of compositions using ring-opening metathesis polymerization (ROMP) of norbornene-functionalized macromonomers. This constitutes a frustrated system, in that the mandatory internal interfaces (PLA/PEP and PEP/PS) have larger interfacial energies than PLA/PS. We systematically explored phase behavior using small-angle X-ray scattering (SAXS) and transmission electron microscopy (TEM). Morphological characterization revealed a series of intriguing mesoscopic structures, including layered microstructures, core-shell hexagonally packed cylinders (CSHEX, plane group p6mm), alternating tetragonally packed cylinders (ATET, plane group p4mm), and rectangular centered cylinders-in-undulating-lamellae (RCCUL, plane group c2mm). Adjustments in molecular weight resulted in a wide range of unit cell dimensions (exemplified by RCCUL), from 40 nm to over 130 nm. This work demonstrates that multiblock bottlebrushes offer promising opportunities for developing materials with diverse structures and a broad range of domain dimensions.
Collapse
Affiliation(s)
- Shuquan Cui
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Elizabeth A Murphy
- Materials Research Laboratory and Department of Chemistry and Biochemistry, University of California, Santa Barbara, California 93106, United States
| | - Subrata Santra
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Frank S Bates
- Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Timothy P Lodge
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
- Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, Minnesota 55455, United States
| |
Collapse
|
3
|
Zhu H, Feng W, Wang Y, Li Z, Xu B, Lin S. Dissipative particle dynamics simulations on the self-assembly of rod-coil asymmetric diblock molecular brushes bearing responsive side chains. SOFT MATTER 2025; 21:255-261. [PMID: 39659192 DOI: 10.1039/d4sm01232a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2024]
Abstract
The self-assembly behaviors of rod-coil asymmetric diblock molecular brushes (ADMBs) bearing responsive side chains in a selective solvent are investigated via dissipative particle dynamics simulations. By systematically varying the polymerization degree, copolymer concentration, and side chain length, several morphological phase diagrams were constructed. ADMB assemblies exhibited a rich variety of morphologies, including cylindrical micelles, spherical micelles, nanowires, polyhedral micelles, ellipsoid micelles, and large compound micelles. The structures of the representative nanowires were analyzed in detail. A kinetics study revealed that the one-dimensional growth of nanowires follows the step-growth polymerization mechanism. Besides, by calculating the local order parameter of the rigid chains, we found that increasing the lengths of A and C side chains can promote the ordered arrangement of the rigid chains. Moreover, the rod-to-coil conformation transitions were simulated to explore the stimuli-responsive behaviors of ADMBs with responsive rigid side chains. The simulation results indicated that the volume of the assemblies expanded without the support of the rigid chains. The present work not only provides a comprehensive understanding of the self-assembly behaviors of ADMBs but also provides meaningful theoretical support for the development of novel molecular brush materials.
Collapse
Affiliation(s)
- Hao Zhu
- Shanghai Key Laboratory of Advanced Polymeric Materials, Key Laboratory for Ultrafine Materials of Ministry of Education, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China.
| | - Weisheng Feng
- Shanghai Key Laboratory of Advanced Polymeric Materials, Key Laboratory for Ultrafine Materials of Ministry of Education, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China.
| | - Yueyao Wang
- Shanghai Key Laboratory of Advanced Polymeric Materials, Key Laboratory for Ultrafine Materials of Ministry of Education, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China.
| | - Zhengyi Li
- Shanghai Key Laboratory of Advanced Polymeric Materials, Key Laboratory for Ultrafine Materials of Ministry of Education, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China.
| | - Binbin Xu
- Shanghai Key Laboratory of Advanced Polymeric Materials, Key Laboratory for Ultrafine Materials of Ministry of Education, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China.
| | - Shaoliang Lin
- Shanghai Key Laboratory of Advanced Polymeric Materials, Key Laboratory for Ultrafine Materials of Ministry of Education, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China.
| |
Collapse
|
4
|
Umarov AZ, Collins J, Nikitina EA, Moutsios I, Rosenthal M, Dobrynin AV, Sheiko SS, Ivanov DA. Enhancing the Biomimetic Mechanics of Bottlebrush Graft-Copolymers through Selective Solvent Annealing. Macromol Rapid Commun 2025; 46:e2400569. [PMID: 39388642 DOI: 10.1002/marc.202400569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 09/14/2024] [Indexed: 10/12/2024]
Abstract
Self-assembled networks of bottlebrush copolymers are promising materials for biomedical applications due to a unique combination of ultra-softness and strain-adaptive stiffening, characteristic of soft biological tissues. Transitioning from ABA linear-brush-linear triblock copolymers to A-g-B bottlebrush graft copolymer architectures allows significant increasing the mechanical strength of thermoplastic elastomers. Using real-time synchrotron small-angle X-ray scattering, it is shown that annealing of A-g-B elastomers in a selective solvent for the linear A blocks allows for substantial network reconfiguration, resulting in an increase of both the A domain size and the distance between the domains. The corresponding increases in the aggregation number and extension of bottlebrush strands lead to a significant increase of the strain-stiffening parameter up to 0.7, approaching values characteristic of the brain and skin tissues. Network reconfiguration without disassembly is an efficient approach to adjusting the mechanical performance of tissue-mimetic materials to meet the needs of diverse biomedical applications.
Collapse
Affiliation(s)
- Akmal Z Umarov
- Faculty of Chemistry, Lomonosov Moscow State University (MSU), GSP-1, 1-3 Leninskiye Gory, Moscow, 119991, Russian Federation
| | - Joseph Collins
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599-3290, USA
| | - Evgeniia A Nikitina
- Faculty of Chemistry, Lomonosov Moscow State University (MSU), GSP-1, 1-3 Leninskiye Gory, Moscow, 119991, Russian Federation
| | - Ioannis Moutsios
- Institut de Sciences des Matériaux de Mulhouse-IS2M, CNRS UMR 7361, Mulhouse, F-68057, France
| | - Martin Rosenthal
- Department of Chemistry, KU Leuven, Celestijnenlaan 200F, Leuven, Box 2404, B-3001, Belgium
| | - Andrey V Dobrynin
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599-3290, USA
| | - Sergei S Sheiko
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599-3290, USA
| | - Dimitri A Ivanov
- Faculty of Chemistry, Lomonosov Moscow State University (MSU), GSP-1, 1-3 Leninskiye Gory, Moscow, 119991, Russian Federation
- Institut de Sciences des Matériaux de Mulhouse-IS2M, CNRS UMR 7361, Mulhouse, F-68057, France
| |
Collapse
|
5
|
Phan QT, Rabanel JM, Mekhjian D, Saber J, Garcia Ac A, Zhang H, Gibson VP, Zaouter C, Hardy P, Patten SA, Boffito D, Banquy X. Core-Shell Bottlebrush Polymers: Unmatched Delivery of Small Active Compounds Deep Into Tissues. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024:e2408616. [PMID: 39679753 DOI: 10.1002/smll.202408616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 11/09/2024] [Indexed: 12/17/2024]
Abstract
The chemical structure of a delivery nanovehicle plays a pivotal role in determining the efficiency of drug delivery within the body. Leveraging the unique architecture of bottlebrush (BB) polymers-characterized by variations in backbone length, grafting density, and self-assembly morphology-offers a novel approach to understanding the influence of structural properties on biological behavior. In this study, developed a drug delivery system based on core-shell BB polymers synthesized using a "grafting-from" strategy. Comprehensive characterization techniques, including nuclear magnetic resonance (NMR), gel permeation chromatography (GPC), and atomic force microscopy (AFM), employed to confirm the polymers' structure. The BB polymers evaluated as carriers for molecules with differing hydrophobicity profiles, namely Rhodamine B and Paclitaxel. These nanocarriers systematically assessed for drug loading efficiency and penetration capabilities, compared to conventional polymeric micelles (PM) formed from linear amphiphilic polymers. BB-based nanocarriers exhibited superior cellular uptake in both 2D and 3D cell culture models when compared to PM. Furthermore, analysis of drug distribution and particle penetration highlighted the profound influence of polymer morphology on biological interactions. These findings underscore the potential of unimolecular carriers with precisely defined structures as promising drug delivery platforms for a wide range of biomedical applications.
Collapse
Affiliation(s)
- Quoc Thang Phan
- Faculty of Pharmacy, Université de Montréal, 2940 Chemin de Polytechnique, Montréal, Québec, H3T 1J4, Canada
| | - Jean-Michel Rabanel
- Faculty of Pharmacy, Université de Montréal, 2940 Chemin de Polytechnique, Montréal, Québec, H3T 1J4, Canada
- School of Pharmaceutical Sciences, Faculty of Medicine, University of Ottawa, Roger Guindon Hall, 451 Smyth Rd, Ottawa, Ontario, K1H 8M5, Canada
| | - Dikran Mekhjian
- Faculty of Pharmacy, Université de Montréal, 2940 Chemin de Polytechnique, Montréal, Québec, H3T 1J4, Canada
| | - Justine Saber
- Faculty of Pharmacy, Université de Montréal, 2940 Chemin de Polytechnique, Montréal, Québec, H3T 1J4, Canada
| | - Araceli Garcia Ac
- Faculty of Pharmacy, Université de Montréal, 2940 Chemin de Polytechnique, Montréal, Québec, H3T 1J4, Canada
| | - Hu Zhang
- Faculty of Pharmacy, Université de Montréal, 2940 Chemin de Polytechnique, Montréal, Québec, H3T 1J4, Canada
| | - Victor Passos Gibson
- Department of Pharmacology and Physiology, Université de Montréal, Montréal, Québec, H3T 1J4, Canada
| | - Charlotte Zaouter
- INRS Centre Armand-Frappier Santé Biotechnologie, 531, boul. des Prairies, Québec, Canada, H7V 1B7
| | - Pierre Hardy
- Department of Pharmacology and Physiology, Université de Montréal, Montréal, Québec, H3T 1J4, Canada
| | | | - Daria Boffito
- Department of Chemical Engineering, Polytechnique Montréal, 2500 Chemin de Polytechnique, Montréal, Québec, H3C 3A7, Canada
| | - Xavier Banquy
- Faculty of Pharmacy, Université de Montréal, 2940 Chemin de Polytechnique, Montréal, Québec, H3T 1J4, Canada
- Biomedical Engineering Institute, Université de Montréal, 2940 Chemin de Polytechnique, Montréal, Québec, H3T 1J4, Canada
- Chemistry Department, Faculty of Arts and Sciences, Université de Montréal, 2940 Chemin de Polytechnique, Montréal, Québec, H3T 1J4, Canada
| |
Collapse
|
6
|
Umarov AZ, Nikitina EA, Piryazev AA, Moutsios I, Rosenthal M, Kurbatov AO, Gordievskaya YD, Kramarenko EY, Dashtimoghadam E, Maw MR, Sheiko SS, Ivanov DA. Revealing Long-Range Order in Brush-like Graft Copolymers Through In Situ Measurements of X-Ray Scattering During Deformation. Polymers (Basel) 2024; 16:3309. [PMID: 39684055 DOI: 10.3390/polym16233309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 11/22/2024] [Accepted: 11/23/2024] [Indexed: 12/18/2024] Open
Abstract
Brush-like graft copolymers (A-g-B), in which linear A-blocks are randomly grafted onto the backbone of a brush-like B-block, exhibit intense strain-stiffening and high mechanical strength on par with load-bearing biological tissues such as skin and blood vessels. To elucidate molecular mechanisms underlying this tissue-mimetic behavior, in situ synchrotron X-ray scattering was measured during uniaxial stretching of bottlebrush- and comb-like graft copolymers with varying densities of poly(dimethyl siloxane) and poly(isobutylene) side chains. In an undeformed state, these copolymers revealed a single interference peak corresponding to the average spacing between the domains of linear A-blocks arranged in a disordered, liquid-like configuration. Under uniaxial stretching, the emergence of a distinct four-spot pattern in the small-angle region indicated the development of long-range order within the material. According to the affine deformation of a cubic lattice, the four-spot pattern's interference maxima correspond to 110 reflections upon stretching along the [111] axis of the body-centered unit cell. The experimental findings were corroborated by computer simulations of dissipative particle dynamics that confirmed the formation of a bcc domain structure.
Collapse
Affiliation(s)
- Akmal Z Umarov
- Department of Chemistry, Lomonosov Moscow State University (MSU), GSP-1, 1-3 Leninskiye Gory, 119991 Moscow, Russia
| | - Evgeniia A Nikitina
- Department of Chemistry, Lomonosov Moscow State University (MSU), GSP-1, 1-3 Leninskiye Gory, 119991 Moscow, Russia
| | - Alexey A Piryazev
- Department of Chemistry, Lomonosov Moscow State University (MSU), GSP-1, 1-3 Leninskiye Gory, 119991 Moscow, Russia
| | - Ioannis Moutsios
- Institut de Sciences des Matériaux de Mulhouse-IS2M, CNRS UMR 7361, F-68057 Mulhouse, France
| | - Martin Rosenthal
- Department of Chemistry, KU Leuven, Celestijnenlaan 200F, Box 2404, B-3001 Leuven, Belgium
| | - Andrey O Kurbatov
- Department of Chemistry, Lomonosov Moscow State University (MSU), GSP-1, 1-3 Leninskiye Gory, 119991 Moscow, Russia
| | - Yulia D Gordievskaya
- Department of Chemistry, Lomonosov Moscow State University (MSU), GSP-1, 1-3 Leninskiye Gory, 119991 Moscow, Russia
| | - Elena Yu Kramarenko
- Department of Chemistry, Lomonosov Moscow State University (MSU), GSP-1, 1-3 Leninskiye Gory, 119991 Moscow, Russia
| | - Erfan Dashtimoghadam
- Department of Chemistry, University of North Carolina, Chapel Hill, NC 27599-3290, USA
| | - Mitchell R Maw
- Department of Chemistry, University of North Carolina, Chapel Hill, NC 27599-3290, USA
| | - Sergei S Sheiko
- Department of Chemistry, University of North Carolina, Chapel Hill, NC 27599-3290, USA
| | - Dimitri A Ivanov
- Department of Chemistry, Lomonosov Moscow State University (MSU), GSP-1, 1-3 Leninskiye Gory, 119991 Moscow, Russia
- Institut de Sciences des Matériaux de Mulhouse-IS2M, CNRS UMR 7361, F-68057 Mulhouse, France
| |
Collapse
|
7
|
Lee D, Wang H, Jiang SY, Verduzco R. Versatile Light-Mediated Synthesis of Degradable Bottlebrush Polymers Using α-Lipoic Acid. Angew Chem Int Ed Engl 2024; 63:e202409323. [PMID: 39150823 DOI: 10.1002/anie.202409323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 08/15/2024] [Accepted: 08/16/2024] [Indexed: 08/18/2024]
Abstract
Bottlebrush polymers have a variety of useful properties including a high entanglement molecular weight, low Young's modulus, and rapid kinetics for self-assembly. However, the translation of bottlebrushes to real-world applications is limited by complex, multi-step synthetic pathways and polymerization reactions that rely on air-sensitive catalysts. Additionally, most bottlebrushes are non-degradable. Herein, we report an inexpensive, versatile, and simple approach to synthesize degradable bottlebrush polymers under mild reaction conditions. Our approach relies on the "grafting-through" polymerization of α-lipoic acid (LA)-functionalized macromonomers. These macromonomers can be polymerized under mild, catalyst-free conditions, and due to reversibility of the disulfide bond in LA, the resulting bottlebrush polymers can be depolymerized by cleaving disulfide backbone bonds. Bottlebrushes with various side-chain chemistries can be prepared through the atom transfer radical polymerization (ATRP) of LA-functionalized macromonomers, and the backbone length is governed by the macromonomer molecular weight and solvent polarity. We also demonstrate that LA-functionalized macromonomers can be copolymerized with acrylates to form degradable bottlebrush networks. This work demonstrates the preparation of degradable bottlebrush polymers with a variety of side-chain chemistries and provides insight into the light-mediated grafting-through polymerization of dithiolane-functionalized macromonomers.
Collapse
Affiliation(s)
- Dongjoo Lee
- Department of Chemical and Biomolecular Engineering, Rice University, 6100 Main St, 77005, Houston, TX, United States
| | - Hanqing Wang
- Department of Chemical and Biomolecular Engineering, Rice University, 6100 Main St, 77005, Houston, TX, United States
| | - Shu-Yan Jiang
- Department of Chemical and Biomolecular Engineering, Rice University, 6100 Main St, 77005, Houston, TX, United States
| | - Rafael Verduzco
- Department of Chemical and Biomolecular Engineering, Rice University, 6100 Main St, 77005, Houston, TX, United States
- Department of Materials Science and NanoEngineering, Rice University, 6100 Main St, 77005, Houston, TX, United States
| |
Collapse
|
8
|
Wood JA, Dal Compare L, Pearse L, Schuitemaker A, Liu Y, Hudson T, Giacometti A, Widmer-Cooper A. Self-assembly and phase behavior of Janus rods: Competition between shape and potential anisotropy. J Chem Phys 2024; 161:184906. [PMID: 39535099 DOI: 10.1063/5.0241090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2024] [Accepted: 10/21/2024] [Indexed: 11/16/2024] Open
Abstract
We characterize the self-assembly and phase behavior of Janus rods over a broad range of temperatures and volume fractions, using Langevin dynamics simulations and free energy calculations. The Janus rods consist of a line of fused overlapping spheres that interact via a soft-core repulsive potential, with the addition of an attractive pseudo-square-well tail to a fraction of the spheres (the coverage) ranging from 5% to 100% of sites. Competition between the stability of liquid crystal phases originating from shape anisotropy and assembly driven by directional interactions gives rise to a rich polymorphism that depends on the coverage. At low densities near the Boyle temperature, we observe the formation of spherical and tubular micelles at low coverages, while at higher coverages, randomly oriented monolayers form as the attractive parts of the rods overlap. At higher densities, bilayer structures appear and merge to form smectic and crystalline lamellar phases. All these structures gradually become unstable as the temperature is increased until eventually regular nematic and smectic phases appear, consistent with the hard rod limit. Our results indicate that the intermediate regime where shape-entropic effects compete with anisotropic attractions provided by site specificity is rich in structural possibilities and should help guide the design of rod-like colloids for specific applications.
Collapse
Affiliation(s)
- Jared A Wood
- ARC Centre of Excellence in Exciton Science, School of Chemistry, University of Sydney, Sydney, New South Wales 2006, Australia
- The University of Sydney Nano Institute, University of Sydney, Sydney, New South Wales 2006, Australia
| | - Laura Dal Compare
- Dipartimento di Scienze Molecolari e Nanosistemi, Università Ca' Foscari di Venezia Campus Scientifico, Edificio Alfa, via Torino 155, 30170 Venezia Mestre, Italy
| | - Lillian Pearse
- School of Chemistry, University of Sydney, Sydney, New South Wales 2006, Australia
| | - Alicia Schuitemaker
- ARC Centre of Excellence in Exciton Science, School of Chemistry, University of Sydney, Sydney, New South Wales 2006, Australia
| | - Yawei Liu
- ARC Centre of Excellence in Exciton Science, School of Chemistry, University of Sydney, Sydney, New South Wales 2006, Australia
| | - Toby Hudson
- School of Chemistry, University of Sydney, Sydney, New South Wales 2006, Australia
| | - Achille Giacometti
- Dipartimento di Scienze Molecolari e Nanosistemi, Università Ca' Foscari di Venezia Campus Scientifico, Edificio Alfa, via Torino 155, 30170 Venezia Mestre, Italy
- European Centre for Living Technology (ECLT) Ca' Bottacin, 3911 Dorsoduro Calle Crosera, 30123 Venice, Italy
| | - Asaph Widmer-Cooper
- ARC Centre of Excellence in Exciton Science, School of Chemistry, University of Sydney, Sydney, New South Wales 2006, Australia
- The University of Sydney Nano Institute, University of Sydney, Sydney, New South Wales 2006, Australia
| |
Collapse
|
9
|
Zhang K, Wu Y, Chen S, Zhu J. Programmable Reconfiguration of Supramolecular Bottlebrush Block Copolymers: From Solution Self-Assembly to Co-Crystallization-Assistant Self-Assembly. Angew Chem Int Ed Engl 2024; 63:e202408730. [PMID: 39106102 DOI: 10.1002/anie.202408730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 07/31/2024] [Accepted: 08/06/2024] [Indexed: 08/09/2024]
Abstract
Achieving structural reconfiguration of supramolecular bottlebrush block copolymers toward topological engineering is of particular interest but challenging. Here, we address the creation of supramolecular architectures to discover how assembled topology influences the structured aggregates, combining hydrogen-bonded (H-bonded) bottlebrush block copolymers and electrostatic interaction induced polymer/inorganic eutectics. We first design H-bonding linear-brush block copolymer P(NBDAP-co-NBC)-b-P(NBPEO), bearing linear block P(NBDAP-co-NBC) (poly(norbornene-terminated diaminopyridine-co-norbornene-terminated hexane)) with pendant H-bonding DAP (diaminopyridine) motifs, and PEO (poly(ethylene oxide)) densely grafted P(NBPEO) brush block. Thanks to H-bonding association between DAP and thymine (Thy), incorporation of Thy-functionalized polystyrene (Thy-PS65) enables solution self-assembly and formation of H-bonded bottlebrush block copolymers, generating augmented nanospheres with increasing Thy-PS65 amount. Noteworthy that integration of inorganic cluster silicotungstic acid (STA) to P(NBC-co-NBDAP)-b-P(NBPEO), endows the formation of PEO/STA eutectic core. Therefore, co-crystallization-assistant self-assembly at the interfaces of polymeric, inorganic and supramolecular chemistry is realized, reflecting multi-stage morphology transformation from hexagonal platelets, needle-like, curved rod-like micelles, finally to end-to-end closed rings, by gradually increasing Thy-PS65 while fixing STA content. Interestingly, such solution self-assembly to co-crystallization-assistant self-assembly strategy not only endows unique nanostructure transition, also induce in-to-out reconfiguration of PS domains. These findings clearly provide unique methodology towards programmable fabrication of geometrical objects promising in smart materials.
Collapse
Affiliation(s)
- Kaixing Zhang
- Key Laboratory of Materials Chemistry for Energy Conversion and Storage, Ministry of Education (HUST), School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), 430074, Wuhan, China
| | - Yanggui Wu
- Key Laboratory of Materials Chemistry for Energy Conversion and Storage, Ministry of Education (HUST), School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), 430074, Wuhan, China
| | - Senbin Chen
- Key Laboratory of Materials Chemistry for Energy Conversion and Storage, Ministry of Education (HUST), School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), 430074, Wuhan, China
| | - Jintao Zhu
- Key Laboratory of Materials Chemistry for Energy Conversion and Storage, Ministry of Education (HUST), School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), 430074, Wuhan, China
| |
Collapse
|
10
|
Elardo MJ, Levenson AM, Kitos Vasconcelos AP, Pomfret MN, Golder MR. A general synthesis of cyclic bottlebrush polymers with enhanced mechanical properties via graft-through ring expansion metathesis polymerization. Chem Sci 2024; 15:d4sc06050d. [PMID: 39360007 PMCID: PMC11440813 DOI: 10.1039/d4sc06050d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Accepted: 09/20/2024] [Indexed: 10/04/2024] Open
Abstract
Bottlebrush polymers represent an important class of macromolecular architectures, with applications ranging from drug delivery to organic electronics. While there is an abundance of literature describing the synthesis, structure, and applications of linear bottlebrush polymers using ring-opening metathesis polymerization (ROMP), there are comparatively less reports on their cyclic counterparts. This lack of research is primarily due to the difficulty in synthesizing cyclic bottlebrush polymers, as extensions of typical routes towards linear bottlebrush polymers (i.e., "grafting-through" polymerizations of macromonomers with ROMP) produce only ultrahigh molar mass cyclic bottlebrush polymers with poor molar mass control. Herein, we report a ring-expansion metathesis polymerization (REMP) approach to cyclic bottlebrush polymers via a "grafting-through" approach utilizing the active pyr-CB6 initiator developed in our lab. The resulting polymers, characterized via GPC-MALS-IV, are shown to have superior molar mass control across a range of target backbone lengths. The cyclic materials are also found to have superior mechanical properties when compared to their linear counterparts, as assessed by ball-mill grinding and compression testing experiments.
Collapse
Affiliation(s)
- Matthew J Elardo
- Department of Chemistry, Molecular Engineering & Science Institute, University of Washington 36 Bagley Hall Seattle WA 98195 USA
| | - Adelaide M Levenson
- Department of Chemistry, Molecular Engineering & Science Institute, University of Washington 36 Bagley Hall Seattle WA 98195 USA
| | - Ana Paula Kitos Vasconcelos
- Department of Chemistry, Molecular Engineering & Science Institute, University of Washington 36 Bagley Hall Seattle WA 98195 USA
| | - Meredith N Pomfret
- Department of Chemistry, Molecular Engineering & Science Institute, University of Washington 36 Bagley Hall Seattle WA 98195 USA
| | - Matthew R Golder
- Department of Chemistry, Molecular Engineering & Science Institute, University of Washington 36 Bagley Hall Seattle WA 98195 USA
| |
Collapse
|
11
|
Chen T, Liu Y, Gao Z, Gao Y, Chen H, Ye H, Luo Q, Wang K, Wu D. Template-assisted Flexible-to-rigid Transition of Peptides in Head-to-tail Self-polymerization Enables Sequence-controllable and Post-modifiable Peptide Nanofibers. Angew Chem Int Ed Engl 2024:e202415809. [PMID: 39266463 DOI: 10.1002/anie.202415809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 09/09/2024] [Accepted: 09/12/2024] [Indexed: 09/14/2024]
Abstract
Peptide-based nanofibers are promising materials for many essential applications and can be generalized into two categories, self-assembling peptide nanofibers (SAPNs) and poly(amino acid) nanofibers (PAANs). Non-covalent SAPNs are sequence-controllable, but poorly stable and not suitable for post-modification. While covalent PAANs are post-modifiable, however, their sequences are either monotonic or undefined. The nanofibers obtained by head-to-tail covalent coupling polymerization of sequence-known peptides, which we call series-connected peptide nanofibers (SCPNs), promise to have the advantages of both SAPNs and PAANs, but they are barely reported. The undesired backbiting effect during the head-to-tail polymerization is one of the possible challenges. Here, we present a template-assisted strategy to trigger the flexible-to-rigid transition of peptide units, which can avoid the backbiting effect and enable consecutive intermolecular polymerization of peptides to produce desired sequence-controlled covalent SCPNs. SCPNs are highly stable and can function as excellent parent materials for various post-processing to create diverse hierarchical materials independent of the peptide sequence. Moreover, SCPNs allow for the display of predetermined functional groups at regular intervals along the nanofibers by pre-modification of the initial peptide sequence. SCPNs represent a new category of peptide-based nanofibers with outstanding performances and vast potential.
Collapse
Affiliation(s)
- Tianzi Chen
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu, 610064, Sichuan, China
| | - Yin Liu
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu, 610064, Sichuan, China
| | - Zhanshan Gao
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu, 610064, Sichuan, China
| | - Yue Gao
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu, 610064, Sichuan, China
| | - Haijin Chen
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu, 610064, Sichuan, China
| | - Haonan Ye
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu, 610064, Sichuan, China
| | - Qiuhao Luo
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu, 610064, Sichuan, China
| | - Kefeng Wang
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu, 610064, Sichuan, China
| | - Dongdong Wu
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu, 610064, Sichuan, China
- West China School of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China
| |
Collapse
|
12
|
Ilyin SO. Structural Rheology in the Development and Study of Complex Polymer Materials. Polymers (Basel) 2024; 16:2458. [PMID: 39274091 PMCID: PMC11397847 DOI: 10.3390/polym16172458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 08/20/2024] [Accepted: 08/26/2024] [Indexed: 09/16/2024] Open
Abstract
The progress in polymer science and nanotechnology yields new colloidal and macromolecular objects and their combinations, which can be defined as complex polymer materials. The complexity may include a complicated composition and architecture of macromolecular chains, specific intermolecular interactions, an unusual phase behavior, and a structure of a multi-component polymer-containing material. Determination of a relation between the structure of a complex material, the structure and properties of its constituent elements, and the rheological properties of the material as a whole is the subject of structural rheology-a valuable tool for the development and study of novel materials. This work summarizes the author's structural-rheological studies of complex polymer materials for determining the conditions and rheo-manifestations of their micro- and nanostructuring. The complicated chemical composition of macromolecular chains and its role in polymer structuring via block segregation and cooperative hydrogen bonds in melt and solutions is considered using tri- and multiblock styrene/isoprene and vinyl acetate/vinyl alcohol copolymers. Specific molecular interactions are analyzed in solutions of cellulose; its acetate butyrate; a gelatin/carrageenan combination; and different acrylonitrile, oxadiazole, and benzimidazole copolymers. A homogeneous structuring may result from a conformational transition, a mesophase formation, or a macromolecular association caused by a complex chain composition or specific inter- and supramolecular interactions, which, however, may be masked by macromolecular entanglements when determining a rheological behavior. A heterogeneous structure formation implies a microscopic phase separation upon non-solvent addition, temperature change, or intense shear up to a macroscopic decomposition. Specific polymer/particle interactions have been examined using polyethylene oxide solutions, polyisobutylene melts, and cellulose gels containing solid particles of different nature, demonstrating the competition of macromolecular entanglements, interparticle interactions, and adsorption polymer/particle bonds in governing the rheological properties. Complex chain architecture has been considered using long-chain branched polybutylene-adipate-terephthalate and polyethylene melts, cross-linked sodium hyaluronate hydrogels, asphaltene solutions, and linear/highly-branched polydimethylsiloxane blends, showing that branching raises the viscosity and elasticity and can result in limited miscibility with linear isomonomer chains. Finally, some examples of composite adhesives, membranes, and greases as structured polymeric functional materials have been presented with the demonstration of the relation between their rheological and performance properties.
Collapse
Affiliation(s)
- Sergey O Ilyin
- A.V. Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences, 29 Leninsky Prospect, 119991 Moscow, Russia
| |
Collapse
|
13
|
Hou W, Yin X, Zhou Y, Zhou Z, Liu Z, Du J, Shi Y, Chen Y. Kinetically Controlled Preparation of Worm-like Micelles with Tunable Diameter/Length and Structural Stability. J Am Chem Soc 2024; 146:24094-24104. [PMID: 39141924 DOI: 10.1021/jacs.4c08206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/16/2024]
Abstract
Anisotropic nanoparticles such as worm-like micelles have aroused much attention due to their promising applications from templates to drug delivery. The fabrication of worm-like micelles with tunable structural stability and control over their diameter and length is of great importance but still challenging. Herein, we report a kinetically controlled ring-opening metathesis polymerization-induced self-assembly (ROMPISA) for the robust preparation of kinetically trapped worm-like micelles with tunable diameter/length at enlarged experimental windows by the rational manipulation of kinetic factors, including solvent property, temperature, and π-π stacking effects. The resultant worm structures were thermodynamically metastable and capable of excellent structural stability at room temperature due to the kinetic trapping effect. At elevated temperatures, these thermodynamically metastable worms could undergo morphology evolution into vesicular structures in a controlled manner. Moreover, the structural stability of worms could also be significantly enhanced by in situ cross-linking. Overall, this kinetically controlled ROMPISA opens a new avenue for PISA chemistry that is expected to prepare "smart" polymer materials by manipulating kinetic factors.
Collapse
Affiliation(s)
- Wangmeng Hou
- School of Materials Science and Engineering, Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, Sun Yat-Sen University, Guangzhou 510006, China
| | - Xiuzhe Yin
- School of Materials Science and Engineering, Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, Sun Yat-Sen University, Guangzhou 510006, China
| | - Yingqing Zhou
- School of Materials Science and Engineering, Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, Sun Yat-Sen University, Guangzhou 510006, China
| | - Zhuo Zhou
- School of Materials Science and Engineering, Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, Sun Yat-Sen University, Guangzhou 510006, China
| | - Zhijia Liu
- School of Materials Science and Engineering, Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, Sun Yat-Sen University, Guangzhou 510006, China
| | - Jianzhong Du
- School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China
- Department of Polymeric Materials, School of Materials Science and Engineering, Tongji University, Shanghai 201804, China
| | - Yi Shi
- School of Materials Science and Engineering, Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, Sun Yat-Sen University, Guangzhou 510006, China
| | - Yongming Chen
- School of Materials Science and Engineering, Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, Sun Yat-Sen University, Guangzhou 510006, China
- College of Chemistry and Molecular Sciences, Henan University, Kaifeng 475004, China
| |
Collapse
|
14
|
Lin Y, Wu B, Zeng Y, Yuan H, Ji C, Liu Z, Sui Y, Yin T, Kong X, Zhu Y, Chen J, Lang C. Artificial Channels Based on Bottlebrush Polymers: Enhanced Ion Transport Through Polymer Topology Control. Angew Chem Int Ed Engl 2024; 63:e202408558. [PMID: 38842471 DOI: 10.1002/anie.202408558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 06/03/2024] [Accepted: 06/03/2024] [Indexed: 06/07/2024]
Abstract
Synthetic structures mimicking the transport function of natural ion channel proteins have a wide range of applications, including therapeutic treatments, separation membranes, sensing, and biotechnologies. However, the development of polymer-based artificial channels has been hampered due to the limitation on available models. In this study, we demonstrate the great potential of bottlebrush polymers as accessible and versatile molecular scaffolds for developing efficient artificial ion channels. Adopting the bottlebrush configuration enhanced ion transport activity of the channels compared to their linear analogs. Matching the structure of lipid bilayers, the bottlebrush channel with a hydrophilic-hydrophobic-hydrophilic triblock architecture exhibited the highest activity among the series. Functionalized with urea groups, these channels displayed high anion selectivity. Additionally, we illustrated that the transport properties could be fine-tuned by modifying the chemistry of ion binding sites. This work not only highlights the importance of polymer topology control in channel design, but also reveals the great potential for further developing bottlebrush channels with customized features and diverse functionalities.
Collapse
Affiliation(s)
- Yangyang Lin
- South China Advanced Institute for Soft Matter Science and Technology, School of Emergent Soft Matter, South China University of Technology, Guangzhou, 510640, China
- Guangdong Provincial Key Laboratory of Functional and Intelligent Hybrid Materials and Devices, South China University of Technology, Guangzhou, 510640, China
| | - Bei Wu
- South China Advanced Institute for Soft Matter Science and Technology, School of Emergent Soft Matter, South China University of Technology, Guangzhou, 510640, China
- Guangdong Provincial Key Laboratory of Functional and Intelligent Hybrid Materials and Devices, South China University of Technology, Guangzhou, 510640, China
| | | | - Haoxuan Yuan
- South China Advanced Institute for Soft Matter Science and Technology, School of Emergent Soft Matter, South China University of Technology, Guangzhou, 510640, China
- Guangdong Provincial Key Laboratory of Functional and Intelligent Hybrid Materials and Devices, South China University of Technology, Guangzhou, 510640, China
| | - Changxing Ji
- South China Advanced Institute for Soft Matter Science and Technology, School of Emergent Soft Matter, South China University of Technology, Guangzhou, 510640, China
- Guangdong Provincial Key Laboratory of Functional and Intelligent Hybrid Materials and Devices, South China University of Technology, Guangzhou, 510640, China
| | - Ziqi Liu
- South China Advanced Institute for Soft Matter Science and Technology, School of Emergent Soft Matter, South China University of Technology, Guangzhou, 510640, China
- Guangdong Provincial Key Laboratory of Functional and Intelligent Hybrid Materials and Devices, South China University of Technology, Guangzhou, 510640, China
| | - Yan Sui
- South China Advanced Institute for Soft Matter Science and Technology, School of Emergent Soft Matter, South China University of Technology, Guangzhou, 510640, China
- Guangdong Provincial Key Laboratory of Functional and Intelligent Hybrid Materials and Devices, South China University of Technology, Guangzhou, 510640, China
| | - Tingting Yin
- South China Advanced Institute for Soft Matter Science and Technology, School of Emergent Soft Matter, South China University of Technology, Guangzhou, 510640, China
- Guangdong Provincial Key Laboratory of Functional and Intelligent Hybrid Materials and Devices, South China University of Technology, Guangzhou, 510640, China
| | - Xian Kong
- South China Advanced Institute for Soft Matter Science and Technology, School of Emergent Soft Matter, South China University of Technology, Guangzhou, 510640, China
- Guangdong Provincial Key Laboratory of Functional and Intelligent Hybrid Materials and Devices, South China University of Technology, Guangzhou, 510640, China
| | - Yuting Zhu
- South China Advanced Institute for Soft Matter Science and Technology, School of Emergent Soft Matter, South China University of Technology, Guangzhou, 510640, China
- Guangdong Provincial Key Laboratory of Functional and Intelligent Hybrid Materials and Devices, South China University of Technology, Guangzhou, 510640, China
| | - Jie Chen
- South China Advanced Institute for Soft Matter Science and Technology, School of Emergent Soft Matter, South China University of Technology, Guangzhou, 510640, China
- Guangdong Provincial Key Laboratory of Functional and Intelligent Hybrid Materials and Devices, South China University of Technology, Guangzhou, 510640, China
| | - Chao Lang
- South China Advanced Institute for Soft Matter Science and Technology, School of Emergent Soft Matter, South China University of Technology, Guangzhou, 510640, China
- Guangdong Provincial Key Laboratory of Functional and Intelligent Hybrid Materials and Devices, South China University of Technology, Guangzhou, 510640, China
| |
Collapse
|
15
|
Basak S, Chatterjee R, Bandyopadhyay A. Beyond Traditional Stimuli: Exploring Salt-Responsive Bottlebrush Polymers-Trends, Applications, and Perspectives. ACS OMEGA 2024; 9:33365-33385. [PMID: 39130571 PMCID: PMC11308035 DOI: 10.1021/acsomega.4c06137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 07/16/2024] [Accepted: 07/19/2024] [Indexed: 08/13/2024]
Abstract
Bottlebrush polymers represent an important class of high-density side-chain-grafted polymers traditionally with high molecular weights, in which one or more polymeric side chains are tethered to each repeating unit of a linear polymer backbone, such that these macromolecules look like "bottlebrushes". The arrangement of molecular brushes is determined by side chains located at a distance considerably smaller than their unperturbed dimensions, leading to substantial monomer congestion and entropically unfavorable extension of both the backbone and the side chains. Traditionally, the conformation and physical properties of polymers are influenced by external stimuli such as solvent, temperature, pH, and light. However, a unique stimulus, salt, has recently gained attention as a means to induce shape changes in these molecular brushes. While the stimulus has been less researched to date, we see that these systems, when stimulated with salts, have the potential to be used in various engineering applications. This potential stems from the unique properties and behaviors these systems show when exposed to different salts, which could lead to new solutions and improvements in engineering processes, thus serving as the primary motivation for this narrative, as we aim to explore and highlight the various ways these systems can be utilized and the benefits they could bring to the field of engineering. This Review aims to introduce the concept of stimuli-responsive bottlebrush polymers, explore the evolutionary trajectory, delve into current trends in salt-responsive bottlebrush polymers, and elucidate how these polymers are addressing a variety of engineering challenges.
Collapse
Affiliation(s)
- Sayan Basak
- Department of Polymer Science
and Technology, University of Calcutta, 92, A.P.C Road, Kolkata 700 009, West
Bengal, India
| | - Rahul Chatterjee
- Department of Polymer Science
and Technology, University of Calcutta, 92, A.P.C Road, Kolkata 700 009, West
Bengal, India
| | - Abhijit Bandyopadhyay
- Department of Polymer Science
and Technology, University of Calcutta, 92, A.P.C Road, Kolkata 700 009, West
Bengal, India
| |
Collapse
|
16
|
Liu D, Zhang Z, Zhang K, Li Y, Song DP. Host-Guest Interaction Mediated Interfacial Co-Assembly of Cyclodextrin and Bottlebrush Surfactants for Precisely Tunable Photonic Supraballs. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2312099. [PMID: 38644335 DOI: 10.1002/smll.202312099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2023] [Revised: 04/04/2024] [Indexed: 04/23/2024]
Abstract
Investigations of host-guest interactions at water-oil (w/o) interfaces are limited in single emulsion systems producing simple self-assembled objects with limited uses. Here, within hierarchically ordered water-in-oil-in-water (w/o/w) multiple emulsion droplets, interfacial self-assembly of (polynorbornene-graft-polystyrene)-block-(polynorbornene-graft-polyethylene glycol) (PNPS-b-PNPEG) bottlebrush block copolymers can be precisely controlled through host-guest interactions. α-Cyclodextrin (α-CD) in the aqueous phase can thread onto PEG side chains of the bottlebrush surfactants adsorbed at the w/o interface, leading to dehydration and collapsed chain conformation of the PEG block. Consequently, spherical curvature of the w/o internal droplets increases with the increased asymmetry of the bottlebrush molecules, producing photonic supraballs with precisely tailored structural parameters as well as photonic bandgaps. This work provides a simple but highly effective strategy for precise manipulation of complex emulsion systems applicable in a variety of applications, such as photonic pigments, cosmetic products, pesticides, artificial cells, etc.
Collapse
Affiliation(s)
- Dezhi Liu
- Tianjin Key Laboratory of Composite and Functional Materials, School of Materials Science and Engineering, Tianjin University, Tianjin, 300350, China
| | - Zhenli Zhang
- National Elite Institute of Engineering, CNPC, Beijing, 100096, China
| | - Kunyu Zhang
- Advanced Materials Research Center, Petrochemical Research Institute, Petro China Company Limited, Beijing, 102206, China
| | - Yuesheng Li
- Tianjin Key Laboratory of Composite and Functional Materials, School of Materials Science and Engineering, Tianjin University, Tianjin, 300350, China
| | - Dong-Po Song
- Tianjin Key Laboratory of Composite and Functional Materials, School of Materials Science and Engineering, Tianjin University, Tianjin, 300350, China
| |
Collapse
|
17
|
Hwang W, Kwon S, Lee WB, Kim Y. Self-assembly prediction of architecture-controlled bottlebrush copolymers in solution using graph convolutional networks. SOFT MATTER 2024; 20:4905-4915. [PMID: 38867573 DOI: 10.1039/d4sm00453a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2024]
Abstract
The investigation of bottlebrush copolymer self-assembly in solution involves a comprehensive approach integrating simulation and experimental research, due to their unique physical characteristics. However, the intricate architecture of bottlebrush copolymers and the diverse solvent conditions introduce a wide range of parameter spaces. In this study, we investigated the solution self-assembly behavior of bottlebrush copolymers by combining dissipative particle dynamics (DPD) simulation results and machine learning (ML) including graph convolutional networks (GCNs). The architecture of bottlebrush copolymers is encoded by graphs including connectivity, side chain length, bead types, and interaction parameters of DPD simulation. Using GCN, we accurately predicted the single chain properties of bottlebrush copolymers with over 95% accuracy. Furthermore, phase behavior was precisely predicted using these single chain properties. Shapley additive explanations (SHAP) values of single chain properties to the various self-assembly morphologies were calculated to investigate the correlation between single chain properties and morphologies. In addition, we analyzed single chain properties and phase behavior as a function of DPD interaction parameters, extracting relevant physical properties for vesicle morphology formation. This work paves the way for tailored design in solution of self-assembled nanostructures of bottlebrush copolymers, offering a GCN framework for precise prediction of self-assembly morphologies under various chain architectures and solvent conditions.
Collapse
Affiliation(s)
- Wooseop Hwang
- Department of Materials Science and Engineering, Korea University, Seoul 02841, Republic of Korea.
| | - Sangwoo Kwon
- School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, Seoul 08826, Republic of Korea.
| | - Won Bo Lee
- School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, Seoul 08826, Republic of Korea.
| | - YongJoo Kim
- Department of Materials Science and Engineering, Korea University, Seoul 02841, Republic of Korea.
| |
Collapse
|
18
|
Jin Z, Seong HG, Srivastava S, McGlasson A, Emrick T, Muthukumar M, Russell TP. 3D Printing of Aqueous Two-Phase Systems with Linear and Bottlebrush Polyelectrolytes. Angew Chem Int Ed Engl 2024; 63:e202404382. [PMID: 38616164 DOI: 10.1002/anie.202404382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Revised: 04/08/2024] [Accepted: 04/12/2024] [Indexed: 04/16/2024]
Abstract
We formed core-shell-like polyelectrolyte complexes (PECs) from an anionic bottlebrush polymer with poly (acrylic acid) side chains with a cationic linear poly (allylamine hydrochloride). By varying the pH, the number of side chains of the polyanionic BB polymers (Nbb), the charge density of the polyelectrolytes, and the salt concentration, the phase separation behavior and salt resistance of the complexes could be tuned by the conformation of the BBs. By combining the linear/bottlebrush polyelectrolyte complexation with all-liquid 3D printing, flow-through tubular constructs were produced that showed selective transport across the PEC membrane comprising the walls of the tubules. These tubular constructs afford a new platform for flow-through delivery systems.
Collapse
Affiliation(s)
- Zichen Jin
- Department of Polymer Science and Engineering Department, University of Massachusetts, 120 Governors Drive, Amherst, MA 01003, USA
| | - Hong-Gyu Seong
- Department of Polymer Science and Engineering Department, University of Massachusetts, 120 Governors Drive, Amherst, MA 01003, USA
| | - Satyam Srivastava
- Department of Polymer Science and Engineering Department, University of Massachusetts, 120 Governors Drive, Amherst, MA 01003, USA
| | - Alex McGlasson
- Department of Polymer Science and Engineering Department, University of Massachusetts, 120 Governors Drive, Amherst, MA 01003, USA
| | - Todd Emrick
- Department of Polymer Science and Engineering Department, University of Massachusetts, 120 Governors Drive, Amherst, MA 01003, USA
| | - Murugappan Muthukumar
- Department of Polymer Science and Engineering Department, University of Massachusetts, 120 Governors Drive, Amherst, MA 01003, USA
| | - Thomas P Russell
- Materials Sciences Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA 94720, USA
- Department of Polymer Science and Engineering Department, University of Massachusetts, 120 Governors Drive, Amherst, MA 01003, USA
| |
Collapse
|
19
|
Williams-Pavlantos K, Mokarizadeh AH, Curole BJ, Grayson SM, Tsige M, Wesdemiotis C. Elucidation of Dithiol-yne Comb Polymer Architectures by Tandem Mass Spectrometry and Ion Mobility Techniques. Polymers (Basel) 2024; 16:1665. [PMID: 38932016 PMCID: PMC11207239 DOI: 10.3390/polym16121665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 06/02/2024] [Accepted: 06/07/2024] [Indexed: 06/28/2024] Open
Abstract
Polymers have a wide range of applications depending on their composition, size, and architecture. Varying any of these three characteristics can greatly impact the resulting chemical, physical, and mechanical properties. While many techniques are available to determine polymer composition and size, determining the exact polymer architecture is more challenging. Herein, tandem mass spectrometry (MS/MS) and ion mobility mass spectrometry (IM-MS) methods are utilized to derive crucial architectural information about dithiol-yne comb polymers. Based on their unique fragmentation products and IM drift times, dithiol-yne oligomers with distinct architectures were successfully differentiated and characterized. Additionally, experimental collision cross-sections (Ω) derived via IM-MS were compared to theoretically extracted Ω values from molecular dynamics simulated structures to deduce the architectural motif of these comb oligomers. Overall, this work demonstrates the benefits of combining various mass spectrometry techniques in order to gain a complete understanding of a complex polymer mixture.
Collapse
Affiliation(s)
| | - Abdol Hadi Mokarizadeh
- School of Polymer Science and Polymer Engineering, University of Akron, Akron, OH 44325, USA; (A.H.M.); (M.T.)
| | - Brennan J. Curole
- Department of Chemistry, Tulane University, New Orleans, LA 70118, USA;
| | - Scott M. Grayson
- Department of Chemistry, Tulane University, New Orleans, LA 70118, USA;
| | - Mesfin Tsige
- School of Polymer Science and Polymer Engineering, University of Akron, Akron, OH 44325, USA; (A.H.M.); (M.T.)
| | - Chrys Wesdemiotis
- Department of Chemistry, University of Akron, Akron, OH 44325, USA;
- School of Polymer Science and Polymer Engineering, University of Akron, Akron, OH 44325, USA; (A.H.M.); (M.T.)
| |
Collapse
|
20
|
Leo CM, Jang J, Corey EJ, Neary WJ, Bowman JI, Kennemur JG. Comparison of Polypentenamer and Polynorbornene Bottlebrushes in Dilute Solution. ACS POLYMERS AU 2024; 4:235-246. [PMID: 38882033 PMCID: PMC11177302 DOI: 10.1021/acspolymersau.3c00052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Revised: 02/08/2024] [Accepted: 02/12/2024] [Indexed: 06/18/2024]
Abstract
Bottlebrush (BB) polymers were synthesized via grafting-from-atom transfer radical polymerization (ATRP) of styrene on polypentenamer and polynorbornene macroinitiators with matched grafting density (n g = 4) and backbone degrees of polymerization (122 ≥ N bb ≥ 61) to produce a comparative study on their respective dilute solution properties as a function of increasing side chain degree of polymerization (116 ≥ N sc ≥ 5). The grafting-from technique produced near quantitative grafting efficiency and narrow dispersity N sc as evidenced by spectroscopic analysis and ring closing metathesis depolymerization of the polypentenamer BBs. The versatility of this synthetic approach permitted a comprehensive survey of power law expressions that arise from monitoring intrinsic viscosity, hydrodynamic radius, and radius of gyration as a function of increasing the molar mass of the BBs by increasing N sc. These values were compared to a series of linear (nongrafted, N sc = 0) macroinitiators in addition to linear grafts. This unique study allowed elucidation of the onset of bottlebrush behavior for two different types of bottlebrush backbones with identical grafting density but inherently different flexibility. In addition, grafting-from ATRP of methyl acrylate on a polypentenamer macroinitiator allowed the observation of the effects of graft chemistry in comparison to polystyrene. Differences in the observed scaling relationships in dilute solution as a function of each of these synthetic variants are discussed.
Collapse
Affiliation(s)
- Courtney M Leo
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, Florida 32303, United States
| | - Jaehoon Jang
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, Florida 32303, United States
| | - Ethan J Corey
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, Florida 32303, United States
| | - William J Neary
- Department of Chemistry, University of California at Riverside, Riverside, California 92521, United States
| | - Jared I Bowman
- George and Josephine Butler Polymer Research Laboratory, Center for Macromolecular Science & Engineering, Department of Chemistry, University of Florida, Gainesville, Florida 32611, United States
| | - Justin G Kennemur
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, Florida 32303, United States
| |
Collapse
|
21
|
Xu J, Wu Y, Xia Y, Fatima R, Li Y, Song DP. Photonic Pigments of Polystyrene- block-Polyvinylpyrrolidone Bottlebrush Block Copolymers via Sustainable Organized Spontaneous Emulsification. ACS Macro Lett 2024; 13:495-501. [PMID: 38607961 DOI: 10.1021/acsmacrolett.4c00070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/14/2024]
Abstract
Prior studies on photonic pigments of amphiphilic bottlebrush block copolymers (BBCPs) through an organized spontaneous emulsification (OSE) mechanism have been limited to using polyethylene glycol (PEG) as the hydrophilic side chains and toluene as the organic phase. Herein, a family of polystyrene-block-polyvinylpyrrolidone (PS-b-PVP) BBCPs are synthesized with PVP as the hydrophilic block. Biocompatible and sustainable anisole is employed for dissolving the obtained BBCPs followed by emulsification of the solutions in water. Subsequent evaporation of oil-in-water emulsion droplets triggers the OSE mechanism, producing thermodynamically stable water-in-oil-in-water (w/o/w) multiple emulsions with uniform and closely packed internal droplet arrays through the assembly of the BBCPs at the w/o interface. Upon solidification, the homogeneous porous structures are formed within the photonic microparticles that exhibit visible structural colors. The pore diameter is widely tunable (150∼314 nm) by changing the degree of polymerization of BBCP (69∼110), resulting in tunable colors across the whole visible spectrum. This work demonstrates useful knowledge that OSE can be generally used in the fabrication of ordered porous materials with tunable internal functional groups, not only for photonic applications, but also offers a potential platform for catalysis, sensing, separation, encapsulation, etc.
Collapse
Affiliation(s)
- Jingcheng Xu
- Tianjin Key Laboratory of Composite and Functional Materials, School of Materials Science and Engineering, Tianjin University, Tianjin 300350, China
| | - Yulun Wu
- Tianjin Key Laboratory of Composite and Functional Materials, School of Materials Science and Engineering, Tianjin University, Tianjin 300350, China
| | - Yu Xia
- Tianjin Key Laboratory of Composite and Functional Materials, School of Materials Science and Engineering, Tianjin University, Tianjin 300350, China
| | - Rida Fatima
- Tianjin Key Laboratory of Composite and Functional Materials, School of Materials Science and Engineering, Tianjin University, Tianjin 300350, China
| | - Yuesheng Li
- Tianjin Key Laboratory of Composite and Functional Materials, School of Materials Science and Engineering, Tianjin University, Tianjin 300350, China
| | - Dong-Po Song
- Tianjin Key Laboratory of Composite and Functional Materials, School of Materials Science and Engineering, Tianjin University, Tianjin 300350, China
| |
Collapse
|
22
|
Seong HG, Jin Z, Chen Z, Hu M, Emrick T, Russell TP. Bottlebrush Block Copolymers at the Interface of Immiscible Liquids: Adsorption and Lateral Packing. J Am Chem Soc 2024; 146:13000-13009. [PMID: 38710503 DOI: 10.1021/jacs.3c13817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/08/2024]
Abstract
Amphiphilic bottlebrush block copolymers (BBCPs), having a hydrophilic bottlebrush polymer (BP) linked covalently to a hydrophobic BP, were found to segregate to liquid-liquid interfaces to minimize the free energy of the system. The key parameter influencing the outcome of the experiments is the ratio between the degree of polymerization of the backbone (NBB) and that of the side-chain brushes (NSC). Specifically, a spherical, star-like configuration results when NBB < NSC, while a cylindrical, bottlebrush-like shape is preferred when NBB > NSC. Dynamic interfacial tension (γ) and fluorescence recovery after photobleaching (FRAP) measurements show that the BBCP configuration influences the areal density and in-plane diffusion at the fluid interface. The characteristic relaxation times associated with BBCP adsorption (τA) and reorganization (τR) were determined by fitting time-dependent interfacial tension measurements to a sum of two exponential relaxation functions. Both τA and τR initially increased with NBB up to 92 repeat units, due to the larger hydrodynamic radius in solution and slower in-plane diffusivity, attributed to a shorter cross-sectional diameter of the side-chains near the block junction. This trend reversed at NBB = 190, with shorter τA and τR attributed to increased segregation strength and exposure of the bare water/toluene interface due to tilting and/or wiggling of the backbone chains, respectively. The adsorption energy barrier decreased with higher NBB, due to a reduced BBCP packing density at the fluid interface. This study provides fundamental insights into macromolecular assembly at fluid interfaces, as it pertains to unique bottlebrush block architectures.
Collapse
Affiliation(s)
- Hong-Gyu Seong
- Polymer Science & Engineering Department, Conte Center for Polymer Research, University of Massachusetts, 120 Governors Drive, Amherst, Massachusetts 01003, United States
| | - Zichen Jin
- Polymer Science & Engineering Department, Conte Center for Polymer Research, University of Massachusetts, 120 Governors Drive, Amherst, Massachusetts 01003, United States
| | - Zhan Chen
- Polymer Science & Engineering Department, Conte Center for Polymer Research, University of Massachusetts, 120 Governors Drive, Amherst, Massachusetts 01003, United States
| | - Mingqiu Hu
- Polymer Science & Engineering Department, Conte Center for Polymer Research, University of Massachusetts, 120 Governors Drive, Amherst, Massachusetts 01003, United States
| | - Todd Emrick
- Polymer Science & Engineering Department, Conte Center for Polymer Research, University of Massachusetts, 120 Governors Drive, Amherst, Massachusetts 01003, United States
| | - Thomas P Russell
- Polymer Science & Engineering Department, Conte Center for Polymer Research, University of Massachusetts, 120 Governors Drive, Amherst, Massachusetts 01003, United States
- Materials Sciences Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, California 94720, United States
| |
Collapse
|
23
|
Vo T. Theory and simulation of ligand functionalized nanoparticles - a pedagogical overview. SOFT MATTER 2024; 20:3554-3576. [PMID: 38646950 DOI: 10.1039/d4sm00177j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/25/2024]
Abstract
Synthesizing reconfigurable nanoscale synthons with predictive control over shape, size, and interparticle interactions is a holy grail of bottom-up self-assembly. Grand challenges in their rational design, however, lie in both the large space of experimental synthetic parameters and proper understanding of the molecular mechanisms governing their formation. As such, computational and theoretical tools for predicting and modeling building block interactions have grown to become integral in modern day self-assembly research. In this review, we provide an in-depth discussion of the current state-of-the-art strategies available for modeling ligand functionalized nanoparticles. We focus on the critical role of how ligand interactions and surface distributions impact the emergent, pre-programmed behaviors between neighboring particles. To help build insights into the underlying physics, we first define an "ideal" limit - the short ligand, "hard" sphere approximation - and discuss all experimental handles through the lens of perturbations about this reference point. Finally, we identify theories that are capable of bridging interparticle interactions to nanoscale self-assembly and conclude by discussing exciting new directions for this field.
Collapse
Affiliation(s)
- Thi Vo
- Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD 21218, USA.
| |
Collapse
|
24
|
Ding EA, Kumar S. Neurofilament Biophysics: From Structure to Biomechanics. Mol Biol Cell 2024; 35:re1. [PMID: 38598299 PMCID: PMC11151108 DOI: 10.1091/mbc.e23-11-0438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 03/25/2024] [Accepted: 04/04/2024] [Indexed: 04/12/2024] Open
Abstract
Neurofilaments (NFs) are multisubunit, neuron-specific intermediate filaments consisting of a 10-nm diameter filament "core" surrounded by a layer of long intrinsically disordered protein (IDP) "tails." NFs are thought to regulate axonal caliber during development and then stabilize the mature axon, with NF subunit misregulation, mutation, and aggregation featuring prominently in multiple neurological diseases. The field's understanding of NF structure, mechanics, and function has been deeply informed by a rich variety of biochemical, cell biological, and mouse genetic studies spanning more than four decades. These studies have contributed much to our collective understanding of NF function in axonal physiology and disease. In recent years, however, there has been a resurgence of interest in NF subunit proteins in two new contexts: as potential blood- and cerebrospinal fluid-based biomarkers of neuronal damage, and as model IDPs with intriguing properties. Here, we review established principles and more recent discoveries in NF structure and function. Where possible, we place these findings in the context of biophysics of NF assembly, interaction, and contributions to axonal mechanics.
Collapse
Affiliation(s)
- Erika A. Ding
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, Berkeley, CA 94720
| | - Sanjay Kumar
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, Berkeley, CA 94720
- Department of Bioengineering, University of California, Berkeley, Berkeley, CA 94720
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, CA 94158
| |
Collapse
|
25
|
Cui S, Murphy EA, Zhang W, Zografos A, Shen L, Bates FS, Lodge TP. Cylinders-in-Undulating-Lamellae Morphology from ABC Bottlebrush Block Terpolymers. J Am Chem Soc 2024; 146:6796-6805. [PMID: 38421320 DOI: 10.1021/jacs.3c13543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/02/2024]
Abstract
Block polymer self-assembly affords a versatile bottom-up strategy to develop materials with the desired properties dictated by specific symmetries and dimensions. Owing to distinct properties compared with linear counterparts, bottlebrush block polymers with side chains densely grafted on a backbone have attracted extensive attention. However, the morphologies found in bottlebrush block polymers so far are limited, and only lamellar and cylindrical ordered phases have been reported in diblock bottlebrushes. The absence of complex morphologies, such as networks, might originate from the intrinsically stiff backbone architecture. We experimentally investigated the morphologies of nonfrustrated ABC bottlebrush block terpolymers, based on two chemistries, poly(ethylene-alt-propylene)-b-polystyrene-b-poly(dl-lactic acid) (PEP-PS-PLA) and PEP-b-PS-b-poly(ethylene oxide) (PEP-PS-PEO), synthesized by ring-opening metathesis polymerization of norbornene-terminated macromonomers. Structural characterization based on small-angle X-ray scattering and transmission electron microscopy measurements revealed an unprecedented cylinders-in-undulating-lamellae (CUL) morphology with p2 symmetry for both systems. Additionally, automated liquid chromatography was employed to fractionate the PEP-PS-PLA bottlebrush polymer, leading to fractions with a spectrum of morphologies, including the CUL. These findings underscore the significance of macromolecular dispersity in nominally narrow dispersity bottlebrush polymers while demonstrating the power of this fractionation technique.
Collapse
Affiliation(s)
| | - Elizabeth A Murphy
- Materials Research Laboratory and Department of Chemistry & Biochemistry, University of California, Santa Barbara, California 93106, United States
| | | | | | | | | | | |
Collapse
|
26
|
Sánchez-Leija R, Mysona JA, de Pablo JJ, Nealey PF. Phase Behavior and Conformational Asymmetry near the Comb-to-Bottlebrush Transition in Linear-Brush Block Copolymers. Macromolecules 2024; 57:2019-2029. [PMID: 38495384 PMCID: PMC10938885 DOI: 10.1021/acs.macromol.3c02180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 01/26/2024] [Accepted: 02/05/2024] [Indexed: 03/19/2024]
Abstract
This study explores how conformational asymmetry influences the bulk phase behavior of linear-brush block copolymers. We synthesized 60 diblock copolymers composed of poly(trifluoroethyl methacrylate) as the linear block and poly[oligo(ethylene glycol) methyl ether methacrylate] as the brush block, varying the molecular weight, composition, and side-chain length to introduce different degrees of conformational asymmetry. Using small-angle X-ray scattering, we determined the morphology and phase diagrams for three different side-chain length systems, mainly observing lamellar and cylindrical phases. Increasing the side-chain length of the brush block from three to nine ethylene oxide units introduces sufficient asymmetry between the blocks to alter the phase behavior, shifting the lamellar-to-cylindrical transitions toward lower brush block compositions and transitioning the brush block from the dense comb-like regime to the bottlebrush regime. Coarse-grained simulations support our experimental observations and provide a mapping between the composition and conformational asymmetry. A comparison of our findings to strong stretching theory across multiple phase boundary predictions confirms the transition between the dense comb-like regime and the bottlebrush regime.
Collapse
Affiliation(s)
- Regina
J. Sánchez-Leija
- Materials
Science Division, Argonne National Laboratory, 9700 S Cass Avenue, Lemont, Illinois 60439, United States
- Pritzker
School of Molecular Engineering, the University
of Chicago, 5640 S Ellis Avenue, Chicago, Illinois 60637, United States
| | - Joshua A. Mysona
- Materials
Science Division, Argonne National Laboratory, 9700 S Cass Avenue, Lemont, Illinois 60439, United States
- Pritzker
School of Molecular Engineering, the University
of Chicago, 5640 S Ellis Avenue, Chicago, Illinois 60637, United States
| | - Juan J. de Pablo
- Materials
Science Division, Argonne National Laboratory, 9700 S Cass Avenue, Lemont, Illinois 60439, United States
- Pritzker
School of Molecular Engineering, the University
of Chicago, 5640 S Ellis Avenue, Chicago, Illinois 60637, United States
| | - Paul F. Nealey
- Materials
Science Division, Argonne National Laboratory, 9700 S Cass Avenue, Lemont, Illinois 60439, United States
- Pritzker
School of Molecular Engineering, the University
of Chicago, 5640 S Ellis Avenue, Chicago, Illinois 60637, United States
| |
Collapse
|
27
|
Gaballa SA, Shimizu T, Ando H, Takata H, Emam SE, Ramadan E, Naguib YW, Mady FM, Khaled KA, Ishida T. Treatment-induced and Pre-existing Anti-peg Antibodies: Prevalence, Clinical Implications, and Future Perspectives. J Pharm Sci 2024; 113:555-578. [PMID: 37931786 DOI: 10.1016/j.xphs.2023.11.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 10/31/2023] [Accepted: 11/01/2023] [Indexed: 11/08/2023]
Abstract
Polyethylene glycol (PEG) is a versatile polymer that is used in numerous pharmaceutical applications like the food industry, a wide range of disinfectants, cosmetics, and many commonly used household products. PEGylation is the term used to describe the covalent attachment of PEG molecules to nanocarriers, proteins and peptides, and it is used to prolong the circulation half-life of the PEGylated products. Consequently, PEGylation improves the efficacy of PEGylated therapeutics. However, after four decades of research and more than two decades of clinical applications, an unappealing side of PEGylation has emerged. PEG immunogenicity and antigenicity are remarkable challenges that confound the widespread clinical application of PEGylated therapeutics - even those under clinical trials - as anti-PEG antibodies (Abs) are commonly reported following the systemic administration of PEGylated therapeutics. Furthermore, pre-existing anti-PEG Abs have also been reported in healthy individuals who have never been treated with PEGylated therapeutics. The circulating anti-PEG Abs, both treatment-induced and pre-existing, selectively bind to PEG molecules of the administered PEGylated therapeutics inducing activation of the complement system, which results in remarkable clinical implications with varying severity. These include increased blood clearance of the administered PEGylated therapeutics through what is known as the accelerated blood clearance (ABC) phenomenon and initiation of serious adverse effects through complement activation-related pseudoallergic reactions (CARPA). Therefore, the US FDA industry guidelines have recommended the screening of anti-PEG Abs, in addition to Abs against PEGylated proteins, in the clinical trials of PEGylated protein therapeutics. In addition, strategies revoking the immunogenic response against PEGylated therapeutics without compromising their therapeutic efficacy are important for the further development of advanced PEGylated therapeutics and drug-delivery systems.
Collapse
Affiliation(s)
- Sherif A Gaballa
- Department of Pharmacokinetics and Biopharmaceutics, Institute of Biomedical Sciences, Tokushima University; 1-78-1 Sho-machi, Tokushima 770-8505, Japan; Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Minia University, 61519 Minia, Egypt
| | - Taro Shimizu
- Department of Pharmacokinetics and Biopharmaceutics, Institute of Biomedical Sciences, Tokushima University; 1-78-1 Sho-machi, Tokushima 770-8505, Japan
| | - Hidenori Ando
- Department of Pharmacokinetics and Biopharmaceutics, Institute of Biomedical Sciences, Tokushima University; 1-78-1 Sho-machi, Tokushima 770-8505, Japan; Research Center for Drug Delivery System, Institute of Biomedical Sciences, Tokushima University; 1-78-1 Sho-machi, Tokushima 770-8505, Japan
| | - Haruka Takata
- Department of Pharmacokinetics and Biopharmaceutics, Institute of Biomedical Sciences, Tokushima University; 1-78-1 Sho-machi, Tokushima 770-8505, Japan; Research Center for Drug Delivery System, Institute of Biomedical Sciences, Tokushima University; 1-78-1 Sho-machi, Tokushima 770-8505, Japan
| | - Sherif E Emam
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Zagazig University, Zagazig, 44519 Egypt
| | - Eslam Ramadan
- Department of Pharmacokinetics and Biopharmaceutics, Institute of Biomedical Sciences, Tokushima University; 1-78-1 Sho-machi, Tokushima 770-8505, Japan; Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Minia University, 61519 Minia, Egypt
| | - Youssef W Naguib
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Minia University, 61519 Minia, Egypt
| | - Fatma M Mady
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Minia University, 61519 Minia, Egypt
| | - Khaled A Khaled
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Minia University, 61519 Minia, Egypt
| | - Tatsuhiro Ishida
- Department of Pharmacokinetics and Biopharmaceutics, Institute of Biomedical Sciences, Tokushima University; 1-78-1 Sho-machi, Tokushima 770-8505, Japan; Research Center for Drug Delivery System, Institute of Biomedical Sciences, Tokushima University; 1-78-1 Sho-machi, Tokushima 770-8505, Japan.
| |
Collapse
|
28
|
Chen Z, Seong HG, Hu M, Gan X, Ribbe AE, Ju J, Wang H, Doucet M, Emrick T, Russell TP. Janus bottlebrush compatibilizers. SOFT MATTER 2024; 20:1554-1564. [PMID: 38270211 DOI: 10.1039/d3sm01484c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2024]
Abstract
Bottlebrush random copolymers (BRCPs), consisting of a random distribution of two homopolymer chains along a backbone, can segregate to the interface between two immiscible homopolymers. BRCPs undergo a reconfiguration, where each block segregates to one of the homopolymer phases, adopting a Janus-type structure, reducing the interfacial tension and promoting adhesion between the two homopolymers, thereby serving as a Janus bottlebrush copolymer (JBCP) compatibilizer. We synthesized a series of JBCPs by copolymerizing deuterated or hydrogenated polystyrene (DPS/PS) and poly(tert-butyl acrylate) (PtBA) macromonomers using ruthenium benzylidene-initiated ring-opening metathesis polymerization (ROMP). Subsequent acid-catalyzed hydrolysis converted the PtBA brushes to poly(acrylic acid) (PAA). The JBCPs were then placed at the interface between DPS/PS homopolymers and poly(2-vinyl pyridine) (P2VP) homopolymers, where the degree of polymerization of the backbone (NBB) and the grafting density (GD) of the JBCPs were varied. Neutron reflectivity (NR) was used to determine the interfacial width and segmental density distributions (including PS homopolymer, PS block, PAA block and P2VP homopolymer) across the polymer-polymer interface. Our findings indicate that the star-like JBCP with NBB = 6 produces the largest interfacial broadening. Increasing NBB to 100 (rod-like shape) and 250 (worm-like shape) reduced the interfacial broadening due to a decrease in the interactions between blocks and homopolymers by stretching of blocks. Decreasing the GD from 100% to 80% at NBB = 100 caused an increase the interfacial width, yet further decreasing the GD to 50% and 20% reduced the interfacial width, as 80% of GD may efficiently increase the flexibility of blocks and promote interactions between homopolymers, while maintaining relatively high number of blocks attached to one molecule. The interfacial conformation of JBCPs was further translated into compatibilization efficiency. Thin film morphology studies showed that only the lower NBB values (NBB = 6 and NBB = 24) and the 80% GD of NBB = 100 had bicontinuous morphologies, due to a sufficient binding energy that arrested phase separation, supported by mechanical testing using asymmetric double cantilever beam (ADCB) tests. These provide fundamental insights into the assembly behavior of JBCPs compatibilizers at homopolymer interfaces, opening strategies for the design of new BCP compatibilizers.
Collapse
Affiliation(s)
- Zhan Chen
- Department of Polymer Science and Engineering, University of Massachusetts Amherst, Amherst, MA, 01003, USA.
| | - Hong-Gyu Seong
- Department of Polymer Science and Engineering, University of Massachusetts Amherst, Amherst, MA, 01003, USA.
| | - Mingqiu Hu
- Department of Polymer Science and Engineering, University of Massachusetts Amherst, Amherst, MA, 01003, USA.
| | - Xuchen Gan
- Department of Polymer Science and Engineering, University of Massachusetts Amherst, Amherst, MA, 01003, USA.
| | - Alexander E Ribbe
- Department of Polymer Science and Engineering, University of Massachusetts Amherst, Amherst, MA, 01003, USA.
| | - Jaechul Ju
- Department of Chemistry, The University of Texas at Austin, Austin, TX, 78712, USA
| | - Hanyu Wang
- Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA
| | - Mathieu Doucet
- Neutron Scattering Division, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA
| | - Todd Emrick
- Department of Polymer Science and Engineering, University of Massachusetts Amherst, Amherst, MA, 01003, USA.
| | - Thomas P Russell
- Department of Polymer Science and Engineering, University of Massachusetts Amherst, Amherst, MA, 01003, USA.
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 37831, USA
| |
Collapse
|
29
|
Song X, Man J, Qiu Y, Wang J, Liu J, Li R, Zhang Y, Li J, Li J, Chen Y. Design, preparation, and characterization of lubricating polymer brushes for biomedical applications. Acta Biomater 2024; 175:76-105. [PMID: 38128641 DOI: 10.1016/j.actbio.2023.12.024] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 11/21/2023] [Accepted: 12/14/2023] [Indexed: 12/23/2023]
Abstract
The lubrication modification of biomedical devices significantly enhances the functionality of implanted interventional medical devices, thereby providing additional benefits for patients. Polymer brush coating provides a convenient and efficient method for surface modification while ensuring the preservation of the substrate's original properties. The current research has focused on a "trial and error" method to finding polymer brushes with superior lubricity qualities, which is time-consuming and expensive, as obtaining effective and long-lasting lubricity properties for polymer brushes is difficult. This review summarizes recent research advances in the biomedical field in the design, material selection, preparation, and characterization of lubricating and antifouling polymer brushes, which follow the polymer brush development process. This review begins by examining various approaches to polymer brush design, including molecular dynamics simulation and machine learning, from the fundamentals of polymer brush lubrication. Recent advancements in polymer brush design are then synthesized and potential avenues for future research are explored. Emphasis is placed on the burgeoning field of zwitterionic polymer brushes, and highlighting the broad prospects of supramolecular polymer brushes based on host-guest interactions in the field of self-repairing polymer brush applications. The review culminates by providing a summary of methodologies for characterizing the structural and functional attributes of polymer brushes. It is believed that a development approach for polymer brushes based on "design-material selection-preparation-characterization" can be created, easing the challenge of creating polymer brushes with high-performance lubricating qualities and enabling the on-demand creation of coatings. STATEMENT OF SIGNIFICANCE: Biomedical devices have severe lubrication modification needs, and surface lubrication modification by polymer brush coating is currently the most promising means. However, the design and preparation of polymer brushes often involves "iterative testing" to find polymer brushes with excellent lubrication properties, which is both time-consuming and expensive. This review proposes a polymer brush development process based on the "design-material selection-preparation-characterization" strategy and summarizes recent research advances and trends in the design, material selection, preparation, and characterization of polymer brushes. This review will help polymer brush researchers by alleviating the challenges of creating polymer brushes with high-performance lubricity and promises to enable the on-demand construction of polymer brush lubrication coatings.
Collapse
Affiliation(s)
- Xinzhong Song
- Key Laboratory of High Efficiency and Clean Mechanicalanufacture of Ministry of Education, School of Mechanical Engineering, Shandong University, Jinan 250061, PR China; Key National Demonstration Center for Experimental Mechanical Engineering Education, Shandong University, Jinan 250061, PR China
| | - Jia Man
- Key Laboratory of High Efficiency and Clean Mechanicalanufacture of Ministry of Education, School of Mechanical Engineering, Shandong University, Jinan 250061, PR China; Key National Demonstration Center for Experimental Mechanical Engineering Education, Shandong University, Jinan 250061, PR China.
| | - Yinghua Qiu
- Key Laboratory of High Efficiency and Clean Mechanicalanufacture of Ministry of Education, School of Mechanical Engineering, Shandong University, Jinan 250061, PR China; Key National Demonstration Center for Experimental Mechanical Engineering Education, Shandong University, Jinan 250061, PR China
| | - Jiali Wang
- Qilu Hospital of Shandong University, Jinan 250012, PR China
| | - Jianing Liu
- Qilu Hospital of Shandong University, Jinan 250012, PR China
| | - Ruijian Li
- Qilu Hospital of Shandong University, Jinan 250012, PR China
| | - Yongqi Zhang
- Key Laboratory of High Efficiency and Clean Mechanicalanufacture of Ministry of Education, School of Mechanical Engineering, Shandong University, Jinan 250061, PR China; Key National Demonstration Center for Experimental Mechanical Engineering Education, Shandong University, Jinan 250061, PR China
| | - Jianyong Li
- Key Laboratory of High Efficiency and Clean Mechanicalanufacture of Ministry of Education, School of Mechanical Engineering, Shandong University, Jinan 250061, PR China; Key National Demonstration Center for Experimental Mechanical Engineering Education, Shandong University, Jinan 250061, PR China
| | - Jianfeng Li
- Key Laboratory of High Efficiency and Clean Mechanicalanufacture of Ministry of Education, School of Mechanical Engineering, Shandong University, Jinan 250061, PR China; Key National Demonstration Center for Experimental Mechanical Engineering Education, Shandong University, Jinan 250061, PR China
| | - Yuguo Chen
- Qilu Hospital of Shandong University, Jinan 250012, PR China
| |
Collapse
|
30
|
Yang Z, Xu X, Douglas JF, Xu WS. Confinement effect of inter-arm interactions on glass formation in star polymer melts. J Chem Phys 2024; 160:044503. [PMID: 38265089 DOI: 10.1063/5.0185412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 12/25/2023] [Indexed: 01/25/2024] Open
Abstract
We utilized molecular dynamic simulation to investigate the glass formation of star polymer melts in which the topological complexity is varied by altering the number of star arms (f). Emphasis was placed on how the "confinement effect" of repulsive inter-arm interactions within star polymers influences the thermodynamics and dynamics of star polymer melts. All the characteristic temperatures of glass formation were found to progressively increase with increasing f, but unexpectedly the fragility parameter KVFT was found to decrease with increasing f. As previously observed, stars having more than 5 or 6 arms adopt an average particle-like structure that is more contracted relative to the linear polymer size having the same mass and exhibit a strong tendency for intermolecular and intramolecular segregation. We systematically analyzed how varying f alters collective particle motion, dynamic heterogeneity, the decoupling exponent ζ phenomenologically linking the slow β- and α-relaxation times, and the thermodynamic scaling index γt. Consistent with our hypothesis that the segmental dynamics of many-arm star melts and thin supported polymer films should exhibit similar trends arising from the common feature of high local segmental confinement, we found that ζ increases considerably with increasing f, as found in supported polymer films with decreasing thickness. Furthermore, increasing f led to greatly enhanced elastic heterogeneity, and this phenomenon correlates strongly with changes in ζ and γt. Our observations should be helpful in building a more rational theoretical framework for understanding how molecular topology and geometrical confinement influence the dynamics of glass-forming materials more broadly.
Collapse
Affiliation(s)
- Zhenyue Yang
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, People's Republic of China
- Academy for Advanced Interdisciplinary Studies, Northeast Normal University, Changchun 130024, People's Republic of China
| | - Xiaolei Xu
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, People's Republic of China
| | - Jack F Douglas
- Materials Science and Engineering Division, National Institute of Standards and Technology, Gaithersburg, Maryland 20899, USA
| | - Wen-Sheng Xu
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, People's Republic of China
| |
Collapse
|
31
|
Nikitina EA, Dashtimoghadam E, Sheiko SS, Ivanov DA. Bottlebrush Elastomers with Crystallizable Side Chains: Monolayer-like Structure of Backbones Segregated in Intercrystalline Regions. Polymers (Basel) 2024; 16:296. [PMID: 38276704 PMCID: PMC10819367 DOI: 10.3390/polym16020296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 01/10/2024] [Accepted: 01/16/2024] [Indexed: 01/27/2024] Open
Abstract
Bottlebrush (BB) elastomers with water-soluble side chains and tissue-mimetic mechanical properties are promising for biomedical applications like tissue implants and drug depots. This work investigates the microstructure and phase transitions of BB elastomers with crystallizable polyethylene oxide (PEO) side chains by real-time synchrotron X-ray scattering. In the melt, the elastomers exhibit the characteristic BB peak corresponding to the backbone-to-backbone correlation. This peak is a distinct feature of BB systems and is observable in small- or medium-angle X-ray scattering curves. In the systems studied, the position of the BB peak ranges from 3.6 to 4.8 nm in BB elastomers. This variation is associated with the degree of polymerization of the polyethylene oxide (PEO) side chains, which ranges from 19 to 40. Upon crystallization of the side chains, the intensity of the peak decays linearly with crystallinity and eventually vanishes due to BB packing disordering within intercrystalline amorphous gaps. This behavior of the bottlebrush peak differs from an earlier study of BBs with poly(ε-caprolactone) side chains, explained by stronger backbone confinement in the case of PEO, a high-crystallinity polymer. Microstructural models based on 1D SAXS correlation function analysis suggest crystalline lamellae of PEO side chains separated by amorphous gaps of monolayer-like BB backbones.
Collapse
Affiliation(s)
- Evgeniia A. Nikitina
- Faculty of Chemistry, Lomonosov Moscow State University (MSU), GSP-1, 1-3 Leninskiye Gory, 119991 Moscow, Russia
| | - Erfan Dashtimoghadam
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-3290, USA
| | - Sergei S. Sheiko
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-3290, USA
| | - Dimitri A. Ivanov
- Faculty of Chemistry, Lomonosov Moscow State University (MSU), GSP-1, 1-3 Leninskiye Gory, 119991 Moscow, Russia
- Scientific Center for Genetics and Life Sciences, Sirius University of Science and Technology, 1 Olympic Ave, 354340 Sochi, Russia
- Institut de Sciences des Matériaux de Mulhouse-IS2M, CNRS UMR 7361, F-68057 Mulhouse, France
| |
Collapse
|
32
|
Zhu M, Pan X, Zheng T, Li L. Research progress on the conformational properties of comb-like polymers in dilute solutions. SOFT MATTER 2024; 20:463-483. [PMID: 38167904 DOI: 10.1039/d3sm01102j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
As a special type of branched polymers, comb-like polymers simultaneously possess the structural characteristics of a linear backbone profile and crowded sidechain branches/grafts, and such structural uniqueness leads to reduced interchain entanglement, enhanced molecular orientation, and unique stimulus-response behavior, which greatly expands the potential applications in the fields of super-soft elastomers, molecular sensors, lubricants, photonic crystals, etc. In principle, all these molecular features can be traced back to three structural parameters, i.e., the degree of polymerization of the backbone (Nb), the degree of polymerization of the graft sidechain (Ng), and the grafting density (σ). Consequently, it is of great importance to understand the correlation mechanism between the structural characteristics and physicochemical properties, among which, the conformational properties in dilute solution have received the most attention due to its central position in polymer science. In the past decades, the development of synthetic chemistry and characterization techniques has greatly stimulated the progress of this field, and a number of experiments have been executed to verify the conformational properties; however, due to the complexity of the structural parameters and the diversity of the chemical design, the achieved experimental progress displays significant controversies compared with the theoretical predictions. This review aims to provide a full picture of recent research progress on this topic, specifically, (1) first, a few classical theoretical models regarding the chain conformation are introduced, and the quasi-two-parameter (QTP) theory for the conformation analysis is highlighted; (2) second, the research progress of the static conformation of comb-like polymers in dilute solution is discussed; (3) third, the research progress of the dynamic conformation in dilute solution is further discussed. The key issues, existing controversies and future research directions are also highlighted. We hope that this review can provide insightful information for the understanding of the conformational properties of comb-like polymers, open a new door for the regulation of conformational behavior in related applications, and promote related theoretical and experimental research in the community.
Collapse
Affiliation(s)
- Mo Zhu
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, China
| | - Xuejun Pan
- School of Materials Science and Engineering, Nanchang Hangkong University, Nanchang 330063, China.
| | - Tao Zheng
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, China
| | - Lianwei Li
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, China
| |
Collapse
|
33
|
Wu H, Lou Y, Li Z, Zhai X, Gao F. Development and Characterization of Thermoresponsive Smart Self-Adaptive Chitosan-Based Polymer for Wellbore Plugging. Polymers (Basel) 2023; 15:4632. [PMID: 38139884 PMCID: PMC10747754 DOI: 10.3390/polym15244632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 11/24/2023] [Accepted: 12/04/2023] [Indexed: 12/24/2023] Open
Abstract
To meet the escalating demand for oil and gas exploration in microporous reservoirs, it has become increasingly crucial to develop high-performance plugging materials. Through free radical grafting polymerization technology, a carboxymethyl chitosan grafted poly (oligoethylene glycol) methyl ether methyl methacrylate acrylic acid copolymer (CCMMA) was successfully synthesized. The resulting CCMMA exhibited thermoresponsive self-assembling behavior. When the temperature was above its lower critical solution temperature (LCST), the nanomicelles began to aggregate, forming mesoporous aggregated structures. Additionally, the electrostatic repulsion of AA chains increased the value of LCST. By precisely adjusting the content of AA, the LCST of CCMMA could be raised from 84.7 to 122.9 °C. The rheology and filtration experiments revealed that when the temperature surpassed the switching point, CCMMA exhibited a noteworthy plugging effect on low-permeability cores. Furthermore, it could be partially released as the temperature decreased, exhibiting temperature-switchable and self-adaptive plugging properties. Meanwhile, CCMMA aggregates retained their reversibility, along with thermal thickening behavior in the pores. However, more detailed experiments and analysis are needed to validate these claims, such as a comprehensive study of the CCMMA copolymer's physical properties, its interaction with the reservoir environment, and its performance under various conditions. Additionally, further studies are required to optimize its synthesis process and improve its efficiency as a plugging material for oil and gas recovery in microporous reservoirs.
Collapse
Affiliation(s)
- Huimei Wu
- National Engineering Research Center for Oil & Gas Drilling and Completion Technology, Yangtze University, Wuhan 430100, China; (Y.L.)
- Hubei Key Laboratory of Oil and Gas Drilling and Production Engineering, Yangtze University, Wuhan 430100, China
| | - Yishan Lou
- National Engineering Research Center for Oil & Gas Drilling and Completion Technology, Yangtze University, Wuhan 430100, China; (Y.L.)
- Hubei Key Laboratory of Oil and Gas Drilling and Production Engineering, Yangtze University, Wuhan 430100, China
| | - Zhonghui Li
- National Engineering Research Center for Oil & Gas Drilling and Completion Technology, Yangtze University, Wuhan 430100, China; (Y.L.)
- Hubei Key Laboratory of Oil and Gas Drilling and Production Engineering, Yangtze University, Wuhan 430100, China
| | - Xiaopeng Zhai
- National Engineering Research Center for Oil & Gas Drilling and Completion Technology, Yangtze University, Wuhan 430100, China; (Y.L.)
- Hubei Key Laboratory of Oil and Gas Drilling and Production Engineering, Yangtze University, Wuhan 430100, China
| | - Fei Gao
- National Engineering Research Center for Oil & Gas Drilling and Completion Technology, Yangtze University, Wuhan 430100, China; (Y.L.)
- Hubei Key Laboratory of Oil and Gas Drilling and Production Engineering, Yangtze University, Wuhan 430100, China
| |
Collapse
|
34
|
He Y, Li L, Ding M, Li W. Flow-driven translocation of comb-like copolymer micelles through a nanochannel. SOFT MATTER 2023; 19:9166-9172. [PMID: 37990911 DOI: 10.1039/d3sm01241g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2023]
Abstract
Using hybrid lattice-Boltzmann molecular dynamics simulations, we investigate the flow-driven translocation of comb-like copolymer micelles through a nanochannel, in particular, making a detailed comparison with micelles formed by the corresponding diblock copolymers. Our results demonstrate that the critical flow flux of micelles formed by the comb-like copolymers is higher than that of micelles formed by the corresponding diblock copolymers, which is more pronounced with increasing side chain lengths or grafting densities, as evidenced by the free energy computed by self-consistent field theory. Our work indicates that the impact of chain topology on the stability of micelles, especially with the same size, can be well characterized using the critical flow fluxes, which provides a theoretical basis for designing self-assembling micelles for various applications.
Collapse
Affiliation(s)
- Yingjie He
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, China.
| | - Luyang Li
- State Key Laboratory of Molecular Engineering of Polymers, Key Laboratory of Computational Physical Sciences, Department of Macromolecular Science, Fudan University, Shanghai 200433, China
| | - Mingming Ding
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, China.
- Jieyang Branch of Chemistry and Chemical Engineering Guangdong Laboratory, Jieyang 515200, China
| | - Weihua Li
- State Key Laboratory of Molecular Engineering of Polymers, Key Laboratory of Computational Physical Sciences, Department of Macromolecular Science, Fudan University, Shanghai 200433, China
| |
Collapse
|
35
|
Dobrynin AV, Stroujkova A, Vatankhah-Varnosfaderani M, Sheiko SS. Coarse-Grained Artificial Intelligence for Design of Brush Networks. ACS Macro Lett 2023; 12:1510-1516. [PMID: 37888787 DOI: 10.1021/acsmacrolett.3c00479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2023]
Abstract
The ability to synthesize elastomeric materials with programmable mechanical properties is vital for advanced soft matter applications. Due to the inherent complexity of hierarchical structure-property correlations in brush-like polymer networks, the application of conventional theory-based, so-called Human Intelligence (HI) approaches becomes increasingly difficult. Herein we developed a design strategy based on synergistic combination of HI and AI tools which allows precise encoding of mechanical properties with three architectural parameters: degrees of polymerization (DP) of network strands, nx, side chains, nsc, backbone spacers between side chains, ng. Implementing a multilayer feedforward artificial neural network (ANN), we took advantage of model-predicted structure-property cross-correlations between coarse-grained system code including chemistry specific characteristics S = [l, v, b] defined by monomer projection length l and excluded volume v, Kuhn length b of bare backbone and side chains, and architecture A = [nsc, ng, nx] of polymer networks and their equilibrium mechanical properties P = [G, β] including the structural shear modulus G and firmness parameter β. The ANN was trained by minimizing the mean-square error with Bayesian regularization to avoid overfitting using a data set of experimental stress-deformation curves of networks with brush-like strands of poly(n-butyl acrylate), poly(isobutylene), and poly(dimethylsiloxane) having structural modulus G < 50 kPa and 0.01 ≤ β ≤ 0.3. The trained ANN predicts network mechanical properties with 95% confidence. The developed ANN was implemented for synthesis of model networks with identical mechanical properties but different chemistries of network strands.
Collapse
Affiliation(s)
- Andrey V Dobrynin
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Anastasia Stroujkova
- Department of Earth, Marine and Environmental Sciences, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27559, United States
| | | | - Sergei S Sheiko
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| |
Collapse
|
36
|
Asadi V, Dolleman R, van der Gucht J, Kodger TE. 3D printable soft and solvent-free thermoplastic elastomer containing dangling bottlebrush chains. MATERIALS ADVANCES 2023; 4:5535-5545. [PMID: 38013845 PMCID: PMC10642180 DOI: 10.1039/d3ma00335c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 08/27/2023] [Indexed: 11/29/2023]
Abstract
Polymer networks containing bottlebrush chains are emerging materials with exceptionally soft and highly tunable mechanical properties. However, such materials have not been extensively implemented in functional processing techniques such as three-dimensional (3D) printing. Here, we introduce a new design of soft and solvent-free polydimethylsiloxane (PDMS)-based thermoplastic elastomer which contains dangling and space-filling bottlebrush chains, featuring a yield stress and a rapid recovery after stress removal; both required for high spatial fidelity 3D printing. The developed material is composed of two copolymers; the main building block is a diblock copolymer with linear polystyrene (PS) block and bottlebrush PDMS block (PS-b-bbPDMS) while the second component is PS-b-PDMS-b-PS triblock, self-assembling to a physical network. This design provides independent tunability of each structural parameter on the molecular level, hence, macroscopic control of the materials' mechanical properties. Multiple self-supportive 3D structures with spanning elements are 3D printed at elevated temperatures using a developed material with a low shear modulus of G' = 3.3 kPa containing 3 : 1 molar ratio of diblock to triblock copolymers without the need for volatile solvent, or post-treatment. This 3D printing compatible design opens new opportunities to utilize the distinctive mechanical properties of bottlebrush materials for applications such as soft tissue scaffolds, sensors, actuators, and soft robots.
Collapse
Affiliation(s)
- Vahid Asadi
- Physical Chemistry and Soft Matter, Wageningen University & Research Stippeneng 4 6708 WE Wageningen The Netherlands
| | - Renee Dolleman
- Physical Chemistry and Soft Matter, Wageningen University & Research Stippeneng 4 6708 WE Wageningen The Netherlands
| | - Jasper van der Gucht
- Physical Chemistry and Soft Matter, Wageningen University & Research Stippeneng 4 6708 WE Wageningen The Netherlands
| | - Thomas E Kodger
- Physical Chemistry and Soft Matter, Wageningen University & Research Stippeneng 4 6708 WE Wageningen The Netherlands
| |
Collapse
|
37
|
Zhulina EB, Borisov OV. Cylindrical brushes with ionized side chains: Scaling theory revisited. SOFT MATTER 2023; 19:8440-8452. [PMID: 37881868 DOI: 10.1039/d3sm00727h] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2023]
Abstract
We revisit the classic scaling model of a cylindrical polyelectrolyte (PE) brush focusing on molecular brushes with stiff backbones and dispersions of polymer-decorated nanorods. Based on the blob representation we demonstrate that similarly to the case of planar PE brushes, separation of intra- and intermolecular repulsions between charges leads to novel scaling regimes for cylindrical PE brushes in salt-added solution and a sharper decrease in its thickness versus salt concentration dependence. These theoretical predictions may inspire further comprehensive experimental research and computer simulations of synthetic and biopolyelectrolyte cylindrical brushes.
Collapse
Affiliation(s)
- Ekaterina B Zhulina
- Institute of Macromolecular Compounds of the Russian Academy of Sciences, St. Petersburg, Russia.
| | - Oleg V Borisov
- Institute of Macromolecular Compounds of the Russian Academy of Sciences, St. Petersburg, Russia.
- Institut des Sciences Analytiques et de Physico-Chimie pour l'Environnement et les Matériaux, UMR 5254 CNRS UPPA, Pau, France
| |
Collapse
|
38
|
Chen T, Qiu M, Peng Y, Yi C, Xu Z. Colloidal Polymer-Templated Formation of Inorganic Nanocrystals and their Emerging Applications. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2303282. [PMID: 37409416 DOI: 10.1002/smll.202303282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 06/10/2023] [Indexed: 07/07/2023]
Abstract
Inorganic nanocrystals possess unique physicochemical properties compared to their bulk counterparts. Stabilizing agents are commonly used for the preparation of inorganic nanocrystals with controllable properties. Particularly, colloidal polymers have emerged as general and robust templates for in situ formation and confinement of inorganic nanocrystals. In addition to templating and stabilizing inorganic nanocrystals, colloidal polymers can tailor their physicochemical properties such as size, shape, structure, composition, surface chemistry, and so on. By incorporating functional groups into colloidal polymers, desired functions can be integrated with inorganic nanocrystals, advancing their potential applications. Here, recent advances in the colloidal polymer-templated formation of inorganic nanocrystals are reviewed. Seven types of colloidal polymers, including dendrimer, polymer micelle, stare-like block polymer, bottlebrush polymer, spherical polyelectrolyte brush, microgel, and single-chain nanoparticle, have been extensively applied for the synthesis of inorganic nanocrystals. Different strategies for the development of these colloidal polymer-templated inorganic nanocrystals are summarized. Then, their emerging applications in the fields of catalysis, biomedicine, solar cells, sensing, light-emitting diodes, and lithium-ion batteries are highlighted. Last, the remaining issues and future directions are discussed. This review will stimulate the development and application of colloidal polymer-templated inorganic nanocrystals.
Collapse
Affiliation(s)
- Tianyou Chen
- Ministry of Education Key Laboratory for the Green Preparation and Application of Functional Materials, Hubei Key Laboratory of Polymer Materials, School of Materials Science and Engineering, Hubei University, Wuhan, 430062, China
| | - Meishuang Qiu
- Ministry of Education Key Laboratory for the Green Preparation and Application of Functional Materials, Hubei Key Laboratory of Polymer Materials, School of Materials Science and Engineering, Hubei University, Wuhan, 430062, China
| | - Yan Peng
- Ministry of Education Key Laboratory for the Green Preparation and Application of Functional Materials, Hubei Key Laboratory of Polymer Materials, School of Materials Science and Engineering, Hubei University, Wuhan, 430062, China
| | - Changfeng Yi
- Ministry of Education Key Laboratory for the Green Preparation and Application of Functional Materials, Hubei Key Laboratory of Polymer Materials, School of Materials Science and Engineering, Hubei University, Wuhan, 430062, China
| | - Zushun Xu
- Ministry of Education Key Laboratory for the Green Preparation and Application of Functional Materials, Hubei Key Laboratory of Polymer Materials, School of Materials Science and Engineering, Hubei University, Wuhan, 430062, China
| |
Collapse
|
39
|
Chen G. polyGraft 1.0: A program for molecular structure and topology generation of polymer-grafted hybrid nanostructures. J Comput Chem 2023; 44:2230-2239. [PMID: 37596907 DOI: 10.1002/jcc.27206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Revised: 07/24/2023] [Accepted: 08/02/2023] [Indexed: 08/21/2023]
Abstract
Polymer-grafted hybrid materials have been ubiquitously employed in various engineering applications. The design of these hybrid materials with superior performances requires a molecularly detailed understanding of the structure and dynamics of the polymer brushes and their interactions with the grafting substrate. Molecular dynamics (MD) simulations are very well suited for the study of these materials which can provide molecular insights into the effects of polymer composition and length, grafting density, substrate composition and curvatures, and nanoconfinement. However, few existing tools are available to generate such systems, which would otherwise reduce the barrier of preparation for such systems to enable high throughput simulations. Here polyGraft, a general, flexible, and easy to use Python program, is introduced for automated generation of molecular structure and topology of polymer grafted hybrid materials for MD simulations purposes, ranging from polymer brushes grafted to hard substrates, to densely grafted bottlebrush polymers. polyGraft is openly accessible on GitHub (https://github.com/nanogchen/polyGraft).
Collapse
Affiliation(s)
- Guang Chen
- Institute of Materials Science, University of Connecticut, Storrs, Connecticut, USA
| |
Collapse
|
40
|
Resendiz-Lara DA, Azhdari S, Gojzewski H, Gröschel AH, Wurm FR. Water-soluble polyphosphonate-based bottlebrush copolymers via aqueous ring-opening metathesis polymerization. Chem Sci 2023; 14:11273-11282. [PMID: 37860667 PMCID: PMC10583743 DOI: 10.1039/d3sc02649c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Accepted: 09/26/2023] [Indexed: 10/21/2023] Open
Abstract
Ring-opening metathesis polymerization (ROMP) is a versatile method for synthesizing complex macromolecules from various functional monomers. In this work, we report the synthesis of water-soluble and degradable bottlebrush polymers, based on polyphosphoesters (PPEs) via ROMP. First, PPE-macromonomers were synthesized via organocatalytic anionic ring-opening polymerization of 2-ethyl-2-oxo-1,3,2-dioxaphospholane using N-(hydroxyethyl)-cis-5-norbornene-exo-2,3-dicarboximide as the initiator and 1,8-diazabicyclo[5.4.0]undec-7-ene (DBU) as the catalyst. The resulting norbornene-based macromonomers had degrees of polymerization (DPn) ranging from 25 to 243 and narrow molar mass dispersity (Đ ≤ 1.10). Subsequently, these macromonomers were used in ROMP with the Grubbs 3rd-generation bispyridyl complex (Ru-G3) to produce a library of well-defined bottlebrush polymers. The ROMP was carried out either in dioxane or in aqueous conditions, resulting in well-defined and water-soluble bottlebrush PPEs. Furthermore, a two-step protocol was employed to synthesize double hydrophilic diblock bottlebrush copolymers via ROMP in water at neutral pH-values. This general protocol enabled the direct combination of PPEs with ROMP to synthesize well-defined bottlebrush polymers and block copolymers in water. Degradation of the PPE side chains was proven resulting in low molar mass degradation products only. The biocompatible and biodegradable nature of PPEs makes this pathway promising for designing novel biomedical drug carriers or viscosity modifiers, as well as many other potential applications.
Collapse
Affiliation(s)
- Diego A Resendiz-Lara
- Sustainable Polymer Chemistry (SPC), Department of Molecules and Materials, MESA+ Institute for Nanotechnology, Faculty of Science and Technology, Universiteit Twente PO Box 217 7500 AE Enschede The Netherlands
| | - Suna Azhdari
- Sustainable Polymer Chemistry (SPC), Department of Molecules and Materials, MESA+ Institute for Nanotechnology, Faculty of Science and Technology, Universiteit Twente PO Box 217 7500 AE Enschede The Netherlands
- Physical Chemistry, University of Münster Corrensstraße 28-30 Münster 48149 Germany
| | - Hubert Gojzewski
- Sustainable Polymer Chemistry (SPC), Department of Molecules and Materials, MESA+ Institute for Nanotechnology, Faculty of Science and Technology, Universiteit Twente PO Box 217 7500 AE Enschede The Netherlands
| | - Andre H Gröschel
- Physical Chemistry, University of Münster Corrensstraße 28-30 Münster 48149 Germany
| | - Frederik R Wurm
- Sustainable Polymer Chemistry (SPC), Department of Molecules and Materials, MESA+ Institute for Nanotechnology, Faculty of Science and Technology, Universiteit Twente PO Box 217 7500 AE Enschede The Netherlands
| |
Collapse
|
41
|
Chen Y, Tan J, Shen L. Seeded RAFT Polymerization-Induced Self-assembly: Recent Advances and Future Opportunities. Macromol Rapid Commun 2023; 44:e2300334. [PMID: 37615609 DOI: 10.1002/marc.202300334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 07/30/2023] [Indexed: 08/25/2023]
Abstract
Over the past decade, polymerization-induced self-assembly (PISA) has fully proved its versatility for scale-up production of block copolymer nanoparticles with tunable sizes and morphologies; yet, there are still some limitations. Recently, seeded PISA approaches combing PISA with heterogeneous seeded polymerizations have been greatly explored and are expected to overcome the limitations of traditional PISA. In this review, recent advances in seeded PISA that have expanded new horizons for PISA are highlighted including i) general considerations for seeded PISA (e.g., kinetics, the preparation of seeds, the selection of monomers), ii) morphological evolution induced by seeded PISA (e.g., from corona-shell-core nanoparticles to vesicles, vesicles-to-toroid, disassembly of vesicles into nanospheres), and iii) various well-defined nanoparticles with hierarchical and sophisticated morphologies (e.g., multicompartment micelles, porous vesicles, framboidal vesicles, AXn -type colloidal molecules). Finally, new insights into seeded PISA and future perspectives are proposed.
Collapse
Affiliation(s)
- Yifei Chen
- State Key Laboratory of Ophthalmology, Optometry and Vision Science, School of Ophthalmology and Optometry, Eye Hospital, School of Biomedical Engineering, Wenzhou Medical University, Wenzhou, 325027, China
| | - Jianbo Tan
- Department of Polymeric Materials and Engineering, School of Materials and Energy, Guangdong University of Technology, Guangzhou, 510006, China
| | - Liangliang Shen
- State Key Laboratory of Ophthalmology, Optometry and Vision Science, School of Ophthalmology and Optometry, Eye Hospital, School of Biomedical Engineering, Wenzhou Medical University, Wenzhou, 325027, China
| |
Collapse
|
42
|
Salinas-Soto CA, Choe Y, Hur SM, Ramírez-Hernández A. Exploring conformations of comb-like polymers with varying grafting density in dilute solutions. J Chem Phys 2023; 159:114901. [PMID: 37712792 DOI: 10.1063/5.0160824] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Accepted: 08/31/2023] [Indexed: 09/16/2023] Open
Abstract
Comb-like polymers have shown potential as advanced materials for a diverse palette of applications due to the tunability of their polymer architecture. To date, however, it still remains a challenge to understand how the conformational properties of these polymers arise from the interplay of their architectural parameters. In this work, extensive simulations were performed using dissipative particle dynamics to investigate the effect of grafting density, backbone length, and sidechain length on the conformations of comb-like polymers immersed in a good solvent. To quantify the effect of these architectural parameters on polymer conformations, we computed the asphericity, radius of gyration, and backbone and sidechain end-to-end distances. Bond-bond correlation functions and effective Kuhn lengths were computed to quantify the topological stiffness induced by sidechain-sidechain interactions. Simulation results reveal that the effective Kuhn length increases as grafting density and sidechain length increase, in agreement with previous experimental and theoretical studies. This increase in stiffness results in comb-like polymers adopting extended conformations as grafting density and sidechain length increase. Simulation results regarding the radius of gyration of comb-like polymers as a function of grafting density are compared with scaling theory predictions based on a free energy proposed by Morozova and Lodge [ACS Macro Lett. 6, 1274-1279 (2017)] and scaling arguments by Tang et al. [Macromolecules 55, 8668-8675 (2022)].
Collapse
Affiliation(s)
- Carlos A Salinas-Soto
- Department of Biomedical Engineering and Chemical Engineering, The University of Texas at San Antonio, San Antonio, Texas 78249, USA
- Department of Physics and Astronomy, The University of Texas at San Antonio, San Antonio, Texas 78249, USA
| | - Yeojin Choe
- Department of Polymer Engineering, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Su-Mi Hur
- Department of Polymer Engineering, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Abelardo Ramírez-Hernández
- Department of Biomedical Engineering and Chemical Engineering, The University of Texas at San Antonio, San Antonio, Texas 78249, USA
- Department of Physics and Astronomy, The University of Texas at San Antonio, San Antonio, Texas 78249, USA
| |
Collapse
|
43
|
Malik MI. Novel epoxy-terminated macromonomers and their polymerization for synthesis of bottle-brush type amphiphilic block copolymers. RSC Adv 2023; 13:28288-28298. [PMID: 37767115 PMCID: PMC10521365 DOI: 10.1039/d3ra05912j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 09/21/2023] [Indexed: 09/29/2023] Open
Abstract
Architecture of polymers has vital implications for their physical properties and applications. In this study, synthesis of a series of novel epoxy-terminated macromonomers namely Ep-DEGMME, Ep-TEGMME, Ep-EGMEE, Ep-EGMBE, and Ep-EGMHE is reported. The synthesized macromonomers vary in number of ethylene oxide units and length of the alkyl group. These macromonomers are first homopolymerized by anionic ring-opening polymerization for synthesis of homopolymers of a molar mass range. Subsequently, these macromonomers with different lengths of two segments (alkyl group and ethylene oxide units) are copolymerized with other monomers for synthesis of bottle-brush type architectures. In the first case, di- and tri-block copolymers of Ep-EGMBE are synthesized while using MeO-PEG or PEG as a macroinitiator; the resulting block copolymers have hydrophilic handle and hydrophobic brush. On the same lines, block copolymers of Ep-TEGMME with ε-caprolactone have hydrophobic handle and hydrophilic brush. The synthesized block copolymers are comprehensively characterized by SEC and liquid chromatography at critical conditions. The analysis reveals the successful synthesis of block copolymers while providing information on relative total molar mass, and individual block lengths of the block copolymers, along with amount of unwanted homopolymers in the sample.
Collapse
Affiliation(s)
- Muhammad Imran Malik
- Third World Center for Science and Technology, H. E. J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences (ICCBS), University of Karachi Karachi 75270 Pakistan
| |
Collapse
|
44
|
Sun H, Wang X, Chen Q, Wang Z. Nanostructures, Linear Rheological Responses, and Tunable Mechanical Properties of Microphase-Separated Cellulose- graft-Diblock Bottlebrush Copolymer Elastomers. Biomacromolecules 2023; 24:3647-3656. [PMID: 37462907 DOI: 10.1021/acs.biomac.3c00386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/15/2023]
Abstract
A series of cellulose-graft-diblock bottlebrush copolymer elastomers (cellulose-graft-poly(n-butyl acrylate)-block-poly(methyl methacrylate) (Cell-g-PBA-b-PMMA)) with short side chains were synthesized via successive atom transfer radical polymerization (ATRP) to study the influence of varying compositions and lengths of the graft diblock side chains on microphase morphologies and properties. The microphase-separated morphologies from misaligned spheres to cylinders were observed by atomic force microscopy (AFM) and small-angle X-ray scattering (SAXS) measurements. These bottlebrush copolymer elastomers possessed thermal stability and enhanced mechanical properties because the PMMA outer block could self-assemble into hard microdomains, which served as physical cross-links. The viscoelastic responses of these bottlebrush copolymers within the linear viscoelastic (LVE) regime were carried out by the oscillatory shear rheology. The time-temperature superposition (tTs) principle was applied to construct the master curves of the dynamic moduli, and the sequential relaxation of dense bottlebrush copolymers with different PMMA hard outer block lengths was analyzed. The rheological behaviors in this work could be utilized to build up the connection of microstructures and properties for the application of these bottlebrush copolymers as high-performance thermoplastic elastomers.
Collapse
Affiliation(s)
- Huanjuan Sun
- Key Laboratory of Precision and Intelligent Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| | - Xuehui Wang
- Key Laboratory of Precision and Intelligent Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| | - Quan Chen
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, P. R. China
| | - Zhigang Wang
- Key Laboratory of Precision and Intelligent Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| |
Collapse
|
45
|
Mekcham S, Nomura K. Synthesis of Bottlebrush Polymers by Z-/ E-Specific Living Ring-Opening Metathesis Polymerization, Exhibiting Different Thermal Properties. J Am Chem Soc 2023; 145:17001-17006. [PMID: 37498370 PMCID: PMC10416215 DOI: 10.1021/jacs.3c05795] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Indexed: 07/28/2023]
Abstract
Synthesis of bottlebrush polymers (BBPs) and block copolymers by Z-/E-specific living ring-opening metathesis polymerization (ROMP) of N-substituted-norbornene-2,3-dicarboximides containing long alkyl chains (n-octadecyl, n-tetradecyl, etc.) has been attained by the vanadium(V)-alkylidene catalysts V(CHSiMe3)(ArN)[OC(CF3)3](PMe3)2 [Ar = 2,6-Cl2C6H3 (1), C6F5 (2)] and V(CHSiMe3)(2,6-F2C6H3N)(OC6Cl5)(PMe3)2 (3). The ROMPs using 1 afforded the BBPs with exclusive Z selectivity (98 to >99% cis) even at high temperature (up to 80 °C) in the presence of PMe3, whereas the ROMPs using 3 gave the BBPs with high E selectivity (90% trans). These ROMPs proceeded in a living manner (even at 80 °C using 1), affording various (amphiphilic) block copolymers while maintaining high E/Z selectivity. The resultant Z- and E-selective BBPs especially prepared from N-(n-octadecyl)norbornene-2,3-dicarboximide possessed different melting temperatures due to different degrees of interpolymer alkyl side chain interaction (side chain crystallization).
Collapse
Affiliation(s)
- Sirilak Mekcham
- Department of Chemistry, Tokyo
Metropolitan University, 1-1 Minami Osawa, Hachioji, Tokyo 192-0397, Japan
| | - Kotohiro Nomura
- Department of Chemistry, Tokyo
Metropolitan University, 1-1 Minami Osawa, Hachioji, Tokyo 192-0397, Japan
| |
Collapse
|
46
|
Zhulina EB, Borisov OV. Polyelectrolyte Cylindrical Brushes in Hairy Gels. Polymers (Basel) 2023; 15:3261. [PMID: 37571155 PMCID: PMC10422550 DOI: 10.3390/polym15153261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Revised: 07/21/2023] [Accepted: 07/24/2023] [Indexed: 08/13/2023] Open
Abstract
We considered dispersions of cylindrical polyelectrolyte (PE) brushes with stiff backbones, and polymer-decorated nanorods with tunable solubility of the brush-forming PE chains that affected thermodynamic stability of the dispersions. We focused on thermo-induced and deionization-induced conformational transition that provokes loss of aggregative dispersion stability of nanorods decorated with weakly ionized polyions. A comparison between theoretical predictions and experiments enabled rationalization and semi-quantitative interpretation of the experimental results.
Collapse
Affiliation(s)
- Ekaterina B. Zhulina
- Institute of Macromolecular Compounds of the Russian Academy of Sciences, 199004 St. Petersburg, Russia
| | - Oleg V. Borisov
- Institute of Macromolecular Compounds of the Russian Academy of Sciences, 199004 St. Petersburg, Russia
- Institut des Sciences Analytiques et de Physico-Chimie pour l’Environnement et les Matériaux, UMR 5254 CNRS UPPA, 64053 Pau, France
| |
Collapse
|
47
|
Seong HG, Fink Z, Chen Z, Emrick T, Russell TP. Bottlebrush Polymers at Liquid Interfaces: Assembly Dynamics, Mechanical Properties, and All-Liquid Printed Constructs. ACS NANO 2023. [PMID: 37490585 DOI: 10.1021/acsnano.3c02684] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/27/2023]
Abstract
Bottlebrush polymer surfactants (BPSs), formed by the interfacial interactions between bottlebrush polymers (BPs) with poly(acrylic acid) side chains dissolved in an aqueous phase and amine-functionalized ligands dissolved in the oil phase, assemble and bind strongly to the fluid-fluid interface. The ratio between NBB (backbone degree of polymerization) and NSC (side chain degree of polymerization) defines the initial assembly kinetics, interface packing efficiency, and stress relaxation. The equilibrium interfacial tension (γ) increases when NBB < NSC, but decreases when NBB ≫ NSC, correlating to a pronounced change in the effective shape of the BPs from being spherical to worm-like structures. The apparent surface coverage (ASC), i.e., the interfacial packing efficiency, decreases as NBB increases. The dripping-to-jetting transition of an injected polymer solution, as well as fluorescence recovery after photobleaching experiments, revealed faster initial assembly kinetics for BPs with higher NBB. Euler buckling of BPS assemblies with different NBB values was used to characterize the stress relaxation behavior and bending modulus. The stress relaxation behavior was directly related to the ASC, reflecting the strong influence of macromolecular shape on packing efficiency. The bending modulus of BPSs decreases for NBB < NSC, but increased when NBB ≫ NSC, showing the effect of molecular architecture and multisite anchoring. All-liquid printed constructs with lower NBB BPs yielded more stable structured liquids, underscoring the importance of macromolecular packing efficiency at fluid interfaces. Overall, this work elucidates fundamental relationships between nanoscopic structures and macroscopic properties associated with various bottlebrush polymer architectures, which translate to the stabilization of all-fluidic printed constructs.
Collapse
Affiliation(s)
- Hong-Gyu Seong
- Polymer Science and Engineering Department, Conte Center for Polymer Research, University of Massachusetts, Amherst, Massachusetts 01003, United States
| | - Zachary Fink
- Polymer Science and Engineering Department, Conte Center for Polymer Research, University of Massachusetts, Amherst, Massachusetts 01003, United States
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Zhan Chen
- Polymer Science and Engineering Department, Conte Center for Polymer Research, University of Massachusetts, Amherst, Massachusetts 01003, United States
| | - Todd Emrick
- Polymer Science and Engineering Department, Conte Center for Polymer Research, University of Massachusetts, Amherst, Massachusetts 01003, United States
| | - Thomas P Russell
- Polymer Science and Engineering Department, Conte Center for Polymer Research, University of Massachusetts, Amherst, Massachusetts 01003, United States
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| |
Collapse
|
48
|
Bosacka A, Zienkiewicz-Strzalka M, Derylo-Marczewska A, Chrzanowska A, Blachnio M, Podkoscielna B. Physicochemical, structural, and adsorption characteristics of DMSPS- co-DVB nanopolymers. Front Chem 2023; 11:1176718. [PMID: 37448854 PMCID: PMC10338118 DOI: 10.3389/fchem.2023.1176718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 06/16/2023] [Indexed: 07/15/2023] Open
Abstract
The aim of this work is the synthesis and characterization of the series of S,S'-thiodi-4,1-phenylene bis(thio-methacrylate)-co-divinylbenzene (DMSPS-co-DVB) nanomaterials. The series of new nanopolymers including three mixed systems with different ratios of DMSPS and DVB components, DMSPS-co-DVB = 1:1, DMSPS-co-DVB = 1:2, and DMSPS-co-DVB = 1:3, was synthesized in the polymerization reaction. The research task is to investigate the influence of the reaction mixture composition on morphological, textural, and structural properties of final nanosystems including size, shape, and agglomeration effect. The advanced biphasic nanomaterials enriched with thiol groups were successfully synthesized as potential sorbents for binding organic substances, heavy metals, or biomolecules. To determine the impact of the DMSPS monomer on the final properties of DMSPS-co-DVB nanocomposites, several techniques were applied to reveal the nano-dimensional structure (SAXS), texture (low-temperature nitrogen sorption), general morphology (SEM), acid-base properties (potentiometric titration), and surface chemistry and phase bonding effectiveness (FTIR/ATR spectroscopy). Finally, kinetic studies of aniline sorption on polymeric materials were performed.
Collapse
Affiliation(s)
- Alicja Bosacka
- Department of Fundamental Technologies, Faculty of Production Engineering, University of Life Sciences, Lublin, Poland
- Department of Physical Chemistry, Faculty of Chemistry, Institute of Chemical Sciences, Maria Curie-Sklodowska University, Lublin, Poland
| | - Malgorzata Zienkiewicz-Strzalka
- Department of Physical Chemistry, Faculty of Chemistry, Institute of Chemical Sciences, Maria Curie-Sklodowska University, Lublin, Poland
| | - Anna Derylo-Marczewska
- Department of Physical Chemistry, Faculty of Chemistry, Institute of Chemical Sciences, Maria Curie-Sklodowska University, Lublin, Poland
| | - Agnieszka Chrzanowska
- Department of Physical Chemistry, Faculty of Chemistry, Institute of Chemical Sciences, Maria Curie-Sklodowska University, Lublin, Poland
| | - Magdalena Blachnio
- Department of Physical Chemistry, Faculty of Chemistry, Institute of Chemical Sciences, Maria Curie-Sklodowska University, Lublin, Poland
| | - Beata Podkoscielna
- Department of Polymer Chemistry, Faculty of Chemistry, Institute of Chemical Sciences, Maria Curie Skłodowska University, Lublin, Poland
| |
Collapse
|
49
|
Xiong H, Yue T, Wu Q, Zhang L, Xie Z, Liu J, Zhang L, Wu J. Self-healing bottlebrush polymer networks enabled via a side-chain interlocking design. MATERIALS HORIZONS 2023; 10:2128-2138. [PMID: 36946355 DOI: 10.1039/d3mh00274h] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Exploring novel healing mechanisms is a constant impetus for the development of self-healing materials. Herein, we find that side-chain interlocking of bottlebrush polymers can form a dynamic network and thereby serve as a driving force for the self-healing process of the materials. Molecular dynamics simulation indicates that the interlocking is formed by the interpenetration between the long side chains of adjacent molecules and stabilized by van der Waals interactions and molecular entanglements of side chains. The interlocking can be tailored by changing the length and density of the side chains through atom transfer radical polymerization. As a result, the optimized bottlebrush polymer shows a healing efficiency of up to 100%. Unlike chemical interactions, side-chain interlocking eliminates the introduction of specific chemical groups. Therefore, bottlebrush polymers can even self-heal under harsh aqueous conditions, including acid and alkali solutions. Moreover, the highly dynamic side-chain interlocking enables bottlebrush polymers to efficiently dissipate vibration energy, and thus they can be used as damping materials. Collectively, side-chain interlocking expands the scope of physical interactions in self-healing materials and hews out a versatile way for polymers to accomplish self-healing capability in various environments.
Collapse
Affiliation(s)
- Hui Xiong
- State Key Laboratory of Polymer Materials Engineering, College of Polymer Science and Engineering, Sichuan University Chengdu 610065, P. R. China.
| | - Tongkui Yue
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology Interdisciplinary Research Center for Artificial Intelligence, Beijing University of Chemical Technology Beijing 100029, P. R. China.
| | - Qi Wu
- State Key Laboratory of Polymer Materials Engineering, College of Polymer Science and Engineering, Sichuan University Chengdu 610065, P. R. China.
| | - Linjun Zhang
- State Key Laboratory of Polymer Materials Engineering, College of Polymer Science and Engineering, Sichuan University Chengdu 610065, P. R. China.
| | - Zhengtian Xie
- State Key Laboratory of Polymer Materials Engineering, College of Polymer Science and Engineering, Sichuan University Chengdu 610065, P. R. China.
| | - Jun Liu
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology Interdisciplinary Research Center for Artificial Intelligence, Beijing University of Chemical Technology Beijing 100029, P. R. China.
| | - Liqun Zhang
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology Interdisciplinary Research Center for Artificial Intelligence, Beijing University of Chemical Technology Beijing 100029, P. R. China.
| | - Jinrong Wu
- State Key Laboratory of Polymer Materials Engineering, College of Polymer Science and Engineering, Sichuan University Chengdu 610065, P. R. China.
| |
Collapse
|
50
|
Xue Y, Cao M, Chen C, Zhong M. Design of Microstructure-Engineered Polymers for Energy and Environmental Conservation. JACS AU 2023; 3:1284-1300. [PMID: 37234122 PMCID: PMC10207122 DOI: 10.1021/jacsau.3c00081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 04/17/2023] [Accepted: 04/17/2023] [Indexed: 05/27/2023]
Abstract
With the ever-growing demand for sustainability, designing polymeric materials using readily accessible feedstocks provides potential solutions to address the challenges in energy and environmental conservation. Complementing the prevailing strategy of varying chemical composition, engineering microstructures of polymer chains by precisely controlling their chain length distribution, main chain regio-/stereoregularity, monomer or segment sequence, and architecture creates a powerful toolbox to rapidly access diversified material properties. In this Perspective, we lay out recent advances in utilizing appropriately designed polymers in a wide range of applications such as plastic recycling, water purification, and solar energy storage and conversion. With decoupled structural parameters, these studies have established various microstructure-function relationships. Given the progress outlined here, we envision that the microstructure-engineering strategy will accelerate the design and optimization of polymeric materials to meet sustainability criteria.
Collapse
Affiliation(s)
- Yazhen Xue
- Department
of Chemical and Environmental Engineering, Yale University, New Haven, Connecticut 06511, United States
| | - Mengxue Cao
- Department
of Chemical and Environmental Engineering, Yale University, New Haven, Connecticut 06511, United States
| | - Charles Chen
- Department
of Chemical and Environmental Engineering, Yale University, New Haven, Connecticut 06511, United States
| | - Mingjiang Zhong
- Department
of Chemical and Environmental Engineering, Yale University, New Haven, Connecticut 06511, United States
- Department
of Chemistry, Yale University, New Haven, Connecticut 06511, United States
| |
Collapse
|