1
|
Zhang J, Guo X, Zhang J, Guo X, Xu Y, Chen L. Ti 3C 2 MXene/MoS 2@AuNPs ternary nanocomposite for highly sensitive electrochemical detection of phoxim residues in fruits. Food Chem 2025; 462:140939. [PMID: 39208731 DOI: 10.1016/j.foodchem.2024.140939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 08/10/2024] [Accepted: 08/19/2024] [Indexed: 09/04/2024]
Abstract
Phoxim, extensively utilized in agriculture as an organothiophosphate insecticide, has the potential to cause neurotoxicity and pose human health hazards. In this study, an electrochemical enzyme biosensor based on Ti3C2 MXene/MoS2@AuNPs/AChE was constructed for the sensitive detection of phoxim. The two-dimensional multilayer structure of Ti3C2 MXene provides a robust framework for MoS2, leading to an expansion of the specific surface area and effectively preventing re-stacking of Ti3C2 MXene. Additionally, the synergistic effect of self-reduced grown AuNPs with MoS2 further improves the electrical conductivity of the composites, while the robust framework provides a favorable microenvironment for immobilization of enzyme molecules. Ti3C2 MXene/MoS2@AuNPs electrochemical enzyme sensor showed a significant response to phoxim in the range of 1 × 10-13 M to 1 × 10-7 M with a detection limit of 5.29 × 10-15 M. Moreover, the sensor demonstrated excellent repeatability, reproducibility, and stability, thereby showing its promising potential for real sample detection.
Collapse
Affiliation(s)
- Jiani Zhang
- School of Food Science and Technology, Shihezi University, Shihezi, Xinjiang 832003, China; Guangdong Engineering Technology Research Center for Photoelectric Sensing Materials & Devices, Guangzhou Key Laboratory of Sensing Materials & Devices, Center for Advanced Analytical Science, School of Chemistry and Chemical Engineering, School of Mechanical and Electrical Engineering, Guangzhou University, Guangzhou 510006, China; Key Laboratory of Agricultural Product Processing and Quality Control of Specialty (Co-construction by Ministry and Province), Shihezi, Xinjiang 832003, China; Key Laboratory for Food Nutrition and Safety Control of Xinjiang Production and Construction Corps, Shihezi University, Shihezi, Xinjiang 832003, China
| | - Xiaohui Guo
- Guangdong Engineering Technology Research Center for Photoelectric Sensing Materials & Devices, Guangzhou Key Laboratory of Sensing Materials & Devices, Center for Advanced Analytical Science, School of Chemistry and Chemical Engineering, School of Mechanical and Electrical Engineering, Guangzhou University, Guangzhou 510006, China
| | - Jian Zhang
- School of Food Science and Technology, Shihezi University, Shihezi, Xinjiang 832003, China; Key Laboratory of Agricultural Product Processing and Quality Control of Specialty (Co-construction by Ministry and Province), Shihezi, Xinjiang 832003, China; Key Laboratory for Food Nutrition and Safety Control of Xinjiang Production and Construction Corps, Shihezi University, Shihezi, Xinjiang 832003, China
| | - Xiaobing Guo
- School of Food Science and Technology, Shihezi University, Shihezi, Xinjiang 832003, China; Key Laboratory of Agricultural Product Processing and Quality Control of Specialty (Co-construction by Ministry and Province), Shihezi, Xinjiang 832003, China; Key Laboratory for Food Nutrition and Safety Control of Xinjiang Production and Construction Corps, Shihezi University, Shihezi, Xinjiang 832003, China.
| | - Yuying Xu
- School of Food Science and Technology, Shihezi University, Shihezi, Xinjiang 832003, China; Guangdong Engineering Technology Research Center for Photoelectric Sensing Materials & Devices, Guangzhou Key Laboratory of Sensing Materials & Devices, Center for Advanced Analytical Science, School of Chemistry and Chemical Engineering, School of Mechanical and Electrical Engineering, Guangzhou University, Guangzhou 510006, China; Key Laboratory of Agricultural Product Processing and Quality Control of Specialty (Co-construction by Ministry and Province), Shihezi, Xinjiang 832003, China; Key Laboratory for Food Nutrition and Safety Control of Xinjiang Production and Construction Corps, Shihezi University, Shihezi, Xinjiang 832003, China
| | - Lijuan Chen
- Guangdong Engineering Technology Research Center for Photoelectric Sensing Materials & Devices, Guangzhou Key Laboratory of Sensing Materials & Devices, Center for Advanced Analytical Science, School of Chemistry and Chemical Engineering, School of Mechanical and Electrical Engineering, Guangzhou University, Guangzhou 510006, China.
| |
Collapse
|
2
|
Xu H, Lei X, Pan Y, Cao X, Deng J, Yang J. Bubble-based electrochemical chip integrated with cobalt-nickel bimetallic hybrid for enhanced detection of dopamine. Biosens Bioelectron 2024; 268:116881. [PMID: 39488133 DOI: 10.1016/j.bios.2024.116881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 10/10/2024] [Accepted: 10/26/2024] [Indexed: 11/04/2024]
Abstract
Transition metal-based miniaturized electrochemical platforms for dopamine (DA) detection are highly desirable for screening neurological diseases due to their portability, fast response, and low cost. However, mass transfer in these miniaturized platforms remains a challenge for electrochemical sensing performance. Herein, we report a bubble-based chip integrated with a cobalt-nickel hybrid-modified screen-printed electrode for enhanced detection of DA. A simple piezoelectric transducer was employed to produce bulk acoustic waves (BAWs) to actuate the oscillation of air bubbles captured within the chip. The generated strong microstreaming facilitated the diffusion of the analyte to the electrode surface, enhancing the response signal. With the optimized actuating frequency and voltage, the bubble-based electrochemical platform exhibits two linear detection ranges for DA (1-10 μM, and 10-70 μM), with sensitivities approximately 2 times and 2.6 times larger than those without BAW in the lower and higher linear detection ranges, respectively. The detection limit is calculated to be 0.06 μM (S/N = 3) under BAW, which is significantly lower than that achieved without BAW assistance (0.16 μM, S/N = 3). The feasibility of using this chip for DA determination in real serum samples has also been validated. This miniaturized device shows great promise in point-of-care testing (POCT) fields.
Collapse
Affiliation(s)
- Hongyan Xu
- Key Laboratory of Biorheological Science and Technology, Ministry of Education and Bioengineering College, Chongqing University, Chongqing, 400044, China
| | - Xiaoyu Lei
- Key Laboratory of Biorheological Science and Technology, Ministry of Education and Bioengineering College, Chongqing University, Chongqing, 400044, China
| | - Yuqing Pan
- Key Laboratory of Biorheological Science and Technology, Ministry of Education and Bioengineering College, Chongqing University, Chongqing, 400044, China
| | - Xin Cao
- Key Laboratory of Biorheological Science and Technology, Ministry of Education and Bioengineering College, Chongqing University, Chongqing, 400044, China
| | - Jinan Deng
- Key Laboratory of Biorheological Science and Technology, Ministry of Education and Bioengineering College, Chongqing University, Chongqing, 400044, China.
| | - Jun Yang
- Key Laboratory of Biorheological Science and Technology, Ministry of Education and Bioengineering College, Chongqing University, Chongqing, 400044, China.
| |
Collapse
|
3
|
Selemani MA, Cenhrang K, Azibere S, Singhateh M, Martin RS. 3D printed microfluidic devices with electrodes for electrochemical analysis. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2024; 16:6941-6953. [PMID: 39403769 DOI: 10.1039/d4ay01701c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2024]
Abstract
A review with 93 references describing various 3D printing approaches that have been used to create microfluidic devices containing electrodes for electrochemical detection. The use of 3D printing to fabricate microfluidic devices is a rapidly growing area. One significant research area is how to detect analytes in the devices for quantitation purposes. This review article is focused on methods used to integrate electrodes into the devices for electrochemical detection. The review is organized in terms of the methodology for integrating the electrode within the device. This includes (1) external coupling of traditional electrode materials with 3D printed devices; (2) printing conductive electrode materials as part of device printing; and (3) integrating traditional electrodes into the device as part of the print process. Example applications are given and some future directions are also outlined.
Collapse
Affiliation(s)
| | | | | | | | - R Scott Martin
- Department of Chemistry, Saint Louis University, USA.
- Center for Additive Manufacturing, Saint Louis University, USA
| |
Collapse
|
4
|
Zhao Y, Park I, Rubakhin SS, Bashir R, Vlasov Y, Sweedler JV. 1-Octanol-assisted ultra-small volume droplet microfluidics with nanoelectrospray ionization mass spectrometry. Anal Chim Acta 2024; 1321:342998. [PMID: 39155094 PMCID: PMC11413884 DOI: 10.1016/j.aca.2024.342998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 07/18/2024] [Accepted: 07/20/2024] [Indexed: 08/20/2024]
Abstract
BACKGROUND Droplet microfluidics with push-pull and microdialysis sampling from brain slices, cultured cells and engineered tissues produce low volume mass limited samples containing analytes sampled from the extracellular space. This sampling approach coupled to mass spectrometry (MS) detection allows evaluation of time-dependent chemical changes. Our goal is an approach for continuous sampling and segregation of extracellular samples into picoliter droplets followed by the characterization of the droplets using nanoelectrospray ionization (nESI) MS. The main focus here is the optimization of the carrier oil for the microfluidic device that neither affects the stability of picoliter droplets nor compatibility with MS detection of a range of analytes. RESULTS We developed and characterized a 1-octanol-assisted ultra-small volume droplet microfluidic nESI MS system for the analysis of neurotransmitters in distinct samples including cerebrospinal fluid (CSF). The use of a 1-octanol oil phase was effective for generation of aqueous droplets as small as 65 pL and enabled detection of acetylcholine (ACh) and gamma-aminobutyric acid (GABA) in water and artificial CSF. Continuous MS analysis of droplets for extended periods up to 220 min validated the long-term stability of droplet generation and analyte detection by nESI-MS. As an example, ACh response demonstrated a linear working range (R2 = 0.99) between 0.4 μM and 25 μM with a limit of detection of 370 nM (24 amol), enabling its quantitation in rodent CSF. SIGNIFICANCE The established droplet microfluidics - nESI MS approach allows the analysis of microenvironments at high spatiotemporal resolution. The approach may allow microsampling and monitoring of spatiotemporal dynamics of neurochemicals and drugs in the brain and spinal cord of live animals.
Collapse
Affiliation(s)
- Yaoyao Zhao
- Department of Chemistry and Beckman Institute for Advanced Science and Technology, University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA
| | - Insu Park
- Holonyak Micro & Nanotechnology Laboratory, University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA
| | - Stanislav S Rubakhin
- Department of Chemistry and Beckman Institute for Advanced Science and Technology, University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA
| | - Rashid Bashir
- Beckman Institute for Advanced Science and Technology, Holonyak Micro & Nanotechnology Laboratory, and Department of Electrical and Computer Engineering, University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA; Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Yurii Vlasov
- Beckman Institute for Advanced Science and Technology, Holonyak Micro & Nanotechnology Laboratory, and Department of Electrical and Computer Engineering, University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA; Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Jonathan V Sweedler
- Department of Chemistry and Beckman Institute for Advanced Science and Technology, University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA; Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA.
| |
Collapse
|
5
|
Guan Z, Liu Q, Ma CB, Du Y. Electrochemical microfluidic sensing platforms for biosecurity analysis. Anal Bioanal Chem 2024; 416:4663-4677. [PMID: 38523160 DOI: 10.1007/s00216-024-05256-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 03/04/2024] [Accepted: 03/11/2024] [Indexed: 03/26/2024]
Abstract
Biosecurity encompasses the health and safety of humans, animals, plants, and the environment. In this article, "biosecurity" is defined as encompassing the comprehensive aspects of human, animal, plant, and environmental safety. Reliable biosecurity testing technology is the key point for effectively assessing biosecurity risks and ensuring biosecurity. Therefore, it is crucial to develop excellent detection technologies to detect risk factors that can affect biosecurity. An electrochemical microfluidic biosensing platform integrates fluid control, target recognition, signal transduction, and output and incorporates the advantages of electrochemical analysis technology and microfluidic technology. Thus, an electrochemical microfluidic biosensing platform, characterized by exceptional analytical sensitivity, portability, rapid analysis speed, low reagent consumption, and low risk of contamination, shows considerable promise for biosecurity detection compared to traditional, more complex, and time-consuming detection technologies. This review provides a concise introduction to electrochemical microfluidic biosensors and biosecurity. It highlights recent research advances in utilizing electrochemical microfluidic biosensing platforms to assess biosecurity risk factors. It includes the use of electrochemical microfluidic biosensors for the detection of risk factors directly endangering biosecurity (direct application: namely, risk factors directly endangering the health of human, animals, and plants) and for the detection of risk factors indirectly endangering biosecurity (indirect application: namely, risk factors endangering the safety of food and the environment). Finally, we outline the current challenges and future perspectives of electrochemical microfluidic biosensing platforms.
Collapse
Affiliation(s)
- Zhaowei Guan
- Key Laboratory of Polyoxometalate Science of Ministry of Education, National & Local United Engineering Laboratory for Power Batteries, Key Laboratory of Nanobiosensing and Nanobioanalysis at Universities of Jilin Province, Department of Chemistry, Northeast Normal University, Changchun, 130024, Jilin, China
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, Jilin, China
| | - Quanyi Liu
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, Jilin, China
- School of Applied Chemistry and Engineering, University of Science & Technology of China, Hefei, 230026, Anhui, China
| | - Chong-Bo Ma
- Key Laboratory of Polyoxometalate Science of Ministry of Education, National & Local United Engineering Laboratory for Power Batteries, Key Laboratory of Nanobiosensing and Nanobioanalysis at Universities of Jilin Province, Department of Chemistry, Northeast Normal University, Changchun, 130024, Jilin, China.
| | - Yan Du
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, Jilin, China.
- School of Applied Chemistry and Engineering, University of Science & Technology of China, Hefei, 230026, Anhui, China.
| |
Collapse
|
6
|
Upadhyay S, Kumar A, Srivastava M, Srivastava A, Dwivedi A, Singh RK, Srivastava SK. Recent advancements of smartphone-based sensing technology for diagnosis, food safety analysis, and environmental monitoring. Talanta 2024; 275:126080. [PMID: 38615454 DOI: 10.1016/j.talanta.2024.126080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 04/04/2024] [Accepted: 04/07/2024] [Indexed: 04/16/2024]
Abstract
The emergence of computationally powerful smartphones, relatively affordable high-resolution camera, drones, and robotic sensors have ushered in a new age of advanced sensible monitoring tools. The present review article investigates the burgeoning smartphone-based sensing paradigms, including surface plasmon resonance (SPR) biosensors, electrochemical biosensors, colorimetric biosensors, and other innovations for modern healthcare. Despite the significant advancements, there are still scarcity of commercially available smart biosensors and hence need to accelerate the rates of technology transfer, application, and user acceptability. The application/necessity of smartphone-based biosensors for Point of Care (POC) testing, such as prognosis, self-diagnosis, monitoring, and treatment selection, have brought remarkable innovations which eventually eliminate sample transportation, sample processing time, and result in rapid findings. Additionally, it articulates recent advances in various smartphone-based multiplexed bio sensors as affordable and portable sensing platforms for point-of-care devices, together with statistics for point-of-care health monitoring and their prospective commercial viability.
Collapse
Affiliation(s)
- Satyam Upadhyay
- Department of Physics, Institute of Science, Banaras Hindu University, Varanasi, 221005, India
| | - Anil Kumar
- Department of Physics, Institute of Science, Banaras Hindu University, Varanasi, 221005, India
| | - Monika Srivastava
- School of Materials Science and Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi, India
| | - Amit Srivastava
- Department of Physics TDPG College, VBS Purvanchal University, Jaunpur, 222001, India
| | - Arpita Dwivedi
- Department of Physics, Institute of Science, Banaras Hindu University, Varanasi, 221005, India
| | - Rajesh Kumar Singh
- School of Physical and Material Sciences, Central University of Himachal Pradesh, Dharamshala, Kangra, 176215, India
| | - S K Srivastava
- Department of Physics, Institute of Science, Banaras Hindu University, Varanasi, 221005, India.
| |
Collapse
|
7
|
Gong L, Lin Y. Microfluidics in smart food safety. ADVANCES IN FOOD AND NUTRITION RESEARCH 2024; 111:305-354. [PMID: 39103216 DOI: 10.1016/bs.afnr.2024.06.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/07/2024]
Abstract
The evolution of food safety practices is crucial in addressing the challenges posed by a growing global population and increasingly complex food supply chains. Traditional methods are often labor-intensive, time-consuming, and susceptible to human error. This chapter explores the transformative potential of integrating microfluidics into smart food safety protocols. Microfluidics, involving the manipulation of small fluid volumes within microscale channels, offers a sophisticated platform for developing miniaturized devices capable of complex tasks. Combined with sensors, actuators, big data analytics, artificial intelligence, and the Internet of Things, smart microfluidic systems enable real-time data acquisition, analysis, and decision-making. These systems enhance control, automation, and adaptability, making them ideal for detecting contaminants, pathogens, and chemical residues in food products. The chapter covers the fundamentals of microfluidics, its integration with smart technologies, and its applications in food safety, addressing the challenges and future directions in this field.
Collapse
Affiliation(s)
- Liyuan Gong
- Department of Mechanical, Industrial and Systems Engineering, University of Rhode Island, Kingston, RI, United States
| | - Yang Lin
- Department of Mechanical, Industrial and Systems Engineering, University of Rhode Island, Kingston, RI, United States.
| |
Collapse
|
8
|
Dobrea A, Hall N, Milne S, Corrigan DK, Jimenez M. A plug-and-play, easy-to-manufacture fluidic accessory to significantly enhance the sensitivity of electrochemical immunoassays. Sci Rep 2024; 14:14154. [PMID: 38898088 PMCID: PMC11187161 DOI: 10.1038/s41598-024-64852-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Accepted: 06/13/2024] [Indexed: 06/21/2024] Open
Abstract
Earlier access to patients' biomarker status could transform disease management. However, gold-standard techniques such as enzyme-linked immunosorbent assays (ELISAs) are typically not deployed at the point-of-care due to their cumbersome instrumentation and complexity. Electrochemical immunosensors can be disruptive in this sector with their small size and lower cost but, without further modifications, the performance of these sensors in complex media (e.g., blood) has been limited. This paper presents a low-cost fluidic accessory fabricated using widely accessible materials and processes for boosting sensor sensitivity through confinement of the detection media next to the electrode surface. Liquid confinement first highlighted a spontaneous reaction between the pseudoreference electrode and ELISA detection substrate 3,3',5,5'-tetramethylbenzidine (TMB) that decreases the amount of oxTMB available for detection. Different strategies are investigated to limit this and maximize reliability. Next, flow cell integration during the signal amplification step of sensor preparation was shown to substantially enhance the detection of cytokine interleukin-6 (IL-6) with the best sensitivity boost recorded for fresh human plasma (x7 increase compared to x5.8 in purified serum and x5.5 in PBS). The flow cell requires no specialized equipment and can be seamlessly integrated with commercial sensors, making an ideal companion for electrochemical signal enhancement.
Collapse
Affiliation(s)
- Alexandra Dobrea
- Biomedical Engineering Department, University of Strathclyde, Glasgow, G4 0NW, UK.
- James Watt School of Engineering, University of Glasgow, Glasgow, G12 8QQ, UK.
| | - Nicole Hall
- Biomedical Engineering Department, University of Strathclyde, Glasgow, G4 0NW, UK
| | - Stuart Milne
- Biomedical Engineering Department, University of Strathclyde, Glasgow, G4 0NW, UK
- Pure and Applied Chemistry Department, University of Strathclyde, Glasgow, G4 0NW, UK
| | - Damion K Corrigan
- Pure and Applied Chemistry Department, University of Strathclyde, Glasgow, G4 0NW, UK
| | - Melanie Jimenez
- Biomedical Engineering Department, University of Strathclyde, Glasgow, G4 0NW, UK
| |
Collapse
|
9
|
Sankar K, Kuzmanović U, Schaus SE, Galagan JE, Grinstaff MW. Strategy, Design, and Fabrication of Electrochemical Biosensors: A Tutorial. ACS Sens 2024; 9:2254-2274. [PMID: 38636962 DOI: 10.1021/acssensors.4c00043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/20/2024]
Abstract
Advanced healthcare requires novel technologies capable of real-time sensing to monitor acute and long-term health. The challenge relies on converting a real-time quantitative biological and chemical signal into a desired measurable output. Given the success in detecting glucose and the commercialization of glucometers, electrochemical biosensors continue to be a mainstay of academic and industrial research activities. Despite the wealth of literature on electrochemical biosensors, reports are often specific to a particular application (e.g., pathogens, cancer markers, glucose, etc.), and most fail to convey the underlying strategy and design, and if it is transferable to detection of a different analyte. Here we present a tutorial review for those entering this research area that summarizes the basic electrochemical techniques utilized as well as discusses the designs and optimization strategies employed to improve sensitivity and maximize signal output.
Collapse
|
10
|
Chen ML, Qian P, Xia TY, Yu CM, Wu ZQ, Bao N, Huo XL. Sensitive electrochemical flow injection analysis of H 2O 2 released from cells with a pass-through mode. Anal Chim Acta 2024; 1302:342516. [PMID: 38580411 DOI: 10.1016/j.aca.2024.342516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 03/18/2024] [Accepted: 03/21/2024] [Indexed: 04/07/2024]
Abstract
Conventional plate electrodes were commonly used in electrochemical flow injection analysis and only part of molecules diffused to the plane of electrodes could be detected, which would limit the performance of electrochemical detection. In this study, a low-cost native stainless steel wire mesh (SSWM) electrode was integrated into a 3D-printed device for electrochemical flow injection analysis with a pass-through mode, which is different compared with previous flow-through mode. This strategy was applied for sensitive analysis of hydrogen peroxide (H2O2) released from cells. Under the optimal conditions (the applied potentials, the flow rate and the sample volume), the device exhibits high sensitivity toward H2O2. Linear relationships could be achieved between electrochemical responses and the concentration of H2O2 ranging from 1 nM to 1 mM. The excellent analytical performance of the SSWM-based device could be attributed to the pass-through mode based on the mesh microstructure and intrinsic catalytic properties for H2O2 by stainless steel. This approach could be further successfully extended for screening of H2O2 released from HeLa cells with electrochemical responses linear to the number of cells in a range of 3 - 1.35 × 104 cells with an injection volume of 30 μL. This study revealed the potential of mesh electrodes in electrochemical flow injection analysis for cellular function and pathology and its possible extension in cell counting and on-line analysis.
Collapse
Affiliation(s)
- Mei-Ling Chen
- School of Public Health, Nantong University, Nantong, Jiangsu, 226019, China
| | - Pu Qian
- School of Public Health, Nantong University, Nantong, Jiangsu, 226019, China
| | - Tian-Yu Xia
- School of Public Health, Nantong University, Nantong, Jiangsu, 226019, China
| | - Chun-Mei Yu
- School of Public Health, Nantong University, Nantong, Jiangsu, 226019, China
| | - Zeng-Qiang Wu
- School of Public Health, Nantong University, Nantong, Jiangsu, 226019, China.
| | - Ning Bao
- School of Public Health, Nantong University, Nantong, Jiangsu, 226019, China.
| | - Xiao-Lei Huo
- School of Public Health, Nantong University, Nantong, Jiangsu, 226019, China.
| |
Collapse
|
11
|
Yu X, Park S, Lee S, Joo SW, Choo J. Microfluidics for disease diagnostics based on surface-enhanced raman scattering detection. NANO CONVERGENCE 2024; 11:17. [PMID: 38687445 PMCID: PMC11061072 DOI: 10.1186/s40580-024-00424-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Accepted: 04/08/2024] [Indexed: 05/02/2024]
Abstract
This review reports diverse microfluidic systems utilizing surface-enhanced Raman scattering (SERS) detection for disease diagnosis. Integrating SERS detection technology, providing high-sensitivity detection, and microfluidic technology for manipulating small liquid samples in microdevices has expanded the analytical capabilities previously confined to larger settings. This study explores the principles and uses of various SERS-based microfluidic devices developed over the last two decades. Specifically, we investigate the operational principles of documented SERS-based microfluidic devices, including continuous-flow channels, microarray-embedded microfluidic channels, droplet microfluidic channels, digital droplet channels, and gradient microfluidic channels. We also examine their applications in biomedical diagnostics. In conclusion, we summarize the areas requiring further development to translate these SERS-based microfluidic technologies into practical applications in clinical diagnostics.
Collapse
Affiliation(s)
- Xiangdong Yu
- Department of Chemistry, Chung-Ang University, Seoul, 06974, South Korea
| | - Sohyun Park
- Department of Chemistry, Chung-Ang University, Seoul, 06974, South Korea
| | - Sungwoon Lee
- Department of Chemistry, Chung-Ang University, Seoul, 06974, South Korea
| | - Sang-Woo Joo
- Department of Chemistry, Soongsil University, Seoul, 06978, South Korea.
| | - Jaebum Choo
- Department of Chemistry, Chung-Ang University, Seoul, 06974, South Korea.
| |
Collapse
|
12
|
Bocu R. Extended Review Concerning the Integration of Electrochemical Biosensors into Modern IoT and Wearable Devices. BIOSENSORS 2024; 14:214. [PMID: 38785688 PMCID: PMC11117989 DOI: 10.3390/bios14050214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 04/17/2024] [Accepted: 04/23/2024] [Indexed: 05/25/2024]
Abstract
Electrochemical biosensors include a recognition component and an electronic transducer, which detect the body fluids with a high degree of accuracy. More importantly, they generate timely readings of the related physiological parameters, and they are suitable for integration into portable, wearable and implantable devices that are significant relative to point-of-care diagnostics scenarios. As an example, the personal glucose meter fundamentally improves the management of diabetes in the comfort of the patients' homes. This review paper analyzes the principles of electrochemical biosensing and the structural features of electrochemical biosensors relative to the implementation of health monitoring and disease diagnostics strategies. The analysis particularly considers the integration of the biosensors into wearable, portable, and implantable systems. The fundamental aim of this paper is to present and critically evaluate the identified significant developments in the scope of electrochemical biosensing for preventive and customized point-of-care diagnostic devices. The paper also approaches the most important engineering challenges that should be addressed in order to improve the sensing accuracy, and enable multiplexing and one-step processes, which mediate the integration of electrochemical biosensing devices into digital healthcare scenarios.
Collapse
Affiliation(s)
- Razvan Bocu
- Department of Mathematics and Computer Science, Transilvania University of Brasov, 500036 Brasov, Romania
| |
Collapse
|
13
|
Wang C, Weng G, Li J, Zhu J, Zhao J. A review of SERS coupled microfluidic platforms: From configurations to applications. Anal Chim Acta 2024; 1296:342291. [PMID: 38401925 DOI: 10.1016/j.aca.2024.342291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Revised: 01/25/2024] [Accepted: 01/26/2024] [Indexed: 02/26/2024]
Abstract
Microfluidic systems have attracted considerable attention due to their low reagent consumption, short analysis time, and ease of integration in comparison to conventional methods, but still suffer from shortcomings in sensitivity and selectivity. Surface enhanced Raman scattering (SERS) offers several advantages in the detection of compounds, including label-free detection at the single-molecule level, and the narrow Raman peak width for multiplexing. Combining microfluidics with SERS is a viable way to improve their detection sensitivity. Researchers have recently developed several SERS coupled microfluidic platforms with substantial potential for biomolecular detection, cellular and bacterial analysis, and hazardous substance detection. We review the current development of SERS coupled microfluidic platforms, illustrate their detection principles and construction, and summarize the latest applications in biology, environmental protection and food safety. In addition, we innovatively summarize the current status of SERS coupled multi-mode microfluidic platforms with other detection technologies. Finally, we discuss the challenges and countermeasures during the development of SERS coupled microfluidic platforms, as well as predict the future development trend of SERS coupled microfluidic platforms.
Collapse
Affiliation(s)
- Chenyang Wang
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, No. 28 Xianning West Road, Xi'an 710049, China
| | - Guojun Weng
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, No. 28 Xianning West Road, Xi'an 710049, China.
| | - Jianjun Li
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, No. 28 Xianning West Road, Xi'an 710049, China
| | - Jian Zhu
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, No. 28 Xianning West Road, Xi'an 710049, China
| | - Junwu Zhao
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, No. 28 Xianning West Road, Xi'an 710049, China.
| |
Collapse
|
14
|
Mazzaracchio V, Rios Maciel M, Porto Santos T, Toda-Peters K, Shen AQ. Duplex Electrochemical Microfluidic Sensor for COVID-19 Antibody Detection: Natural versus Vaccine-Induced Humoral Response. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2207731. [PMID: 36916701 DOI: 10.1002/smll.202207731] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Revised: 02/03/2023] [Indexed: 06/18/2023]
Abstract
The rapid transmission and resilience of coronavirus disease 2019 (COVID-19) have led to urgent demands in monitoring humoral response for effective vaccine development, thus a multiplex co-detection platform to discriminate infection-induced from vaccine-induced antibodies is needed. Here a duplex electrochemical immunosensor for co-detection of anti-nucleocapsid IgG (N-IgG) and anti-spike IgG (S-IgG) is developed by using a two-working electrode system, via an indirect immunoassay, with antibody quantification obtained by differential pulse voltammetry. The screen-printed electrodes (SPEs) are modified by carbon black and electrodeposited gold nanoflowers for maximized surface areas, enabling the construction of an immunological chain for S-IgG and N-IgG electrochemical detection with enhanced performance. Using an optimized immunoassay protocol, a wide linear range between 30-750 and 20-1000 ng mL-1 , and a limit of detection of 28 and 15 ng mL-1 are achieved to detect N-IgG and S-IgG simultaneously in serum samples. This duplex immunosensor is then integrated in a microfluidic device to obtain significantly reduced detection time (≤ 7 min) while maintaining its analytical performance. The duplex microfluidic immunosensor can be easily expanded into multiplex format to achieve high throughput screening for the sero-surveillance of COVID-19 and other infectious diseases.
Collapse
Affiliation(s)
- Vincenzo Mazzaracchio
- Micro/Bio/Nanofluidics Unit, Okinawa Institute of Science and Technology Graduate University, Onna-son, Okinawa, 904-0495, Japan
- Department of Chemical Science and Technologies, University of Rome "Tor Vergata,", Via della Ricerca Scientifica, 00133, Rome, Italy
| | - Mauricio Rios Maciel
- Micro/Bio/Nanofluidics Unit, Okinawa Institute of Science and Technology Graduate University, Onna-son, Okinawa, 904-0495, Japan
| | - Tatiana Porto Santos
- Micro/Bio/Nanofluidics Unit, Okinawa Institute of Science and Technology Graduate University, Onna-son, Okinawa, 904-0495, Japan
| | - Kazumi Toda-Peters
- Micro/Bio/Nanofluidics Unit, Okinawa Institute of Science and Technology Graduate University, Onna-son, Okinawa, 904-0495, Japan
| | - Amy Q Shen
- Micro/Bio/Nanofluidics Unit, Okinawa Institute of Science and Technology Graduate University, Onna-son, Okinawa, 904-0495, Japan
| |
Collapse
|
15
|
Ma X, Zhou Q, Gao B. Recent advances of biosensors on microneedles. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2023; 15:5711-5730. [PMID: 37873722 DOI: 10.1039/d3ay01745a] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2023]
Abstract
Biosensors have attracted a considerable attention in recent years due to their enormous potential to provide insights into the physical condition of individuals. However, the widespread use of biosensors has experienced difficulties regarding the stability of the biological response and the poor miniaturization and portability of biosensors. Hence, there is an urgent need for more reliable biosensor devices. Microneedle (MN) technology has become a revolutionary approach to biosensing strategies, setting new horizons for improving existing biosensors. MN-based biosensors allow for painless injection, and in situ extraction or monitoring. However, the accuracy and practicality of detection need to be improved. This review begins by discussing the classification of MNs, manufacturing methods and other design parameters to develop a more accurate MN-based detection sensing system. Herein, we categorize and analyze the energy supply of wearable biosensors. Specifically, we describe the detection methods of MN biosensors, such as electrochemical, optical, nucleic acid recognition and immunoassays, and how MNs can be combined with these methods to detect biomarkers. Furthermore, we provide a detailed overview of the latest applications (drug release, drug detection, etc.). The MN-based biosensors are followed by a summary of key challenges and opportunities in the field.
Collapse
Affiliation(s)
- Xiaoming Ma
- Department of Orthopedics, Taizhou People's Hospital, 366 Taihu Road, Taizhou, Jiangsu Province, People's Republic of China.
| | - Qian Zhou
- School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing 211816, China.
| | - Bingbing Gao
- School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing 211816, China.
| |
Collapse
|
16
|
Wu J, Zhang M, Huang J, Guan J, Hu C, Shi M, Hu S, Wang S, Ma H. Enhanced absorbance detection system for online bacterial monitoring in digital microfluidics. Analyst 2023; 148:4659-4667. [PMID: 37615041 DOI: 10.1039/d3an01049j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/25/2023]
Abstract
We report a fully integrated digital microfluidic absorbance detection system with an enhanced sensitivity for online bacterial monitoring. Through a 100 μm gap in the chip, our optical detection system has a detection sensitivity for a BCA protein concentration of 0.1 mg mL-1. The absorbance detection limit of our system is 1.4 × 10-3 OD units, which is one order of magnitude better than that of the existing studies. The system's linear region is 0.1-7 mg mL-1, and the dynamic range is 0-25 mg mL-1. We measured the growth curves of wild-type and E. coli transformed with resistance plasmids and mixed at different ratios on chip. We sorted out the bacterial species including highly viable single cells based on the difference in absorbance data of growth curves. We explored the changes in the growth curves of E. coli under different concentrations of resistant media. In addition, we successfully screened for the optimal growth environment of the bacteria, in which the growth rate of PET30a-DH5α (in a medium with 33 μg mL-1 kanamycin resistance) was significantly higher than that of a 1 mg mL-1 resistance medium. In conclusion, the enhanced digital microfluidic absorbance detection system exhibits exceptional sensitivity, enabling precise bacterial monitoring and growth curve analysis, while also laying the foundation for DMF-based automated bioresearch platforms, thus advancing research in the life sciences.
Collapse
Affiliation(s)
- Jingya Wu
- Guangdong-Hong Kong-Macao Joint Laboratory for Intelligent Micro-Nano Optoelectronic Technology, School of Physics and Optoelectronic Engineering, Foshan University, Foshan 528225, P. R. China.
| | - Maolin Zhang
- School of Biomedical Engineering (Suzhou), Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027, Anhui, P. R. China
- CAS Key Laboratory of Bio-Medical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, 215163, P. R. China.
| | - Jianle Huang
- Guangdong ACXEL Micro & Nano Tech Co., Ltd, Guangdong Province, 528000, P. R. China
| | - Jingxin Guan
- Guangdong ACXEL Micro & Nano Tech Co., Ltd, Guangdong Province, 528000, P. R. China
| | - Chenxuan Hu
- School of Biomedical Engineering (Suzhou), Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027, Anhui, P. R. China
- CAS Key Laboratory of Bio-Medical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, 215163, P. R. China.
| | - Mude Shi
- Guangdong ACXEL Micro & Nano Tech Co., Ltd, Guangdong Province, 528000, P. R. China
| | - Siyi Hu
- CAS Key Laboratory of Bio-Medical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, 215163, P. R. China.
| | - Shurong Wang
- Guangdong-Hong Kong-Macao Joint Laboratory for Intelligent Micro-Nano Optoelectronic Technology, School of Physics and Optoelectronic Engineering, Foshan University, Foshan 528225, P. R. China.
| | - Hanbin Ma
- CAS Key Laboratory of Bio-Medical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, 215163, P. R. China.
- Guangdong ACXEL Micro & Nano Tech Co., Ltd, Guangdong Province, 528000, P. R. China
| |
Collapse
|
17
|
Campuzano S, Pingarrón JM. Electrochemical Affinity Biosensors: Pervasive Devices with Exciting Alliances and Horizons Ahead. ACS Sens 2023; 8:3276-3293. [PMID: 37534629 PMCID: PMC10521145 DOI: 10.1021/acssensors.3c01172] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 07/25/2023] [Indexed: 08/04/2023]
Abstract
Electrochemical affinity biosensors are evolving at breakneck speed, strengthening and colonizing more and more niches and drawing unimaginable roadmaps that increasingly make them protagonists of our daily lives. They achieve this by combining their intrinsic attributes with those acquired by leveraging the significant advances that occurred in (nano)materials technology, bio(nano)materials and nature-inspired receptors, gene editing and amplification technologies, and signal detection and processing techniques. The aim of this Perspective is to provide, with the support of recent representative and illustrative literature, an updated and critical view of the repertoire of opportunities, innovations, and applications offered by electrochemical affinity biosensors fueled by the key alliances indicated. In addition, the imminent challenges that these biodevices must face and the new directions in which they are envisioned as key players are discussed.
Collapse
Affiliation(s)
- Susana Campuzano
- Departamento de Química Analítica,
Facultad de Ciencias Químicas, Universidad
Complutense de Madrid, 28040 Madrid, España
| | - José M. Pingarrón
- Departamento de Química Analítica,
Facultad de Ciencias Químicas, Universidad
Complutense de Madrid, 28040 Madrid, España
| |
Collapse
|
18
|
Adil O, Eddington SB, Gagnon KT, Shamsi MH. Microprobes for Label-Free Detection of Short Tandem Repeats: An Insight into Alleviating Secondary Structure Effects. Anal Chem 2023; 95:13528-13536. [PMID: 37651633 DOI: 10.1021/acs.analchem.3c01886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
Abstract
Overgrowth of short tandem repeat sequences in our genes can cause various neurodegenerative disorders. Such repeat sequences are ideal targets for the label-free electrochemical detection of such potential expansions. However, their length- and sequence-dependent secondary structures may interfere with the interfacial charge transfer of a detection platform, making them complex targets. In addition, the gene contains sporadic repeats that may result in false-positive signals. Therefore, it is necessary to design a platform capable of mitigating these effects and ultimately enhancing the specificity of tandem repeats. Here, we analyzed three different backbones of nucleic acid microprobes [DNA, peptide nucleic acid, and lock-nucleic acid (LNA)] to detect in vitro transcribed RNA carrying CAG repeats, which are associated with Huntington's disease, based on the charge-transfer resistance of the interface. We found that the LNA microprobe can distinguish lengths down to the attomolar concentration level and alleviate the effect of secondary structures and sporadic repeats in the sequence, thus distinguishing the "tandem repeats" specifically. Additionally, the control experiments conducted with and without Mg2+ demonstrated the LNA microprobe to perform better in the presence of the divalent cation. The results suggest that the LNA-based platform may eventually lead to the development of a reliable and straightforward biosensor for genetic neurodegenerative disorders.
Collapse
Affiliation(s)
- Omair Adil
- School of Chemical and Biomolecular Sciences, 1245 Lincoln Dr, Southern Illinois University at Carbondale, Carbondale, Illinois 62901, United States
| | - Seth B Eddington
- Department of Biochemistry, Wake Forest University School of Medicine, Winston-Salem, North Carolina 27101, United States
| | - Keith T Gagnon
- School of Chemical and Biomolecular Sciences, 1245 Lincoln Dr, Southern Illinois University at Carbondale, Carbondale, Illinois 62901, United States
- Department of Biochemistry, Wake Forest University School of Medicine, Winston-Salem, North Carolina 27101, United States
| | - Mohtashim H Shamsi
- School of Chemical and Biomolecular Sciences, 1245 Lincoln Dr, Southern Illinois University at Carbondale, Carbondale, Illinois 62901, United States
| |
Collapse
|
19
|
Peto-Gutiérrez C, Vázquez-Victorio G, Hautefeuille M. Characterization of Benchtop-Fabricated Arrays of Nanowrinkled Surface Electrodes as a Nitric Oxide Electrochemical Sensor. BIOSENSORS 2023; 13:794. [PMID: 37622879 PMCID: PMC10452632 DOI: 10.3390/bios13080794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 07/28/2023] [Accepted: 08/03/2023] [Indexed: 08/26/2023]
Abstract
In this work, we present an accessible benchtop fabrication technique to obtain a planar array of gold nanowrinkled surface electrodes (ANSE) for the construction of electrochemical cells, specifically to monitor soluble biomarkers of interest in cell culture environments. We present a complete characterization of the array and its response as an electrochemical cell. To validate our sensor, we evaluated the device sensitivity to detect nitric oxide (NO), an important molecule produced by endothelial cells as a response to environmental signals such as mechanics and growth factors. While testing measurements of nitric oxide in aqueous solutions with isotonic salt concentrations, we evidenced the influence of the environmental conditions for such electrochemical measurements, showing that the aqueous medium, usually not accounted for, significantly impacts the outcome. Finally, we present the application of the electrochemical sensor for the detection of nitric oxide released from stimulated endothelial cells as a proof of concept.
Collapse
Affiliation(s)
- Cindy Peto-Gutiérrez
- Laboratorio Nacional de Soluciones Biomiméticas para Diagnóstico y Terapia (LaNSBioDyT), Universidad Nacional Autónoma de México, Mexico City 04510, Mexico
- Departamento de Física, Facultad de Ciencias, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico
| | - Genaro Vázquez-Victorio
- Laboratorio Nacional de Soluciones Biomiméticas para Diagnóstico y Terapia (LaNSBioDyT), Universidad Nacional Autónoma de México, Mexico City 04510, Mexico
- Departamento de Física, Facultad de Ciencias, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico
| | - Mathieu Hautefeuille
- Laboratorio Nacional de Soluciones Biomiméticas para Diagnóstico y Terapia (LaNSBioDyT), Universidad Nacional Autónoma de México, Mexico City 04510, Mexico
- Laboratoire de Biologie du Développement (UMR 7622), Institut de Biologie Paris Seine, Sorbonne Université, 75005 Paris, France
| |
Collapse
|
20
|
Liu Y, Cheng QY, Gao H, Chen HY, Xu JJ. Microfluidic Gradient Culture Arrays for Cell Pro-oxidation Analysis Using Bipolar Electrochemiluminescence. Anal Chem 2023; 95:8376-8383. [PMID: 37184375 DOI: 10.1021/acs.analchem.3c01123] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
A microfluidic gradient array is a widely used screening and analysis device, which has characteristics of high efficiency, high automation, and low consumption. Bipolar electrode electrochemiluminescence (BPE-ECL) has special value in microfluidic array chips. The combination of the microfluidic gradient and BPE arrays has potential for high-throughput screening. In this article, a microfluidic BPE array chip for gradient culture and conditional screening of cancer cells was designed. The generation of concentration gradients, continuous culture of cancer cells with high throughput, and drug screening through BPE-ECL of the Ru(bpy)32+/TPrA system can be performed in one chip. We tested gradient pro-oxidation of MCF-7 by ascorbic acid and the synergistic effect of pro-oxidation on doxorubicin. The method achieves high analysis efficiency through a BPE array while simplifying the tedious procedures required by cell culture methods.
Collapse
Affiliation(s)
- Yu Liu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Qiu-Yue Cheng
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Hang Gao
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Hong-Yuan Chen
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Jing-Juan Xu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| |
Collapse
|
21
|
Hou F, Sun S, Abdullah SW, Tang Y, Li X, Guo H. The application of nanoparticles in point-of-care testing (POCT) immunoassays. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2023; 15:2154-2180. [PMID: 37114768 DOI: 10.1039/d3ay00182b] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
The Covid-19 pandemic has led to greater recognition of the importance of the fast and timely detection of pathogens. Recent advances in point-of-care testing (POCT) technology have shown promising results for rapid diagnosis. Immunoassays are among the most extensive POCT assays, in which specific labels are used to indicate and amplify the immune signal. Nanoparticles (NPs) are above the rest because of their versatile properties. Much work has been devoted to NPs to find more efficient immunoassays. Herein, we comprehensively describe NP-based immunoassays with a focus on particle species and their specific applications. This review describes immunoassays along with key concepts surrounding their preparation and bioconjugation to show their defining role in immunosensors. The specific mechanisms, microfluidic immunoassays, electrochemical immunoassays (ELCAs), immunochromatographic assays (ICAs), enzyme-linked immunosorbent assays (ELISA), and microarrays are covered herein. For each mechanism, a working explanation of the appropriate background theory and formalism is articulated before examining the biosensing and related point-of-care (POC) utility. Given their maturity, some specific applications using different nanomaterials are discussed in more detail. Finally, we outline future challenges and perspectives to give a brief guideline for the development of appropriate platforms.
Collapse
Affiliation(s)
- Fengping Hou
- State Key Laboratory of Veterinary Etiological Biology, OIE/China National Foot-and-Mouth Disease Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Xujiaping 1, Lanzhou 730046, Gansu, P. R. China.
- Lanzhou Institute of Biological Products Co., Ltd (LIBP), Subsidiary Company of China National Biotec Group Company Limited (CNBG), 730046 Lanzhou, China.
| | - Shiqi Sun
- State Key Laboratory of Veterinary Etiological Biology, OIE/China National Foot-and-Mouth Disease Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Xujiaping 1, Lanzhou 730046, Gansu, P. R. China.
| | - Sahibzada Waheed Abdullah
- State Key Laboratory of Veterinary Etiological Biology, OIE/China National Foot-and-Mouth Disease Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Xujiaping 1, Lanzhou 730046, Gansu, P. R. China.
| | - Yu Tang
- State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, Gansu, P. R. China
| | - Xiongxiong Li
- Lanzhou Institute of Biological Products Co., Ltd (LIBP), Subsidiary Company of China National Biotec Group Company Limited (CNBG), 730046 Lanzhou, China.
| | - Huichen Guo
- State Key Laboratory of Veterinary Etiological Biology, OIE/China National Foot-and-Mouth Disease Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Xujiaping 1, Lanzhou 730046, Gansu, P. R. China.
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730000, P. R. China
| |
Collapse
|
22
|
Ma X, Guo G, Wu X, Wu Q, Liu F, Zhang H, Shi N, Guan Y. Advances in Integration, Wearable Applications, and Artificial Intelligence of Biomedical Microfluidics Systems. MICROMACHINES 2023; 14:mi14050972. [PMID: 37241596 DOI: 10.3390/mi14050972] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 04/20/2023] [Accepted: 04/25/2023] [Indexed: 05/28/2023]
Abstract
Microfluidics attracts much attention due to its multiple advantages such as high throughput, rapid analysis, low sample volume, and high sensitivity. Microfluidics has profoundly influenced many fields including chemistry, biology, medicine, information technology, and other disciplines. However, some stumbling stones (miniaturization, integration, and intelligence) strain the development of industrialization and commercialization of microchips. The miniaturization of microfluidics means fewer samples and reagents, shorter times to results, and less footprint space consumption, enabling a high throughput and parallelism of sample analysis. Additionally, micro-size channels tend to produce laminar flow, which probably permits some creative applications that are not accessible to traditional fluid-processing platforms. The reasonable integration of biomedical/physical biosensors, semiconductor microelectronics, communications, and other cutting-edge technologies should greatly expand the applications of current microfluidic devices and help develop the next generation of lab-on-a-chip (LOC). At the same time, the evolution of artificial intelligence also gives another strong impetus to the rapid development of microfluidics. Biomedical applications based on microfluidics normally bring a large amount of complex data, so it is a big challenge for researchers and technicians to analyze those huge and complicated data accurately and quickly. To address this problem, machine learning is viewed as an indispensable and powerful tool in processing the data collected from micro-devices. In this review, we mainly focus on discussing the integration, miniaturization, portability, and intelligence of microfluidics technology.
Collapse
Affiliation(s)
- Xingfeng Ma
- School of Communication and Information Engineering, Shanghai University, Shanghai 200000, China
- Department of Microelectronics, Shanghai University, Shanghai 200000, China
| | - Gang Guo
- Department of Microelectronics, Shanghai University, Shanghai 200000, China
| | - Xuanye Wu
- Department of Microelectronics, Shanghai University, Shanghai 200000, China
- Shanghai Industrial μTechnology Research Institute, Shanghai 200000, China
| | - Qiang Wu
- Shanghai Aure Technology Limited Company, Shanghai 200000, China
| | - Fangfang Liu
- Shanghai Industrial μTechnology Research Institute, Shanghai 200000, China
| | - Hua Zhang
- Shanghai Aure Technology Limited Company, Shanghai 200000, China
| | - Nan Shi
- Shanghai Industrial μTechnology Research Institute, Shanghai 200000, China
- Institute of Translational Medicine, Shanghai University, Shanghai 200000, China
| | - Yimin Guan
- Department of Microelectronics, Shanghai University, Shanghai 200000, China
- Shanghai Aure Technology Limited Company, Shanghai 200000, China
| |
Collapse
|
23
|
Kang MJ, Cho YW, Kim TH. Progress in Nano-Biosensors for Non-Invasive Monitoring of Stem Cell Differentiation. BIOSENSORS 2023; 13:bios13050501. [PMID: 37232862 DOI: 10.3390/bios13050501] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 04/20/2023] [Accepted: 04/22/2023] [Indexed: 05/27/2023]
Abstract
Non-invasive, non-destructive, and label-free sensing techniques are required to monitor real-time stem cell differentiation. However, conventional analysis methods, such as immunocytochemistry, polymerase chain reaction, and Western blot, involve invasive processes and are complicated and time-consuming. Unlike traditional cellular sensing methods, electrochemical and optical sensing techniques allow non-invasive qualitative identification of cellular phenotypes and quantitative analysis of stem cell differentiation. In addition, various nano- and micromaterials with cell-friendly properties can greatly improve the performance of existing sensors. This review focuses on nano- and micromaterials that have been reported to improve sensing capabilities, including sensitivity and selectivity, of biosensors towards target analytes associated with specific stem cell differentiation. The information presented aims to motivate further research into nano-and micromaterials with advantageous properties for developing or improving existing nano-biosensors to achieve the practical evaluation of stem cell differentiation and efficient stem cell-based therapies.
Collapse
Affiliation(s)
- Min-Ji Kang
- School of Integrative Engineering, Chung-Ang University, 84 Heukseuk-ro, Dongjak-gu, Seoul 06974, Republic of Korea
| | - Yeon-Woo Cho
- School of Integrative Engineering, Chung-Ang University, 84 Heukseuk-ro, Dongjak-gu, Seoul 06974, Republic of Korea
| | - Tae-Hyung Kim
- School of Integrative Engineering, Chung-Ang University, 84 Heukseuk-ro, Dongjak-gu, Seoul 06974, Republic of Korea
| |
Collapse
|
24
|
Wilkirson EC, Singampalli KL, Li J, Dixit DD, Jiang X, Gonzalez DH, Lillehoj PB. Affinity-based electrochemical sensors for biomolecular detection in whole blood. Anal Bioanal Chem 2023:10.1007/s00216-023-04627-5. [PMID: 36917265 PMCID: PMC10011785 DOI: 10.1007/s00216-023-04627-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Revised: 02/17/2023] [Accepted: 02/21/2023] [Indexed: 03/15/2023]
Abstract
The detection and/or quantification of biomarkers in blood is important for the early detection, diagnosis, and treatment of a variety of diseases and medical conditions. Among the different types of sensors for detecting molecular biomarkers, such as proteins, nucleic acids, and small-molecule drugs, affinity-based electrochemical sensors offer the advantages of high analytical sensitivity and specificity, fast detection times, simple operation, and portability. However, biomolecular detection in whole blood is challenging due to its highly complex matrix, necessitating sample purification (i.e., centrifugation), which involves the use of bulky, expensive equipment and tedious sample-handling procedures. To address these challenges, various strategies have been employed, such as purifying the blood sample directly on the sensor, employing micro-/nanoparticles to enhance the detection signal, and coating the electrode surface with blocking agents to reduce nonspecific binding, to improve the analytical performance of affinity-based electrochemical sensors without requiring sample pre-processing steps or laboratory equipment. In this article, we present an overview of affinity-based electrochemical sensor technologies that employ these strategies for biomolecular detection in whole blood.
Collapse
Affiliation(s)
- Elizabeth C Wilkirson
- Department of Mechanical Engineering, Rice University, 6100 Main St., Houston, TX, 77005, USA
| | - Kavya L Singampalli
- Department of Bioengineering, Rice University, 6500 Main St., Houston, TX, 77030, USA
- Medical Scientist Training Program, Baylor College of Medicine, 1 Baylor Plaza, Houston, TX, 77030, USA
| | - Jiran Li
- Department of Mechanical Engineering, Rice University, 6100 Main St., Houston, TX, 77005, USA
| | - Desh Deepak Dixit
- Department of Mechanical Engineering, Rice University, 6100 Main St., Houston, TX, 77005, USA
| | - Xue Jiang
- Department of Mechanical Engineering, Rice University, 6100 Main St., Houston, TX, 77005, USA
| | - Diego H Gonzalez
- Department of Bioengineering, Rice University, 6500 Main St., Houston, TX, 77030, USA
| | - Peter B Lillehoj
- Department of Mechanical Engineering, Rice University, 6100 Main St., Houston, TX, 77005, USA.
- Department of Bioengineering, Rice University, 6500 Main St., Houston, TX, 77030, USA.
| |
Collapse
|
25
|
Lokar N, Pečar B, Možek M, Vrtačnik D. Microfluidic Electrochemical Glucose Biosensor with In Situ Enzyme Immobilization. BIOSENSORS 2023; 13:364. [PMID: 36979576 PMCID: PMC10046266 DOI: 10.3390/bios13030364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 03/03/2023] [Accepted: 03/08/2023] [Indexed: 06/18/2023]
Abstract
The development and characterization of a microfluidic electrochemical glucose biosensor are presented herein. The transducer part is based on thin-film metal electrodes on a glass substrate. The biological recognition element of the biosensor is the pyrroloquinoline quinone-glucose dehydrogenase (PQQ-GdhB) enzyme, selectively in situ immobilized via microcontact printing of a mixed self-assembling monolayer (SAM) on a gold working electrode, while the microfluidic part of the device comprises microchannel and microfluidic connections formed in a polydimethylsiloxane (PDMS) elastomer. The electrode properties throughout all steps of biosensor construction and the biosensor response to glucose concentration and analyte flow rate were characterized by cyclic voltammetry and chronoamperometry. A measurement range of up to 10 mM in glucose concentration with a linear range up to 200 μM was determined. A detection limit of 30 µM in glucose concentration was obtained. Respective biosensor sensitivities of 0.79 nA/µM/mm2 and 0.61 nA/µM/mm2 were estimated with and without a flow at 20 µL/min. The developed approach of in situ enzyme immobilization can find a wide number of applications in the development of microfluidic biosensors, offering a path towards continuous and time-independent detection.
Collapse
|
26
|
Holman JB, Shi Z, Fadahunsi AA, Li C, Ding W. Advances on microfluidic paper-based electroanalytical devices. Biotechnol Adv 2023; 63:108093. [PMID: 36603801 DOI: 10.1016/j.biotechadv.2022.108093] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 12/30/2022] [Accepted: 12/30/2022] [Indexed: 01/03/2023]
Abstract
Since the inception of the first electrochemical devices on paper substrates, many different reports of microfluidic paper-based electroanalytical devices (μPEDs), innovative hydrophobic barriers and electrode fabrication processes have allowed the incorporation of diverse materials, resulting in different applications and a boost in performance. These advancements have led to the creation of paper-based devices with comparable performance to many standard conventional devices, with the added benefits of pumpless fluidic transport, component separation and reagent storage that can be exploited to automate and handle sample preprocessing. Herein, we review μPEDs, summarize the characteristics and functionalities of μPEDs, such as separation, fluid flow control and storage, and outline the conventional and emerging fabrication and modification approaches for μPEDs. We also examine the recent application of μPEDs in biomedicine, the environment, and food and water safety, as well as some limitations and challenges that must be addressed.
Collapse
Affiliation(s)
- Joseph Benjamin Holman
- School of Information Science and Technology, University of Science and Technology of China, Hefei, Anhui 230027, China
| | - Zhengdi Shi
- School of Information Science and Technology, University of Science and Technology of China, Hefei, Anhui 230027, China
| | - Adeola A Fadahunsi
- School of Information Science and Technology, University of Science and Technology of China, Hefei, Anhui 230027, China
| | - Chengpan Li
- School of Information Science and Technology, University of Science and Technology of China, Hefei, Anhui 230027, China.
| | - Weiping Ding
- Department of Oncology, the First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230001, China.
| |
Collapse
|
27
|
Wu J, Liu H, Chen W, Ma B, Ju H. Device integration of electrochemical biosensors. NATURE REVIEWS BIOENGINEERING 2023; 1:346-360. [PMID: 37168735 PMCID: PMC9951169 DOI: 10.1038/s44222-023-00032-w] [Citation(s) in RCA: 108] [Impact Index Per Article: 108.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Accepted: 01/23/2023] [Indexed: 05/13/2023]
Abstract
Electrochemical biosensors incorporate a recognition element and an electronic transducer for the highly sensitive detection of analytes in body fluids. Importantly, they can provide rapid readouts and they can be integrated into portable, wearable and implantable devices for point-of-care diagnostics; for example, the personal glucose meter enables at-home assessment of blood glucose levels, greatly improving the management of diabetes. In this Review, we discuss the principles of electrochemical biosensing and the design of electrochemical biosensor devices for health monitoring and disease diagnostics, with a particular focus on device integration into wearable, portable and implantable systems. Finally, we outline the key engineering challenges that need to be addressed to improve sensing accuracy, enable multiplexing and one-step processes, and integrate electrochemical biosensing devices in digital health-care pathways.
Collapse
Affiliation(s)
- Jie Wu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, China
| | - Hong Liu
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, China
| | - Weiwei Chen
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, China
- School of Geographic and Biologic Information, Nanjing University of Posts and Telecommunications, Nanjing, China
| | - Biao Ma
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, China
| | - Huangxian Ju
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, China
| |
Collapse
|
28
|
Liu H, Ahn DJ. Non-specific protein removal and specific protein capture simultaneously using a hydrodynamic force induced under vortex flow. Macromol Res 2023. [DOI: 10.1007/s13233-023-00131-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/23/2023]
|
29
|
Song D, Xu X, Huang X, Li G, Zhao Y, Gao F. Oriented Design of Transition-Metal-Oxide Hollow Multishelled Micropolyhedron Derived from Bimetal-Organic Frameworks for the Electrochemical Detection of Multipesticide Residues. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:2600-2609. [PMID: 36715487 DOI: 10.1021/acs.jafc.2c08818] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Transition-metal oxides (TMOs) with a hollow multishelled structure have emerged as highly potential materials for high-performance electrochemical sensing, benefiting from their superior electronic conductivity, exceptionally large specific surface area, excellent stability, and electrochemistry properties. In particular, binary TMOs are expected to outperform unitary TMOs due to the synergistic effect of the different metals. Herein, MnCo2O4.5 hollow quadruple-shelled porous micropolyhedrons (MnCo2O4.5 HoQS-MPs) were prepared and employed to construct an ultrasensitive sensing platform for a multipesticide assay. Profiting from complex hollow interior structures and abundant active sites, the MnCo2O4.5 HoQS-MPs manifest outstanding electrochemical properties as electrode materials for the pesticide assay. The MnCo2O4.5 HoQS-MP-based biosensor demonstrated remarkable performance for monocrotophos, methamidophos, and carbaryl detection, with wide linear ranges, as well as low detection limits. This work unveils a new pathway for the ultrasensitive detection of pesticides and demonstrates tremendous potential for detecting other environmentally deleterious chemicals.
Collapse
Affiliation(s)
- Dandan Song
- Hebei Key Laboratory of Heavy Metal Deep-Remediation in Water and Resource Reuse, Yanshan University, Qinhuangdao066004, P. R. China
| | - Xiaoyue Xu
- Hebei Key Laboratory of Heavy Metal Deep-Remediation in Water and Resource Reuse, Yanshan University, Qinhuangdao066004, P. R. China
| | - Xingge Huang
- Hebei Key Laboratory of Heavy Metal Deep-Remediation in Water and Resource Reuse, Yanshan University, Qinhuangdao066004, P. R. China
| | - Guoqiang Li
- Hebei Key Laboratory of Heavy Metal Deep-Remediation in Water and Resource Reuse, Yanshan University, Qinhuangdao066004, P. R. China
| | - Yisong Zhao
- Hebei Key Laboratory of Heavy Metal Deep-Remediation in Water and Resource Reuse, Yanshan University, Qinhuangdao066004, P. R. China
| | - Faming Gao
- Key Laboratory of Applied Chemistry, Department of Applied Chemistry, Yanshan University, Qinhuangdao066004, P. R. China
| |
Collapse
|
30
|
Ding R, Jiang W, Ma Y, Yang Q, Han X, Hou X. A highly sensitive MXene/AuPt/AChE-based electrochemical platform for the detection of chlorpyrifos. Microchem J 2023. [DOI: 10.1016/j.microc.2023.108425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
31
|
Hernández-Rodríguez JF, López MÁ, Rojas D, Escarpa A. Digital manufacturing for accelerating organ-on-a-chip dissemination and electrochemical biosensing integration. LAB ON A CHIP 2022; 22:4805-4821. [PMID: 36342332 DOI: 10.1039/d2lc00499b] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Organ on-a-chip (OoC) is a promising technology that aims to recapitulate human body pathophysiology in a more precise way to advance in drug development and complex disease understanding. However, the presence of OoC in biological laboratories is still limited and mainly restricted to laboratories with access to cleanroom facilities. Besides, the current analytical methods employed to extract information from the organ models are endpoint and post facto assays which makes it difficult to ensure that during the biological experiment the cell microenvironment, cellular functionality and behaviour are controlled. Hence, the integration of real-time biosensors is highly needed and requested by the OoC end-user community to provide insight into organ function and responses to stimuli. In this context, electrochemical sensors stand out due to their advantageous features like miniaturization capabilities, ease of use, automatization and high sensitivity and selectivity. Electrochemical sensors have been already successfully miniaturized and employed in other fields such as wearables and point-of-care devices. We have identified that the explanation for this issue may be, to a large extent, the accessibility to microfabrication technologies. These fields employ preferably digital manufacturing (DM), which is a more accessible microfabrication approach regardless of funding and facilities. Therefore, we envision that a paradigm shift in microfabrication that adopts DM instead of the dominating soft lithography for the in-lab microfabrication of OoC devices will contribute to the dissemination of the field and integration of the promising real-time sensing.
Collapse
Affiliation(s)
- Juan F Hernández-Rodríguez
- Department of Analytical Chemistry, Physical Chemistry and Chemical Engineering, University of Alcalá, Madrid, Spain.
| | - Miguel Ángel López
- Department of Analytical Chemistry, Physical Chemistry and Chemical Engineering, University of Alcalá, Madrid, Spain.
- Chemical Engineering and Chemical Research Institute "Andres M. Del Río", University of Alcalá, Madrid, Spain
| | - Daniel Rojas
- Department of Analytical Chemistry, Physical Chemistry and Chemical Engineering, University of Alcalá, Madrid, Spain.
| | - Alberto Escarpa
- Department of Analytical Chemistry, Physical Chemistry and Chemical Engineering, University of Alcalá, Madrid, Spain.
- Chemical Engineering and Chemical Research Institute "Andres M. Del Río", University of Alcalá, Madrid, Spain
| |
Collapse
|
32
|
Amor-Gutiérrez O, Costa-Rama E, Fernández-Abedul MT. Paper-Based Enzymatic Electrochemical Sensors for Glucose Determination. SENSORS (BASEL, SWITZERLAND) 2022; 22:6232. [PMID: 36015999 PMCID: PMC9412717 DOI: 10.3390/s22166232] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 08/11/2022] [Accepted: 08/15/2022] [Indexed: 05/31/2023]
Abstract
The general objective of Analytical Chemistry, nowadays, is to obtain best-quality information in the shortest time to contribute to the resolution of real problems. In this regard, electrochemical biosensors are interesting alternatives to conventional methods thanks to their great characteristics, both those intrinsically analytical (precision, sensitivity, selectivity, etc.) and those more related to productivity (simplicity, low costs, and fast response, among others). For many years, the scientific community has made continuous progress in improving glucose biosensors, being this analyte the most important in the biosensor market, due to the large amount of people who suffer from diabetes mellitus. The sensitivity of the electrochemical techniques combined with the selectivity of the enzymatic methodologies have positioned electrochemical enzymatic sensors as the first option. This review, focusing on the electrochemical determination of glucose using paper-based analytical devices, shows recent approaches in the use of paper as a substrate for low-cost biosensing. General considerations on the principles of enzymatic detection and the design of paper-based analytical devices are given. Finally, the use of paper in enzymatic electrochemical biosensors for glucose detection, including analytical characteristics of the methodologies reported in relevant articles over the last years, is also covered.
Collapse
Affiliation(s)
| | - Estefanía Costa-Rama
- Department of Physical and Analytical Chemistry, University of Oviedo, 33006 Oviedo, Spain
| | | |
Collapse
|
33
|
Liu H, Ahn DJ. Anisotropic CdSe Tetrapods in Vortex Flow for Removing Non-Specific Binding and Increasing Protein Capture. SENSORS (BASEL, SWITZERLAND) 2022; 22:s22155929. [PMID: 35957486 PMCID: PMC9371395 DOI: 10.3390/s22155929] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 08/01/2022] [Accepted: 08/05/2022] [Indexed: 06/09/2023]
Abstract
Non-specific binding (NSB) is one of the important issues in biosensing performance. Herein, we designed a strategy for removing non-specific binding including anti-mouse IgG antibody and bovine serum albumin (BSA) by utilizing anisotropic cadmium selenide tetrapods (CdSe TPs) in a vortex flow. The shear force on the tetrapod nanoparticles was increased by controlling the rotation rate of the vortex flow from 0 rpm to 1000 rpm. As a result, photoluminescence (PL) signals of fluorescein (FITC)-conjugated protein, anti-mouse IgG antibody-FITC and bovine serum albumin (BSA)-FITC, were reduced by 35% and 45%, respectively, indicating that NSB can be removed under vortex flow. In particular, simultaneous NSB removal and protein capture can be achieved even with mixture solutions of target antibodies and anti-mouse IgG antibodies by applying cyclic mode vortex flow on anisotropic CdSe TPs. These results demonstrate successfully that NSB can be diminished by rotating CdSe TPs to generate shear force under vortex flow. This study opens up new research protocols for utilization of anisotropic nanoparticles under vortex flow, which increases the feasibility of protein capture and non-specific proteins removal for biosensors.
Collapse
Affiliation(s)
- Hanzhe Liu
- Department of Chemical and Biological Engineering, Korea University, Seoul 02841, Korea
| | - Dong June Ahn
- Department of Chemical and Biological Engineering, Korea University, Seoul 02841, Korea
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul 02841, Korea
| |
Collapse
|
34
|
A new angle to control concentration profiles at electroactive biofilm interfaces: investigating a microfluidic perpendicular flow approach. Electrochim Acta 2022. [DOI: 10.1016/j.electacta.2022.141071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
35
|
Andriukaitis D, Vargalis R, Šerpytis L, Drevinskas T, Kornyšova O, Stankevičius M, Bimbiraitė-Survilienė K, Kaškonienė V, Maruškas AS, Jonušauskas L. Fabrication of Microfluidic Tesla Valve Employing Femtosecond Bursts. MICROMACHINES 2022; 13:mi13081180. [PMID: 35893178 PMCID: PMC9332475 DOI: 10.3390/mi13081180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 07/13/2022] [Accepted: 07/17/2022] [Indexed: 11/16/2022]
Abstract
Expansion of the microfluidics field dictates the necessity to constantly improve technologies used to produce such systems. One of the approaches which are used more and more is femtosecond (fs) direct laser writing (DLW). The subtractive model of DLW allows for directly producing microfluidic channels via ablation in an extremely simple and cost-effective manner. However, channel surface roughens are always a concern when direct fs ablation is used, as it normally yields an RMS value in the range of a few µm. One solution to improve it is the usage of fs bursts. Thus, in this work, we show how fs burst mode ablation can be optimized to achieve sub-µm surface roughness in glass channel fabrication. It is done without compromising on manufacturing throughput. Furthermore, we show that a simple and cost-effective channel sealing methodology of thermal bonding can be employed. Together, it allows for production functional Tesla valves, which are tested. Demonstrated capabilities are discussed.
Collapse
Affiliation(s)
- Deividas Andriukaitis
- Femtika Ltd., Saulėtekio Ave. 15, LT-10224 Vilnius, Lithuania; (D.A.); (R.V.); (L.J.)
- Laser Research Center, Vilnius University, Saulėtekio Ave. 10, LT-10223 Vilnius, Lithuania
| | - Rokas Vargalis
- Femtika Ltd., Saulėtekio Ave. 15, LT-10224 Vilnius, Lithuania; (D.A.); (R.V.); (L.J.)
| | - Lukas Šerpytis
- Institute of Chemistry, Vilnius University, Naugarduko 24, LT-03225 Vilnius, Lithuania;
| | - Tomas Drevinskas
- Instrumental Analysis Open Access Centre, Vytautas Magnus University, Vileikos 8, LT-44404 Kaunas, Lithuania; (T.D.); (O.K.); (M.S.); (K.B.-S.); (V.K.)
| | - Olga Kornyšova
- Instrumental Analysis Open Access Centre, Vytautas Magnus University, Vileikos 8, LT-44404 Kaunas, Lithuania; (T.D.); (O.K.); (M.S.); (K.B.-S.); (V.K.)
| | - Mantas Stankevičius
- Instrumental Analysis Open Access Centre, Vytautas Magnus University, Vileikos 8, LT-44404 Kaunas, Lithuania; (T.D.); (O.K.); (M.S.); (K.B.-S.); (V.K.)
| | - Kristina Bimbiraitė-Survilienė
- Instrumental Analysis Open Access Centre, Vytautas Magnus University, Vileikos 8, LT-44404 Kaunas, Lithuania; (T.D.); (O.K.); (M.S.); (K.B.-S.); (V.K.)
| | - Vilma Kaškonienė
- Instrumental Analysis Open Access Centre, Vytautas Magnus University, Vileikos 8, LT-44404 Kaunas, Lithuania; (T.D.); (O.K.); (M.S.); (K.B.-S.); (V.K.)
| | - Audrius Sigitas Maruškas
- Instrumental Analysis Open Access Centre, Vytautas Magnus University, Vileikos 8, LT-44404 Kaunas, Lithuania; (T.D.); (O.K.); (M.S.); (K.B.-S.); (V.K.)
- Correspondence:
| | - Linas Jonušauskas
- Femtika Ltd., Saulėtekio Ave. 15, LT-10224 Vilnius, Lithuania; (D.A.); (R.V.); (L.J.)
- Laser Research Center, Vilnius University, Saulėtekio Ave. 10, LT-10223 Vilnius, Lithuania
| |
Collapse
|
36
|
Research Progress on the Preparation and Applications of Laser-Induced Graphene Technology. NANOMATERIALS 2022; 12:nano12142336. [PMID: 35889560 PMCID: PMC9317010 DOI: 10.3390/nano12142336] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 07/03/2022] [Accepted: 07/03/2022] [Indexed: 11/17/2022]
Abstract
Graphene has been regarded as a potential application material in the field of new energy conversion and storage because of its unique two-dimensional structure and excellent physical and chemical properties. However, traditional graphene preparation methods are complicated in-process and difficult to form patterned structures. In recent years, laser-induced graphene (LIG) technology has received a large amount of attention from scholars and has a wide range of applications in supercapacitors, batteries, sensors, air filters, water treatment, etc. In this paper, we summarized a variety of preparation methods for graphene. The effects of laser processing parameters, laser type, precursor materials, and process atmosphere on the properties of the prepared LIG were reviewed. Then, two strategies for large-scale production of LIG were briefly described. We also discussed the wide applications of LIG in the fields of signal sensing, environmental protection, and energy storage. Finally, we briefly outlined the future trends of this research direction.
Collapse
|
37
|
Xie X, Wang Y, Siu SY, Chan CW, Zhu Y, Zhang X, Ge J, Ren K. Microfluidic synthesis as a new route to produce novel functional materials. BIOMICROFLUIDICS 2022; 16:041301. [PMID: 36035887 PMCID: PMC9410731 DOI: 10.1063/5.0100206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2022] [Accepted: 07/28/2022] [Indexed: 06/15/2023]
Abstract
By geometrically constraining fluids into the sub-millimeter scale, microfluidics offers a physical environment largely different from the macroscopic world, as a result of the significantly enhanced surface effects. This environment is characterized by laminar flow and inertial particle behavior, short diffusion distance, and largely enhanced heat exchange. The recent two decades have witnessed the rapid advances of microfluidic technologies in various fields such as biotechnology; analytical science; and diagnostics; as well as physical, chemical, and biological research. On the other hand, one additional field is still emerging. With the advances in nanomaterial and soft matter research, there have been some reports of the advantages discovered during attempts to synthesize these materials on microfluidic chips. As the formation of nanomaterials and soft matters is sensitive to the environment where the building blocks are fed, the unique physical environment of microfluidics and the effectiveness in coupling with other force fields open up a lot of possibilities to form new products as compared to conventional bulk synthesis. This Perspective summarizes the recent progress in producing novel functional materials using microfluidics, such as generating particles with narrow and controlled size distribution, structured hybrid materials, and particles with new structures, completing reactions with a quicker rate and new reaction routes and enabling more effective and efficient control on reactions. Finally, the trend of future development in this field is also discussed.
Collapse
Affiliation(s)
- Xinying Xie
- Department of Chemistry, Hong Kong Baptist University, Hong Kong 999077, China
| | - Yisu Wang
- Department of Chemistry, Hong Kong Baptist University, Hong Kong 999077, China
| | - Sin-Yung Siu
- Department of Chemistry, Hong Kong Baptist University, Hong Kong 999077, China
| | - Chiu-Wing Chan
- Department of Chemistry, Hong Kong Baptist University, Hong Kong 999077, China
| | | | - Xuming Zhang
- Department of Applied Physics, Hong Kong Polytechnic University, Hong Kong 999077, China
| | | | - Kangning Ren
- Author to whom correspondence should be addressed: and
| |
Collapse
|
38
|
All-in-One Digital Microfluidics System for Molecular Diagnosis with Loop-Mediated Isothermal Amplification. BIOSENSORS 2022; 12:bios12050324. [PMID: 35624625 PMCID: PMC9138765 DOI: 10.3390/bios12050324] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 05/08/2022] [Accepted: 05/09/2022] [Indexed: 11/17/2022]
Abstract
In this study, an “all-in-one” digital microfluidics (DMF) system was developed for automatic and rapid molecular diagnosis and integrated with magnetic bead-based nucleic acid extraction, loop-mediated isothermal amplification (LAMP), and real-time optical signal monitoring. First, we performed on- and off-chip comparison experiments for the magnetic bead nucleic acid extraction module and LAMP amplification function. The extraction efficiency for the on-chip test was comparable to that of conventional off-chip methods. The processing time for the automatic on-chip workflow was only 23 min, which was less than that of the conventional methods of 28 min 45 s. Meanwhile, the number of samples used in on-chip experiments was significantly smaller than that used in off-chip experiments; only 5 µL of E. coli samples was required for nucleic acid extraction, and 1 µL of the nucleic acid template was needed for the amplification reaction. In addition, we selected SARS-CoV-2 nucleic acid reference materials for the nucleic acid detection experiment, demonstrating a limit of detection of 10 copies/µL. The proposed “all-in-one” DMF system provides an on-site “sample to answer” time of approximately 60 min, which can be a powerful tool for point-of-care molecular diagnostics.
Collapse
|
39
|
Wang X, Li Y, Zhao M, Wang H, Wan Q, Shi C, Ma C. An ultrafast ratiometric electrochemical biosensor based on potential-assisted hybridization for nucleic acids detection. Anal Chim Acta 2022; 1211:339915. [DOI: 10.1016/j.aca.2022.339915] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 04/29/2022] [Accepted: 05/04/2022] [Indexed: 01/24/2023]
|
40
|
A Simple Ratiometric Electrochemical Aptasensor Based on the Thionine–Graphene Nanocomposite for Ultrasensitive Detection of Aflatoxin B2 in Peanut and Peanut Oil. CHEMOSENSORS 2022. [DOI: 10.3390/chemosensors10050154] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The accurate and reliable analysis of aflatoxin B2 (AFB2) is widely required in food and agricultural industries. In the present work, we report the first use of a ratiometric electrochemical aptasensor for AFB2 detection with high selectivity and reliability. The working principle relies on the conformation change of the aptamer induced by its specific recognition of AFB2 to vary the ratiometric signal. Based on this principle, the proposed aptasensor collects currents generated by thionine–graphene composites (ITHI) and ferrocene-labeled aptamers (IFc) to output the ratiometric signal of ITHI/IFc. In analysis, the value of ITHI remained stable while that of IFc increased with higher AFB2 concentration, thus offering a “signal-off” aptasensor by using ITHI/IFc as a yardstick. The fabricated aptasensor showed a linear range of 0.001–10 ng mL−1 with a detection limit of 0.19 pg mL−1 for AFB2 detection. Furthermore, its applicability was validated by using it to detect AFB2 in peanut and peanut oil samples with high rates of recovery. The developed ratiometric aptasensor shows the merits of simple fabrication and high accuracy, and it can be extended to detect other mycotoxins in agricultural products.
Collapse
|
41
|
LI J, HAN G, LIN X, WU L, QIAN C, XU J. Application of magnetic immunofluorescence assay based on microfluidic technology to detection of Epstein-Barr virus. Se Pu 2022; 40:372-383. [PMID: 35362685 PMCID: PMC9404092 DOI: 10.3724/sp.j.1123.2021.09005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
EB病毒(Epstein-Barr virus, EBV)的早期诊断能够降低患者发生重大疾病的风险。临床上常用的EBV抗体的检测方法存在耗时长、试剂消耗大和效率低等缺点。相比于传统的检测方法,微流控(microfluidics)技术具有高通量、试剂消耗少,污染少和自动化程度高等优点,磁免疫荧光技术具有检测效率高、信号强等优点,将两者的优势结合,能够弥补传统方法的不足。鉴于此,采用聚甲基丙烯酸甲酯(PMMA)作为芯片原材料,经过激光切割及真空热压加工工艺能够快速获得芯片。将包被抗原的磁珠及包被抗人抗体的荧光微球经过冷冻干燥工艺快速冻干成小球并嵌入芯片内,经过孵育和清洗后,进行检测。通过图像分析快速得到检测结果。通过精密度、特异性、剂量-反应曲线及检出限测试,进行性能验证。通过与化学发光免疫分析法(CLIA)检测的临床样本比对,进行方法学与临床应用评价。结果显示相对标准偏差(RSD)均小于10%。与多种常见的病原体抗体均无交叉反应。EB病毒衣壳抗原(Epstein-Barr viral capsid antigen, EB VCA)IgG项目的检出限为1.92 U/mL,线性范围为1.92~200 U/mL,阳性符合率为95.77%(68/71),阴性符合率为86%(43/50); EB VCA IgA项目的检出限为2.79 U/mL,线性范围为2.79~200 U/mL,阳性符合率为92%(46/50),阴性符合率为92.96%(66/71); EB病毒核心抗原1(Epstein-Barr nuclear antigen 1, EB NA1)IgG项目的检出限为3.13 U/mL,线性范围为3.13~200 U/mL,阳性符合率为92.96%(66/71),阴性符合率为92%(46/50); EB NA1 IgA项目的检出限为1.53 U/mL,线性范围为1.53~200 U/mL,阳性符合率为90%(45/50),阴性符合率为91.55%(65/71)。4个项目能在20 min内快速完成检测,且与临床上使用CLIA方法测试的结果具有良好的相关性,可以为临床提供一种快速、灵敏、简便、自动化程度高和易于基层推广的检测方法。
Collapse
|
42
|
Yu R, Xue J, Wang Y, Qiu J, Huang X, Chen A, Xue J. Novel Ti 3C 2T x MXene nanozyme with manageable catalytic activity and application to electrochemical biosensor. J Nanobiotechnology 2022; 20:119. [PMID: 35264180 PMCID: PMC8905786 DOI: 10.1186/s12951-022-01317-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Accepted: 02/20/2022] [Indexed: 01/05/2023] Open
Abstract
In this work, Ti3C2Tx MXene was identified as efficient nanozyme with area-dependent electrocatalytic activity in oxidation of phenolic compounds, which originated from the strong adsorption effect between the phenolic hydroxyl group and the oxygen atom on the surface of Ti3C2Tx MXene flake. On the basis of the novel electrocatalytic activity, Ti3C2Tx MXene was combined with alkaline phosphatase to construct a novel cascading catalytic amplification strategy using 1-naphthyl phosphate (1-NPP) as substrate, thereby realizing efficient electrochemical signal amplification. Taking advantage of the novel cascading catalytic amplification strategy, an electrochemical biosensor was fabricated for BCR/ABL fusion gene detection, which achieved excellent sensitivity with linear range from 0.2 fM to 20 nM and limit of detection down to 0.05 fM. This biosensor provided a promising tool for ultrasensitive fusion gene detection in early diagnosis of chronic myelogenous leukemia and acute lymphocytic leukemia. Moreover, the manageable catalytic activity of MXene broke a path for developing nanozymes, which possessed enormous application potential in not only electrochemical analysis but also the extensive fields including organic synthesis, pollutant disposal and so on.
Collapse
Affiliation(s)
- Rongjun Yu
- Department of Clinical Laboratory, University-Town Hospital of Chongqing Medical University, Chongqing, 401331, China
| | - Jian Xue
- School of Public Health and Management, Chongqing Medical University, Chongqing, 400016, China
| | - Yang Wang
- Department of Clinical Laboratory, University-Town Hospital of Chongqing Medical University, Chongqing, 401331, China
| | - Jingfu Qiu
- School of Public Health and Management, Chongqing Medical University, Chongqing, 400016, China
| | - Xinyi Huang
- Department of Clinical Laboratory, First Affiliated Hospital of Guangxi University of Chinese Medicine, Nanning, 530023, China.
| | - Anyi Chen
- School of Public Health and Management, Chongqing Medical University, Chongqing, 400016, China.
| | - Jianjiang Xue
- Department of Clinical Laboratory, University-Town Hospital of Chongqing Medical University, Chongqing, 401331, China.
| |
Collapse
|
43
|
Asefifeyzabadi N, Durocher G, Tshilenge KT, Alam T, Ellerby LM, Shamsi MH. PNA microprobe for label-free detection of expanded trinucleotide repeats. RSC Adv 2022; 12:7757-7761. [PMID: 35424746 PMCID: PMC8982460 DOI: 10.1039/d2ra00230b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Accepted: 03/03/2022] [Indexed: 11/28/2022] Open
Abstract
We present a PNA microprobe sensing platform to detect trinucleotide repeat mutation by electrochemical impedance spectroscopy. The microprobe platform discriminated Huntington's disease-associated CAG repeats in cell-derived total RNA with S/N 1 : 3. This sensitive, label-free, and PCR-free detection strategy may be employed in the future to develop biosensing platforms for the detection of a plethora of repeat expansion disorders.
Collapse
Affiliation(s)
- Narges Asefifeyzabadi
- School of Chemical and Biomolecular Sciences, 1245 Lincoln Dr, Southern Illinois University at Carbondale IL 62901 USA
| | - Grace Durocher
- School of Chemical and Biomolecular Sciences, 1245 Lincoln Dr, Southern Illinois University at Carbondale IL 62901 USA
| | | | - Tanimul Alam
- The Buck Institute for Research on Aging 8001 Redwood Blvd Novato CA 94945 USA
| | - Lisa M Ellerby
- The Buck Institute for Research on Aging 8001 Redwood Blvd Novato CA 94945 USA
| | - Mohtashim H Shamsi
- School of Chemical and Biomolecular Sciences, 1245 Lincoln Dr, Southern Illinois University at Carbondale IL 62901 USA
| |
Collapse
|
44
|
Madrid RE, Ashur Ramallo F, Barraza DE, Chaile RE. Smartphone-Based Biosensor Devices for Healthcare: Technologies, Trends, and Adoption by End-Users. Bioengineering (Basel) 2022; 9:101. [PMID: 35324790 PMCID: PMC8945789 DOI: 10.3390/bioengineering9030101] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 02/15/2022] [Accepted: 02/24/2022] [Indexed: 12/15/2022] Open
Abstract
Smart biosensors are becoming an important support for modern healthcare, even more so in the current context. Numerous smartphone-based biosensor developments were published in recent years, some highly effective and sensitive. However, when patents and patent applications related to smart biosensors for healthcare applications are analyzed, it is surprising to note that, after significant growth in the first half of the decade, the number of applications filed has decreased considerably in recent years. There can be many causes of this effect. In this review, we present the state of the art of different types of smartphone-based biosensors, considering their stages of development. In the second part, a critical analysis of the possible reasons why many technologies do not reach the market is presented. Both technical and end-user adoption limitations were addressed. It was observed that smart biosensors on the commercial stage are still scarce despite the great evolution that these technologies have experienced, which shows the need to strengthen the stages of transfer, application, and adoption of technologies by end-users.
Collapse
Affiliation(s)
- Rossana E. Madrid
- Laboratorio de Medios e Interfases (LAMEIN), DBI, FACET, Universidad Nacional de Tucumán, Instituto Superior de Investigaciones Biológicas (INSIBIO), CONICET, Av. Independencia 1800, San Miguel de Tucuman 4000, Argentina; (F.A.R.); (D.E.B.); (R.E.C.)
| | | | | | | |
Collapse
|
45
|
Zhou P, He H, Ma H, Wang S, Hu S. A Review of Optical Imaging Technologies for Microfluidics. MICROMACHINES 2022; 13:mi13020274. [PMID: 35208397 PMCID: PMC8877635 DOI: 10.3390/mi13020274] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 01/07/2022] [Accepted: 01/11/2022] [Indexed: 12/15/2022]
Abstract
Microfluidics can precisely control and manipulate micro-scale fluids, and are also known as lab-on-a-chip or micro total analysis systems. Microfluidics have huge application potential in biology, chemistry, and medicine, among other fields. Coupled with a suitable detection system, the detection and analysis of small-volume and low-concentration samples can be completed. This paper reviews an optical imaging system combined with microfluidics, including bright-field microscopy, chemiluminescence imaging, spectrum-based microscopy imaging, and fluorescence-based microscopy imaging. At the end of the article, we summarize the advantages and disadvantages of each imaging technology.
Collapse
Affiliation(s)
- Pan Zhou
- School of Physics and Optoelectronic Engineering, Foshan University, Foshan 528225, China;
- Guangdong-Hong Kong-Macao Joint Laboratory for Intelligent Micro-Nano Optoelectronic Technology, Foshan University, Foshan 528225, China;
| | - Haipeng He
- Guangdong-Hong Kong-Macao Joint Laboratory for Intelligent Micro-Nano Optoelectronic Technology, Foshan University, Foshan 528225, China;
| | - Hanbin Ma
- CAS Key Laboratory of Bio-Medical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou 215163, China;
- Guangdong ACXEL Micro & Nano Tech Co., Ltd., Foshan 528000, China
| | - Shurong Wang
- Guangdong-Hong Kong-Macao Joint Laboratory for Intelligent Micro-Nano Optoelectronic Technology, Foshan University, Foshan 528225, China;
- Correspondence: (S.W.); (S.H.)
| | - Siyi Hu
- CAS Key Laboratory of Bio-Medical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou 215163, China;
- Correspondence: (S.W.); (S.H.)
| |
Collapse
|
46
|
Wilder LM, Thompson JR, Crooks RM. Electrochemical pH regulation in droplet microfluidics. LAB ON A CHIP 2022; 22:632-640. [PMID: 35018955 DOI: 10.1039/d1lc00952d] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
We report a method for electrochemical pH regulation in microdroplets generated in a microfluidic device. The key finding is that controlled quantities of reagents can be generated electrochemically in moving microdroplets confined within a microfluidic channel. Additionally, products generated at the anode and cathode can be isolated within descendant microdroplets. Specifically, ∼5 nL water-in-oil microdroplets are produced at a T-junction and then later split into two descendant droplets. During splitting, floor-patterned microelectrodes drive water electrolysis within the aqueous microdroplets to produce H+ and OH-. This results in a change in the pHs of the descendant droplets. The droplet pH can be regulated over a range of 5.9 to 7.7 by injecting controlled amounts of charge into the droplets. When the injected charge is between -6.3 and 54.5 nC nL-1, the measured pH of the resulting droplets is within ±0.1 pH units of that predicted based on the magnitude of the injected charge. This technique can likely be adapted to electrogeneration of other reagents within microdroplets.
Collapse
Affiliation(s)
- Logan M Wilder
- Department of Chemistry and the Texas Materials Institute, The University of Texas at Austin, 105 E. 24th Street, Stop A5300, Austin, Texas 78712-1224, USA.
| | - Jonathan R Thompson
- Department of Chemistry and the Texas Materials Institute, The University of Texas at Austin, 105 E. 24th Street, Stop A5300, Austin, Texas 78712-1224, USA.
| | - Richard M Crooks
- Department of Chemistry and the Texas Materials Institute, The University of Texas at Austin, 105 E. 24th Street, Stop A5300, Austin, Texas 78712-1224, USA.
| |
Collapse
|
47
|
Rodríguez-Verástegui LL, Ramírez-Zavaleta CY, Capilla-Hernández MF, Gregorio-Jorge J. Viruses Infecting Trees and Herbs That Produce Edible Fleshy Fruits with a Prominent Value in the Global Market: An Evolutionary Perspective. PLANTS (BASEL, SWITZERLAND) 2022; 11:203. [PMID: 35050091 PMCID: PMC8778216 DOI: 10.3390/plants11020203] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Revised: 09/20/2021] [Accepted: 09/23/2021] [Indexed: 05/12/2023]
Abstract
Trees and herbs that produce fruits represent the most valuable agricultural food commodities in the world. However, the yield of these crops is not fully achieved due to biotic factors such as bacteria, fungi, and viruses. Viruses are capable of causing alterations in plant growth and development, thereby impacting the yield of their hosts significantly. In this work, we first compiled the world's most comprehensive list of known edible fruits that fits our definition. Then, plant viruses infecting those trees and herbs that produce fruits with commercial importance in the global market were identified. The identified plant viruses belong to 30 families, most of them containing single-stranded RNA genomes. Importantly, we show the overall picture of the host range for some virus families following an evolutionary approach. Further, the current knowledge about plant-virus interactions, focusing on the main disorders they cause, as well as yield losses, is summarized. Additionally, since accurate diagnosis methods are of pivotal importance for viral diseases control, the current and emerging technologies for the detection of these plant pathogens are described. Finally, the most promising strategies employed to control viral diseases in the field are presented, focusing on solutions that are long-lasting.
Collapse
Affiliation(s)
| | - Candy Yuriria Ramírez-Zavaleta
- Cuerpo Académico Procesos Biotecnológicos, Universidad Politécnica de Tlaxcala, Av. Universidad Politécnica 1, San Pedro Xalcaltzinco 90180, Mexico; (C.Y.R.-Z.); (M.F.C.-H.)
| | - María Fernanda Capilla-Hernández
- Cuerpo Académico Procesos Biotecnológicos, Universidad Politécnica de Tlaxcala, Av. Universidad Politécnica 1, San Pedro Xalcaltzinco 90180, Mexico; (C.Y.R.-Z.); (M.F.C.-H.)
| | - Josefat Gregorio-Jorge
- Consejo Nacional de Ciencia y Tecnología, Universidad Politécnica de Tlaxcala, Av. Insurgentes Sur 1582, Col. Crédito Constructor, Ciudad de Mexico 03940, Mexico
| |
Collapse
|
48
|
Emerging Microfluidic and Biosensor Technologies for Improved Cancer Theranostics. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1379:461-495. [DOI: 10.1007/978-3-031-04039-9_19] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
49
|
Mohd Asri MA, Nordin AN, Ramli N. Low-cost and cleanroom-free prototyping of microfluidic and electrochemical biosensors: Techniques in fabrication and bioconjugation. BIOMICROFLUIDICS 2021; 15:061502. [PMID: 34777677 PMCID: PMC8577868 DOI: 10.1063/5.0071176] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Accepted: 10/22/2021] [Indexed: 05/18/2023]
Abstract
Integrated microfluidic biosensors enable powerful microscale analyses in biology, physics, and chemistry. However, conventional methods for fabrication of biosensors are dependent on cleanroom-based approaches requiring facilities that are expensive and are limited in access. This is especially prohibitive toward researchers in low- and middle-income countries. In this topical review, we introduce a selection of state-of-the-art, low-cost prototyping approaches of microfluidics devices and miniature sensor electronics for the fabrication of sensor devices, with focus on electrochemical biosensors. Approaches explored include xurography, cleanroom-free soft lithography, paper analytical devices, screen-printing, inkjet printing, and direct ink writing. Also reviewed are selected surface modification strategies for bio-conjugates, as well as examples of applications of low-cost microfabrication in biosensors. We also highlight several factors for consideration when selecting microfabrication methods appropriate for a project. Finally, we share our outlook on the impact of these low-cost prototyping strategies on research and development. Our goal for this review is to provide a starting point for researchers seeking to explore microfluidics and biosensors with lower entry barriers and smaller starting investment, especially ones from low resource settings.
Collapse
Affiliation(s)
- Mohd Afiq Mohd Asri
- Department of Electrical and Computer Engineering, Kulliyyah of Engineering, International Islamic University Malaysia, 53100 Gombak, Selangor, Malaysia
| | - Anis Nurashikin Nordin
- Department of Electrical and Computer Engineering, Kulliyyah of Engineering, International Islamic University Malaysia, 53100 Gombak, Selangor, Malaysia
- Author to whom correspondence should be addressed:
| | - Nabilah Ramli
- Department of Mechanical Engineering, Kulliyyah of Engineering, International Islamic University Malaysia, 53100 Gombak, Selangor, Malaysia
| |
Collapse
|
50
|
Microchip electrophoresis and electrochemical detection: A review on a growing synergistic implementation. Electrochim Acta 2021. [DOI: 10.1016/j.electacta.2021.138928] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|