1
|
Mammadova HG. Antibacterial activity of Macrosciadium alatum (M.Bieb.) plant extract. JOURNAL OF COMPLEMENTARY & INTEGRATIVE MEDICINE 2024; 0:jcim-2023-0306. [PMID: 38887086 DOI: 10.1515/jcim-2023-0306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Accepted: 06/01/2024] [Indexed: 06/20/2024]
Abstract
OBJECTIVES The flora of Azerbaijan is represented by one species of the Macrosciadium genus: Macrosciadium alatum, belonging to the Apiaceae family. It is commonly found in the Greater and Lesser Caucasus regions of Azerbaijan, as part of subalpine meadow plant communities. M. alatum is characterized by its robust, thick, tuberous roots, long-petioled and several times pinnately divided leaves, numerous (30-50) white umbels, and oval-shaped fruits. The primary objective of this research is to determine the antimicrobial potential of the aqueous extract obtained from M. alatum against both Gram-negative and Gram-positive bacteria. The plant preparations utilized in in vitro experiments were in the form of maceration, infusion, and hydrodistillation as aqueous extracts. M. alatum extract exhibited maximum (measuring 22.3 ± 1.4 mm) inhibition zones against bacteria (Staphylococcus aureus, Escherichia coli, Pseudomonas aeruginosa, Bacillus cereus, and Salmonella enteritidis) strains. Following exposure to the M. alatum plant extract, a significant reduction in bacterial cell cytoplasmic pH was observed (p≤0.04). METHODS In order to investigate the antimicrobial effects of the plant extract, commonly accepted procedures were followed using well-known bacterial strains, including S. aureus, B. cereus, E. coli, S. enteritis and P. aeruginosa, which are principal causative agents of purulent-inflammatory processes. The 20 % aqueous extract was used. RESULTS The conducted experiment to determine the impact of the plant extract on microorganisms revealed that the extract significantly affects the bacterial cell membrane. Specifically, there is a decrease in pH, and hyperpolarization of the cell membrane occurs. The efficacy of the preservative effect is highly dependent on the environmental pH. 1. The 20 % aqueous extract from exhibited antimicrobial activity and effectively preventing the development of foodborne pathogens and putrefactive microorganisms. 2. A 20 % aqueous extract of M. alatum exhibits antimicrobial activity, effectively inhibiting the growth of foodborne pathogens and spoilage microorganisms. 3. Extract led to an increase in H+ concentration within bacterial cell cytoplasm, surpassing the OH- concentration. 4. M. alatum species has a significant inhibitory effect on the growth of microorganisms such as S. aureus, E. coli, P. aeruginosa, and S. enteritidis. CONCLUSIONS The results suggest that the extract from M. alatum possesses antimicrobial properties, making it a potential candidate for use as a natural food preservative. The observed hyperpolarization of the cell membrane and pH reduction further support its potential as an effective antibacterial agent.
Collapse
Affiliation(s)
- Husniya Gara Mammadova
- Department of Biology, Faculty of Chemistry and Biology, 217749 Sumgait State University , Sumgait, Azerbaijan
| |
Collapse
|
2
|
Demirel S. Vasorelaxant effects of biochemical constituents of various medicinal plants and their benefits in diabetes. World J Diabetes 2024; 15:1122-1141. [PMID: 38983824 PMCID: PMC11229960 DOI: 10.4239/wjd.v15.i6.1122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 03/07/2024] [Accepted: 05/06/2024] [Indexed: 06/11/2024] Open
Abstract
Endothelial function plays a pivotal role in cardiovascular health, and dysfunction in this context diminishes vasorelaxation concomitant with endothelial activity. The nitric oxide-cyclic guanosine monophosphate pathway, prostacyclin-cyclic adenosine monophosphate pathway, inhibition of phosphodiesterase, and the opening of potassium channels, coupled with the reduction of calcium levels in the cell, constitute critical mechanisms governing vasorelaxation. Cardiovascular disease stands as a significant contributor to morbidity and mortality among individuals with diabetes, with adults afflicted by diabetes exhibiting a heightened cardiovascular risk compared to their non-diabetic counterparts. A plethora of medicinal plants, characterized by potent pharmacological effects and minimal side effects, holds promise in addressing these concerns. In this review, we delineate various medicinal plants and their respective biochemical constituents, showcasing concurrent vasorelaxant and anti-diabetic activities.
Collapse
Affiliation(s)
- Sadettin Demirel
- Medicine School, Physiology Department, Bursa Uludag University, Bursa 16059, Türkiye
| |
Collapse
|
3
|
Chen X, Zhang X, Sun W, Hou Z, Nie B, Wang F, Yang S, Feng S, Li W, Wang L. LcSAO1, an Unconventional DOXB Clade 2OGD Enzyme from Ligusticum chuanxiong Catalyzes the Biosynthesis of Plant-Derived Natural Medicine Butylphthalide. Int J Mol Sci 2023; 24:17417. [PMID: 38139246 PMCID: PMC10743894 DOI: 10.3390/ijms242417417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 11/11/2023] [Accepted: 11/14/2023] [Indexed: 12/24/2023] Open
Abstract
Butylphthalide, a prescription medicine recognized for its efficacy in treating ischemic strokes approved by the State Food and Drug Administration of China in 2005, is sourced from the traditional botanical remedy Ligusticum chuanxiong. While chemical synthesis offers a viable route, limitations in the production of isomeric variants with compromised bioactivity necessitate alternative strategies. Addressing this issue, biosynthesis offers a promising solution. However, the intricate in vivo pathway for butylphthalide biosynthesis remains elusive. In this study, we examined the distribution of butylphthalide across various tissues of L. chuanxiong and found a significant accumulation in the rhizome. By searching transcriptome data from different tissues of L. chuanxiong, we identified four rhizome-specific genes annotated as 2-oxoglutarate-dependent dioxygenase (2-OGDs) that emerged as promising candidates involved in butylphthalide biosynthesis. Among them, LcSAO1 demonstrates the ability to catalyze the desaturation of senkyunolide A at the C-4 and C-5 positions, yielding the production of butylphthalide. Experimental validation through transient expression assays in Nicotiana benthamiana corroborates this transformative enzymatic activity. Notably, phylogenetic analysis of LcSAO1 revealed that it belongs to the DOXB clade, which typically encompasses genes with hydroxylation activity, rather than desaturation. Further structure modelling and site-directed mutagenesis highlighted the critical roles of three amino acid residues, T98, S176, and T178, in substrate binding and enzyme activity. By unraveling the intricacies of the senkyunolide A desaturase, the penultimate step in the butylphthalide biosynthesis cascade, our findings illuminate novel avenues for advancing synthetic biology research in the realm of medicinal natural products.
Collapse
Affiliation(s)
- Xueqing Chen
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518000, China (Z.H.)
| | - Xiaopeng Zhang
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518000, China (Z.H.)
| | - Wenkai Sun
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518000, China (Z.H.)
| | - Zhuangwei Hou
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518000, China (Z.H.)
| | - Bao Nie
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518000, China (Z.H.)
| | - Fengjiao Wang
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518000, China (Z.H.)
| | - Song Yang
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518000, China (Z.H.)
| | - Shourui Feng
- State Key Laboratory of Biocontrol and Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China;
| | - Wei Li
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518000, China (Z.H.)
| | - Li Wang
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518000, China (Z.H.)
| |
Collapse
|
4
|
Luo M, Zheng Y, Tang S, Gu L, Zhu Y, Ying R, Liu Y, Ma J, Guo R, Gao P, Zhang C. Radical oxygen species: an important breakthrough point for botanical drugs to regulate oxidative stress and treat the disorder of glycolipid metabolism. Front Pharmacol 2023; 14:1166178. [PMID: 37251336 PMCID: PMC10213330 DOI: 10.3389/fphar.2023.1166178] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Accepted: 04/21/2023] [Indexed: 05/31/2023] Open
Abstract
Background: The incidence of glycolipid metabolic diseases is extremely high worldwide, which greatly hinders people's life expectancy and patients' quality of life. Oxidative stress (OS) aggravates the development of diseases in glycolipid metabolism. Radical oxygen species (ROS) is a key factor in the signal transduction of OS, which can regulate cell apoptosis and contribute to inflammation. Currently, chemotherapies are the main method to treat disorders of glycolipid metabolism, but this can lead to drug resistance and damage to normal organs. Botanical drugs are an important source of new drugs. They are widely found in nature with availability, high practicality, and low cost. There is increasing evidence that herbal medicine has definite therapeutic effects on glycolipid metabolic diseases. Objective: This study aims to provide a valuable method for the treatment of glycolipid metabolic diseases with botanical drugs from the perspective of ROS regulation by botanical drugs and to further promote the development of effective drugs for the clinical treatment of glycolipid metabolic diseases. Methods: Using herb*, plant medicine, Chinese herbal medicine, phytochemicals, natural medicine, phytomedicine, plant extract, botanical drug, ROS, oxygen free radicals, oxygen radical, oxidizing agent, glucose and lipid metabolism, saccharometabolism, glycometabolism, lipid metabolism, blood glucose, lipoprotein, triglyceride, fatty liver, atherosclerosis, obesity, diabetes, dysglycemia, NAFLD, and DM as keywords or subject terms, relevant literature was retrieved from Web of Science and PubMed databases from 2013 to 2022 and was summarized. Results: Botanical drugs can regulate ROS by regulating mitochondrial function, endoplasmic reticulum, phosphatidylinositol 3 kinase (PI3K)/protein kinase B (AKT), erythroid 2-related factor 2 (Nrf-2), nuclear factor κB (NF-κB), and other signaling pathways to improve OS and treat glucolipid metabolic diseases. Conclusion: The regulation of ROS by botanical drugs is multi-mechanism and multifaceted. Both cell studies and animal experiments have demonstrated the effectiveness of botanical drugs in the treatment of glycolipid metabolic diseases by regulating ROS. However, studies on safety need to be further improved, and more studies are needed to support the clinical application of botanical drugs.
Collapse
Affiliation(s)
- Maocai Luo
- Department of Respiratory Medicine, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yuhong Zheng
- Department of Respiratory Medicine, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Shiyun Tang
- GCP Center, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Linsen Gu
- Department of Respiratory Medicine, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yi Zhu
- Department of Respiratory Medicine, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Rongtao Ying
- Department of Respiratory Medicine, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yufei Liu
- Department of Respiratory Medicine, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jianli Ma
- Department of Respiratory Medicine, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Ruixin Guo
- Department of Respiratory Medicine, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Peiyang Gao
- Department of Critical Care Medicine, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Chuantao Zhang
- Department of Respiratory Medicine, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
5
|
Zou J, Wang J, Hou K, Wang F, Su S, Xue W, Wu W, Yang N, Du X. An Underutilized Food “Miwu”: Diet History, Nutritional Evaluations, and Countermeasures for Industrial Development. Foods 2023; 12:foods12071385. [PMID: 37048212 PMCID: PMC10093453 DOI: 10.3390/foods12071385] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Revised: 03/09/2023] [Accepted: 03/19/2023] [Indexed: 03/29/2023] Open
Abstract
About 10 major crops basically feed the world. In fact, there are still a large number of plants that have not been fully explored and utilized because they have been ignored by the market and research. The expansion of food sources in various countries plays an important role in maintaining food security and nutrition security in the world. Miwu is the aerial part of the medicinal plant Rhizoma Chuanxiong belonging to a traditional local characteristic food raw material. Its edible value is still little known. Through textual research, component determination, literature survey, field research, and SWOT analysis, this paper has a comprehensive understanding of Miwu’s diet history, chemical components, safety risks, and industrial development status. It is found that Miwu has been eaten for 800 years, is rich in nutrients and active ingredients, and has no acute toxicity. In addition, the current industrial development of Miwu has significant advantages and many challenges. To sum up, Miwu is a potentially underutilized food raw material. This paper also provides countermeasures for the industrialized development of Miwu, which will provide a milestone reference for the future utilization and development of Miwu.
Collapse
|
6
|
Zheng R, Shen H, Li J, Zhao J, Lu L, Hu M, Lin Z, Ma H, Tan H, Hu M, Li J. Qi Gong Wan ameliorates adipocyte hypertrophy and inflammation in adipose tissue in a PCOS mouse model through the Nrf2/HO-1/Cyp1b1 pathway: Integrating network pharmacology and experimental validation in vivo. JOURNAL OF ETHNOPHARMACOLOGY 2023; 301:115824. [PMID: 36273747 DOI: 10.1016/j.jep.2022.115824] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 10/02/2022] [Accepted: 10/06/2022] [Indexed: 06/16/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Initially recorded in Yifang Jijie (an ancient Chinese text), Qi Gong Wan (QGW) is used to treat obese women with infertility. QGW can help promote follicular development and maturation, regulate the balance of serum hormones between testosterone and estradiol, enhance endometrial receptivity, improve waist circumference, and ameliorate insulin resistance. It contains eight herbs: Pinellia ternata (Thunb.) Makino (Banxia), Citrus maxima (Burm.) (Juhong), Poria cocos (Schw.) Wolf. (Fuling), Atractylodes macrocephala Koidz (Baizhu), Cyperus rotundus L. (Xiangfu), Conioselinum anthriscoides 'Chuanxiong' (Chuanxiong), Massa Medicata Fermentata (Shenqu), and Glycyrrhiza uralensis Fisch. ex DC. (Gancao). However, the underlying mechanism of how QGW affects women with PCOS remains unclear. AIM OF THE STUDY QGW has been widely used to treat PCOS patients with obesity clinically. This study was designed to identify its chemical and pharmacological properties. MATERIALS AND METHODS Network pharmacology was used to predict the active compounds, potential targets, and pathways of QGW. Female C57BL/6J mice were injected with letrozole and fed a high-fat diet to establish a PCOS-insulin resistance (PCOS-IR) model. Body weight, estrous cycles, ovarian pathology, and serum insulin resistance were measured. qRT-PCR was used to examine the inflammation-related and steroid hormone biosynthesis-related mRNA expression in adipose tissue. Western blotting was used to determine the protein levels of Nrf2, HO-1, and Cyp1b1 in adipose tissue. Molecular docking was used to reveal the key chemical compounds of QGW. RESULTS Network pharmacology revealed a total of 91 active ingredients in QGW that were associated with 167 targets. QGW could potentially treat PCOS-IR via nitrogen metabolism, steroid hormone biosynthesis, and ovarian steroidogenesis pathways. In the PCOS-IR mouse model, we found that QGW decreased the mean diameter of adipocytes and the total adipocyte area. Furthermore, QGW was found to significantly lower the expression of inflammation-related genes including Tnfɑ and C4a/b and the steroid hormone biosynthesis-related gene Cyp1b1. QGW showed a tendency to improve cystic follicles, fasting insulin, and HOMA-IR index in the PCOS-IR mouse model. Combining these findings with the results of KEGG analysis, we conclude that QGW promotes the Nrf2/HO-1/Cyp1b1 pathway to protect adipose tissue under conditions of PCOS. Molecular docking revealed that rutin, nicotiflorin, and baicalein may be the key chemical compounds of QGW through which it improves adipocyte hypertrophy and inflammation. CONCLUSIONS QGW improved adipocyte hypertrophy and inflammation in the PCOS-IR mouse model by activating the Nrf2/HO-1/Cyp1b1 pathway to protect adipose tissue. Our work thus provides a new research avenue for the study of traditional Chinese medicine in the treatment of PCOS.
Collapse
Affiliation(s)
- Ruqun Zheng
- Department of Traditional Chinese Medicine, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Haoran Shen
- Department of Clinical Medicine, The Third Clinical School of Guangzhou Medical University, Guangzhou, 511436, China
| | - Jie Li
- Department of Traditional Chinese Medicine, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Jiansen Zhao
- Nanshan School, Guangzhou Medical University, Guangzhou, China
| | - Lingjing Lu
- Department of Traditional Chinese Medicine, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China; Department of Obstetrics and Gynecology, Key Laboratory and Unit of Infertility in Chinese Medicine, First Affiliated Hospital, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Mianhao Hu
- Department of Clinical Medicine, The Second Clinical School of Guangzhou Medical University, Guangzhou, 511436, China
| | - Zixin Lin
- Department of Clinical Medicine, The First Clinical School of Guangzhou Medical University, Guangzhou, 511436, China
| | - Hongxia Ma
- Department of Traditional Chinese Medicine, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Huiyan Tan
- The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Min Hu
- Department of Traditional Chinese Medicine, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Juan Li
- Department of Traditional Chinese Medicine, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.
| |
Collapse
|
7
|
Qin Y, Chen F, Tang Z, Ren H, Wang Q, Shen N, Lin W, Xiao Y, Yuan M, Chen H, Bu T, Li Q, Huang L. Ligusticum chuanxiong Hort as a medicinal and edible plant foods: Antioxidant, anti-aging and neuroprotective properties in Caenorhabditis elegans. Front Pharmacol 2022; 13:1049890. [PMID: 36386171 PMCID: PMC9643709 DOI: 10.3389/fphar.2022.1049890] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Accepted: 10/18/2022] [Indexed: 02/05/2023] Open
Abstract
Ligusticum chuanxiong Hort. (CX) is a medicinal and edible plant including a variety of active substances, which may be an available resource for the treatment of related diseases. To expand the medicinal uses of CX, this study aims to explore the antioxidant, anti-aging and neuroprotective effects of the Ligusticum chuanxiong leaves (CXL) and rhizome (CXR) extracts. We first characterize CX phytochemical spectrum by LC-MS as well as antioxidant capacity. Acute toxicity, anti-oxidative stress capacity, lifespan and healthspan was evaluated in C elegans N2. Neuroprotective effect was evaluated in vitro and in vivo (C elegans CL4176 and CL2355). In this study, we detected 74 and 78 compounds from CXR and CXL, respectively, including phthalides, alkaloids, organic acids, terpenes, polyphenols and others. Furthermore, we found that CXs not only protect against oxidative stress, but also prolong the lifespan, alleviate lipofuscin, malondialdehyde (MDA) and reactive oxygen species (ROS) accumulation, and improve movement level, antioxidant enzyme activity in C elegans N2. However, only CXR reduced the β-amyloid peptide (Aβ)-induced paralysis phenotype in CL4176s and alleviated chemosensory behavior dysfunction in CL2355s. In addition, CXR treatment reduced the production of Aβ and ROS, enhanced SOD activity in CL4176s. The possible mechanism of anti-aging of CXL and CXR is to promote the expression of related antioxidant pathway genes, increase the activity of antioxidant enzymes, and reduce the accumulation of ROS, which is dependent on DAF-16 and HSF-1 (only in CXR). CXR was able to activate antioxidase-related (sod-3 and sod-5) and heat shock protein genes (hsp-16.1 and hsp-70) expression, consequently ameliorating proteotoxicity related to Aβ aggregation. In summary, these findings demonstrate the antioxidant, anti-aging and neuroprotective (only in CXR) activities of the CX, which provide an important pharmacological basis for developing functional foods and drugs to relieve the symptoms of aging and AD. However, the material basis of neuroprotective activity and antiaging effects need to be elucidated, and the relationship between these activities should also be clarified in future studies.
Collapse
Affiliation(s)
- Yihan Qin
- College of Life Sciences, Sichuan Agricultural University, Ya’an, China
| | - Fangfang Chen
- College of Life Sciences, Sichuan Agricultural University, Ya’an, China
| | - Zizhong Tang
- College of Life Sciences, Sichuan Agricultural University, Ya’an, China,*Correspondence: Zizhong Tang,
| | - Hongjiao Ren
- College of Life Sciences, Sichuan Agricultural University, Ya’an, China
| | - Qing Wang
- College of Life Sciences, Sichuan Agricultural University, Ya’an, China
| | - Nayu Shen
- College of Life Sciences, Sichuan Agricultural University, Ya’an, China
| | - Wenjie Lin
- College of Life Sciences, Sichuan Agricultural University, Ya’an, China
| | - Yirong Xiao
- Sichuan Agricultural University Hospital, Sichuan Agricultural University, Ya’an, China
| | - Ming Yuan
- College of Life Sciences, Sichuan Agricultural University, Ya’an, China
| | - Hui Chen
- College of Life Sciences, Sichuan Agricultural University, Ya’an, China
| | - Tongliang Bu
- College of Life Sciences, Sichuan Agricultural University, Ya’an, China
| | - Qingfeng Li
- College of Life Sciences, Sichuan Agricultural University, Ya’an, China
| | - Lin Huang
- Triticeae Research Institute, Sichuan Agricultural University, Wenjiang, China
| |
Collapse
|
8
|
Yan H, Zhou Y, Tang F, Wang C, Wu J, Hu C, Xie X, Peng C, Tan Y. A comprehensive investigation on the chemical diversity and efficacy of different parts of Ligusticum chuanxiong. Food Funct 2022; 13:1092-1107. [PMID: 35083993 DOI: 10.1039/d1fo02811a] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Ligusticum chuanxiong Hort. (CX) is a medicinal and edible plant with a wide range of constituents of biological interest. Since the biomass of the non-medicinal parts of CX is huge, discarding them will cause a waste of resources. To expand the medicinal uses of CX, we comprehensively investigated the chemical diversity and efficacy of its different parts (rhizomes, fibrous roots, stems and leaves). 75 compounds in the volatile oil and 243 compounds in the methanol extracts (including 95 phthalides) obtained from CX were characterized by GC-MS and UHPLC/Q-Orbitrap MS analysis, respectively. Of 95 phthalides, 14 potential new compounds and 5 phthalide trimers were identified from CX for the first time. Phthalide monomers were more abundant in rhizomes and fibrous roots, and phthalide dimers or even phthalide trimers mainly in stems and leaves. By multivariate and univariate analyses, 22 and 24 different compounds were found in the volatile oils and the methanol extracts, respectively. In the bioactivity evaluation of different parts, stems and leaves showed the best antioxidant activity, fibrous roots showed the strongest vasodilator activity, and rhizomes showed the most significant anticoagulant activity, which was related to the different metabolites in different parts. Ultimately, this work revealed the similarities and differences of phytochemicals and bioactivities in different anatomical parts of CX. It might provide helpful evidence for the rational application of non-medicinal resources.
Collapse
Affiliation(s)
- Hongling Yan
- Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| | - Yinlin Zhou
- Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| | - Fei Tang
- Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| | - Chengjiu Wang
- Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| | - Jing Wu
- Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| | - Changjiang Hu
- Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China. .,Key Laboratory of Quality Control and Efficacy Evaluation of Traditional Chinese Medicine Formula Granules, Sichuan New Green Medicine Science and Technology Development Co. Ltd, Pengzhou 611930, China
| | - Xiaofang Xie
- Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| | - Cheng Peng
- Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| | - Yuzhu Tan
- Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| |
Collapse
|
9
|
Lv H, Zhang X, Ren Y, Zeng Y, Fang Q, Fu Q, He D, Yan Z. Title The Use of GC‐MS and Network Pharmacology to Analyze the Material Basis and Mechanism of
Ligusticum chuanxiong
Hort. in Treating Chronic Cerebral Circulation Insufficiency. ChemistrySelect 2022. [DOI: 10.1002/slct.202104026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Hongyang Lv
- State Key Laboratory of Southwestern Chinese Medicine Resources College of Pharmacy Chengdu University of Traditional Chinese Medicine Chengdu Sichuan China
| | - Xiaorui Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources College of Pharmacy Chengdu University of Traditional Chinese Medicine Chengdu Sichuan China
| | - Yuanyuan Ren
- State Key Laboratory of Southwestern Chinese Medicine Resources College of Pharmacy Chengdu University of Traditional Chinese Medicine Chengdu Sichuan China
| | - Yijia Zeng
- State Key Laboratory of Southwestern Chinese Medicine Resources College of Pharmacy Chengdu University of Traditional Chinese Medicine Chengdu Sichuan China
| | - Qian Fang
- State Key Laboratory of Southwestern Chinese Medicine Resources College of Pharmacy Chengdu University of Traditional Chinese Medicine Chengdu Sichuan China
| | - Qinwen Fu
- State Key Laboratory of Southwestern Chinese Medicine Resources College of Pharmacy Chengdu University of Traditional Chinese Medicine Chengdu Sichuan China
| | - Dongmei He
- State Key Laboratory of Southwestern Chinese Medicine Resources College of Pharmacy Chengdu University of Traditional Chinese Medicine Chengdu Sichuan China
| | - Zhuyun Yan
- State Key Laboratory of Southwestern Chinese Medicine Resources College of Pharmacy Chengdu University of Traditional Chinese Medicine Chengdu Sichuan China
| |
Collapse
|
10
|
Song S, Chen A, Zhu J, Yan Z, An Q, Zhou J, Liao H, Yu Y. Structure basis of the caffeic acid O-methyltransferase from Ligusiticum chuanxiong to understand its selective mechanism. Int J Biol Macromol 2022; 194:317-330. [PMID: 34838855 DOI: 10.1016/j.ijbiomac.2021.11.135] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 11/05/2021] [Accepted: 11/20/2021] [Indexed: 02/08/2023]
Abstract
Caffeic acid O-methyltransferase from Ligusticum chuanxiong (LcCOMT) showed strict regiospecificity despite a relative degree of preference. Compared with caffeic acid, methyl caffeate was the preferential substrate by its low Km and high Kcat. In this study, we obtained the SAM binary (1.80 Å) and SAH binary (1.95 Å) complex LcCOMT crystal structures, and established the ternary complex structure with methyl caffeate by molecular docking. The active site of LcCOMT included phenolic substrate pocket, SAM/SAH ligand pocket and conserved catalytic residues as well. The regiospecificity of LcCOMT that permitted only 3-hydroxyl group to be methylated arise from the interactions between the active site and the phenyl ring. However, the propanoid tail governed the relative preference of LcCOMT. The ester group in methyl caffeate stabilized the anionic intermediate caused by His268-Asp269 pair, whereas caffeic acid was unable to stabilize the anionic intermediate due to the adjacent carboxylate anion in the propanoid tail. Ser183 residue formed an additional hydrogen bond with SAH and its role was identified by S183A mutation. Ile318 residue might be a potential site for determination of substrate preference, and its mutation led to the change of tertiary conformation. The results supported the selective mechanism of LcCOMT.
Collapse
Affiliation(s)
- Simin Song
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, Sichuan 610031, China
| | - Anqi Chen
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, Sichuan 610031, China
| | - Jianquan Zhu
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, Sichuan 610031, China
| | - Zicheng Yan
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, Sichuan 610031, China
| | - Qiuju An
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, Sichuan 610031, China
| | - Jiayu Zhou
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, Sichuan 610031, China.
| | - Hai Liao
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, Sichuan 610031, China.
| | - Yamei Yu
- Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China; Collaborative Innovation Center of Biotherapy, Chengdu, Sichuan 610041, China.
| |
Collapse
|
11
|
Lavorato VN, Miranda DCD, Isoldi MC, Drummond FR, Soares LL, Reis ECC, Pelúzio MDCG, Pedrosa ML, Silva ME, Natali AJ. Effects of aerobic exercise training and açai supplementation on cardiac structure and function in rats submitted to a high-fat diet. Food Res Int 2021; 141:110168. [PMID: 33642024 DOI: 10.1016/j.foodres.2021.110168] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 12/21/2020] [Accepted: 01/15/2021] [Indexed: 01/25/2023]
Abstract
This study evaluated the effect of aerobic exercise training (AET) and supplementation with açai on cardiac structure and function in rats submitted to a high-fat diet. Two-month old Fischer male rats were divided into 5 groups: Control (C), High-fat Diet (H), High-fat Diet + Açai (HA), High-fat Diet + AET (HT), High-fat Diet + Açai + AET (HAT). The high-fat diet had 21.8% lard and 1% cholesterol (H and HT), or supplemented with 1% lyophilized açai pulp (HA and HAT). The HT and HAT groups performed AET on a treadmill (5 days/week, 1 h/day, 60% of the maximum running speed) for 8 weeks. Exercise tolerance test were performed, and adiposity index calculated. After euthanasia, the left ventricle (LV) was dissected and processed for histological, single myocyte intracellular calcium ([Ca2+]i) transient and contractility, oxidative stress and gene expression analysis. AET improved running capacity and reduced the adiposity index. Both AET and açai supplementation inhibited the increase in the LV collagen content, the deleterious effects on the [Ca2+]i transient and contractility in cardiomyocytes and the increment in oxidative stress, caused by the consumption of a high-fat diet. Aerobic exercise training and açai supplementation can mitigate damage caused by high-fat diet in cardiac structure and function, though the combination of treatments had no additional effects.
Collapse
Affiliation(s)
- Victor Neiva Lavorato
- Department of Biological Sciences, Federal University of Ouro Preto, Ouro Preto, Minas Gerais, Brazil.
| | | | - Mauro César Isoldi
- Department of Biological Sciences, Federal University of Ouro Preto, Ouro Preto, Minas Gerais, Brazil
| | - Filipe Rios Drummond
- Department of Physical Education, Federal University of Viçosa, Viçosa, Minas Gerais, Brazil
| | - Leôncio Lopes Soares
- Department of Physical Education, Federal University of Viçosa, Viçosa, Minas Gerais, Brazil.
| | | | | | - Maria Lúcia Pedrosa
- Department of Biological Sciences, Federal University of Ouro Preto, Ouro Preto, Minas Gerais, Brazil
| | | | - Antônio José Natali
- Department of Physical Education, Federal University of Viçosa, Viçosa, Minas Gerais, Brazil.
| |
Collapse
|
12
|
The Protective Effects and Potential Mechanisms of Ligusticum chuanxiong: Focus on Anti-Inflammatory, Antioxidant, and Antiapoptotic Activities. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2020; 2020:8205983. [PMID: 33133217 PMCID: PMC7591981 DOI: 10.1155/2020/8205983] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 09/14/2020] [Accepted: 10/06/2020] [Indexed: 01/10/2023]
Abstract
Ligusticum chuanxiong (LC) is a Chinese materia medica which is widely used in clinical settings to treat headaches, blood extravasation, and arthritis. Recent studies demonstrate that LC possesses versatile pharmacological functions, including antiatherosclerosis, antimigraine, antiaging, and anticancer properties. Moreover, LC also shows protective effects in the progression of different diseases that damage somatic cells. Oxidative stress and inflammation, which can induce somatic cell apoptosis, are the main factors associated with an abundance of diseases, whose progresses can be reversed by LC. In order to comprehensively review the molecular mechanisms associated with the protective effects of LC, we collected and integrated all its related studies on the anti-inflammatory, antioxidant, and antiapoptotic effects. The results show that LC could exhibit the mentioned biological activities by modulating several signaling pathways, specifically the NF-κB, Nrf2, protein kinase, and caspase-3 pathways. In future investigations, the pharmacokinetic properties of bioactive compounds in LC and the signaling pathway modulation of LC could be focused.
Collapse
|
13
|
Dong XL, Yu WX, Li CM, Zhou LP, Wong MS. Chuanxiong (Rhizome of Ligusticum chuanxiong) Protects Ovariectomized Hyperlipidemic Rats from Bone Loss. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2020; 48:463-485. [PMID: 32138532 DOI: 10.1142/s0192415x2050024x] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Oxidative stress (OS) is the common mechanism for age-related diseases. The co-occurrence of osteoporosis (OP) and cardiovascular disease (CVD) in postmenopausal women makes it warranted to find a holistic approach for treatment of multiple diseases or conditions. The rhizome of Ligusticum chuanxiong Hort. (CX), which has high anti-oxidant properties and is widely used for CVD treatment in China, might be the potential candidate. In the present study, CX ethanol extract (CXE) was applied to H2O2 induced MG63 cells to study its effects and mechanisms on osteoblastogenesis against OS. CXE was then administered to six-month-old Sprague Dawley sham or ovariectomized (OVX) rats fed either a low saturated fat-sucrose (LFS) or a high fat-sucrose (HFS) diet for 12 weeks, to confirm its anti-osteoporotic effects. The results demonstrated that CXE directly improved proliferation and differentiation in vitro in an H2O2-induced osteoblast cell model by attenuating cellular reactive oxygen species levels and inhibiting osteoblast apoptosis via PI3K/Akt signaling pathway. CXE significantly improved bone properties as revealed by the increase in trabecular bone mineral density and decrease in trabecular separation at proximal metaphysis of the tibia (PT) in HFS-fed OVX rats but not in LFS-fed OVX rats. CXE ameliorated dyslipidemia, greatly reduced lipid deposition and malondialdehyde levels, improved activities of superoxide dismutase, catalase and glutathione peroxidase in the livers of HFS-fed OVX rats. In conclusion, CXE could favor osteoblastogenesis against OS. The ability of CXE to reduce bone loss in HFS-fed OVX rats was associated with its abilities to correct dyslipidemia, and reduce lipid deposition and OS levels.
Collapse
Affiliation(s)
- Xiao-Li Dong
- State Key Laboratory of Chinese Medicine and Molecular Pharmacology (Incubation), Shenzhen, China.,Key Laboratory of Food Biological Safety Control, Shenzhen, China.,Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hong Kong, China
| | - Wen-Xuan Yu
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hong Kong, China
| | - Chun-Mei Li
- Department of Biochemistry and Molecular Biology, Guangdong Pharmaceutical University, Guangzhou, China
| | - Li-Ping Zhou
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hong Kong, China
| | - Man-Sau Wong
- State Key Laboratory of Chinese Medicine and Molecular Pharmacology (Incubation), Shenzhen, China.,Key Laboratory of Food Biological Safety Control, Shenzhen, China.,Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hong Kong, China
| |
Collapse
|
14
|
Wang M, Yao M, Liu J, Takagi N, Yang B, Zhang M, Xu L, Ren J, Fan X, Tian F. Ligusticum chuanxiong exerts neuroprotection by promoting adult neurogenesis and inhibiting inflammation in the hippocampus of ME cerebral ischemia rats. JOURNAL OF ETHNOPHARMACOLOGY 2020; 249:112385. [PMID: 31730888 DOI: 10.1016/j.jep.2019.112385] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Revised: 11/07/2019] [Accepted: 11/11/2019] [Indexed: 05/08/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Cerebral ischemia, also known as stroke, can stimulate the proliferation and migration of endogenous neural stem cells (NSCS) in subventricular zone of the lateral ventricle and subgranularzone of the dentate gyrus in the adult hippocampus as a defense response to damage. However, the proliferation of endogenous NSCS is insufficient for central nervous system repair. Neurogenesis and anti-neuroinflammation are two important aspects for neuroprotection. Rhizome Ligusticum chuanxiong (LC), the dried rhizomes of Ligusticum striatum DC., has been widely used to treat stroke for over hundreds of years in Traditional Chinese Medicine. PURPOSE of the study: Previous reports on pharmacological mechanism of LC mainly focus on the cerebral blood flow and thrombolysis. We aim to explore whether LC provides neuroprotective effect by increasing neurogenesis and inhibiting the IL-1β, TNF-α and expressions of glial fibrillary acidic protein. MATERIALS AND METHODS LC extract was delivered to microsphere-embolized (ME) cerebral ischemia Wister rats to examine its neuroprotection. Body weight, neurological scores, hematoxylin-eosin staining (HE), TUNEL assay were conducted for neurological damage. Neurogenesis was evaluated by assessing the expression of Doublecortin (DCX) and neurogenic differentiation1 (NeuroD1) through immunofluorescence staining. Western blot performed to measure the protein levels of growth associated protein-43(GAP-43), glial fibrillary acidic protein (GFAP). IL-1β and TNF-α was detected by Elisa. RESULTS LC alleviated pathomorphological change and apoptosis of neurons in the hippocampus caused by ME surgery. Furthermore, LC significantly increased the DCX in the DG of adult rat hippocampus at 14 days after surgery. A significant upregulation of GAP-43 compared to the ME after LC was administered. Besides, LC decreased pro-inflammatory cytokine (IL-1β, TNF-α) and protein level of GFAP. CONCLUSION The finding suggested that LC had the ability to protect neurons by promoting the endogenous proliferation of neuroblast and production of neural differentiation factor in rats after ischemia injury. Meanwhile, LC can anti-neuroinflammation, which is important for the treatment of neuron injury. Accordingly, LC perhaps a promising medicine for neuron damage therapy after cerebral ischemia.
Collapse
Affiliation(s)
- Min Wang
- Research Center, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China; Department of Applied Biochemistry, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, Tokyo, Japan.
| | - Mingjiang Yao
- Research Center, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China.
| | - Jianxun Liu
- Research Center, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China.
| | - Norio Takagi
- Department of Applied Biochemistry, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, Tokyo, Japan.
| | - Bin Yang
- Department of Pathology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China.
| | - Miao Zhang
- Research Center, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China.
| | - Li Xu
- Research Center, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China.
| | - Junguo Ren
- Research Center, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China.
| | - Xiaodi Fan
- Research Center, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China.
| | - Fangze Tian
- Research Center, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China.
| |
Collapse
|
15
|
Comparative Study on Pharmacokinetics of Four Active Compounds in Rat Plasma after Oral Administration of Raw and Wine Processed Chuanxiong Rhizoma. Molecules 2019; 25:molecules25010093. [PMID: 31881790 PMCID: PMC6982718 DOI: 10.3390/molecules25010093] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Revised: 12/13/2019] [Accepted: 12/23/2019] [Indexed: 12/31/2022] Open
Abstract
In Chinese medicine, the effect of promoting blood circulation and removing stasis could be enhanced after Chuanxiong Rhizoma is processed by wine. However, the relevant mechanism remains unclear. In this manuscript, a rapid and sensitive quantification method employing ultrahigh performance liquid chromatography-tandem mass spectrometry (UHPLC-MS/MS) was established and validated to simultaneously determine butylidenephthalide, ligustilide, senkyunolide A and ferulic acid in rat plasma after oral administration of raw Chuanxiong Rhizoma (RCR) and wine-processed Chuanxiong Rhizoma (WCR) respectively. All analytes were extracted from plasma by proteins precipitation with methanol. Chromatographic separation was carried out on a Hypersil GOLD C18 column by using a gradient mobile phase system of acetonitrile and water with 0.01% formic acid, the flow rate was 0.3 mL/min. For exact mass detecting, quick switching mode was used, positive and negative ions could be detected in one injection. The pharmacokinetic profiles of four components in the two groups were evaluated and compared. The results showed that, compared to the RCR group, the Vd and AUC0→t values of four active compounds were increased and decreased respectively in WCR group, which revealed the effect of wine processing to Chuanxiong Rhizoma: the stronger the effect, the wider the distribution.
Collapse
|
16
|
Xie Y, Liu H, Lin L, Zhao M, Zhang L, Zhang Y, Wu Y. Application of natural deep eutectic solvents to extract ferulic acid from Ligusticum chuanxiong Hort with microwave assistance. RSC Adv 2019; 9:22677-22684. [PMID: 35519449 PMCID: PMC9067139 DOI: 10.1039/c9ra02665g] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Accepted: 07/01/2019] [Indexed: 12/02/2022] Open
Abstract
In this study, a method using natural deep eutectic solvents (NADES) combined with microwave-assistance extraction (MAE) was researched for the first time to establish an environmentally-friendly method for extracting ferulic acid from Ligusticum chuanxiong Hort. 20 kinds of NADES were initially screened, then response surface methodology was performed to optimize the NADES-MAE extraction of ferulic acid in L. c on the basis of the results of single-factor experiments. The results demonstrated that NADES could provide better extraction yields of ferulic acid than conventional solvents, and the combination of choline chloride and 1,2-propanediol was the most effective. The optimal conditions were an extraction time of 20 min, an extraction temperature of 68 °C, and a solvent-to-solid ratio of 30 : 1 mL g-1. Under these conditions, the extraction yield of ferulic acid with NADES-MAE (2.32 mg g-1) was higher than that using traditional extraction methods. This research demonstrates that this approach, which adopts NADES as a green solvent and MAE as an assistant extraction technique, could be an excellent choice to design an environmentally-friendly method for extracting phenolic compounds in various materials.
Collapse
Affiliation(s)
- Yilin Xie
- College of Science, Sichuan Agricultural University Ya'an Sichuan 625014 China
| | - Herui Liu
- College of Science, Sichuan Agricultural University Ya'an Sichuan 625014 China
| | - Li Lin
- College of Science, Sichuan Agricultural University Ya'an Sichuan 625014 China
| | - Maojun Zhao
- College of Science, Sichuan Agricultural University Ya'an Sichuan 625014 China
| | - Li Zhang
- College of Science, Sichuan Agricultural University Ya'an Sichuan 625014 China
| | - Yunsong Zhang
- College of Science, Sichuan Agricultural University Ya'an Sichuan 625014 China
| | - Yichao Wu
- College of Science, Sichuan Agricultural University Ya'an Sichuan 625014 China
| |
Collapse
|
17
|
Liquid Chromatography–High-Resolution Mass Spectrometry with ROI Strategy for Non-targeted Analysis of the In Vivo/In Vitro Ingredients Coming from Ligusticum chuanxiong hort. Chromatographia 2019. [DOI: 10.1007/s10337-019-03740-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
18
|
Chen C, Guo C, Gao J, Shi K, Cheng J, Zhang J, Chen S, Liu Y, Liu A. Vasorelaxant and antihypertensive effects of Tianshu Capsule on rats: An in vitro and in vivo approach. Biomed Pharmacother 2019; 111:188-197. [DOI: 10.1016/j.biopha.2018.12.061] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2018] [Revised: 12/02/2018] [Accepted: 12/14/2018] [Indexed: 02/06/2023] Open
|
19
|
Ligustrazin increases lung cell autophagy and ameliorates paraquat-induced pulmonary fibrosis by inhibiting PI3K/Akt/mTOR and hedgehog signalling via increasing miR-193a expression. BMC Pulm Med 2019; 19:35. [PMID: 30744607 PMCID: PMC6371511 DOI: 10.1186/s12890-019-0799-5] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2018] [Accepted: 02/04/2019] [Indexed: 02/07/2023] Open
Abstract
Background Reactive oxygen species (ROS) levels largely determine pulmonary fibrosis. Antioxidants have been found to ameliorate lung fibrosis after long-term paraquat (PQ) exposure. The effects of antioxidants, however, on the signalling pathways involved in PQ-induced lung fibrosis have not yet been investigated sufficiently. Here, we examined the impacts of ligustrazin on lung fibrosis, in particular ROS-related autophagy and pro-fibrotic signalling pathways, using a murine model of PQ-induced lung fibrosis. Methods We explored the effects of microRNA-193 (miR-193a) on Hedgehog (Hh) and PI3K/Akt/mTOR signalling and oxidative stress in lung tissues. Levels of miR-193a, protein kinase B (Akt), phosphoinositide 3-Kinase (PI3K), ceclin1, mammalian target of rapamycin (mTOR), sonic hedgehog (SHH), myosin-like Bcl2 interacting protein (LC3), smoothened (Smo), and glioma-associated oncogene-1 (Gli-1) mRNAs were determined with quantitative real-time PCR. Protein levels of PI3K, p-mTOR, p-Akt, SHH, beclin1, gGli-1, LC3, smo, transforming growth factor-β1 (TGF-β1), mothers against DPP homologue-2 (Smad2), connective tissue growth factor (CTGF), collagen I, collagen III, α-smooth muscle actin (α-SMA) nuclear factor erythroid 2p45-related factor-2 (Nrf2), and p-Smad2 were detected by western blotting. In addition, α-SMA, malondialdehyde, ROS, superoxide dismutase (SOD), oxidised and reduced glutathione, hydroxyproline, and overall collagen levels were identified in lung tissues using immunohistochemistry. Results Long-term PQ exposure blocked miR-193a expression, reduced PI3K/Akt/mTOR signalling, increased oxidative stress, inhibited autophagy, increased Hh signalling, and facilitated the formation of pulmonary fibrosis. Ligustrazin blocked PI3K/Akt/mTOR and Hh signalling as well as reduced oxidative stress via increasing miR-193a expression and autophagy, all of which reduced pulmonary fibrosis. These effects of ligustrazin were accompanied by reduced TGF-β1, CTGF, and Collagen I and III expression. Conclusions Ligustrazin blocked PQ-induced PI3K/Akt/mTOR and Hh signalling by increasing miR-193a expression, thereby attenuating PQ-induced lung fibrosis.
Collapse
|
20
|
Udomkasemsab A, Ngamlerst C, Adisakwattana P, Aroonnual A, Tungtrongchitr R, Prangthip P. Maoberry (Antidesma bunius) ameliorates oxidative stress and inflammation in cardiac tissues of rats fed a high-fat diet. Altern Ther Health Med 2018; 18:344. [PMID: 30591041 PMCID: PMC6307262 DOI: 10.1186/s12906-018-2400-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Accepted: 12/04/2018] [Indexed: 12/23/2022]
Abstract
Backgound Chronic fat-rich diets consumption is increased risk associated with cardiovascular diseases (CVD). Prevention or reduction the progression of cardiac tissue deterioration could benefit in CVD. This study aimed to examine the effects of maoberry (Antidesma bunius), a antioxidant-rich tropical fruit, supplementation on oxidative stress and inflammation in cardiac tissues of rats fed a high-fat diet (HFD). Methods The male rats orally received HFD with maoberry extract doses of 0.38, 0.76 or 1.52 g/kg or simvastatin (10 mg/kg) for 12 weeks. At the end of the experimental period, the rats were fasted, euthanized and harvested for the hearts. Results Significantly reduced oxidative stress (malondialdehyde levels) and enhanced antioxidant capacity (ferric-reducing activities) in cardiac tissues of the rats were found. Maoberry extract remarkably ameliorated the expressions of genes involved with pro-inflammatory such as the tumor necrosis factor alpha (TNF-α), interleukin-6 (IL-6), vascular cell adhesion molecule-1 (VCAM-1), monocyte chemoattractant protein-1 (MCP-1) and endothelial nitric oxide synthase (eNOS). Conclusions Our findings suggest that maoberry extract has remarkable effects on preventing progression of cardiac tissue deterioration at least through lowering oxidative stress and inflammation.
Collapse
|
21
|
Zhang X, Han B, Feng Z, Jiang J, Yang Y, Zhang P. Bioactive thionic compounds and aromatic glycosides from Ligusticum chuanxiong. Acta Pharm Sin B 2018; 8:818-824. [PMID: 30245968 PMCID: PMC6147803 DOI: 10.1016/j.apsb.2018.04.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2018] [Revised: 03/15/2018] [Accepted: 03/26/2018] [Indexed: 11/09/2022] Open
Abstract
Three new thionic compounds, (S)-2-(2-carboxyl-2-hydroxyethylthio)-ferulic acid (1), (E)-2-methoxy-4-(3-(methylsulfonyl)prop-1-en-1-yl)phenol (2), and thiosenkyunolide C (3), together with two new aromatic glycosides (4 and 5) were isolated from the rhizome of Ligusticum chuanxiong Hort. Two known compounds (6 and 7) were also obtained. Their structures were elucidated based on extensive spectroscopic data (UV, IR, 1D and 2D NMR, and HR-ESI-MS). Furthermore the absolute configurations were established by comparison of their calculated and experimental circular dichroism spectra and by a dimolybdenum tetraacetate [Mo2(AcO)4]-induced circular dichroism procedure. All compounds were evaluated against lipopolysaccharide (LPS)-induced NO production in BV2 cells, and compounds 4 and 5 showed strong inhibitory activities with IC50 values of 2.03 and 3.09 µmol/L, respectively (positive control curcumin, IC50 = 6.17 µmol/L). In addition, compound 1 showed weak proteintyrosine phosphatase-1B (PTP1B) inhibitory activity.
Collapse
|
22
|
A systematic review on the rhizome of Ligusticum chuanxiong Hort. (Chuanxiong). Food Chem Toxicol 2018; 119:309-325. [PMID: 29486278 DOI: 10.1016/j.fct.2018.02.050] [Citation(s) in RCA: 174] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2017] [Revised: 02/17/2018] [Accepted: 02/22/2018] [Indexed: 11/23/2022]
Abstract
Chuanxiong Rhizome (called Chuanxiong, CX in Chinese), the dried rhizome of Ligusticum chuanxiong Hort, is an extremely common traditional edible-medicinal herb. As a widely used ethnomedicine in Asia including China, Japan and Korea, CX possesses ideal therapeutic effect on cardiovascular and cerebrovascular diseases, and is also used as a major ingredient in soups for regular consumption to benefit health. Based on the traditional perception, amounts of investigations on different aspects have been done for CX in the past decades. However, no literature systematic review about these achievements have been compiled. Herein, the aim of this review is to present the up-to-date information on the ethnobotany, ethnopharmacological uses, phytochemicals, pharmacological activities, toxicology of this plant to identify their therapeutic potential and directs future research opportunities. So far, about 174 compounds has been isolated and identified from CX, in which phthalides and alkaloids would be the main bioactive ingredients for its pharmacological properties, such as anti-cerebral ischemia, anti-myocardial ischemia, blood vessel protection, anti-thrombotic, anti-hypertensive, anti-atherosclerosis, anti-spasmodic, anti-inflammatory, anti-cancer, anti-oxidant, and anti-asthma effects. Even so, due to the incomplete standardized planting, unstable herbal quality, and outdated preparation techniques, the industrial progress of CX is still less developed.
Collapse
|
23
|
Zhang X, Han B, Feng ZM, Yang YN, Jiang JS, Zhang PC. Novel phenylpropanoid–amino acid adducts fromLigusticum chuanxiong. Org Chem Front 2018. [DOI: 10.1039/c8qo00012c] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Eight new amino acid derivatives (1–8) and two known compounds (9–10) were isolated from the rhizome ofLigusticum chuanxiongHort.
Collapse
Affiliation(s)
- Xu Zhang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines
- Institute of Materia Medica
- Chinese Academy of Medical Sciences and Peking Union Medical College
- Beijing 100050
- People's Republic of China
| | - Bing Han
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines
- Institute of Materia Medica
- Chinese Academy of Medical Sciences and Peking Union Medical College
- Beijing 100050
- People's Republic of China
| | - Zi-Ming Feng
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines
- Institute of Materia Medica
- Chinese Academy of Medical Sciences and Peking Union Medical College
- Beijing 100050
- People's Republic of China
| | - Ya-Nan Yang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines
- Institute of Materia Medica
- Chinese Academy of Medical Sciences and Peking Union Medical College
- Beijing 100050
- People's Republic of China
| | - Jian-Shuang Jiang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines
- Institute of Materia Medica
- Chinese Academy of Medical Sciences and Peking Union Medical College
- Beijing 100050
- People's Republic of China
| | - Pei-Cheng Zhang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines
- Institute of Materia Medica
- Chinese Academy of Medical Sciences and Peking Union Medical College
- Beijing 100050
- People's Republic of China
| |
Collapse
|
24
|
Dong XL, Yu WX, Li CM, He S, Zhou LP, Poon CW, Wong MS. Danshen (Salvia miltiorrhiza) protects ovariectomized rats fed with high-saturated fat-sucrose diet from bone loss. Osteoporos Int 2018; 29:223-235. [PMID: 29058051 DOI: 10.1007/s00198-017-4254-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/01/2016] [Accepted: 10/04/2017] [Indexed: 12/15/2022]
Abstract
UNLABELLED Dietary patterns may interfere with the efficacy of herbal intervention. Our results demonstrated the protective effects of Salvia miltiorrhiza aqueous extract (SMA) on bone metabolism were influenced by levels of dietary fat and sucrose in ovariectomized (OVX) rats through its actions on attenuating lipid deposition and oxidative stress in rats. INTRODUCTION Salvia miltiorrhiza (SM), also known as Danshen, has been tested as an osteoporosis treatment in a series of small, short human trials that generally report improvements in bone property. However, dietary patterns may interfere with the effects of herbal intervention. We hypothesized that dietary fat and sucrose levels could influence the effects of SM supplementation on bone in estrogen-deficient animals. METHODS Six-month-old Sprague-Dawley sham or OVX rats were fed either a low-saturated fat-sucrose (LFS, a diet that was similar in composition to normal rat chow) or a high-fat-sucrose (HFS) diet and OVX rats were treated (8 rats/group) with SM aqueous extract (SMA, 600 mg/kg/day), 17β-estradiol (1 mg/kg/day), or vehicle for 12 weeks. RESULTS SMA significantly improved bone properties as revealed by the increase in trabecular bone mineral density and decrease in trabecular separation at proximal metaphysis of the tibia (PT) in HFS-fed OVX rats, but not in LFS-fed OVX rats. SMA greatly reduced lipid deposition and malondialdehyde levels, improved the activities of superoxide dismutase, catalase, and glutathione peroxidase in the livers of HFS-fed OVX rats. SMA could directly improve the proliferation and differentiation in vitro in an H2O2-induced preosteoblast cell model by attenuating cellular reactive oxygen species levels. CONCLUSIONS The protective effects of SMA on bone metabolism were influenced by dietary fat and sucrose levels in OVX rats. The ability of SMA to reduce bone loss in HFS-fed OVX rats was associated with the attenuation of lipid deposition and oxidative stress levels.
Collapse
Affiliation(s)
- X L Dong
- State Key Laboratory of Chinese Medicine and Molecular Pharmacology (Incubation), The Hong Kong Polytechnic University Shenzhen Research Institute, Shenzhen, People's Republic of China
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Y806, Hung Hom, Kowloon, Hong Kong, People's Republic of China
| | - W X Yu
- State Key Laboratory of Chinese Medicine and Molecular Pharmacology (Incubation), The Hong Kong Polytechnic University Shenzhen Research Institute, Shenzhen, People's Republic of China
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Y806, Hung Hom, Kowloon, Hong Kong, People's Republic of China
| | - C M Li
- State Key Laboratory of Chinese Medicine and Molecular Pharmacology (Incubation), The Hong Kong Polytechnic University Shenzhen Research Institute, Shenzhen, People's Republic of China
- Department of Biochemistry and Molecular Biology, Guangdong Pharmaceutical College, Guangzhou, People's Republic of China
| | - S He
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Y806, Hung Hom, Kowloon, Hong Kong, People's Republic of China
| | - L P Zhou
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Y806, Hung Hom, Kowloon, Hong Kong, People's Republic of China
| | - C W Poon
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Y806, Hung Hom, Kowloon, Hong Kong, People's Republic of China
| | - M S Wong
- State Key Laboratory of Chinese Medicine and Molecular Pharmacology (Incubation), The Hong Kong Polytechnic University Shenzhen Research Institute, Shenzhen, People's Republic of China.
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Y806, Hung Hom, Kowloon, Hong Kong, People's Republic of China.
| |
Collapse
|
25
|
Donkor PO, Chen Y, Ding L, Qiu F. Locally and traditionally used Ligusticum species - A review of their phytochemistry, pharmacology and pharmacokinetics. JOURNAL OF ETHNOPHARMACOLOGY 2016; 194:530-548. [PMID: 27729283 DOI: 10.1016/j.jep.2016.10.012] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2016] [Revised: 10/03/2016] [Accepted: 10/04/2016] [Indexed: 06/06/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Ligusticum species (Umbelliferae) have been widely used in traditional Chinese medicine, Korean folk medicine and Native American medicine for their medicinal and nutritional value. Decoctions of the rhizomes are used in treatment and prophylaxis of migraine, anemia and cardiovascular conditions including stroke. AIM OF STUDY This review is intended to fully compile the constituents of locally and traditionally used Ligusticum species, present their bioactivities and highlight potential leads for future drug design, and thus, provide a reference for further research and application of these species. Emphasis is also placed on current trends in the pharmacokinetic studies of the major constituents. METHODS The literature discussed is derived from readily accessible papers spanning the early 1990s to the end of 2015. Information was collected from journals, books and online searches (Google Scholar, PubMed, ScienceDirect, SciFinder, Springerlink and CNKI). RESULTS The major phytoconstituents, 154 of which are presented in this review, include alkaloids, phthalides and phenolic acids. The crude extracts and isolated constituents have exhibited a wide range of in vitro and in vivo pharmacologic effects, including cardioprotective, antioxidant, anti-inflammatory and neuroprotective activities. The bioactive alkaloid tetramethylpyrazine (TMP) has attracted the most attention for its potent effect on calcium channels, anti-platelet as well as anti-inflammatory effects. Pharmacokinetic studies of major constituents have also been summarized. CONCLUSION The pthalides, organic acids and alkaloids of Ligusticum species have emerged as a good source of traditional medicines for the management of cardio- and cerebrovascular conditions, inflammation and neurogenerative disorders. The species discussed in this review have demonstrated wide pharmacological actions and have great potential to yield multipotent drugs if challenges such as poor bioavailability, solubility and toxicological profiles are addressed. Apart from the rhizomes, pharmacological activities of other botanical parts also need to be studied further. Expansion of research to cover other species in the Ligusticum genus would provide more opportunities for the discovery of new bioactive principles.
Collapse
Affiliation(s)
- Paul Owusu Donkor
- School of Chinese Materia Medica and Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 312 Anshanxi Road, Nankai District, Tianjin 300193, China; University of Ghana School of Pharmacy, P.O. Box KB 52, Korle-Bu, Ghana
| | - Ying Chen
- School of Chinese Materia Medica and Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 312 Anshanxi Road, Nankai District, Tianjin 300193, China; Department of Natural Products Chemistry, School of Traditional Chinese Materia Medica, Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Liqin Ding
- School of Chinese Materia Medica and Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 312 Anshanxi Road, Nankai District, Tianjin 300193, China
| | - Feng Qiu
- School of Chinese Materia Medica and Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 312 Anshanxi Road, Nankai District, Tianjin 300193, China; Department of Natural Products Chemistry, School of Traditional Chinese Materia Medica, Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, China.
| |
Collapse
|
26
|
Ip FCF, Zhao YM, Chan KW, Cheng EYL, Tong EPS, Chandrashekar O, Fu GM, Zhao ZZ, Ip NYY. Neuroprotective effect of a novel Chinese herbal decoction on cultured neurons and cerebral ischemic rats. BMC COMPLEMENTARY AND ALTERNATIVE MEDICINE 2016; 16:437. [PMID: 27814708 PMCID: PMC5097373 DOI: 10.1186/s12906-016-1417-1] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/06/2016] [Accepted: 10/22/2016] [Indexed: 11/29/2022]
Abstract
Background Historically, traditional Chinese medicine has been widely used to treat stroke. Based on the theory of Chinese medicine and the modern pharmacological knowledge of herbal medicines, we have designed a neuroprotective formula called Post-Stroke Rehabilitation (PSR), comprising seven herbs – Astragalus membranaceus (Fisch.) Bunge, Salvia miltiorrhiza Bunge, Paeonia lactiflora Pall., Cassia obtusifolia L., Ligusticum chuanxiong Hort., Angelica sinensis (Oliv.) Diels, and Glycyrrhiza uralensis Fisch. We aim to examine the neuroprotective activity of PSR in vitro and in vivo, and to explore the underlying molecular mechanisms, to better understand its therapeutic effect and to further optimize its efficacy. Methods PSR extract or vehicle was applied to primary rat neurons to examine their survival effects against N-methyl-d-aspartate (NMDA)-elicited excitotoxicity. Whole-cell patch-clamp recording was conducted to examine the NMDA-induced current in the presence of PSR. ERK- and CREB-activation were revealed by western blot analysis. Furthermore, PSR was tested for CRE promoter activation in neurons transfected with a luciferase reporter. The protective effect of PSR was then studied in the rat middle cerebral artery occlusion (MCAO) model. MCAO rats were either treated with PSR extract or vehicle, and their neurobehavioral deficit and cerebral infarct were evaluated. Statistical differences were analyzed by ANOVA or t-test. Results PSR prominently reduced the death of cultured neurons caused by NMDA excitotoxicity in a dose-dependent manner, indicating its neuroprotective property. Furthermore, PSR significantly reduced NMDA-evoked current reversibly and activated phosphorylation of ERK and CREB with distinct time courses, with the latter’s kinetics slower. PSR also triggered CRE-promoter activity as revealed by the increased expression of luciferase reporter in transfected neurons. PSR effectively reduced cerebral infarct and deficit in neurological behavior in MCAO rats when PSR decoction was administered starting either 6 days before or 6 h after onset of ischemia. Conclusions PSR is neuroprotective both in vitro and in vivo – it protects cultured neurons against NMDA excitotoxicity, and effectively reduces ischemic injury and neurobehavioral deficit in MCAO rats in both the pre- and post-treatment regimens. The underlying neuroprotective mechanisms may involve inhibition of NMDA receptor current and activation of ERK and CREB. This study provides important preclinical data necessary for the further development of PSR for stroke treatment. Electronic supplementary material The online version of this article (doi:10.1186/s12906-016-1417-1) contains supplementary material, which is available to authorized users.
Collapse
|
27
|
Chen Q, Lin RJ, Hong X, Ye L, Lin Q. Treatment and prevention of inflammatory responses and oxidative stress in patients with obstructive sleep apnea hypopnea syndrome using Chinese herbal medicines. Exp Ther Med 2016; 12:1572-1578. [PMID: 27588078 PMCID: PMC4998001 DOI: 10.3892/etm.2016.3484] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2015] [Accepted: 04/05/2016] [Indexed: 01/17/2023] Open
Abstract
The present study aimed to investigate the therapeutic effects of Chinese herbal medicines for the treatment and prevention of inflammatory responses and oxidative stress in obstructive sleep apnea hypopnea syndrome (OSAHS). A total of 60 patients with OSAHS were randomly divided into two groups (n=30/group): The experimental group, who received the conventional treatment + oral administration of the traditional Chinese herbal formula, Jiawei Di Tan Tang; and the control group, who received the conventional treatment only. OSAHS patients were included in the current study if they presented with snoring and had an apnea-hypopnea index (AHI) of >30 in a polysomnography study, without comorbidities. The therapeutic course lasted 12 weeks in both groups. Alterations to the mean clinical symptom score, Epworth sleepiness scale (ESS) and AHI scores, lowest nocturnal blood oxygen saturation (SaO2) and the serum levels of superoxide dismutase (SOD), malondialdehyde (MDA), interleukin (IL)-6, tumor necrosis factor (TNF)-α and C-reactive protein (CRP) prior to and following treatment were observed. The mean clinical symptom score was significantly decreased in the experimental group post-treatment compared with the control group (P<0.05). In addition, the clinical symptoms in the experimental group were significantly improved following treatment compared with pre-treatment symptoms (P<0.05). Furthermore, the ESS and AHI scores, lowest nocturnal SaO2 and serum levels of SOD, MDA, IL-6, TNF-α and CRP were significantly improved in the experimental group post-treatment compared with the control group (P<0.05). These parameters in the experimental group were also significantly improved post-treatment compared with those pre-treatment (P<0.05). The results of the present study suggested that oral administration of the traditional Chinese herbal formula Jiawei Di Tan Tang was able to attenuate oxidative stress and inflammatory responses in patients with OSAHS, and thus may relieve their clinical symptoms.
Collapse
Affiliation(s)
- Qin Chen
- Department of Pulmonary Disease, Affiliated People's Hospital of Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350004, P.R. China
| | - Rong Jing Lin
- Department of Pulmonary Disease, Affiliated People's Hospital of Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350004, P.R. China
| | - Xuchu Hong
- Department of Pulmonary Disease, Affiliated People's Hospital of Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350004, P.R. China
| | - Lin Ye
- Department of Pulmonary Disease, Affiliated People's Hospital of Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350004, P.R. China
| | - Qichang Lin
- Department of Respiratory Medicine, The First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian 350005, P.R. China
| |
Collapse
|
28
|
Gu J, Chen J, Yang N, Hou X, Wang J, Tan X, Feng L, Jia X. Combination of Ligusticum chuanxiong and Radix Paeoniae ameliorate focal cerebral ischemic in MCAO rats via endoplasmic reticulum stress-dependent apoptotic signaling pathway. JOURNAL OF ETHNOPHARMACOLOGY 2016; 187:313-324. [PMID: 27108052 DOI: 10.1016/j.jep.2016.04.024] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2015] [Revised: 03/29/2016] [Accepted: 04/19/2016] [Indexed: 06/05/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Combination of Ligusticum chuanxiong and Radix Paeoniae (XS) is highly effective in the treatment for focal cerebral ischemic, but the underlying mechanism is not clear. This study was conducted to evaluate the combinative effects of XS on MCAO rats and explore the underlying mechanisms. MATERIALS AND METHODS MCAO rats were used to evaluate the protective effect of Ligusticum chuanxiong (CX), Radix Paeoniae Rubra (CS) and their combination (XS) on ameliorating focal cerebral ischemic. Cerebral ischemia deficits and infarct size were performed by 2,3,5-triphenyltetrazolium chloride (TTC) and hematoxylin-eosin (H-E) staining. Activities of SOD, CAT and GSH-Px, as well as levels of LPO and MDA were detected by commercial kits while ELISA kits for the content of plasminogen activator inhibitor-1 (PAI-1) and plasminogen activator (PA). Immunohistochemistry (IHC) and western blot analysis (WB) were carried out to examine the protein expressions including PKR-like endoplasmic reticulum kinase (PERK), cytoplasmic of glucose regulated protein 78 (GRP78), X box-binding protein-1 (XBP-1), activating transcription factor-6 (ATF-6), C/EBP-homologous protein (CHOP), metalloprotease-9 (MMP-9), tissue inhibitor of metalloproteinase-1 (TIMP-1), Bcl-2 associated X protein (Bax), and porcineB-cellleukemia/lymphoma-2 (Bcl-2) in brain tissues. Reverse transcription polymerase chain reaction (RT-PCR) and Quantitative PCR (Q-PCR) were applied to examine vascular endothelial growth factor (VEGF) and N-methyl-d-aspartate receptors (NMDAR1) mRNA levels. RESULTS CX, CS and their combination (XS) could reduce cerebral ischemia deficits and infarct size of MCAO rats. They increased SOD, CAT and GSH-Px activities, and reduced MDA and LPO levels in serum, markedly. A significant decrease of endoplasmic reticulum stress-related factors PERK, XBP-1, ATF-6 and CHOP protein expression levels while an increase of GRP78 and MVD expression by the treatment of CX, CS and XS. It could also be observed that their treatment could reduce apoptotic damage of brain tissues by up-regulating Bax level and down-regulating Bcl-2 level. Furthermore, the levels of MMP-9 and PAI-1 in serum and tissues of rats were down-regulated remarkably while TIMP-1 and PA levels were up-regulated. VEGF mRNA level was up-regulated dramatically whereas NMDAR1 was reduced. Importantly, the combination of CX and CS, namely XS, has a more meaningful improvement on focal cerebral ischemic than CX or CS alone. CONCLUSION All these revealed that the combined XS exerted more remarkable protective effects than alone. XS could inhibit neuronal apoptosis by attenuating ER-stress-dependent apoptotic signaling and protected the blood-brain barrier. These findings might supply beneficial hints for the synergy of CX and CS, and provide the basis for rationality of XS preparation and deserve further clinical investigations.
Collapse
Affiliation(s)
- Junfei Gu
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210023, PR China; Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210028, PR China; State Key Laboratory Breeding Base of Dao-di Herbs, China Academy of Chinese Medical Sciences, Beijing, 100700, PR China; Key Laboratory of New Drug Delivery System of Chinese Materia Medica, Jiangsu Provincial Academy of Chinese Medicine, Nanjing, Jiangsu 210028, PR China
| | - Juan Chen
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210028, PR China; Key Laboratory of New Drug Delivery System of Chinese Materia Medica, Jiangsu Provincial Academy of Chinese Medicine, Nanjing, Jiangsu 210028, PR China
| | - Nan Yang
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210028, PR China; Key Laboratory of New Drug Delivery System of Chinese Materia Medica, Jiangsu Provincial Academy of Chinese Medicine, Nanjing, Jiangsu 210028, PR China
| | - Xuefeng Hou
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210028, PR China; Key Laboratory of New Drug Delivery System of Chinese Materia Medica, Jiangsu Provincial Academy of Chinese Medicine, Nanjing, Jiangsu 210028, PR China
| | - Jing Wang
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210028, PR China; Key Laboratory of New Drug Delivery System of Chinese Materia Medica, Jiangsu Provincial Academy of Chinese Medicine, Nanjing, Jiangsu 210028, PR China
| | - Xiaobin Tan
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210028, PR China; Key Laboratory of New Drug Delivery System of Chinese Materia Medica, Jiangsu Provincial Academy of Chinese Medicine, Nanjing, Jiangsu 210028, PR China
| | - Liang Feng
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210028, PR China; State Key Laboratory Breeding Base of Dao-di Herbs, China Academy of Chinese Medical Sciences, Beijing, 100700, PR China; Key Laboratory of New Drug Delivery System of Chinese Materia Medica, Jiangsu Provincial Academy of Chinese Medicine, Nanjing, Jiangsu 210028, PR China.
| | - Xiaobin Jia
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210028, PR China; Key Laboratory of New Drug Delivery System of Chinese Materia Medica, Jiangsu Provincial Academy of Chinese Medicine, Nanjing, Jiangsu 210028, PR China.
| |
Collapse
|
29
|
Potent Protection Against MPP +-Induced Neurotoxicity via Activating Transcription Factor MEF2D by a Novel Derivative of Naturally Occurring Danshensu/Tetramethylpyrazine. Neuromolecular Med 2016; 18:561-572. [PMID: 27277280 DOI: 10.1007/s12017-016-8399-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2016] [Accepted: 04/21/2016] [Indexed: 01/05/2023]
Abstract
Danshensu (DSS) and tetramethylpyrazine (TMP) are active ingredients of Salvia miltiorrhiza Bge. and Ligusticum chuanxiong Hort that are widely used in oriental medicine. Structural combination of compounds with known biological activity may lead to the formation of a molecule with multiple properties or new function profile. In the current study, the neuroprotective effects of DT-010, a novel analogue in which TMP was coupled to DSS through an ester bond and two allyl groups at the carboxyl group, were evaluated in a cellular model of Parkinson's disease (PD). As evidenced by the increase in cell survival, as well as the decrease in the number of Hoechst-stained apoptotic nuclei and the level of intracellular accumulation of reactive oxygen species, DT-010 at 3-30 µM substantially protected against MPP+-induced neurotoxicity in both PC12 cells and primary cerebellar granule neurons, a protection that was more potent and efficacious than its parent molecules DSS and TMP. Very encouragingly, we found that DT-010, but not DSS or TMP, could enhance myocyte enhancer factor 2D (MEF2D) transcriptional activity using luciferase reporter gene assay. The neuroprotective effects of DT-010 could be blocked by pharmacologic inhibition of PI3K pathways with LY294002, or MEF2D pathway with short hairpin RNA-mediated knockdown of MEF2D. Furthermore, western blot analysis revealed that DT-010 potentiates Akt protein expression against MPP+ to down-regulate MEF2D inhibitor GSK3β. Taken together, the results suggest that DT-010 prevents MPP+-induced neurotoxicity via enhancing MEF2D through the activation of PI3K/Akt/GSK3β pathway. DT-010 may be a potential candidate for further preclinical study for preventing and treating PD.
Collapse
|
30
|
Dong XL, Li CM, Cao SS, Zhou LP, Wong MS. A High-Saturated-Fat, High-Sucrose Diet Aggravates Bone Loss in Ovariectomized Female Rats. J Nutr 2016; 146:1172-9. [PMID: 27099231 DOI: 10.3945/jn.115.225474] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2015] [Accepted: 03/21/2016] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Estrogen deficiency in women and high-saturated fat, high-sucrose (HFS) diets have both been recognized as risk factors for metabolic syndrome. Studies on the combined actions of these 2 detrimental factors on the bone in females are limited. OBJECTIVE We sought to determine the interactive actions of estrogen deficiency and an HFS diet on bone properties and to investigate the underlying mechanisms. METHODS Six-month-old Sprague Dawley sham or ovariectomized (OVX) rats were pair fed the same amount of either a low-saturated-fat, low-sucrose (LFS) diet (13% fat calories; 15% sucrose calories) or an HFS diet (42% fat calories; 30% sucrose calories) for 12 wk. Blood, liver, and bone were collected for correspondent parameters measurement. RESULTS Ovariectomy decreased bone mineral density in the tibia head (TH) by 62% and the femoral end (FE) by 49% (P < 0.0001). The HFS diet aggravated bone loss in OVX rats by an additional 41% in the TH and 37% in the FE (P < 0.05). Bone loss in the HFS-OVX rats was accompanied by increased urinary deoxypyridinoline concentrations by 28% (P < 0.05). The HFS diet induced cathepsin K by 145% but reduced osteoprotegerin mRNA expression at the FE of the HFS-sham rats by 71% (P < 0.05). Ovariectomy significantly increased peroxisome proliferator-activated receptor γ mRNA expression by 136% and 170% at the FE of the LFS- and HFS-OVX rats, respectively (P < 0.05). The HFS diet aggravated ovariectomy-induced lipid deposition and oxidative stress (OS) in rat livers (P < 0.05). Trabecular bone mineral density at the FE was negatively correlated with rat liver malondialdehyde concentrations (R(2) = 0.39; P < 0.01). CONCLUSIONS The detrimental actions of the HFS diet and ovariectomy on bone properties in rats occurred mainly in cancellous bones and were characterized by a high degree of bone resorption and alterations in OS.
Collapse
Affiliation(s)
- Xiao-Li Dong
- Shenzhen Key Laboratory of Food Biological Safety Control, Shenzhen, China; Department of Applied Biology and Chemical Technology, Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong; Shenzhen State Key Laboratory of Chinese Medicine and Molecular Pharmacology (Incubation) and
| | - Chun-Mei Li
- Shenzhen State Key Laboratory of Chinese Medicine and Molecular Pharmacology (Incubation) and College of Light Industry and Food, South China University of Technology, Guangzhou, China; and Department of Biochemistry and Molecular Biology, Guangdong Pharmaceutical College, Guangzhou, China
| | - Si-Si Cao
- Shenzhen Key Laboratory of Food Biological Safety Control, Shenzhen, China; Department of Applied Biology and Chemical Technology, Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong
| | - Li-Ping Zhou
- Shenzhen Key Laboratory of Food Biological Safety Control, Shenzhen, China; Department of Applied Biology and Chemical Technology, Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong
| | - Man-Sau Wong
- Shenzhen Key Laboratory of Food Biological Safety Control, Shenzhen, China; Department of Applied Biology and Chemical Technology, Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong; Shenzhen State Key Laboratory of Chinese Medicine and Molecular Pharmacology (Incubation) and
| |
Collapse
|
31
|
Hung HY, Wu TS. Recent progress on the traditional Chinese medicines that regulate the blood. J Food Drug Anal 2016; 24:221-238. [PMID: 28911575 PMCID: PMC9339571 DOI: 10.1016/j.jfda.2015.10.009] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2015] [Revised: 10/13/2015] [Accepted: 10/29/2015] [Indexed: 01/12/2023] Open
Abstract
In traditional Chinese medicine, the herbs that regulate blood play a vital role. Here, nine herbs including Typhae Pollen, Notoginseng Root, Common Bletilla Tuber, India Madder Root and Rhizome, Chinese Arborvitae Twig, Lignum Dalbergiae Oderiferae, Chuanxiong Rhizoma, Corydalis Tuber, and Motherwort Herb were selected and reviewed for their recent studies on anti-tumor, anti-inflammatory and cardiovascular effects. Besides, the analytical methods developed to qualify or quantify the active compounds of the herbs are also summarized.
Collapse
Affiliation(s)
- Hsin-Yi Hung
- School of Pharmacy, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan 701, Taiwan
| | - Tian-Shung Wu
- School of Pharmacy, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan 701, Taiwan; Department of Pharmacy, Tajen University, Pingtung 907, Taiwan.
| |
Collapse
|