1
|
Khalifa I, Sobhy R, Zou X, Nawaz A, Walayat N, Harlina PW, Abdelkader TK, Ahmed M, Maqsood S. CO 2-moderate-pressure enhances phytonutrients and prolongs shelf-life of flowable smoothie formulated from quadrable functional vegetables. Food Chem X 2024; 23:101663. [PMID: 39139488 PMCID: PMC11321379 DOI: 10.1016/j.fochx.2024.101663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 07/01/2024] [Accepted: 07/14/2024] [Indexed: 08/15/2024] Open
Abstract
The effect of non-thermal (HPP and semi-HPP-CO2) and thermal (flash pasteurization, FP) treatments on phytonutrients of flowable smoothie prepared from quadrable vegetable blends (FQVS) was investigated using multidimensional methods. First, FQVS gained an acceptability sensorial index (85.7%) compared with other formulas. FQVS/semi-HPP-CO2 showed a greater microbial stability during storage (0-30 d) compared to HPP and FP. Fructose and glucose highly declined than sucrose in all smoothies, where semi-HPP-CO2 steadily declined this reduction during storage. LC/MS-MS analysis showed that semi-HPP-CO2 preserved most of FQVS's phytonutrients and their antioxidant effects measured by ORAC and oxidative enzymes inhibition assays. Semi-HPP-CO2 acquired the lowest apparent viscosity among different FQVS smoothies, showing its post-processing flowability behavior. Most importantly, semi-HPP-CO2 predicted a reduced power consumption for HPP and reduced the gas emission. In conclusion, blending different vegetables assisted with semi-HPP-CO2 could be a novel approach to produce storage-stable smoothies with adequate amounts of phytonutrients and sensorial scores.
Collapse
Affiliation(s)
- Ibrahim Khalifa
- Agricultural Product Processing and Storage Lab, School of Food and Biological Engineering, Jiangsu University Zhenjiang, Jiangsu 212013, China
- Department of Food Science, College of Agriculture and Veterinary Medicine, United Arab Emirates University, Al-Ain, 15551, United Arab Emirates
| | - Remah Sobhy
- Agricultural Product Processing and Storage Lab, School of Food and Biological Engineering, Jiangsu University Zhenjiang, Jiangsu 212013, China
- Department of Biochemistry, Faculty of Agriculture, Benha University, 13736 Moshtohor, Egypt
| | - Xiaobo Zou
- Agricultural Product Processing and Storage Lab, School of Food and Biological Engineering, Jiangsu University Zhenjiang, Jiangsu 212013, China
| | - Asad Nawaz
- College of Chemistry and Bioengineering, Hunan University of Science and Engineering, 425199 Yongzhou, Hunan, China
| | - Noman Walayat
- College of Tea Science and Tea Culture, Zhejiang Agriculture and Forestry University, Hangzhou 311300, China
| | - Putri Widyanti Harlina
- Department of Food Industrial Technology, Faculty of Agro-Industrial Technology, Universitas Padjadjaran, Bandung 45363, Indonesia
| | - Tarek Kh. Abdelkader
- Agricultural Engineering Department, Faculty of Agriculture, Fayoum University, 63514 Fayoum, Egypt
| | - Mukhtar Ahmed
- Department of Zoology, College of Science, King Saud University, 2455, Riyadh 11451, Saudi Arabia
| | - Sajid Maqsood
- Department of Food Science, College of Agriculture and Veterinary Medicine, United Arab Emirates University, Al-Ain, 15551, United Arab Emirates
- International Research Center for Food Nutrition and Safety, Jiangsu University, Zhenjiang 212013, China
| |
Collapse
|
2
|
Wang X, Li D, Ma C, Hu X, Chen F. Gut Microbiome and Metabolome Modulation by High-Hydrostatic-Pressure-Processed Tomato Juice. Nutrients 2024; 16:710. [PMID: 38474836 DOI: 10.3390/nu16050710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Revised: 11/27/2023] [Accepted: 11/30/2023] [Indexed: 03/14/2024] Open
Abstract
High hydrostatic pressure (HHP) is a non-thermal pasteurization technology for the enhancement of food products' safety and quality. The components of tomato juice can be affected by HHP processing. Little is known about the effects of HHP-processed tomato juice on the gut microbiome and metabolism. Here, we performed high-throughput sequencing and metabolomics profiling to determine the critical differences in gut microbiota structure and metabolic profiles in mice administered with HHP-processed tomato juice. Tomato juice administration significantly increased the gut bacterial alpha diversity and the relative abundance of Bacteroides. The mice administered with HHP-processed tomato juice were characterized by the enrichment of Bacteroidetes, Alistieps, and Faecalibaculum compared with those administered with HTST-processed tomato juice. Moreover, HHP-processed tomato juice promoted SCFA levels, which were positively correlated with the enriched Alistieps. Our results show that HHP-processed tomato juice may drive healthy gut microbes and metabolites.
Collapse
Affiliation(s)
- Xuehua Wang
- College of Food Science and Nutritional Engineering, National Engineering Research Centre for Fruits and Vegetables Processing, Beijing Key Laboratory for Food Non-Thermal Processing, China Agricultural University, Beijing 100083, China
- National R&D Center for Se-Rich Agricultural Products Processing, Hubei Engineering Research Center for Deep Processing of Green Se-Rich Agricultural Products, School of Modern Industry for Selenium Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, China
| | - Daotong Li
- College of Food Science and Nutritional Engineering, National Engineering Research Centre for Fruits and Vegetables Processing, Beijing Key Laboratory for Food Non-Thermal Processing, China Agricultural University, Beijing 100083, China
| | - Chen Ma
- College of Food Science and Nutritional Engineering, National Engineering Research Centre for Fruits and Vegetables Processing, Beijing Key Laboratory for Food Non-Thermal Processing, China Agricultural University, Beijing 100083, China
| | - Xiaosong Hu
- College of Food Science and Nutritional Engineering, National Engineering Research Centre for Fruits and Vegetables Processing, Beijing Key Laboratory for Food Non-Thermal Processing, China Agricultural University, Beijing 100083, China
| | - Fang Chen
- College of Food Science and Nutritional Engineering, National Engineering Research Centre for Fruits and Vegetables Processing, Beijing Key Laboratory for Food Non-Thermal Processing, China Agricultural University, Beijing 100083, China
| |
Collapse
|
3
|
Stamper C, Safadi S, Gehr A, Asuncion P, Hong MY. Effects of fresh vs dried mango consumption on satiety and postprandial glucose in healthy adults. Metabol Open 2023; 19:100253. [PMID: 37520177 PMCID: PMC10374964 DOI: 10.1016/j.metop.2023.100253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 07/14/2023] [Accepted: 07/16/2023] [Indexed: 08/01/2023] Open
Abstract
Mango is a widely favored fruit that offers high nutritional value. Mango has been studied to examine its influence on postprandial glucose, but few studies have used fresh mango compared to dried mango to measure blood glucose and satiety after consumption. Therefore, the objective of the present study was to investigate the effects of fresh versus dried mango consumption on satiety and postprandial glucose. A crossover design was implemented where 34 healthy adults (29 females and 5 males; 25.0 ± 6.0 years; BMI 23.8 ± 4.3 kg/m2) consumed either 100 kcal of fresh mango, dried mango, or white bread on three separate occasions. Following consumption, satiety was assessed every 15 min for 90 min and blood glucose was assessed every 30 min for 90 min. Consumption of fresh mango results showed a significant increase in satiety (tendency of greater fullness (P = 0.073) and less desire to eat (P < 0.05)) in participants. Fresh mango exhibited a more efficient decrease in postprandial glucose levels (P < 0.05) compared to dried mango or white bread, and fresh mango promoted a greater stability in blood glucose. Dried mango consumption also significantly lowered postprandial glucose compared to white bread (P < 0.05). These results suggest that fresh mango consumption may be beneficial in improving satiety responses and postprandial glucose control when compared to its dried alternative or white bread. The results of the study may help guide individuals who are overweight or obese and/or have type 2 diabetes by altering their food choices that ultimately could improve their health. ClinicalTrials.gov Identifier: NCT03956602.
Collapse
Affiliation(s)
| | | | | | | | - Mee Young Hong
- Corresponding author. School of Exercise and Nutritional Sciences San Diego State University 5500 Campanile Drive, San Diego, CA, 92182-7251, USA.
| |
Collapse
|
4
|
Yahia EM, de Jesús Ornelas-Paz J, Brecht JK, García-Solís P, Elena Maldonado Celis M. The contribution of mango fruit (Mangifera indica L.) to human nutrition and health. ARAB J CHEM 2023. [DOI: 10.1016/j.arabjc.2023.104860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/31/2023] Open
|
5
|
Zarasvand SA, Mullins AP, Arjmandi B, Haley-Zitlin V. Antidiabetic properties of mango in animal models and humans: A systematic review. Nutr Res 2023; 111:73-89. [PMID: 36841190 DOI: 10.1016/j.nutres.2023.01.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 11/25/2022] [Accepted: 01/21/2023] [Indexed: 01/30/2023]
Abstract
Mango has long been an attractive source of nutrition and pharmacological therapeutics. The mango plant (Mangifera indica L.) contains bioactive compounds that may have antidiabetic properties. This systematic review investigated the evidence for antidiabetic properties of the different parts of the mango plant in managing type 2 diabetes mellitus in animal models and humans. The electronic databases PubMed, FSTA, Web of Science, CINAHL, MEDLINE, and Cochrane Library were systematically searched to identify articles with clear objectives and methodologies available in the English language with publication date limits up to December 2020. Twenty-eight of 1001 animal and human studies met the inclusion criteria that investigated antidiabetic properties of mango from leaf (31%), flesh (38%), seed-kernel (7%), peel (14%), stem-bark (7%), and by-product (3%). Results support the glucose-lowering properties of mango in both animals and human. Proposed antidiabetic mechanisms of action include inhibition of α-amylase and α-glucosidase, improved antioxidant status, improved insulin sensitivity, facilitated glucose uptake, and gene regulation of glucose transporter type 4, insulin receptor substrate 1, and phosphoinositide 3-kinase. The animal and randomized control trial findings suggest that mango may be beneficial as an antidiabetic agent. Although these studies hold promise, additional observational studies and randomized control trials are required because human studies are significantly fewer in number, use mango flesh almost exclusively, and had modest blood glucose effects. Additional research gaps include identifying the mechanisms of action for the different components of the mango plant.
Collapse
Affiliation(s)
| | - Amy P Mullins
- Department of Nutrition and Integrative Physiology, Florida State University, Tallahassee, FL 32306, USA; Department of Family and Consumer Sciences-Leon County Extension Services, University of Florida Institute of Food and Agricultural Sciences, Tallahassee, FL 32301, USA.
| | - Bahram Arjmandi
- Department of Nutrition and Integrative Physiology, Florida State University, Tallahassee, FL 32306, USA.
| | - Vivian Haley-Zitlin
- Department of Food, Nutrition, and Packaging Sciences, Clemson University, Clemson, SC 29634-0316, USA.
| |
Collapse
|
6
|
Huss LR, Dean J, Lamothe LM, Hamaker B, Reuhs B, Goran MI, Lê KA. Micronutrient Profile and Carbohydrate Microstructure of Commercially Prepared and Home Prepared Infant Fruit and Vegetable Purees. Nutrients 2022; 15:45. [PMID: 36615703 PMCID: PMC9823441 DOI: 10.3390/nu15010045] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 12/08/2022] [Accepted: 12/18/2022] [Indexed: 12/24/2022] Open
Abstract
Large variability exists in ingredient selection and preparation of home prepared infant purees and there is a lack of data on nutritional quality in comparison to commercially prepared purees. This work had two aims. Study 1 compared the nutritional value of commercially prepared and home prepared infant purees. Food profiles from national food composition databases were used as a proxy for home prepared puree and served as the benchmark for the commercially prepared infant purees. Study 2 focused on a subset of produce that underwent molecular weight analysis to determine differences in carbohydrate profiles. Eighty-eight percent of the measurable micronutrients fell within or above the home prepared norm range with micronutrients falling below the range explained by differences in soil and growing conditions. Physicochemical characterization showed similar carbohydrate profiles with >90% of the carbohydrate fraction in the water extract constituted by low molecular weight sugars for purees produced with home preparation and commercial preparation. The estimated glycemic load (eGL) showed comparable potential impact on blood sugar levels with all purees having a low eGL (<10 glucose equivalent). In conclusion, these data suggest that both preparations provide similar micronutrient density and carbohydrate profiles.
Collapse
Affiliation(s)
- Lyndsey R. Huss
- Nestlé Development Center, 445 State Street, Fremont, MI 49412, USA
| | - Julie Dean
- Nestlé USA, 30500 Bainbridge Rd, Solon, OH 44139, USA
| | - Lisa M. Lamothe
- Nestlé Research Center, Vers-chez-les-Blanc CP44, 1000 Lausanne, Switzerland
| | - Bruce Hamaker
- Whistler Center for Carbohydrate Research, Purdue University, 745 Agriculture Mall Drive, West Lafayette, IN 47907, USA
| | - Brad Reuhs
- Whistler Center for Carbohydrate Research, Purdue University, 745 Agriculture Mall Drive, West Lafayette, IN 47907, USA
| | - Michael I. Goran
- Children’s Hospital Los Angeles, The Saban Research Institute, 4650 West Sunset Blvd, Los Angeles, CA 90027, USA
| | - Kim-Anne Lê
- Nestlé Research Center, Vers-chez-les-Blanc CP44, 1000 Lausanne, Switzerland
| |
Collapse
|
7
|
Ravichandran C, Jayachandran LE, Kothakota A, Pandiselvam R, Balasubramaniam V. Influence of high pressure pasteurization on nutritional, functional and rheological characteristics of fruit and vegetable juices and purees-an updated review. Food Control 2022. [DOI: 10.1016/j.foodcont.2022.109516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
8
|
Wu YJ, Lu YC, Wu YH, Lin YH, Hsu CL, Wang CY. Effects of high-pressure processing on the physicochemical properties and glycemic index of fruit puree in a hyperglycemia mouse model. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2022; 102:6138-6145. [PMID: 35478405 DOI: 10.1002/jsfa.11967] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2021] [Revised: 04/13/2022] [Accepted: 04/27/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND In this study, the duration of high-pressure processing (HPP) required to achieve a 5 log reduction of Escherichia coli O157:H7 in fruit purees was evaluated. Banana, cantaloupe, and dragon fruit purees were subjected to HPP at 600 MPa for 300, 270, and 270 s, respectively, and their physicochemical properties and enzyme activities were then analysed. Diabetic mice were fed fresh and HPP-treated purees to observe their effects on the glycemic index (GI) and postprandial blood glucose response. RESULTS Compared with their fresh counterparts, the HPP-treated banana and dragon fruit purees exhibited significantly higher viscosities, lower glucose concentrations, and higher glucose dialysis retardation indices and showed disrupted sucrose invertase and polygalacturonase activities. The GI and postprandial blood glucose response were not significantly different between the fresh and HPP-treated cantaloupe purees. By contrast, the peak time of glucose response (Tmax ) was delayed from 30 min to 60 min, and the area under the receiver operating characteristic curve was reduced by 40% in the mice fed HPP-treated banana and dragon fruit purees. The GIs of the HPP-treated banana and dragon fruit purees (were 50.3 and 44.8, respectively) were significantly lower than those of their fresh counterparts (85.1 and 75.2, respectively). CONCLUSION HPP can change the physicochemical properties of fruit purees, resulting in stabilized blood glucose levels and lower GIs after consumption. Therefore, purees processed in this manner would benefit consumers and patients with diabetes/pre-diabetes who need to maintain stable blood glucose levels (Fig. S1). © 2022 Society of Chemical Industry.
Collapse
Affiliation(s)
- Yi-Jing Wu
- Department of Biotechnology, National Formosa University, Yunlin, Taiwan
| | - Yi-Ching Lu
- Department of Nutrition, Chung Shan Medical University, Taichung, Taiwan
| | - Yu-Hsiang Wu
- Department of Biotechnology, National Formosa University, Yunlin, Taiwan
| | - Yan-Han Lin
- Department of Biotechnology, National Formosa University, Yunlin, Taiwan
| | - Chin-Lin Hsu
- Department of Nutrition, Chung Shan Medical University, Taichung, Taiwan
| | - Chung-Yi Wang
- Department of Biotechnology, National Formosa University, Yunlin, Taiwan
| |
Collapse
|
9
|
Impacts of Thermal Processing, High Pressure, and CO 2-Assisted High Pressure on Quality Characteristics and Shelf Life of Durian Fruit Puree. Foods 2022; 11:foods11172717. [PMID: 36076902 PMCID: PMC9455942 DOI: 10.3390/foods11172717] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 08/25/2022] [Accepted: 09/01/2022] [Indexed: 12/03/2022] Open
Abstract
Durian fruit puree (DFP) is a nutrient-dense food, but it has a short shelf life. Presently, little research has been undertaken on extending the shelf life of DFP. Hence, it is necessary to develop treatment methods that can prolong the shelf life of DFP. In the present study, thermal processing (TP), high-pressure processing (HPP), and CO2-assisted HPP (CO2 + HPP) treatments are used for DFP, and their influences on quality properties of DFP during storage (35 days, 4 °C) are investigated. Compared to other treatments, the CO2 + HPP treatment had a lower pressure and a shorter time to achieve the same effect of inactivating the microorganisms of DFP. During storage, CO2 + HPP treated DFP showed higher retention rates of sugars, total soluble solids, color, bioactive components, and antioxidant capacity in comparison with other treated DFPs. Moreover, after 35 days of storage, the microbial count of (CO2 + HPP)-treated DFP (3.80 × 103 CFU/g) was much lower than those of TP (4.77 × 105 CFU/g) and HPP (8.53 × 103 CFU/g)-treated DFPs. The results of this study reveal that CO2 + HPP treatment could not only better preserve the quality of DFP, but also effectively extend the shelf life of DFP, providing an effective method for the processing of DFP.
Collapse
|
10
|
Bhatkar NS, Shirkole SS, Brennan C, Thorat BN. Pre‐processed
fruits as raw materials: part
II
—process conditions, demand and safety aspects. Int J Food Sci Technol 2022. [DOI: 10.1111/ijfs.15887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Affiliation(s)
- Nikita S. Bhatkar
- Department of Food Engineering and Technology Institute of Chemical Technology Mumbai ICT‐IOC Campus Bhubaneswar 751013 India
| | - Shivanand S. Shirkole
- Department of Food Engineering and Technology Institute of Chemical Technology Mumbai ICT‐IOC Campus Bhubaneswar 751013 India
| | - Charles Brennan
- School of Science STEM College, RMIT University Melbourne Australia
| | - Bhaskar N. Thorat
- Department of Chemical Engineering Institute of Chemical Technology Mumbai ICT‐IOC Campus Bhubaneswar 751013 India
| |
Collapse
|
11
|
Mapengo CR, Emmambux MN. Processing Technologies for Developing Low GI Foods‐ A Review. STARCH-STARKE 2022. [DOI: 10.1002/star.202100243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Clarity R. Mapengo
- Department of Consumer and Food Sciences University of Pretoria Private Bag X20, Hatfield Pretoria 0028 South Africa
| | - M. Naushad Emmambux
- Department of Consumer and Food Sciences University of Pretoria Private Bag X20, Hatfield Pretoria 0028 South Africa
| |
Collapse
|
12
|
Balasubramaniam VM. Process development of high pressure-based technologies for food: research advances and future perspectives. Curr Opin Food Sci 2021. [DOI: 10.1016/j.cofs.2021.10.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
13
|
High-Pressure Processing on Whole and Peeled Potatoes: Influence on Polyphenol Oxidase, Antioxidants, and Glycaemic Indices. Foods 2021; 10:foods10102425. [PMID: 34681473 PMCID: PMC8535207 DOI: 10.3390/foods10102425] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 09/17/2021] [Accepted: 10/09/2021] [Indexed: 11/17/2022] Open
Abstract
Polyphenol oxidase (PPO) inactivation in five whole and peeled Irish potato cultivars was investigated using high-pressure processing (HPP) at 400 MPa and 600 MPa for 3 min. PPO activity was significantly lower in most of the HPP-treated samples, while the highest PPO inactivation was observed after HPP at 600 MPa. No significant (p > 0.05) changes were observed on the total phenolic content and antioxidant activity of all the HPP-treated potatoes. Regarding individual phenolic acids, chlorogenic acid was decreased significantly (p < 0.05) in all studied varieties with a concomitant increase (p < 0.05) in caffeic and quinic acid. Similarly, ferulic acid was also increased (p < 0.05) in all studied varieties after the HPP treatment, while there was a variation in rutin and 4-coumaric acid levels depending on the cultivar and the sample type. Anthocyanins in the coloured whole potato varieties (i.e., Kerr’s Pink and Rooster), tentatively identified as pelargonidin-O-ferulorylrutinoside-O-hexoside and pelargonidin-O-rutinoside-O-hexoside, also exhibited significantly (p < 0.05) higher levels in the HPP-treated samples as opposed to those untreated. Glycaemic indices of the potatoes treated with HPP did not differ with the corresponding untreated cultivars.
Collapse
|
14
|
Chou CH, Wang CY, Shyu YT, Wu SJ. The effect of high-pressure processing on reducing the glycaemic index of atemoya puree. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2021; 101:1546-1553. [PMID: 32869308 DOI: 10.1002/jsfa.10773] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 07/27/2020] [Accepted: 09/01/2020] [Indexed: 06/11/2023]
Abstract
BACKGROUND This study investigated the effects of high-pressure processing (HPP) on the glycaemic index (GI) of atemoya puree (AP) in rats. Sprague-Dawley rats were fed with unprocessed and high-pressure processed atemoya puree (HPP-AP), and the GIs for the unprocessed AP and HPP-AP were calculated from changes in blood glucose concentrations within 2 h after meals. The physicochemical properties of AP were analysed to understand the mechanism affecting its GI. RESULTS The results showed that HPP (600 MPa for 15 min) could delay increase in postprandial blood glucose levels, decrease the peak value of postprandial blood glucose by 76.1%, and significantly decrease the GI of AP to 49.8 in the experimental group compared to 65.4 in the control group. HPP did not exert a significant effect on the glucose and pectin contents of AP, but it increased the viscosity of the puree and its dietary fibre content and delayed the time of peak glucose response. In the analysis of enzymes of the puree, we found that HPP significantly decreased the activities of sucrose invertase, pectin methylesterase and polygalacturonase, thereby decreasing the rate of glucose generation in the puree and stabilizing the pectin structure, which decreased the absorption of glucose by the small intestine, thus decreasing the GI value. CONCLUSION Our findings suggest that HPP technology could effectively delay increase in postprandial blood glucose levels and decrease the GI value of AP, thus having a potential application in developing atemoya puree products with low GI. © 2020 Society of Chemical Industry.
Collapse
Affiliation(s)
- Chia-Hsuan Chou
- Department of Horticulture and Landscape Architecture, National Taiwan University, Taipei, Taiwan
| | - Chung-Yi Wang
- Department of Biotechnology, National Formosa University, Yunlin, Taiwan
| | - Yuan-Tay Shyu
- Department of Horticulture and Landscape Architecture, National Taiwan University, Taipei, Taiwan
| | - Sz-Jie Wu
- Department of Horticulture and Landscape Architecture, National Taiwan University, Taipei, Taiwan
| |
Collapse
|
15
|
Putnik P, Pavlić B, Šojić B, Zavadlav S, Žuntar I, Kao L, Kitonić D, Kovačević DB. Innovative Hurdle Technologies for the Preservation of Functional Fruit Juices. Foods 2020; 9:E699. [PMID: 32492780 PMCID: PMC7353510 DOI: 10.3390/foods9060699] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 05/15/2020] [Accepted: 05/17/2020] [Indexed: 12/11/2022] Open
Abstract
Functional nutrition, which includes the consumption of fruit juices, has become the field of interest for those seeking a healthy lifestyle. Functional nutrition is also of great interest to the food industry, with the aims of improving human health and providing economic prosperity in a sustainable manner. The functional food sector is the most profitable part of the food industry, with a fast-growing market resulting from new sociodemographic trends (e.g., longer life expectancy, higher standard of living, better health care), which often includes sustainable concepts of food production. Therefore, the demand for hurdle technology in the food industry is growing, along with the consumption of minimally processed foods, not only because this approach inactivates microorganisms in food, but because it can also prolong the shelf life of food products. To preserve food products such as fruit juices, the hurdle technology approach often uses non-thermal methods as alternatives to pasteurization, which can cause a decrease in the nutritional value and quality of the food. Non-thermal technologies are often combined with different hurdles, such as antimicrobial additives, thermal treatment, and ultraviolet or pulsed light, to achieve synergistic effects and overall quality improvements in (functional) juices. Hence, hurdle technology could be a promising approach for the preservation of fruit juices due to its efficiency and low impact on juice quality and characteristics, although all processing parameters still require optimization.
Collapse
Affiliation(s)
- Predrag Putnik
- Faculty of Food Technology and Biotechnology, University of Zagreb, Pierottijeva 6, 10000 Zagreb, Croatia; (L.K.); (D.K.)
| | - Branimir Pavlić
- Faculty of Technology Novi Sad, University of Novi Sad, Bulevar cara Lazara 1, 21000 Novi Sad, Serbia; (B.P.); (B.Š.)
| | - Branislav Šojić
- Faculty of Technology Novi Sad, University of Novi Sad, Bulevar cara Lazara 1, 21000 Novi Sad, Serbia; (B.P.); (B.Š.)
| | - Sandra Zavadlav
- Department of Food Technology, Karlovac University of Applied Sciences, Trg J. J. Strossmayera 9, 47000 Karlovac, Croatia;
| | - Irena Žuntar
- Faculty of Pharmacy and Biochemistry, University of Zagreb, Ante Kovačića 1, 10000 Zagreb, Croatia;
| | - Leona Kao
- Faculty of Food Technology and Biotechnology, University of Zagreb, Pierottijeva 6, 10000 Zagreb, Croatia; (L.K.); (D.K.)
| | - Dora Kitonić
- Faculty of Food Technology and Biotechnology, University of Zagreb, Pierottijeva 6, 10000 Zagreb, Croatia; (L.K.); (D.K.)
| | - Danijela Bursać Kovačević
- Faculty of Food Technology and Biotechnology, University of Zagreb, Pierottijeva 6, 10000 Zagreb, Croatia; (L.K.); (D.K.)
| |
Collapse
|
16
|
Elizondo-Montemayor L, Ramos-Parra PA, Jacobo-Velázquez DA, Treviño-Saldaña N, Marín-Obispo LM, Ibarra-Garza IP, Garcia-Amezquita LE, Del Follo-Martínez A, Welti-Chanes J, Hernández-Brenes C. High hydrostatic pressure stabilized micronutrients and shifted dietary fibers, from insoluble to soluble, producing a low-glycemic index mango pulp. CYTA - JOURNAL OF FOOD 2020. [DOI: 10.1080/19476337.2020.1731610] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Affiliation(s)
- Leticia Elizondo-Montemayor
- Tecnologico de Monterrey, Clinical Nutrition and Obesity Research Center, Escuela de Medicina, Monterrey, Mexico
- Tecnologico de Monterrey, Cátedra de Cardiología y Medicina Vascular, Instituto de Cardiología y Medicina Vascular, Hospital Zambrano-Hellion, St. Patrick’s Battalion, San Pedro Garza García, Mexico
| | - Perla A. Ramos-Parra
- Tecnologico de Monterrey, Escuela de Ingeniería yCiencias, Monterrey, México
- Tecnologico de Monterrey, Centro de Biotecnologia-FEMSA, Monterrey, México
| | | | - Niria Treviño-Saldaña
- Tecnologico de Monterrey, Clinical Nutrition and Obesity Research Center, Escuela de Medicina, Monterrey, Mexico
- Tecnologico de Monterrey, Cátedra de Cardiología y Medicina Vascular, Instituto de Cardiología y Medicina Vascular, Hospital Zambrano-Hellion, St. Patrick’s Battalion, San Pedro Garza García, Mexico
| | - Luis M. Marín-Obispo
- Tecnologico de Monterrey, Escuela de Ingeniería yCiencias, Monterrey, México
- Tecnologico de Monterrey, Centro de Biotecnologia-FEMSA, Monterrey, México
| | - Ingrid P. Ibarra-Garza
- Tecnologico de Monterrey, Escuela de Ingeniería yCiencias, Monterrey, México
- ALFA, Centro de Tecnología de Sigma Alimentos, Apodaca, Mexico
| | | | | | - Jorge Welti-Chanes
- Tecnologico de Monterrey, Escuela de Ingeniería yCiencias, Monterrey, México
| | - Carmen Hernández-Brenes
- Tecnologico de Monterrey, Escuela de Ingeniería yCiencias, Monterrey, México
- Tecnologico de Monterrey, Centro de Biotecnologia-FEMSA, Monterrey, México
| |
Collapse
|
17
|
Current status of emerging food processing technologies in Latin America: Novel non-thermal processing. INNOV FOOD SCI EMERG 2019. [DOI: 10.1016/j.ifset.2019.102233] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
18
|
Huang HW, Hsu CP, Wang CY. Healthy expectations of high hydrostatic pressure treatment in food processing industry. J Food Drug Anal 2019; 28:1-13. [PMID: 31883597 DOI: 10.1016/j.jfda.2019.10.002] [Citation(s) in RCA: 80] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Revised: 10/05/2019] [Accepted: 10/23/2019] [Indexed: 12/19/2022] Open
Abstract
High hydrostatic pressure processing (HPP) is a non-thermal pasteurization technology which has already been applied in the food industries. Besides maintaining the food safety and quality, HPP also has potential applications in the enhancement of the health benefits of food products. This study examines the current progress of research on the use of HPP in the development of health foods. Through HPP, the nutritional value of food products can be enhanced or retained, including promotes the biosynthesis of γ-aminobutyric acid (GABA) in the food materials, retains immunoglobulin components in dairy products, increases resistant starch content in cereals, and reduces the glycemic index of fruit and vegetable products, which facilitates better control of blood glucose levels and decreases calorie intake. HPP can also be utilized as a hurdle technology in combination with existing processing technologies for the development of low-sodium food products and the maintenance of microbial safety, thereby lowering the risk of triggering cardiovascular disease. Additionally, HPP can be used to enhance the diversity of probiotic food products. Appropriate sporogenous probiotics can be screened and added to various high-pressure processed food products as a certain bacterial count is still retained in the products after HPP. As HPP causes physical damage to the structures of food products, it can also be used as a synergistic extraction technology to enhance the extraction efficiency of functional components, thereby reducing extraction time. By applying HPP in the extraction of functional components from food waste, the production costs of such components can be effectively reduced. This study provides a summary of the mechanisms by which HPP enhances the health benefits of food products and the current progress of relevant research. HPP possesses huge potential in the development of novel health foods and may provide an abundance of benefits to human health in the future.
Collapse
Affiliation(s)
- Hsiao-Wen Huang
- Department of Animal Science and Technology, National Taiwan University, Taipei, 106, Taiwan
| | - Chiao-Ping Hsu
- Food Industry Research and Development Institute, Chiayi, 60060, Taiwan
| | - Chung-Yi Wang
- Department of Biotechnology, National Formosa University, Yunlin, 632, Taiwan.
| |
Collapse
|
19
|
Fardet A, Richonnet C. Nutrient density and bioaccessibility, and the antioxidant, satiety, glycemic, and alkalinizing potentials of fruit-based foods according to the degree of processing: a narrative review. Crit Rev Food Sci Nutr 2019; 60:3233-3258. [DOI: 10.1080/10408398.2019.1682512] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Anthony Fardet
- Department of Human Nutrition, Université Clermont Auvergne, INRA, UNH, Unité de Nutrition Humaine, CRNH Auvergne, Clermont-Ferrand, France
| | - Céline Richonnet
- Department of Nutrition, MOM Group, 1 Rue de la Pépinière, Paris, France
| |
Collapse
|
20
|
Li Z, Liu H, Ma R, Tang B, Pan D, Peng Y, Ling X, Wang Y, Wu X, Che L, He N. Changes to the tropomyosin structure alter the angiotensin-converting enzyme inhibitory activity and texture profiles of eel balls under high hydrostatic pressure. Food Funct 2019; 9:6535-6543. [PMID: 30475376 DOI: 10.1039/c8fo01495g] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Changes in the structure of tropomyosin (TM) altered the texture profiles of eel balls and the inhibitory activity of the angiotensin-converting enzyme (ACE). The secondary and tertiary structure of TM was determined after high hydrostatic pressure (HHP) treatment. The correlation between the spatial structure of TM and the texture profiles of eel balls was developed and discussed. The β-sheet was converted to a β-turn and a random coil when treated at HHP (200-400 MPa), meanwhile the α-helix unfolded and was converted into a β-sheet, β-turn and a random coil with treatment at 500 and 600 MPa. The surface hydrophobicity (H0) was increased and the sulfhydryl (SH) content decreased with an increase in the pressure. The results indicated that the texture profiles of eel balls showed a negative relationship with the α-helix, β-sheet and SH content. The texture profiles of eel balls were greatly enhanced after treatment at 500 and 600 MPa, leading to the improved surface network of the eel ball products. The ACE inhibitory activity of TM after HHP treatment exhibited a positive relationship with the β-sheet content in the protein. The ACE inhibitory activity was preserved under 600 MPa.
Collapse
Affiliation(s)
- Zhenglong Li
- Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, P. R. China.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Burton-Freeman BM, Sandhu AK, Edirisinghe I. Mangos and their bioactive components: adding variety to the fruit plate for health. Food Funct 2018; 8:3010-3032. [PMID: 28612853 DOI: 10.1039/c7fo00190h] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
The diet is an essential factor affecting the risk for development and progression of modern day chronic diseases, particularly those with pathophysiological roots in inflammation and oxidative stress-induced damage. The potential impact of certain foods and their bioactive compounds to reverse or prevent destructive dysregulated processes leading to disease has attracted intense research attention. The mango (Mangifera indica Linn.) is a tropical fruit with distinctive nutritional and phytochemical composition. Notably, the mango contains several essential water- and lipid-soluble micronutrients along with the distinguishing phytochemicals gallotannins and mangiferin. In vitro and in vivo studies reveal various mechanisms through which mangos or their associated compounds reduce risk or reverse metabolic- and inflammation-associated diseases. Health benefits of isolated individual mango compounds and extracts from mango by-products are well described in the literature with less attention devoted to the whole fruit. Here, we review and summarize the available literature assessing the health promoting potential of mango flesh, the edible portion contributing to dietary fruit intake, focusing specifically on modern day health issues of obesity and the risk factors and diseases it precipitates, including diabetes and cardiovascular disease. Additionally, this review explores new insights on the benefits of mango for brain, skin and intestinal health. Overall, the foundation of research supporting the potential role of mangos in reducing risk for inflammation- and metabolically-based chronic diseases is growing.
Collapse
Affiliation(s)
- Britt M Burton-Freeman
- Center for Nutrition Research, Institute for Food Safety and Health, Illinois Institute of Technology, IL, USA.
| | | | | |
Collapse
|
22
|
Redfern KM, Cammack VL, Sweet N, Preston LA, Jarvis MA, Rees GA. Nutrient-extraction blender preparation reduces postprandial glucose responses from fruit juice consumption. Nutr Diabetes 2017; 7:e288. [PMID: 28991222 PMCID: PMC5678208 DOI: 10.1038/nutd.2017.36] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2017] [Revised: 08/10/2017] [Accepted: 08/19/2017] [Indexed: 11/19/2022] Open
Abstract
Although whole-fruit consumption is regarded as protective against type 2 diabetes (T2DM), conventionally prepared fruit juice is associated with increased T2DM risk, and current public health advice recommends its restriction. ‘Nutrient extractor’ style blenders are increasing in popularity worldwide as an alternative means of juicing fruit, but little is known about their effect on postprandial glucose levels. The current study investigated the effect of nutrient extraction on postprandial blood glucose response and glycemic index (GI) compared with a glucose control for both mixed fruit and a high GI fruit (mango). Remarkably, consumption of nutrient-extracted mixed fruit resulted in a significant lowering of the GI (32.7±8.5) compared with whole mixed fruit (66.2±8.2, P<0.05). For the high GI mango, there were no differences between nutrient-extracted and whole fruit, indicating that even for a high GI fruit the effect of nutrient extraction does not increase GI compared with the whole fruit. These findings suggest that, in contrast to conventionally prepared fruit juice, fruit juice prepared by nutrient extraction in some cases elicits a more favorable postprandial glycemic response than whole fruit and even for high GI fruits do not worsen the response. The mechanism responsible for this effect is currently unclear. However, these results suggest that fruit homogenized by nutrient extraction should be considered as a potential dietetic strategy for glycemic control.
Collapse
Affiliation(s)
- K M Redfern
- School of Biomedical and Healthcare Sciences, Plymouth University Peninsula Schools of Medicine and Dentistry, Plymouth, UK
| | - V L Cammack
- School of Biomedical and Healthcare Sciences, Plymouth University Peninsula Schools of Medicine and Dentistry, Plymouth, UK
| | - N Sweet
- School of Biomedical and Healthcare Sciences, Plymouth University Peninsula Schools of Medicine and Dentistry, Plymouth, UK
| | - L A Preston
- School of Biomedical and Healthcare Sciences, Plymouth University Peninsula Schools of Medicine and Dentistry, Plymouth, UK
| | | | - M A Jarvis
- School of Biomedical and Healthcare Sciences, Plymouth University Peninsula Schools of Medicine and Dentistry, Plymouth, UK
| | - G A Rees
- School of Biomedical and Healthcare Sciences, Plymouth University Peninsula Schools of Medicine and Dentistry, Plymouth, UK
| |
Collapse
|
23
|
Rodríguez-Garayar M, Martín-Cabrejas MA, Esteban RM. High Hydrostatic Pressure in Astringent and Non-Astringent Persimmons to Obtain Fiber-Enriched Ingredients with Improved Functionality. FOOD BIOPROCESS TECH 2017. [DOI: 10.1007/s11947-017-1870-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|