1
|
Ma L, Zhao X, Hou J, Huang L, Yao Y, Ding Z, Wei J, Hao N. Droplet Microfluidic Devices: Working Principles, Fabrication Methods, and Scale-Up Applications. SMALL METHODS 2024; 8:e2301406. [PMID: 38594964 DOI: 10.1002/smtd.202301406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 11/01/2023] [Indexed: 04/11/2024]
Abstract
Compared with the conventional emulsification method, droplets generated within microfluidic devices exhibit distinct advantages such as precise control of fluids, exceptional monodispersity, uniform morphology, flexible manipulation, and narrow size distribution. These inherent benefits, including intrinsic safety, excellent heat and mass transfer capabilities, and large surface-to-volume ratio, have led to the widespread applications of droplet-based microfluidics across diverse fields, encompassing chemical engineering, particle synthesis, biological detection, diagnostics, emulsion preparation, and pharmaceuticals. However, despite its promising potential for versatile applications, the practical utilization of this technology in commercial and industrial is extremely limited to the inherently low production rates achievable within a single microchannel. Over the past two decades, droplet-based microfluidics has evolved significantly, considerably transitioning from a proof-of-concept stage to industrialization. And now there is a growing trend towards translating academic research into commercial and industrial applications, primarily driven by the burgeoning demands of various fields. This paper comprehensively reviews recent advancements in droplet-based microfluidics, covering the fundamental working principles and the critical aspect of scale-up integration from working principles to scale-up integration. Based on the existing scale-up strategies, the paper also outlines the future research directions, identifies the potential opportunities, and addresses the typical unsolved challenges.
Collapse
Affiliation(s)
- Li Ma
- School of Chemical Engineering and Technology, Xi'an Jiaotong University, 28 Xianning West Road, Xi'an, Shaanxi, 710049, P. R. China
| | - Xiong Zhao
- School of Chemical Engineering and Technology, Xi'an Jiaotong University, 28 Xianning West Road, Xi'an, Shaanxi, 710049, P. R. China
| | - Junsheng Hou
- School of Chemical Engineering and Technology, Xi'an Jiaotong University, 28 Xianning West Road, Xi'an, Shaanxi, 710049, P. R. China
| | - Lei Huang
- School of Chemical Engineering and Technology, Xi'an Jiaotong University, 28 Xianning West Road, Xi'an, Shaanxi, 710049, P. R. China
| | - Yilong Yao
- School of Chemical Engineering and Technology, Xi'an Jiaotong University, 28 Xianning West Road, Xi'an, Shaanxi, 710049, P. R. China
| | - Zihan Ding
- School of Chemical Engineering and Technology, Xi'an Jiaotong University, 28 Xianning West Road, Xi'an, Shaanxi, 710049, P. R. China
| | - Jinjia Wei
- School of Chemical Engineering and Technology, Xi'an Jiaotong University, 28 Xianning West Road, Xi'an, Shaanxi, 710049, P. R. China
| | - Nanjing Hao
- School of Chemical Engineering and Technology, Xi'an Jiaotong University, 28 Xianning West Road, Xi'an, Shaanxi, 710049, P. R. China
| |
Collapse
|
2
|
Yandrapalli N. Complex Emulsions as an Innovative Pharmaceutical Dosage form in Addressing the Issues of Multi-Drug Therapy and Polypharmacy Challenges. Pharmaceutics 2024; 16:707. [PMID: 38931830 PMCID: PMC11206808 DOI: 10.3390/pharmaceutics16060707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Revised: 05/20/2024] [Accepted: 05/21/2024] [Indexed: 06/28/2024] Open
Abstract
This review explores the intersection of microfluidic technology and complex emulsion development as a promising solution to the challenges of formulations in multi-drug therapy (MDT) and polypharmacy. The convergence of microfluidic technology and complex emulsion fabrication could herald a transformative era in multi-drug delivery systems, directly confronting the prevalent challenges of polypharmacy. Microfluidics, with its unparalleled precision in droplet formation, empowers the encapsulation of multiple drugs within singular emulsion particles. The ability to engineer emulsions with tailored properties-such as size, composition, and release kinetics-enables the creation of highly efficient drug delivery vehicles. Thus, this innovative approach not only simplifies medication regimens by significantly reducing the number of necessary doses but also minimizes the pill burden and associated treatment termination-issues associated with polypharmacy. It is important to bring forth the opportunities and challenges of this synergy between microfluidic-driven complex emulsions and multi-drug therapy poses. Together, they not only offer a sophisticated method for addressing the intricacies of delivering multiple drugs but also align with broader healthcare objectives of enhancing treatment outcomes, patient safety, and quality of life, underscoring the importance of dosage form innovations in tackling the multifaceted challenges of modern pharmacotherapy.
Collapse
Affiliation(s)
- Naresh Yandrapalli
- Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstrasse 108, 01307 Dresden, Germany
| |
Collapse
|
3
|
Guo JK, Wang H, Chang F, Ling J, Yuan Y, Zhang X, Wang X. Production and Reconfiguration of Double Emulsions by Temperature Control. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:13296-13302. [PMID: 37661457 DOI: 10.1021/acs.langmuir.3c01891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/05/2023]
Abstract
Double emulsions are of great importance for both science and engineering. However, the production of multicore double-emulsion droplets is challenging and normally requires sophisticated microfluidic devices, which limits their availability to broader communities. Here, we propose a simple, precise, and scalable batch method for producing double emulsions with monodispersed multicores at milliliter per minute rates, using the most common means in laboratory, temperature. By rapidly cooling liquid crystal emulsions, the introduced temperature gradient around the emulsion droplets leads to the injection of monodispersed guest droplets to form double-emulsion droplets. The number of injected water droplets can be precisely controlled by adjusting the thermally induced mechanical force through the temperature difference and the cooling rate. In contrast to conventional microfluidic fabrication, this method processes all emulsion droplets simultaneously in a noncontact and in situ manner. Therefore, it has great flexibility, allows multiple processing of double emulsions of arbitrary shape, has good capacity for mass production, and offers excellent compatibility with technologies such as microfluidics. Finally, we demonstrate that temperature changes can also be used to release the inner droplets from the double emulsion. The proposed method offers a reversible tool for processing double emulsions with minimal cost and expertise and is applicable to droplet-based microsystems in materials science, photonics, sensors, pharmaceuticals, and biotechnology.
Collapse
Affiliation(s)
- Jin-Kun Guo
- School of Optoelectronic Engineering, Xidian University, Xìan 710071, Shaanxi Province, China
| | - Haojie Wang
- School of Physics, Xidian University, Xìan 710071, Shaanxi Province, China
| | - Fengjiao Chang
- Shaanxi University of Chinese Medicine, Xìan 712046, Shaanxi Province, China
| | - Jinzhong Ling
- School of Optoelectronic Engineering, Xidian University, Xìan 710071, Shaanxi Province, China
| | - Ying Yuan
- School of Optoelectronic Engineering, Xidian University, Xìan 710071, Shaanxi Province, China
| | - Xuantao Zhang
- Dongbei University of Finance and Ecomonics, Dalian 116025, Liaoning Province, China
| | - Xiaorui Wang
- School of Optoelectronic Engineering, Xidian University, Xìan 710071, Shaanxi Province, China
| |
Collapse
|
4
|
Shang Q, Wang H, Xiang X, Zhu C, Ma Y, Fu T. Formation of droplets of yield stress non-Newtonian fluids at T-junctions within parallelized microchannels. Chem Eng Sci 2023. [DOI: 10.1016/j.ces.2023.118696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/01/2023]
|
5
|
Jiang L, Yang H, Cheng W, Ni Z, Xiang N. Droplet microfluidics for CTC-based liquid biopsy: a review. Analyst 2023; 148:203-221. [PMID: 36508171 DOI: 10.1039/d2an01747d] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Circulating tumor cells (CTCs) are important biomarkers of liquid biopsy. The number and heterogeneity of CTCs play an important role in cancer diagnosis and personalized medicine. However, owing to the low-abundance biomarkers of CTCs, conventional assays are only able to detect CTCs at the population level. Therefore, there is a pressing need for a highly sensitive method to analyze CTCs at the single-cell level. As an important branch of microfluidics, droplet microfluidics is a high-throughput and sensitive single-cell analysis platform for the quantitative detection and heterogeneity analysis of CTCs. In this review, we focus on the quantitative detection and heterogeneity analysis of CTCs using droplet microfluidics. Technologies that enable droplet microfluidics, particularly high-throughput droplet generation and high-efficiency droplet manipulation, are first discussed. Then, recent advances in detecting and analyzing CTCs using droplet microfluidics from the different aspects of nucleic acids, proteins, and metabolites are introduced. The purpose of this review is to provide guidance for the continued study of droplet microfluidics for CTC-based liquid biopsy.
Collapse
Affiliation(s)
- Lin Jiang
- School of Mechanical Engineering, and Jiangsu Key Laboratory for Design and Manufacture of Micro-Nano Biomedical Instruments, Southeast University, Nanjing, 211189, China.
| | - Hang Yang
- School of Mechanical Engineering, and Jiangsu Key Laboratory for Design and Manufacture of Micro-Nano Biomedical Instruments, Southeast University, Nanjing, 211189, China.
| | - Weiqi Cheng
- School of Mechanical Engineering, and Jiangsu Key Laboratory for Design and Manufacture of Micro-Nano Biomedical Instruments, Southeast University, Nanjing, 211189, China.
| | - Zhonghua Ni
- School of Mechanical Engineering, and Jiangsu Key Laboratory for Design and Manufacture of Micro-Nano Biomedical Instruments, Southeast University, Nanjing, 211189, China.
| | - Nan Xiang
- School of Mechanical Engineering, and Jiangsu Key Laboratory for Design and Manufacture of Micro-Nano Biomedical Instruments, Southeast University, Nanjing, 211189, China.
| |
Collapse
|
6
|
Deng CF, Su YY, Yang SH, Jiang QR, Xie R, Ju XJ, Liu Z, Pan DW, Wang W, Chu LY. Designable microfluidic ladder networks from backstepping microflow analysis for mass production of monodisperse microdroplets. LAB ON A CHIP 2022; 22:4962-4973. [PMID: 36420612 DOI: 10.1039/d2lc00771a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Controllable mass production of monodisperse droplets plays a key role in numerous fields ranging from scientific research to industrial application. Microfluidic ladder networks show great potential in mass production of monodisperse droplets, but their design with uniform microflow distribution remains challenging due to the lack of a rational design strategy. Here an effective design strategy based on backstepping microflow analysis (BMA) is proposed for the rational development of microfluidic ladder networks for mass production of controllable monodisperse microdroplets. The performance of our BMA rule for rational microfluidic ladder network design is demonstrated by using an existing analogism-derived rule that is widely used for the design of microfluidic ladder networks as the control group. The microfluidic ladder network designed by the BMA rule shows a more uniform flow distribution in each branch microchannel than that designed by the existing rule, as confirmed by single-phase flow simulation. Meanwhile, the microfluidic ladder network designed by the BMA rule allows mass production of droplets with higher size monodispersity in a wider window of flow rates and mass production of polymeric microspheres from such highly monodisperse droplet templates. The proposed BMA rule provides new insights into the microflow distribution behaviors in microfluidic ladder networks based on backstepping microflow analysis and provides a rational guideline for the efficient development of microfluidic ladder networks with uniform flow distribution for mass production of highly monodisperse droplets. Moreover, the BMA method provides a general analysis strategy for microfluidic networks with parallel multiple microchannels for rational scale-up.
Collapse
Affiliation(s)
- Chuan-Fu Deng
- School of Chemical Engineering, Sichuan University, Chengdu, Sichuan 610065, China.
| | - Yao-Yao Su
- School of Chemical Engineering, Sichuan University, Chengdu, Sichuan 610065, China.
| | - Shi-Hao Yang
- School of Chemical Engineering, Sichuan University, Chengdu, Sichuan 610065, China.
| | - Qing-Rong Jiang
- School of Chemical Engineering, Sichuan University, Chengdu, Sichuan 610065, China.
| | - Rui Xie
- School of Chemical Engineering, Sichuan University, Chengdu, Sichuan 610065, China.
- State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, Sichuan 610065, China
| | - Xiao-Jie Ju
- School of Chemical Engineering, Sichuan University, Chengdu, Sichuan 610065, China.
- State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, Sichuan 610065, China
| | - Zhuang Liu
- School of Chemical Engineering, Sichuan University, Chengdu, Sichuan 610065, China.
- State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, Sichuan 610065, China
| | - Da-Wei Pan
- School of Chemical Engineering, Sichuan University, Chengdu, Sichuan 610065, China.
- State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, Sichuan 610065, China
| | - Wei Wang
- School of Chemical Engineering, Sichuan University, Chengdu, Sichuan 610065, China.
- State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, Sichuan 610065, China
| | - Liang-Yin Chu
- School of Chemical Engineering, Sichuan University, Chengdu, Sichuan 610065, China.
- State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, Sichuan 610065, China
| |
Collapse
|
7
|
Kim HH, Cho Y, Baek D, Rho KH, Park SH, Lee S. Parallelization of Microfluidic Droplet Junctions for Ultraviscous Fluids. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2205001. [PMID: 36310131 DOI: 10.1002/smll.202205001] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 09/29/2022] [Indexed: 06/16/2023]
Abstract
The parallelization of multiple microfluidic droplet junctions has been successfully achieved so that the production throughput of the uniform microemulsions/particles has witnessed considerable progress. However, these advancements have been observed only in the case of a low viscous fluid (viscosity of 10-2 -10-3 Pa s). This study designs and fabricates a microfluidic device, enabling a uniform micro-emulsification of an ultraviscous fluid (viscosity of 3.5 Pa s) with a throughput of ≈330 000 droplets per hour. Multiple T-junctions of a dispersed oil phase, split from a single inlet, are connected into the single post-crossflow channel of a continuous water phase. In the proposed device, the continuous water phase undergoes a series circuit, wherein the resistances are continuously accumulated. The independent corrugations of the dispersed oil phase channel, under the theoretical guidance, compromise such increased resistances; the ratio of water to oil flow rates at each junction becomes consistent across T-junctions. Owing to the design being based on a fully 2D interconnection, single-step soft lithography is sufficient for developing the full device. This easy-to-craft architecture contrasts with the previous approach, wherein complicated 3D interconnections of the multiple junctions are involved, thereby facilitating the rapid uptake of high throughput droplet microfluidics for experts and newcomers alike.
Collapse
Affiliation(s)
- Hyeon Ho Kim
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul, 02841, Republic of Korea
| | - YongDeok Cho
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul, 02841, Republic of Korea
| | - Dongjae Baek
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul, 02841, Republic of Korea
| | - Kyung Hun Rho
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul, 02841, Republic of Korea
| | - Sung Hun Park
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul, 02841, Republic of Korea
| | - Seungwoo Lee
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul, 02841, Republic of Korea
- Department of Integrative Energy Engineering, Department of Biomicrosystem Technology and KU Photonics Center, Korea University, Seoul, 02841, Republic of Korea
| |
Collapse
|
8
|
ten Klooster S, van den Berg J, Berton-Carabin C, de Ruiter J, Schroën K. Upscaling microfluidic emulsification: the importance of sub-structure design in EDGE devices. Chem Eng Sci 2022. [DOI: 10.1016/j.ces.2022.117993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
9
|
Chen TY, Hsiao YW, Baker-Fales M, Cameli F, Dimitrakellis P, Vlachos DG. Microflow chemistry and its electrification for sustainable chemical manufacturing. Chem Sci 2022; 13:10644-10685. [PMID: 36320706 PMCID: PMC9491096 DOI: 10.1039/d2sc01684b] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Accepted: 08/03/2022] [Indexed: 10/26/2023] Open
Abstract
Sustainability is vital in solving global societal problems. Still, it requires a holistic view by considering renewable energy and carbon sources, recycling waste streams, environmentally friendly resource extraction and handling, and green manufacturing. Flow chemistry at the microscale can enable continuous sustainable manufacturing by opening up new operating windows, precise residence time control, enhanced mixing and transport, improved yield and productivity, and inherent safety. Furthermore, integrating microfluidic systems with alternative energy sources, such as microwaves and plasmas, offers tremendous promise for electrifying and intensifying modular and distributed chemical processing. This review provides an overview of microflow chemistry, electrification, their integration toward sustainable manufacturing, and their application to biomass upgrade (a select number of other processes are also touched upon). Finally, we identify critical areas for future research, such as matching technology to the scale of the application, techno-economic analysis, and life cycle assessment.
Collapse
Affiliation(s)
- Tai-Ying Chen
- Department of Chemical and Biomolecular Engineering, University of Delaware 150 Academy Street Newark Delaware 19716 USA
| | - Yung Wei Hsiao
- Department of Chemical and Biomolecular Engineering, University of Delaware 150 Academy Street Newark Delaware 19716 USA
| | - Montgomery Baker-Fales
- Department of Chemical and Biomolecular Engineering, University of Delaware 150 Academy Street Newark Delaware 19716 USA
| | - Fabio Cameli
- Department of Chemical and Biomolecular Engineering, University of Delaware 150 Academy Street Newark Delaware 19716 USA
| | - Panagiotis Dimitrakellis
- Department of Chemical and Biomolecular Engineering, University of Delaware 150 Academy Street Newark Delaware 19716 USA
- Catalysis Center for Energy Innovation, RAPID Manufacturing Institute, Delaware Energy Institute (DEI), University of Delaware 221 Academy St. Newark Delaware 19716 USA
| | - Dionisios G Vlachos
- Department of Chemical and Biomolecular Engineering, University of Delaware 150 Academy Street Newark Delaware 19716 USA
- Catalysis Center for Energy Innovation, RAPID Manufacturing Institute, Delaware Energy Institute (DEI), University of Delaware 221 Academy St. Newark Delaware 19716 USA
| |
Collapse
|
10
|
Larrea A, Arruebo M, Serra CA, Sebastián V. Trojan pH-Sensitive Polymer Particles Produced in a Continuous-Flow Capillary Microfluidic Device Using Water-in-Oil-in-Water Double-Emulsion Droplets. MICROMACHINES 2022; 13:mi13060878. [PMID: 35744492 PMCID: PMC9230220 DOI: 10.3390/mi13060878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 05/25/2022] [Accepted: 05/26/2022] [Indexed: 12/04/2022]
Abstract
A facile and robust microfluidic method to produce nanoparticle-in-microparticle systems (Trojan systems) is reported as a delivery vector for the oral administration of active pharmaceutical ingredients. The microfluidic system is based on two coaxial capillaries that produce monodisperse water-in-oil-in-water (W/O/W) double emulsions in a highly controlled fashion with precise control over the resulting particle structure, including the core and shell dimensions. The influence of the three phase flow rates, pH and drying process on the formation and overall size is evaluated. These droplets are then used as templates for the production of pH-sensitive Trojan microparticles after solvent evaporation. The shell of Trojan microparticles is made of Eudragit®, a methacrylic acid-ethyl acrylate copolymer that would enable the Trojan microparticle payload to first pass through the stomach without being degraded and then dissolve in the intestinal fluid, releasing the inner payload. The synthesis of the pH-sensitive Trojan microparticles was also compared with a conventional batch production method. The payloads considered in this work were different in nature: (1) fluorescein, to validate the feasibility of the polymeric shell to protect the payload under gastric pH; (2) poly(D,L-lactic acid/glycolic acid)-PLGA nanoparticles loaded with the antibiotic rifampicin. These PLGA nanoparticles were produced also using a microfluidic continuous process and (3) PLGA nanoparticles loaded with Au nanoparticles to trace the PLGA formulation under different environments (gastric and intestinal), and to assess whether active pharmaceutical ingredient (API) encapsulation in PLGA is due efficiently. We further showed that Trojan microparticles released the embedded PLGA nanoparticles in contact with suitable media, as confirmed by electron microscopy. Finally, the results show the possibility of developing Trojan microparticles in a continuous manner with the ability to deliver therapeutic nanoparticles in the gastrointestinal tract.
Collapse
Affiliation(s)
- Ane Larrea
- Instituto de Nanociencia y Materiales de Aragón (INMA), CSIC-Universidad de Zaragoza, 50009 Zaragoza, Spain; (A.L.); (M.A.)
| | - Manuel Arruebo
- Instituto de Nanociencia y Materiales de Aragón (INMA), CSIC-Universidad de Zaragoza, 50009 Zaragoza, Spain; (A.L.); (M.A.)
- Department of Chemical Engineering, Campus Río Ebro-Edificio I+D, University of Zaragoza, C/Poeta Mariano Esquillor S/N, 50018 Zaragoza, Spain
- Networking Research Center on Bioengineering, Biomaterials and Nanomedicine, CIBER-BBN, 28029 Madrid, Spain
| | - Christophe A. Serra
- Université de Strasbourg, CNRS, ICS UPR 22, F-67000 Strasbourg, France
- Correspondence: (C.A.S.); (V.S.)
| | - Victor Sebastián
- Instituto de Nanociencia y Materiales de Aragón (INMA), CSIC-Universidad de Zaragoza, 50009 Zaragoza, Spain; (A.L.); (M.A.)
- Department of Chemical Engineering, Campus Río Ebro-Edificio I+D, University of Zaragoza, C/Poeta Mariano Esquillor S/N, 50018 Zaragoza, Spain
- Networking Research Center on Bioengineering, Biomaterials and Nanomedicine, CIBER-BBN, 28029 Madrid, Spain
- Laboratorio de Microscopías Avanzadas, Universidad de Zaragoza, 50018 Zaragoza, Spain
- Correspondence: (C.A.S.); (V.S.)
| |
Collapse
|
11
|
Sebastian V. Toward continuous production of high-quality nanomaterials using microfluidics: nanoengineering the shape, structure and chemical composition. NANOSCALE 2022; 14:4411-4447. [PMID: 35274121 DOI: 10.1039/d1nr06342a] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Over the last decade, a multitude of synthesis strategies has been reported for the production of high-quality nanoparticles. Wet-chemical methods are generally the most efficient synthesis procedures since high control of crystallinity and physicochemical properties can be achieved. However, a number of challenges remain from inadequate reaction control during the nanocrystallization process; specifically variability, selectivity, scalability and safety. These shortcomings complicate the synthesis, make it difficult to obtain a uniform product with desired properties, and present serious limitations for scaling the production of colloidal nanocrystals from academic studies to industrial applications. Continuous flow reactors based on microfluidic principles offer potential solutions and advantages. The reproducibility of reaction conditions in microfluidics and therefore product quality have proved to exceed those obtained by batch processing. Considering that in nanoparticles' production not only is it crucial to control the particle size distribution, but also the shape and chemical composition, this review presents an overview of the current state-of-the-art in synthesis of anisotropic and faceted nanostructures by using microfluidics techniques. The review surveys the available tools that enable shape and chemical control, including secondary growth methods, active segmented flow, and photoinduced shape conversion. In addition, emphasis is placed on the available approaches developed to tune the structure and chemical composition of nanomaterials in order to produce complex heterostructures in a continuous and reproducible fashion.
Collapse
Affiliation(s)
- Victor Sebastian
- Instituto de Nanociencia y Materiales de Aragón (INMA), CSIC-Universidad de Zaragoza, Zaragoza 50009, Spain.
- Department of Chemical Engineering and Environmental Technologies, University de Zaragoza, 50018, Zaragoza, Spain
- Networking Research Centre of Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), C/Monforte de Lemos, 3-5 Pabellón 11, 28029 Madrid, Spain
- Laboratorio de Microscopías Avanzadas, Universidad de Zaragoza, 50018 Zaragoza, Spain
| |
Collapse
|
12
|
Abstract
The gas–liquid slug flow characteristics in a novel honeycomb microchannel reactor were investigated numerically and experimentally. Computational fluid dynamics (CFD) modeling was carried out with Comsol finite element software using the phase-field method, and the simulation results were verified by micro-particle image velocimetry (micro-PIV) analysis. The breakups of liquid slugs at the bifurcations of current honeycomb microchannel followed a complex behavior, leading to non-uniformity in each branch. The pressure distribution inside the microreactor was closely related to the phase distribution. The increasing inlet gas velocity increased the gas phase volume fraction, as well as the gas slug length. Higher gas velocity resulted in stronger turbulence of the liquid phase flow field and a deviation of residence time distribution from normal distribution, but it was favorable to even more residence time during the liquid phase. There also exists a secondary flow in the gas–liquid interface. This work reveals the intrinsic intensified effect of honeycomb microchannel, and it provides guidance on future microreactor design for chemical energy conversion.
Collapse
|
13
|
Wang J, Hahn S, Amstad E, Vogel N. Tailored Double Emulsions Made Simple. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2107338. [PMID: 34706112 DOI: 10.1002/adma.202107338] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 10/22/2021] [Indexed: 06/13/2023]
Abstract
Double emulsions, such as water-in-oil-in-water droplets, are important material platforms for conducting fundamental research and for technological applications. To date, well-defined double-emulsion droplets consisting of a single water core and a thin oil shell can be exclusively formed with sophisticated microfluidic devices. The fabrication, preparation, and operation of such devices is challenging, which reduces the availability of tailored double emulsions to a limited community of experts. Here, a simple method is introduced to produce single-core double emulsions with high yield in large quantities, using a vortex mixer. Utilizing the density difference between the dispersed droplet and the continuous phase, this two-step emulsification method can achieve very small core droplet diameters below 10 μm and ultrathin shells with thicknesses below 1 μm. A detailed picture of the formation mechanism is provided and it is demonstrated that the process can be extended to produce multishell and multicore emulsions. Finally, its application is demonstrated to produce structurally colored colloidal supraparticles with unprecedented uniformity and yield. The method allows the creation of tailored double emulsions with minimal time, cost, effort, and expertise, and may widen its application to nonspecialized scientific communities.
Collapse
Affiliation(s)
- Junwei Wang
- Institute of Particle Technology, Friedrich-Alexander University Erlangen-Nürnberg, 91058, Erlangen, Germany
| | - Simon Hahn
- Institute of Particle Technology, Friedrich-Alexander University Erlangen-Nürnberg, 91058, Erlangen, Germany
| | - Esther Amstad
- Institute of Materials, École Polytechnique Fédérale de Lausanne, Lausanne, 1015, Switzerland
| | - Nicolas Vogel
- Institute of Particle Technology, Friedrich-Alexander University Erlangen-Nürnberg, 91058, Erlangen, Germany
| |
Collapse
|
14
|
Le TNQ, Tran NN, Escribà-Gelonch M, Serra CA, Fisk I, McClements DJ, Hessel V. Microfluidic encapsulation for controlled release and its potential for nanofertilisers. Chem Soc Rev 2021; 50:11979-12012. [PMID: 34515721 DOI: 10.1039/d1cs00465d] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Nanotechnology is increasingly being utilized to create advanced materials with improved or new functional attributes. Converting fertilizers into a nanoparticle-form has been shown to improve their efficacy but the current procedures used to fabricate nanofertilisers often have poor reproducibility and flexibility. Microfluidic systems, on the other hand, have advantages over traditional nanoparticle fabrication methods in terms of energy and materials consumption, versatility, and controllability. The increased controllability can result in the formation of nanoparticles with precise and complex morphologies (e.g., tuneable sizes, low polydispersity, and multi-core structures). As a result, their functional performance can be tailored to specific applications. This paper reviews the principles, formation, and applications of nano-enabled delivery systems fabricated using microfluidic approaches for the encapsulation, protection, and release of fertilizers. Controlled release can be achieved using two main routes: (i) nutrients adsorbed on nanosupports and (ii) nutrients encapsulated inside nanostructures. We aim to highlight the opportunities for preparing a new generation of highly versatile nanofertilisers using microfluidic systems. We will explore several main characteristics of microfluidically prepared nanofertilisers, including droplet formation, shell fine-tuning, adsorbate fine-tuning, and sustained/triggered release behavior.
Collapse
Affiliation(s)
- Tu Nguyen Quang Le
- School of Chemical Engineering and Advanced Materials, The University of Adelaide, Adelaide, SA 5005, Australia. .,Faculty of Chemical Engineering, Ho Chi Minh City University of Technology, Ho Chi Minh City, Vietnam
| | - Nam Nghiep Tran
- School of Chemical Engineering and Advanced Materials, The University of Adelaide, Adelaide, SA 5005, Australia. .,School of Chemical Engineering, Can Tho University, Can Tho City, Vietnam
| | - Marc Escribà-Gelonch
- Higher Polytechnic Engineering School, University of Lleida, Igualada (Barcelona), 08700, Spain
| | - Christophe A Serra
- Université de Strasbourg, CNRS, Institut Charles Sadron UPR 22, F-67000 Strasbourg, France
| | - Ian Fisk
- Division of Food, Nutrition and Dietetics, School of Biosciences, University of Nottingham, Loughborough, LE12 5RD, UK.,The University of Adelaide, North Terrace, Adelaide, South Australia, Australia
| | | | - Volker Hessel
- School of Chemical Engineering and Advanced Materials, The University of Adelaide, Adelaide, SA 5005, Australia. .,School of Engineering, University of Warwick, Library Rd, Coventry, UK
| |
Collapse
|
15
|
Zhao J, Du G, Sun X. Tumor Antigen-Based Nanovaccines for Cancer Immunotherapy: A Review. J Biomed Nanotechnol 2021; 17:2099-2113. [PMID: 34906272 DOI: 10.1166/jbn.2021.3178] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
As an important means of tumor immunotherapy, tumor vaccines have achieved exciting results in the past few decades. However, there are still many obstacles that hinder tumor vaccines from achieving maximum efficacy, including lack of tumor antigens, low antigen immunogenicity and poor delivery efficiency. To overcome these challenges, researchers have developed and investigated various new types of tumor antigens with higher antigenic specificity and broader antigen spectrum, such as tumor-specific peptide antigens, tumor lysates, tumor cell membrane, tumor associated exosomes, etc. At the same time, different nanoparticulate delivery platforms have been developed to increase the immunogenicity of the tumor antigens, for example by increasing their targeting efficiency of antigen-presenting cells and lymph nodes, and by co-delivering antigens with adjuvants. In this review, we summarized different types of the tumor antigens that have been reported, and introduced several nanovaccine strategies for increasing the immunogenicity of tumor antigens. The review of recent progress in these fields may provide reference for the follow-up studies of tumor antigen-based cancer immunotherapy.
Collapse
Affiliation(s)
- Jiaxuan Zhao
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Guangsheng Du
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Xun Sun
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| |
Collapse
|
16
|
Park D, Kim H, Kim JW. Microfluidic production of monodisperse emulsions for cosmetics. BIOMICROFLUIDICS 2021; 15:051302. [PMID: 34733378 PMCID: PMC8550801 DOI: 10.1063/5.0057733] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Accepted: 10/11/2021] [Indexed: 05/06/2023]
Abstract
Droplet-based microfluidic technology has enabled the production of emulsions with high monodispersity in sizes ranging from a few to hundreds of micrometers. Taking advantage of this technology, attempts to generate monodisperse emulsion drops with high drug loading capacity, ordered interfacial structure, and multi-functionality have been made in the cosmetics industry. In this article, we introduce the practicality of the droplet-based microfluidic approach to the cosmetic industry in terms of innovation in productivity and marketability. Furthermore, we summarize some recent advances in the production of emulsion drops with enhanced mechanical interfacial stability. Finally, we discuss the future prospects of microfluidic technology in accordance with consumers' needs and industrial attributes.
Collapse
Affiliation(s)
- Daehwan Park
- School of Chemical Engineering, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Hajeong Kim
- School of Chemical Engineering, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Jin Woong Kim
- School of Chemical Engineering, Sungkyunkwan University, Suwon 16419, Republic of Korea
| |
Collapse
|
17
|
Wu J, Yadavali S, Lee D, Issadore DA. Scaling up the throughput of microfluidic droplet-based materials synthesis: A review of recent progress and outlook. APPLIED PHYSICS REVIEWS 2021; 8:031304. [PMID: 34484549 PMCID: PMC8293697 DOI: 10.1063/5.0049897] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Accepted: 06/07/2021] [Indexed: 05/14/2023]
Abstract
The last two decades have witnessed tremendous progress in the development of microfluidic chips that generate micrometer- and nanometer-scale materials. These chips allow precise control over composition, structure, and particle uniformity not achievable using conventional methods. These microfluidic-generated materials have demonstrated enormous potential for applications in medicine, agriculture, food processing, acoustic, and optical meta-materials, and more. However, because the basis of these chips' performance is their precise control of fluid flows at the micrometer scale, their operation is limited to the inherently low throughputs dictated by the physics of multiphasic flows in micro-channels. This limitation on throughput results in material production rates that are too low for most practical applications. In recent years, however, significant progress has been made to tackle this challenge by designing microchip architectures that incorporate multiple microfluidic devices onto single chips. These devices can be operated in parallel to increase throughput while retaining the benefits of microfluidic particle generation. In this review, we will highlight recent work in this area and share our perspective on the key unsolved challenges and opportunities in this field.
Collapse
Affiliation(s)
- Jingyu Wu
- Department of Chemical and Biomolecular Engineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | | | - Daeyeon Lee
- Department of Chemical and Biomolecular Engineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | | |
Collapse
|
18
|
Conchouso D, Al-Ma'abadi A, Behzad H, Alarawi M, Hosokawa M, Nishikawa Y, Takeyama H, Mineta K, Gojobori T. Integration of Droplet Microfluidic Tools for Single-Cell Functional Metagenomics: An Engineering Head Start. GENOMICS, PROTEOMICS & BIOINFORMATICS 2021; 19:504-518. [PMID: 34952209 PMCID: PMC8864243 DOI: 10.1016/j.gpb.2021.03.010] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 02/09/2021] [Accepted: 03/09/2021] [Indexed: 11/25/2022]
Abstract
Droplet microfluidic techniques have shown promising outcome to study single cells at high throughput. However, their adoption in laboratories studying “-omics” sciences is still irrelevant due to the complex and multidisciplinary nature of the field. To facilitate their use, here we provide engineering details and organized protocols for integrating three droplet-based microfluidic technologies into the metagenomic pipeline to enable functional screening of bioproducts at high throughput. First, a device encapsulating single cells in droplets at a rate of ∼250 Hz is described considering droplet size and cell growth. Then, we expand on previously reported fluorescence-activated droplet sorting systems to integrate the use of 4 independent fluorescence-exciting lasers (i.e., 405, 488, 561, and 637 nm) in a single platform to make it compatible with different fluorescence-emitting biosensors. For this sorter, both hardware and software are provided and optimized for effortlessly sorting droplets at 60 Hz. Then, a passive droplet merger is also integrated into our pipeline to enable adding new reagents to already-made droplets at a rate of 200 Hz. Finally, we provide an optimized recipe for manufacturing these chips using silicon dry-etching tools. Because of the overall integration and the technical details presented here, our approach allows biologists to quickly use microfluidic technologies and achieve both single-cell resolution and high-throughput capability (>50,000 cells/day) for mining and bioprospecting metagenomic data
Collapse
Affiliation(s)
- David Conchouso
- Department of Industrial and Mechanical Engineering, Universidad de las Américas Puebla, Puebla 72810, Mexico; Computational Bioscience Research Center, King Abdullah University of Science and Technology, Thuwal 23955-6900, Saudi Arabia; Biological and Environmental Sciences and Engineering Division, King Abdullah University of Science and Technology, Thuwal 23955-6900, Saudi Arabia
| | - Amani Al-Ma'abadi
- Computational Bioscience Research Center, King Abdullah University of Science and Technology, Thuwal 23955-6900, Saudi Arabia; Biological and Environmental Sciences and Engineering Division, King Abdullah University of Science and Technology, Thuwal 23955-6900, Saudi Arabia
| | - Hayedeh Behzad
- Computational Bioscience Research Center, King Abdullah University of Science and Technology, Thuwal 23955-6900, Saudi Arabia; Biological and Environmental Sciences and Engineering Division, King Abdullah University of Science and Technology, Thuwal 23955-6900, Saudi Arabia
| | - Mohammed Alarawi
- Computational Bioscience Research Center, King Abdullah University of Science and Technology, Thuwal 23955-6900, Saudi Arabia; Biological and Environmental Sciences and Engineering Division, King Abdullah University of Science and Technology, Thuwal 23955-6900, Saudi Arabia
| | - Masahito Hosokawa
- Research Organization for Nano & Life Innovation, Waseda University, Tokyo 162-0041, Japan; Department of Life Science and Medical Bioscience, Waseda University, Tokyo 162-8480, Japan; Institute for Advanced Research of Biosystem Dynamics, Waseda Research Institute for Science and Engineering, Waseda University, Tokyo 169-8555, Japan
| | - Yohei Nishikawa
- Research Organization for Nano & Life Innovation, Waseda University, Tokyo 162-0041, Japan; Computational Bio Big-Data Open Innovation Laboratory, AIST-Waseda University, Tokyo 169-0072, Japan
| | - Haruko Takeyama
- Research Organization for Nano & Life Innovation, Waseda University, Tokyo 162-0041, Japan; Department of Life Science and Medical Bioscience, Waseda University, Tokyo 162-8480, Japan; Institute for Advanced Research of Biosystem Dynamics, Waseda Research Institute for Science and Engineering, Waseda University, Tokyo 169-8555, Japan; Computational Bio Big-Data Open Innovation Laboratory, AIST-Waseda University, Tokyo 169-0072, Japan
| | - Katsuhiko Mineta
- Computational Bioscience Research Center, King Abdullah University of Science and Technology, Thuwal 23955-6900, Saudi Arabia; Computer, Electrical, and Mathematical Sciences and Engineering Division, King Abdullah University of Science and Technology, Thuwal 23955-6900, Saudi Arabia.
| | - Takashi Gojobori
- Computational Bioscience Research Center, King Abdullah University of Science and Technology, Thuwal 23955-6900, Saudi Arabia; Biological and Environmental Sciences and Engineering Division, King Abdullah University of Science and Technology, Thuwal 23955-6900, Saudi Arabia.
| |
Collapse
|
19
|
Zhang Y, Zhang J, Tang Z, Wu Q. Gas–Liquid Taylor Flow Characteristics in a Fractal Microchannel Network during Numbering-up and Sizing-up. Ind Eng Chem Res 2021. [DOI: 10.1021/acs.iecr.1c00448] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Affiliation(s)
- Yaheng Zhang
- CAS Key Laboratory of Low-Carbon Conversion Science and Engineering, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201203, PR China
- School of Chemical Engineering, University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Jie Zhang
- CAS Key Laboratory of Low-Carbon Conversion Science and Engineering, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201203, PR China
- School of Chemical Engineering, University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Zhiyong Tang
- CAS Key Laboratory of Low-Carbon Conversion Science and Engineering, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201203, PR China
- School of Chemical Engineering, University of Chinese Academy of Sciences, Beijing 100049, PR China
- School of Chemistry and Material Science, University of Science and Technology of China, Hefei, Anhui 230026, PR China
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, PR China
| | - Qing Wu
- Department of Science and Technology Development, China National Offshore Oil Corporation, Beijing 100010, PR China
| |
Collapse
|
20
|
Forigua A, Kirsch RL, Willerth SM, Elvira KS. Recent advances in the design of microfluidic technologies for the manufacture of drug releasing particles. J Control Release 2021; 333:258-268. [PMID: 33766691 DOI: 10.1016/j.jconrel.2021.03.019] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 03/18/2021] [Accepted: 03/19/2021] [Indexed: 12/26/2022]
Abstract
Drug releasing particles are valued for their ability to deliver therapeutics to targeted locations and for their controllable release patterns. The development of microfluidic technologies, which are designed specifically to manipulate small amounts of fluids, to manufacture particles for drug delivery applications reflects a recent trend due to the advantages they confer in terms of control over particle size and material composition. This review takes a comprehensive look at the different types of microfluidic devices used to fabricate such particles from different types of biomaterials, and at how the on-chip features enable the production of particles with different types of properties. The review concludes by suggesting avenues for future work that will enable these technologies to fulfill their potential and be used in industrial settings for the manufacture of drug releasing particles with unique capabilities.
Collapse
Affiliation(s)
- Alejandro Forigua
- Department of Chemistry, University of Victoria, Victoria, BC V8W 2Y2, Canada
| | - Rebecca L Kirsch
- Department of Chemistry, University of Victoria, Victoria, BC V8W 2Y2, Canada; Department of Mechanical Engineering, University of Victoria, Victoria, BC V8W 2Y2, Canada
| | - Stephanie M Willerth
- Department of Mechanical Engineering, University of Victoria, Victoria, BC V8W 2Y2, Canada; Division of Medical Sciences, University of Victoria, Victoria, BC V8W 2Y2, Canada.
| | - Katherine S Elvira
- Department of Chemistry, University of Victoria, Victoria, BC V8W 2Y2, Canada.
| |
Collapse
|
21
|
Pilkington CP, Seddon JM, Elani Y. Microfluidic technologies for the synthesis and manipulation of biomimetic membranous nano-assemblies. Phys Chem Chem Phys 2021; 23:3693-3706. [PMID: 33533338 DOI: 10.1039/d0cp06226j] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Microfluidics has been proposed as an attractive alternative to conventional bulk methods used in the generation of self-assembled biomimetic structures, particularly where there is a desire for more scalable production. The approach also allows for greater control over the self-assembly process, and parameters such as particle architecture, size, and composition can be finely tuned. Microfluidic techniques used in the generation of microscale assemblies (giant vesicles and higher-order multi-compartment assemblies) are fairly well established. These tend to rely on microdroplet templation, and the resulting structures have found use as comparmentalised motifs in artificial cells. Challenges in generating sub-micron droplets have meant that reconfiguring this approach to form nano-scale structures is not straightforward. This is beginning to change however, and recent technological advances have instigated the manufacture and manipulation of an increasingly diverse repertoire of biomimetic nano-assemblies, including liposomes, polymersomes, hybrid particles, multi-lamellar structures, cubosomes, hexosomes, nanodiscs, and virus-like particles. The following review will discuss these higher-order self-assembled nanostructures, including their biochemical and industrial applications, and techniques used in their production and analysis. We suggest ways in which existing technologies could be repurposed for the enhanced design, manufacture, and exploitation of these structures and discuss potential challenges and future research directions. By compiling recent advances in this area, it is hoped we will inspire future efforts toward establishing scalable microfluidic platforms for the generation of biomimetic nanoparticles of enhanced architectural and functional complexity.
Collapse
Affiliation(s)
- Colin P Pilkington
- Department of Chemistry, Molecular Science Research Hub, Imperial College London, 82 Wood Lane, London, W12 0BZ, UK and Department of Chemical Engineering, Exhibition Road, Imperial College London, London, SW7 2AZ, UK.
| | - John M Seddon
- Department of Chemistry, Molecular Science Research Hub, Imperial College London, 82 Wood Lane, London, W12 0BZ, UK
| | - Yuval Elani
- Department of Chemical Engineering, Exhibition Road, Imperial College London, London, SW7 2AZ, UK.
| |
Collapse
|
22
|
Multiple Emulsions for Enhanced Delivery of Vitamins and Iron Micronutrients and Their Application for Food Fortification. FOOD BIOPROCESS TECH 2021. [DOI: 10.1007/s11947-021-02586-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
23
|
Zhang J, Xu W, Xu F, Lu W, Hu L, Zhou J, Zhang C, Jiang Z. Microfluidic droplet formation in co-flow devices fabricated by micro 3D printing. J FOOD ENG 2021. [DOI: 10.1016/j.jfoodeng.2020.110212] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
24
|
Pacocha N, Bogusławski J, Horka M, Makuch K, Liżewski K, Wojtkowski M, Garstecki P. High-Throughput Monitoring of Bacterial Cell Density in Nanoliter Droplets: Label-Free Detection of Unmodified Gram-Positive and Gram-Negative Bacteria. Anal Chem 2021; 93:843-850. [PMID: 33301291 DOI: 10.1021/acs.analchem.0c03408] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Droplet microfluidics disrupted analytical biology with the introduction of digital polymerase chain reaction and single-cell sequencing. The same technology may also bring important innovation in the analysis of bacteria, including antibiotic susceptibility testing at the single-cell level. Still, despite promising demonstrations, the lack of a high-throughput label-free method of detecting bacteria in nanoliter droplets prohibits analysis of the most interesting strains and widespread use of droplet technologies in analytical microbiology. We use a sensitive and fast measurement of scattered light from nanoliter droplets to demonstrate reliable detection of the proliferation of encapsulated bacteria. We verify the sensitivity of the method by simultaneous readout of fluorescent signals from bacteria expressing fluorescent proteins and demonstrate label-free readout on unlabeled Gram-negative and Gram-positive species. Our approach requires neither genetic modification of the cells nor the addition of chemical markers of metabolism. It is compatible with a wide range of bacterial species of clinical, research, and industrial interest, opening the microfluidic droplet technologies for adaptation in these fields.
Collapse
Affiliation(s)
- Natalia Pacocha
- Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland
| | - Jakub Bogusławski
- International Centre for Translational Eye Research, Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland
| | - Michał Horka
- Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland
| | - Karol Makuch
- Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland.,Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, United States
| | - Kamil Liżewski
- International Centre for Translational Eye Research, Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland
| | - Maciej Wojtkowski
- International Centre for Translational Eye Research, Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland
| | - Piotr Garstecki
- Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland
| |
Collapse
|
25
|
Microfluidic droplet generation based on non-embedded co-flow-focusing using 3D printed nozzle. Sci Rep 2020; 10:21616. [PMID: 33303772 PMCID: PMC7729985 DOI: 10.1038/s41598-020-77836-y] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Accepted: 11/17/2020] [Indexed: 11/20/2022] Open
Abstract
Most commercial microfluidic droplet generators rely on the planar flow-focusing configuration implemented in polymer or glass chips. The planar geometry, however, suffers from many limitations and drawbacks, such as the need of specific coatings or the use of dedicated surfactants, depending on the fluids in play. On the contrary, and thanks to their axisymmetric geometry, glass capillary-based droplet generators are a priori not fluid-dependent. Nevertheless, they have never reached the market because their assembly requires fastidious and not scalable fabrication techniques. Here we present a new device, called Raydrop, based on the alignment of two capillaries immersed in a pressurized chamber containing the continuous phase. The dispersed phase exits one of the capillaries through a 3D-printed nozzle placed in front of the extraction capillary for collecting the droplets. This non-embedded implementation of an axisymmetric flow-focusing is referred to non-embedded co-flow-focusing configuration. Experimental results demonstrate the universality of the device in terms of the variety of fluids that can be emulsified, as well as the range of droplet radii that can be obtained, without neither the need of surfactant nor coating. Additionally, numerical computations of the Navier-Stokes equations based on the quasi-steadiness assumption allow to provide an explanation to the underlying mechanism behind the drop formation and the mechanism of the dripping to jetting transition. Excellent predictions were also obtained for the droplet radius, as well as for the dripping-jetting transition, when varying the geometrical and fluid parameters, showing the ability of this configuration to enventually enhance the dripping regime. The monodispersity ensured by the dripping regime, the robustness of the fabrication technique, the optimization capabilities from the numerical modelling and the universality of the configuration confer to the Raydrop technology a very high potential in the race towards high-throughput droplet generation processes.
Collapse
|
26
|
Feng Y, White AK, Hein JB, Appel EA, Fordyce PM. MRBLES 2.0: High-throughput generation of chemically functionalized spectrally and magnetically encoded hydrogel beads using a simple single-layer microfluidic device. MICROSYSTEMS & NANOENGINEERING 2020; 6:109. [PMID: 33299601 PMCID: PMC7704393 DOI: 10.1038/s41378-020-00220-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 09/09/2020] [Accepted: 09/20/2020] [Indexed: 05/04/2023]
Abstract
The widespread adoption of bead-based multiplexed bioassays requires the ability to easily synthesize encoded microspheres and conjugate analytes of interest to their surface. Here, we present a simple method (MRBLEs 2.0) for the efficient high-throughput generation of microspheres with ratiometric barcode lanthanide encoding (MRBLEs) that bear functional groups for downstream surface bioconjugation. Bead production in MRBLEs 2.0 relies on the manual mixing of lanthanide/polymer mixtures (each of which comprises a unique spectral code) followed by droplet generation using single-layer, parallel flow-focusing devices and the off-chip batch polymerization of droplets into beads. To streamline downstream analyte coupling, MRBLEs 2.0 crosslinks copolymers bearing functional groups on the bead surface during bead generation. Using the MRBLEs 2.0 pipeline, we generate monodisperse MRBLEs containing 48 distinct well-resolved spectral codes with high throughput (>150,000/min and can be boosted to 450,000/min). We further demonstrate the efficient conjugation of oligonucleotides and entire proteins to carboxyl MRBLEs and of biotin to amino MRBLEs. Finally, we show that MRBLEs can also be magnetized via the simultaneous incorporation of magnetic nanoparticles with only a minor decrease in the potential code space. With the advantages of dramatically simplified device fabrication, elimination of the need for custom-made equipment, and the ability to produce spectrally and magnetically encoded beads with direct surface functionalization with high throughput, MRBLEs 2.0 can be directly applied by many labs towards a wide variety of downstream assays, from basic biology to diagnostics and other translational research.
Collapse
Affiliation(s)
- Yinnian Feng
- Department of Genetics, Stanford University, Stanford, CA 94305 USA
| | - Adam K. White
- Department of Genetics, Stanford University, Stanford, CA 94305 USA
- Department of Bioengineering, Stanford University, Stanford, CA 94305 USA
| | - Jamin B. Hein
- Department of Biology, Stanford University, Stanford, CA 94305 USA
- The Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3b, 2200 Copenhagen, Denmark
| | - Eric A. Appel
- Department of Materials Science & Engineering, Stanford University, Stanford, CA 94305 USA
| | - Polly M. Fordyce
- Department of Genetics, Stanford University, Stanford, CA 94305 USA
- Department of Bioengineering, Stanford University, Stanford, CA 94305 USA
- Stanford ChEM-H, Stanford University, Stanford, CA 94305 USA
- Chan Zuckerberg Biohub, San Francisco, CA 94110 USA
| |
Collapse
|
27
|
Kim CM, Choi HJ, Kim GM. 512-Channel Geometric Droplet-Splitting Microfluidic Device by Injection of Premixed Emulsion for Microsphere Production. Polymers (Basel) 2020; 12:polym12040776. [PMID: 32244738 PMCID: PMC7240624 DOI: 10.3390/polym12040776] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 03/24/2020] [Accepted: 03/25/2020] [Indexed: 11/16/2022] Open
Abstract
We present a 512-channel geometric droplet-splitting microfluidic device that involves the injection of a premixed emulsion for microsphere production. The presented microfluidic device was fabricated using conventional photolithography and polydimethylsiloxane casting. The fabricated microfluidic device consisted of 512 channels with 256 T-junctions in the last branch. Five hundred and twelve microdroplets with a narrow size distribution were produced from a single liquid droplet. The diameter and size distribution of prepared micro water droplets were 35.29 µm and 8.8% at 10 mL/h, respectively. Moreover, we attempted to prepare biocompatible microspheres for demonstrating the presented approach. The diameter and size distribution of the prepared poly (lactic-co-glycolic acid) microspheres were 6.56 µm and 8.66% at 10 mL/h, respectively. To improve the monodispersity of the microspheres, we designed an additional post array part in the 512-channel geometric droplet-splitting microfluidic device. The monodispersity of the microdroplets prepared with the microfluidic device combined with the post array part exhibited a significant improvement.
Collapse
Affiliation(s)
- Chul Min Kim
- Department of Mechanical Engineering, Korea Polytechnic University, Siheung-Si 15073, Korea;
| | - Hye Jin Choi
- School of Mechanical Engineering, Kyungpook National University, Daegu 41566, Korea;
| | - Gyu Man Kim
- School of Mechanical Engineering, Kyungpook National University, Daegu 41566, Korea;
- Correspondence: ; Tel.: +82-053-950-7570
| |
Collapse
|
28
|
Homayun B, Choi HJ. Halloysite nanotube-embedded microparticles for intestine-targeted co-delivery of biopharmaceuticals. Int J Pharm 2020; 579:119152. [DOI: 10.1016/j.ijpharm.2020.119152] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Revised: 01/29/2020] [Accepted: 02/09/2020] [Indexed: 12/11/2022]
|
29
|
Gelin P, Bihi I, Ziemecka I, Thienpont B, Christiaens J, Hellemans K, Maes D, De Malsche W. Microfluidic Device for High-Throughput Production of Monodisperse Droplets. Ind Eng Chem Res 2020. [DOI: 10.1021/acs.iecr.9b05935] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Pierre Gelin
- μFlow group, Department of Bioengineering Sciences, Department of Chemical Engineering, Vrije Universiteit Brussel, Brussels 1050 , Belgium
| | - Ilyesse Bihi
- μFlow group, Department of Bioengineering Sciences, Department of Chemical Engineering, Vrije Universiteit Brussel, Brussels 1050 , Belgium
| | - Iwona Ziemecka
- μFlow group, Department of Bioengineering Sciences, Department of Chemical Engineering, Vrije Universiteit Brussel, Brussels 1050 , Belgium
| | - Benoit Thienpont
- μFlow group, Department of Bioengineering Sciences, Department of Chemical Engineering, Vrije Universiteit Brussel, Brussels 1050 , Belgium
| | - Jo Christiaens
- μFlow group, Department of Bioengineering Sciences, Department of Chemical Engineering, Vrije Universiteit Brussel, Brussels 1050 , Belgium
| | - Karine Hellemans
- Unit Diabetes Pathology and Therapy, Diabetes Research Center, Vrije Universiteit Brussel, Brussels 1000, Belgium
| | - Dominique Maes
- Structural Biology Brussels, Vrije Universiteit Brussel, Brussels 1050, Belgium
| | - Wim De Malsche
- μFlow group, Department of Bioengineering Sciences, Department of Chemical Engineering, Vrije Universiteit Brussel, Brussels 1050 , Belgium
| |
Collapse
|
30
|
Zhao X, Bian F, Sun L, Cai L, Li L, Zhao Y. Microfluidic Generation of Nanomaterials for Biomedical Applications. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2020; 16:e1901943. [PMID: 31259464 DOI: 10.1002/smll.201901943] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Revised: 06/09/2019] [Indexed: 05/23/2023]
Abstract
As nanomaterials (NMs) possess attractive physicochemical properties that are strongly related to their specific sizes and morphologies, they are becoming one of the most desirable components in the fields of drug delivery, biosensing, bioimaging, and tissue engineering. By choosing an appropriate methodology that allows for accurate control over the reaction conditions, not only can NMs with high quality and rapid production rate be generated, but also designing composite and efficient products for therapy and diagnosis in nanomedicine can be realized. Recent evidence implies that microfluidic technology offers a promising platform for the synthesis of NMs by easy manipulation of fluids in microscale channels. In this Review, a comprehensive set of developments in the field of microfluidics for generating two main classes of NMs, including nanoparticles and nanofibers, and their various potentials in biomedical applications are summarized. Furthermore, the major challenges in this area and opinions on its future developments are proposed.
Collapse
Affiliation(s)
- Xin Zhao
- Department of Endocrinology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, 210009, P. R. China
- Research Institute of General Surgery, Jinling Hospital, Medical School of Nanjing University, Nanjing, 210002, P. R. China
| | - Feika Bian
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, P. R. China
| | - Lingyu Sun
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, P. R. China
| | - Lijun Cai
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, P. R. China
| | - Ling Li
- Department of Endocrinology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, 210009, P. R. China
| | - Yuanjin Zhao
- Department of Endocrinology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, 210009, P. R. China
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, P. R. China
| |
Collapse
|
31
|
Lian Z, Chan Y, Luo Y, Yang X, Koh KS, Wang J, Chen GZ, Ren Y, He J. Microfluidic formation of highly monodispersed multiple cored droplets using needle‐based system in parallel mode. Electrophoresis 2020; 41:891-901. [DOI: 10.1002/elps.201900403] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Revised: 12/29/2019] [Accepted: 01/26/2020] [Indexed: 12/20/2022]
Affiliation(s)
- Zheng Lian
- International Doctoral Innovation CentreUniversity of Nottingham Ningbo China Ningbo P. R. China
- Department of MechanicalMaterials and Manufacturing Engineering, University of Nottingham Ningbo China Ningbo P. R. China
| | - Yue Chan
- Institute for Advanced StudyShenzhen University Shenzhen P. R. China
| | - Yang Luo
- Department of MechanicalMaterials and Manufacturing Engineering, University of Nottingham Ningbo China Ningbo P. R. China
| | - Xiaogang Yang
- Department of MechanicalMaterials and Manufacturing Engineering, University of Nottingham Ningbo China Ningbo P. R. China
| | - Kai Seng Koh
- School of Engineering and Physical SciencesHeriot‐Watt University Malaysia Putrajaya Malaysia
| | - Jing Wang
- Department of Electrical and Electronic EngineeringUniversity of Nottingham Ningbo China Ningbo P. R. China
| | - George Zheng Chen
- Department of Chemical and Environmental EngineeringUniversity of Nottingham Ningbo China Ningbo P. R. China
- Department of Chemical and Environmental EngineeringUniversity of Nottingham Nottingham UK
| | - Yong Ren
- Department of MechanicalMaterials and Manufacturing Engineering, University of Nottingham Ningbo China Ningbo P. R. China
- Research Group for Fluids and Thermal EngineeringUniversity of Nottingham Ningbo China Ningbo P. R. China
| | - Jun He
- Department of Chemical and Environmental EngineeringUniversity of Nottingham Ningbo China Ningbo P. R. China
| |
Collapse
|
32
|
Cui Y, Li Y, Wang K, Deng J, Luo G. High-throughput preparation of uniform tiny droplets in multiple capillaries embedded stepwise microchannels. J Flow Chem 2020. [DOI: 10.1007/s41981-019-00051-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
33
|
Kamperman T, Teixeira LM, Salehi SS, Kerckhofs G, Guyot Y, Geven M, Geris L, Grijpma D, Blanquer S, Leijten J. Engineering 3D parallelized microfluidic droplet generators with equal flow profiles by computational fluid dynamics and stereolithographic printing. LAB ON A CHIP 2020; 20:490-495. [PMID: 31841123 DOI: 10.1039/c9lc00980a] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Microfluidic droplet generators excel in generating monodisperse micrometer-sized droplets and particles. However, the low throughput of conventional droplet generators hinders their clinical and industrial translation. Current approaches to parallelize microdevices are challenged by the two-dimensional nature of the standard fabrication methods. Here, we report the facile production of three-dimensionally (3D) parallelized microfluidic droplet generators consisting of stacked and radially multiplexed channel designs. Computational fluid dynamics simulations form the design basis for a microflow distributor that ensures similar flow rates through all droplet generators. Stereolithography is the selected technique to fabricate microdevices, which enables the manufacturing of hollow channels with dimensions as small as 50 μm. The microdevices could be operated up to 4 bars without structural damage, including deformation of channels, or leakage of the on-chip printed Luer-Lok type connectors. The printed microdevices readily enable the production of water-in-oil emulsions, as well as polymer containing droplets that act as templates for both solid and core-shell hydrogel microparticles. The cytocompatibility of the 3D printed device is demonstrated by encapsulating mesenchymal stem cells in hydrogel microcapsules, which results in the controllable formation of stem cell spheroids that remain viable and metabolically active for at least 21 days. Thus, the unique features of stereolithography fabricated microfluidic devices allow for the parallelization of droplet generators in a simple yet effective manner by enabling the realization of (complex) 3D designs.
Collapse
Affiliation(s)
- Tom Kamperman
- Department of Developmental BioEngineering, Faculty of Science and Technology, Technical Medical Centre, University of Twente, Drienerlolaan 5, 7522 NB Enschede, The Netherlands.
| | - Liliana Moreira Teixeira
- Department of Developmental BioEngineering, Faculty of Science and Technology, Technical Medical Centre, University of Twente, Drienerlolaan 5, 7522 NB Enschede, The Netherlands. and Regenerative Medicine Utrecht, Department of Equine Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Seyedeh Sarah Salehi
- Department of Developmental BioEngineering, Faculty of Science and Technology, Technical Medical Centre, University of Twente, Drienerlolaan 5, 7522 NB Enschede, The Netherlands. and Department of Mechanical Engineering, Sharif University of Technology, P.O. Box: 11155-9567, Tehran, Iran
| | - Greet Kerckhofs
- Prometheus, Division of Skeletal Tissue Engineering, KU Leuven, Herestraat 49, 3000 Leuven, Belgium and Department Materials Engineering, KU Leuven, Kasteelpark Arenberg 44, 3001 LEUVEN, Belgium and Biomechanics Lab - Institute of Mechanics, Materials, and Civil Engineering, UCLouvain, Place du Levant 2/L5.04.02, 1348, Louvain-la-Neuve, Belgium and IREC - Institut de Recherche Expérimentale et Clinique, UCLouvain, Avenue Hippocrate, 55 bte B1.55.02, 1200 Woluwé-Saint-Lambert, Belgium
| | - Yann Guyot
- Prometheus, Division of Skeletal Tissue Engineering, KU Leuven, Herestraat 49, 3000 Leuven, Belgium and Biomechanics Research Unit, GIGA in silico medicine, Université de Liège, Avenue de l'Hopital 11, 4000 Liège, Belgium
| | - Mike Geven
- Department of Biomaterials Science and Technology, Faculty of Science and Technology, Technical Medical Centre, University of Twente, Drienerlolaan 5, 7522NB Enschede, The Netherlands
| | - Liesbet Geris
- Prometheus, Division of Skeletal Tissue Engineering, KU Leuven, Herestraat 49, 3000 Leuven, Belgium and Biomechanics Research Unit, GIGA in silico medicine, Université de Liège, Avenue de l'Hopital 11, 4000 Liège, Belgium
| | - Dirk Grijpma
- Department of Biomaterials Science and Technology, Faculty of Science and Technology, Technical Medical Centre, University of Twente, Drienerlolaan 5, 7522NB Enschede, The Netherlands
| | - Sebastien Blanquer
- Institut Charles Gerhardt Montpellier - UMR5253, Université Montpellier, CNRS, ENSCM, Montpellier, France
| | - Jeroen Leijten
- Department of Developmental BioEngineering, Faculty of Science and Technology, Technical Medical Centre, University of Twente, Drienerlolaan 5, 7522 NB Enschede, The Netherlands.
| |
Collapse
|
34
|
Menezes R, Dramé-Maigné A, Taly V, Rondelez Y, Gines G. Streamlined digital bioassays with a 3D printed sample changer. Analyst 2020; 145:572-581. [DOI: 10.1039/c9an01744e] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Off-chip sample changer device increase the sample throughput of droplet digital bioassays.
Collapse
Affiliation(s)
- Roberta Menezes
- Centre de Recherche des Cordeliers
- INSERM
- Sorbonne Université
- USPC
- Université Paris Descartes
| | - Adèle Dramé-Maigné
- Laboratoire Gulliver
- UMR7083 CNRS
- ESPCI Paris
- PSL Research University
- 75005 Paris
| | - Valérie Taly
- Centre de Recherche des Cordeliers
- INSERM
- Sorbonne Université
- USPC
- Université Paris Descartes
| | - Yannick Rondelez
- Laboratoire Gulliver
- UMR7083 CNRS
- ESPCI Paris
- PSL Research University
- 75005 Paris
| | - Guillaume Gines
- Laboratoire Gulliver
- UMR7083 CNRS
- ESPCI Paris
- PSL Research University
- 75005 Paris
| |
Collapse
|
35
|
Fabrication of 512-Channel Geometrical Passive Breakup Device for High-Throughput Microdroplet Production. MICROMACHINES 2019; 10:mi10100709. [PMID: 31635350 PMCID: PMC6843752 DOI: 10.3390/mi10100709] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Revised: 10/14/2019] [Accepted: 10/16/2019] [Indexed: 12/14/2022]
Abstract
We present a 512-microchannel geometrical passive breakup device for the mass production of microdroplets. The mass production is achieved through the passive breakup of a droplet into two droplets. The microchannel geometry in the microfluidic device was designed and optimized by focusing on stable droplet splitting for microdroplet preparation and minimizing the hydraulic resistance of the microchannel for achieving high throughput; the minimization of hydraulic resistance was achieved by employing analytical approaches. A total of 512 microdroplets could be prepared from a single liquid plug by making the liquid plug pass through nine sequential T-junctions in the microfluidic device, which led to the splitting of droplets. The microfluidic device was fabricated using conventional photolithography and polydimethylsiloxane (PDMS) casting. We estimated the performance of the microfluidic device in terms of the size distribution and production rate of microdroplets. Microdroplets with a diameter of 40.0 ± 2.2 µm were prepared with a narrow size distribution (coefficient of variation (CV) < 5.5%) for flow rates of disperse (Qd) and continuous phase (Qc) of 2 and 3 mL/h, respectively. Microdroplet production rates were measured using a high-speed camera. Furthermore, monodisperse microdroplets were prepared at 42.7 kHz for Qd and Qc of 7 and 15 mL/h, respectively. Finally, the feasibility of the fabricated microfluidic device was verified by using it to prepare biodegradable chitosan microspheres.
Collapse
|
36
|
Scalable Production of Monodisperse Functional Microspheres by Multilayer Parallelization of High Aspect Ratio Microfluidic Channels. MICROMACHINES 2019; 10:mi10090592. [PMID: 31509956 PMCID: PMC6780626 DOI: 10.3390/mi10090592] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/10/2019] [Revised: 09/07/2019] [Accepted: 09/08/2019] [Indexed: 01/31/2023]
Abstract
Droplet microfluidics enables the generation of highly uniform emulsions with excellent stability, precise control over droplet volume, and morphology, which offer superior platforms over conventional technologies for material synthesis and biological assays. However, it remains a challenge to scale up the production of the microfluidic devices due to their complicated geometry and long-term reliability. In this study, we present a high-throughput droplet generator by parallelization of high aspect ratio rectangular structures, which enables facile and scalable generation of uniform droplets without the need to precisely control external flow conditions. A multilayer device is formed by stacking layer-by-layer of the polydimethylsiloxane (PDMS) replica patterned with parallelized generators. By feeding the sample fluid into the device immersed in the carrying fluid, we used the multilayer device with 1200 parallelized generators to generate monodisperse droplets (~45 μm in diameter with a coefficient of variation <3%) at a frequency of 25 kHz. We demonstrate this approach is versatile for a wide range of materials by synthesis of polyacrylamide hydrogel and Poly (l-lactide-co-glycolide) (PLGA) through water-in-oil (W/O) and oil-in-water (O/W) emulsion templates, respectively. The combined scalability and robustness of such droplet emulsion technology is promising for production of monodisperse functional materials for large-scale applications.
Collapse
|
37
|
Mi S, Fu T, Zhu C, Jiang S, Ma Y. Mechanism of bubble formation in step‐emulsification devices. AIChE J 2019. [DOI: 10.1002/aic.16777] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Sheng Mi
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering and Technology Tianjin University Tianjin China
| | - Taotao Fu
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering and Technology Tianjin University Tianjin China
| | - Chunying Zhu
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering and Technology Tianjin University Tianjin China
| | - Shaokun Jiang
- The 718th Research Institute of China Shipbuilding Industry Corporation Handan China
| | - Youguang Ma
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering and Technology Tianjin University Tianjin China
| |
Collapse
|
38
|
Roberts EJ, Karadaghi LR, Wang L, Malmstadt N, Brutchey RL. Continuous Flow Methods of Fabricating Catalytically Active Metal Nanoparticles. ACS APPLIED MATERIALS & INTERFACES 2019; 11:27479-27502. [PMID: 31287651 DOI: 10.1021/acsami.9b07268] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
One of the obstacles preventing the commercialization of colloidal nanoparticle catalysts is the difficulty in fabricating these materials at scale while maintaining a high level of control over their resulting morphologies, and ultimately, their properties. Translation of batch-scale solution nanoparticle syntheses to continuous flow reactors has been identified as one method to address the scaling issue. The superior heat and mass transport afforded by the high surface-area-to-volume ratios of micro- and millifluidic channels allows for high control over reaction conditions and oftentimes results in decreased reaction times, higher yields, and/or more monodisperse size distributions compared to an analogous batch reaction. Furthermore, continuous flow reactors are automatable and have environmental health and safety benefits, making them practical for commercialization. Herein, a discussion of continuous flow methods, reactor design, and potential challenges is presented. A thorough account of the implementation of these technologies for the fabrication of catalytically active metal nanoparticles is reviewed for hydrogenation, electrocatalysis, and oxidation reactions.
Collapse
Affiliation(s)
- Emily J Roberts
- Department of Chemistry , University of Southern California , 840 Downey Way , Los Angeles , California 90089-0744 , United States
| | - Lanja R Karadaghi
- Department of Chemistry , University of Southern California , 840 Downey Way , Los Angeles , California 90089-0744 , United States
| | - Lu Wang
- Mork Family Department of Chemical Engineering and Materials Science , University of Southern California , 925 Bloom Walk , Los Angeles , California 90089-1211 , United States
| | - Noah Malmstadt
- Department of Chemistry , University of Southern California , 840 Downey Way , Los Angeles , California 90089-0744 , United States
- Mork Family Department of Chemical Engineering and Materials Science , University of Southern California , 925 Bloom Walk , Los Angeles , California 90089-1211 , United States
| | - Richard L Brutchey
- Department of Chemistry , University of Southern California , 840 Downey Way , Los Angeles , California 90089-0744 , United States
| |
Collapse
|
39
|
Monodisperse droplet formation by spontaneous and interaction based mechanisms in partitioned EDGE microfluidic device. Sci Rep 2019; 9:7820. [PMID: 31127142 PMCID: PMC6534564 DOI: 10.1038/s41598-019-44239-7] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Accepted: 05/09/2019] [Indexed: 01/01/2023] Open
Abstract
The partitioned EDGE droplet generation device is known for its’ high monodisperse droplet formation frequencies in two distinct pressure ranges, and an interesting candidate for scale up of microfluidic emulsification devices. In the current study, we test various continuous and dispersed phase properties and device geometries to unravel how the device spontaneously forms small monodisperse droplets (6–18 μm) at low pressures, and larger monodisperse droplets (>28 μm) at elevated pressures. For the small droplets, we show that the continuous phase inflow in the droplet formation unit largely determines droplet formation behaviour and the resulting droplet size and blow-up pressure. This effect was not considered as a factor of significance for spontaneous droplet formation devices that are mostly characterised by capillary numbers in literature. We then show for the first time that the formation of larger droplets is caused by physical interaction between neighbouring droplets, and highly dependent on device geometry. The insights obtained here are an essential step toward industrial emulsification based on microfluidic devices.
Collapse
|
40
|
Ha JH, Mazumdar H, Kim TH, Lee JM, Na JG, Chung BG. Algorithm Analysis of Gas Bubble Generation in a Microfluidic Device. BIOCHIP JOURNAL 2019. [DOI: 10.1007/s13206-018-3203-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
41
|
Bangjang T, Cherkasov N, Denissenko P, Jaree A, Rebrov EV. Enhanced Droplet Size Control in Liquid‐Liquid Emulsions Obtained in a Wire‐Guided X‐Mixer. Chem Eng Technol 2019. [DOI: 10.1002/ceat.201800440] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Affiliation(s)
- Thapanee Bangjang
- Kasetsart University, Faculty of EngineeringDepartment of Chemical Engineering 50 Paholyotin Rd. 10900 Bangkok Thailand
- University of WarwickSchool of Engineering Library Road CV4 7AL Coventry United Kingdom
| | - Nikolay Cherkasov
- University of WarwickSchool of Engineering Library Road CV4 7AL Coventry United Kingdom
| | - Petr Denissenko
- University of WarwickSchool of Engineering Library Road CV4 7AL Coventry United Kingdom
| | - Attasak Jaree
- Kasetsart University, Faculty of EngineeringDepartment of Chemical Engineering 50 Paholyotin Rd. 10900 Bangkok Thailand
- Kasetsart UniversityFaculty of Engineering, Center for Advanced Studies in Industrial Technology 50 Ngamwongwan Rd. Chatuchak 10900 Bangkok Thailand
| | - Evgeny V. Rebrov
- University of WarwickSchool of Engineering Library Road CV4 7AL Coventry United Kingdom
- Tver State Technical UniversityDepartment of Biotechnology and Chemistry Nab. A. Nikitina 22 170026 Tver Russia
| |
Collapse
|
42
|
Feng H, Zheng T, Li M, Wu J, Ji H, Zhang J, Zhao W, Guo J. Droplet-based microfluidics systems in biomedical applications. Electrophoresis 2019; 40:1580-1590. [PMID: 30892714 DOI: 10.1002/elps.201900047] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Revised: 03/10/2019] [Accepted: 03/12/2019] [Indexed: 12/31/2022]
Abstract
Microfluidics has made a very impressive progress in the past decades due to its unique and instinctive advantages. Droplet-based microfluidic systems show excellent compatibility with many chemical and biological reagents and are capable of performing variety of operations that can implement microreactor, complex multiple core-shell structure, and many applications in biomedical research such as drug encapsulation, targeted drug delivery systems, and multifunctionalization on carriers. Droplet-based systems have been directly used to synthesize particles and encapsulate many biological entities for biomedicine applications due to their powerful encapsulation capability and facile versatility. In this paper, we review its origin, deviation, and evolution to draw a clear future, especially for droplet-based biomedical applications. This paper will focus on droplet generation, variations and complication as starter, and logistically lead to the numerous typical applications in biomedical research. Finally, we will summarize both its challenge and future prospects relevant to its droplet-based biomedical applications.
Collapse
Affiliation(s)
- Huanhuan Feng
- School of Materials Science and Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen, P. R. China
| | - Tingting Zheng
- Peking University Shenzhen Hospital & Biomedical Research Institute, Shenzhen-PKU-HKUST Medical Center, Shenzhen, P. R. China
| | - Mingyu Li
- School of Materials Science and Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen, P. R. China.,State Key Laboratory of Advanced Welding and Joining, Harbin Institute of Technology (Shenzhen), Shenzhen, P. R. China
| | - Junwei Wu
- School of Materials Science and Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen, P. R. China
| | - Hongjun Ji
- School of Materials Science and Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen, P. R. China
| | - Jiaheng Zhang
- School of Materials Science and Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen, P. R. China
| | - Weiwei Zhao
- School of Materials Science and Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen, P. R. China.,State Key Laboratory of Advanced Welding and Joining, Harbin Institute of Technology (Shenzhen), Shenzhen, P. R. China
| | - Jinhong Guo
- School of Information and Communication Engineering, University of Electronic Science and Technology of China, Chengdu, P. R. China
| |
Collapse
|
43
|
Feng Y, Lee Y. Microfluidic assembly of food-grade delivery systems: Toward functional delivery structure design. Trends Food Sci Technol 2019. [DOI: 10.1016/j.tifs.2019.02.054] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
44
|
Homayun B, Lin X, Choi HJ. Challenges and Recent Progress in Oral Drug Delivery Systems for Biopharmaceuticals. Pharmaceutics 2019; 11:E129. [PMID: 30893852 PMCID: PMC6471246 DOI: 10.3390/pharmaceutics11030129] [Citation(s) in RCA: 405] [Impact Index Per Article: 81.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Revised: 03/09/2019] [Accepted: 03/14/2019] [Indexed: 01/08/2023] Open
Abstract
Routes of drug administration and the corresponding physicochemical characteristics of a given route play significant roles in therapeutic efficacy and short term/long term biological effects. Each delivery method has favorable aspects and limitations, each requiring a specific delivery vehicles design. Among various routes, oral delivery has been recognized as the most attractive method, mainly due to its potential for solid formulations with long shelf life, sustained delivery, ease of administration and intensified immune response. At the same time, a few challenges exist in oral delivery, which have been the main research focus in the field in the past few years. The present work concisely reviews different administration routes as well as the advantages and disadvantages of each method, highlighting why oral delivery is currently the most promising approach. Subsequently, the present work discusses the main obstacles for oral systems and explains the most recent solutions proposed to deal with each issue.
Collapse
Affiliation(s)
- Bahman Homayun
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, AB T6G 1H9, Canada.
| | - Xueting Lin
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, AB T6G 1H9, Canada.
| | - Hyo-Jick Choi
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, AB T6G 1H9, Canada.
| |
Collapse
|
45
|
Yeap EWQ, Acevedo AJ, Khan SA. Microfluidic Extractive Crystallization for Spherical Drug/Drug-Excipient Microparticle Production. Org Process Res Dev 2019. [DOI: 10.1021/acs.oprd.8b00432] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Eunice W. Q. Yeap
- BioSystems and Micromechanics, Singapore-MIT Alliance for Research and Technology, 1 CREATE Way, #04-13/14, Enterprise Wing, Singapore 138602, Singapore
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore 117585, Singapore
| | - Andrew J. Acevedo
- Department of Biomedical Engineering, Boston University, 44 Cummington Street, Boston, Massachusetts 02215, United States
| | - Saif A. Khan
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore 117585, Singapore
| |
Collapse
|
46
|
Yeap EWQ, Ng DZL, Lai D, Ertl DJ, Sharpe S, Khan SA. Continuous Flow Droplet-Based Crystallization Platform for Producing Spherical Drug Microparticles. Org Process Res Dev 2018. [DOI: 10.1021/acs.oprd.8b00314] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Eunice W. Q. Yeap
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore 117576, Singapore
| | - Denise Z. L. Ng
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore 117576, Singapore
| | - David Lai
- GlaxoSmithKline LLC, Product and Process Engineering, 709 Swedeland Road, King of Prussia, Pennsylvania 19406, United States
- GlaxoSmithKline LLC, Advanced Manufacturing Technologies, 830 Winter Street, PC2000, Waltham, Massachusetts 02451, United States
| | - Darryl J. Ertl
- GlaxoSmithKline LLC, Product and Process Engineering, 709 Swedeland Road, King of Prussia, Pennsylvania 19406, United States
| | - Sonja Sharpe
- GlaxoSmithKline LLC, Advanced Manufacturing Technologies, 830 Winter Street, PC2000, Waltham, Massachusetts 02451, United States
| | - Saif A. Khan
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore 117576, Singapore
| |
Collapse
|
47
|
Prado RC, Borges ER. MICROBIOREACTORS AS ENGINEERING TOOLS FOR BIOPROCESS DEVELOPMENT. BRAZILIAN JOURNAL OF CHEMICAL ENGINEERING 2018. [DOI: 10.1590/0104-6632.20180354s20170433] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Affiliation(s)
- R. C. Prado
- Federal University of Rio de Janeiro, Brazil
| | | |
Collapse
|
48
|
Controlled Release and Separation of Magnetic Nanoparticles Using Microfluidics by Varying Bifurcation Angle of Microchannels. J Inorg Organomet Polym Mater 2018. [DOI: 10.1007/s10904-018-1000-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
49
|
Castro D, Conchouso D, Kodzius R, Arevalo A, Foulds IG. High-Throughput Incubation and Quantification of Agglutination Assays in a Microfluidic System. Genes (Basel) 2018; 9:E281. [PMID: 29867050 PMCID: PMC6027479 DOI: 10.3390/genes9060281] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Revised: 05/27/2018] [Accepted: 05/29/2018] [Indexed: 11/21/2022] Open
Abstract
In this paper, we present a two-phase microfluidic system capable of incubating and quantifying microbead-based agglutination assays. The microfluidic system is based on a simple fabrication solution, which requires only laboratory tubing filled with carrier oil, driven by negative pressure using a syringe pump. We provide a user-friendly interface, in which a pipette is used to insert single droplets of a 1.25-µL volume into a system that is continuously running and therefore works entirely on demand without the need for stopping, resetting or washing the system. These assays are incubated by highly efficient passive mixing with a sample-to-answer time of 2.5 min, a 5⁻10-fold improvement over traditional agglutination assays. We study system parameters such as channel length, incubation time and flow speed to select optimal assay conditions, using the streptavidin-biotin interaction as a model analyte quantified using optical image processing. We then investigate the effect of changing the concentration of both analyte and microbead concentrations, with a minimum detection limit of 100 ng/mL. The system can be both low- and high-throughput, depending on the rate at which assays are inserted. In our experiments, we were able to easily produce throughputs of 360 assays per hour by simple manual pipetting, which could be increased even further by automation and parallelization. Agglutination assays are a versatile tool, capable of detecting an ever-growing catalog of infectious diseases, proteins and metabolites. A system such as this one is a step towards being able to produce high-throughput microfluidic diagnostic solutions with widespread adoption. The development of analytical techniques in the microfluidic format, such as the one presented in this work, is an important step in being able to continuously monitor the performance and microfluidic outputs of organ-on-chip devices.
Collapse
Affiliation(s)
- David Castro
- Computer, Electrical and Mathematical Sciences & Engineering Division (CEMSE), King Abdullah University of Science and Technology (KAUST), 4700 KAUST, Thuwal, Jeddah 23955-6900, Saudi Arabia.
| | - David Conchouso
- Computer, Electrical and Mathematical Sciences & Engineering Division (CEMSE), King Abdullah University of Science and Technology (KAUST), 4700 KAUST, Thuwal, Jeddah 23955-6900, Saudi Arabia.
| | - Rimantas Kodzius
- Computer, Electrical and Mathematical Sciences & Engineering Division (CEMSE), King Abdullah University of Science and Technology (KAUST), 4700 KAUST, Thuwal, Jeddah 23955-6900, Saudi Arabia.
- Mathematics and Natural Sciences Department, The American University of Iraq, Sulaimani, Sulaymaniyah 46001, Iraq.
- Faculty of Medicine, Ludwig Maximilian University of Munich (LMU), 80539 Munich, Germany.
| | - Arpys Arevalo
- Computer, Electrical and Mathematical Sciences & Engineering Division (CEMSE), King Abdullah University of Science and Technology (KAUST), 4700 KAUST, Thuwal, Jeddah 23955-6900, Saudi Arabia.
| | - Ian G Foulds
- Computer, Electrical and Mathematical Sciences & Engineering Division (CEMSE), King Abdullah University of Science and Technology (KAUST), 4700 KAUST, Thuwal, Jeddah 23955-6900, Saudi Arabia.
- Okanagan Campus, School of Engineering, Faculty of Applied Science, University of British Columbia, 3333 University Way, Kelowna, BC V1V 1V7, Canada.
| |
Collapse
|
50
|
Wang K, Liang Q, Jiang R, Zheng Y, Lan Z, Ma X. Morphology evolution and dynamics of droplet coalescence on superhydrophobic surfaces. AIChE J 2018. [DOI: 10.1002/aic.16169] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Affiliation(s)
- Kai Wang
- State Key Laboratory of Fine Chemicals, Liaoning Key Laboratory of Clean Utilization of Chemical Resources, Institute of Chemical EngineeringDalian University of TechnologyDalian 116024 China
| | - Qianqing Liang
- State Key Laboratory of Fine Chemicals, Liaoning Key Laboratory of Clean Utilization of Chemical Resources, Institute of Chemical EngineeringDalian University of TechnologyDalian 116024 China
| | - Rui Jiang
- State Key Laboratory of Fine Chemicals, Liaoning Key Laboratory of Clean Utilization of Chemical Resources, Institute of Chemical EngineeringDalian University of TechnologyDalian 116024 China
| | - Yi Zheng
- State Key Laboratory of Fine Chemicals, Liaoning Key Laboratory of Clean Utilization of Chemical Resources, Institute of Chemical EngineeringDalian University of TechnologyDalian 116024 China
| | - Zhong Lan
- State Key Laboratory of Fine Chemicals, Liaoning Key Laboratory of Clean Utilization of Chemical Resources, Institute of Chemical EngineeringDalian University of TechnologyDalian 116024 China
| | - Xuehu Ma
- State Key Laboratory of Fine Chemicals, Liaoning Key Laboratory of Clean Utilization of Chemical Resources, Institute of Chemical EngineeringDalian University of TechnologyDalian 116024 China
| |
Collapse
|