1
|
Sultanova ED, Bogdanov IM, Gromova NI, Astrakhantseva AV, Kapralov MA, Nizamutdinov AS, Mukhametzyanov TA, Islamov DR, Usachev KS, Serov NY, Burilov VA, Solovieva SE, Antipin IS. Synthesis of zwitterionic asymmetric and symmetric carboxy-imidazolium derivatives and their use in molecular interactions with bovine serum albumin. Org Biomol Chem 2025. [PMID: 39834332 DOI: 10.1039/d4ob01685h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2025]
Abstract
For the first time asymmetric and symmetric carboxytriazoleimidazolium derivatives with different structures were synthesized. The critical micellization concentration (CMC) value was estimated using a pyrene fluorescent probe and the solubility of Orange OT. The complexation ability of carboxytriazoleimidazolium derivatives toward bovine serum albumin (BSA) has been investigated by various physico-chemical methods: fluorescence spectroscopy, electrophoretic light scattering and circular dichroism. The effect of the oxo-bridge and the presence of a hydrophobic fragment in the structure of the molecules and its influence on their aggregation properties and interaction with BSA has also been studied. According to the fluorescence data, only in the case of the asymmetric derivatives with long alkyl fragments a shift of the BSA emission maximum is observed, indicating a change in the BSA microenvironment. The secondary structure of BSA remains virtually unchanged in the presence of carboxytriazoleimidazolium derivatives, as shown by circular dichroism. No significant changes in the structure of BSA were observed in the presence of zwitterionic compounds with an oxo-bridge at concentrations where fluorescence quenching occurs, as shown by time-resolved fluorescence measurements. Electrophoretic light scattering showed a recharging of BSA from a negative to a positive zeta potential in the presence of amphiphilic derivatives.
Collapse
Affiliation(s)
- Elza D Sultanova
- A. M. Butlerov Institute of Chemistry, Kazan Federal University, Kremlevskaya str. 18, Kazan 420018, Russia.
| | - Ilshat M Bogdanov
- A. M. Butlerov Institute of Chemistry, Kazan Federal University, Kremlevskaya str. 18, Kazan 420018, Russia.
| | - Nadezhda I Gromova
- A. M. Butlerov Institute of Chemistry, Kazan Federal University, Kremlevskaya str. 18, Kazan 420018, Russia.
| | - Anna V Astrakhantseva
- Institute of Physics, Kazan Federal University, 16a Kremlyovskaya St., Kazan, 420008, Russia
| | - Mikhail A Kapralov
- Institute of Physics, Kazan Federal University, 16a Kremlyovskaya St., Kazan, 420008, Russia
| | - Alexey S Nizamutdinov
- Institute of Physics, Kazan Federal University, 16a Kremlyovskaya St., Kazan, 420008, Russia
| | - Timur A Mukhametzyanov
- A. M. Butlerov Institute of Chemistry, Kazan Federal University, Kremlevskaya str. 18, Kazan 420018, Russia.
| | - Daut R Islamov
- Institute of Physics, Kazan Federal University, 16a Kremlyovskaya St., Kazan, 420008, Russia
| | - Konstantin S Usachev
- Laboratory for Structural Studies of Biomacromolecules, FRC Kazan Scientific Center of RAS, 2/31 Lobachevskogo Str., Kazan, 420111, Russian Federation
| | - Nikita Y Serov
- A. M. Butlerov Institute of Chemistry, Kazan Federal University, Kremlevskaya str. 18, Kazan 420018, Russia.
| | - Vladimir A Burilov
- A. M. Butlerov Institute of Chemistry, Kazan Federal University, Kremlevskaya str. 18, Kazan 420018, Russia.
| | - Svetlana E Solovieva
- A.E. Arbuzov Institute of Organic & Physical Chemistry, 8 Arbuzov str., Kazan, 420088, Russian Federation
| | - Igor S Antipin
- A. M. Butlerov Institute of Chemistry, Kazan Federal University, Kremlevskaya str. 18, Kazan 420018, Russia.
| |
Collapse
|
2
|
Xu L, Zhou XY, Ju WT, Ge YD, Xing MY, Wang X. Effect of the presence of berberine/curcumin on the binding of limonin to human serum albumin and antitumor activity in vitro. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 323:124929. [PMID: 39116592 DOI: 10.1016/j.saa.2024.124929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 07/20/2024] [Accepted: 08/01/2024] [Indexed: 08/10/2024]
Abstract
The competition among drugs for binding to plasma proteins is regarded as a pharmacokinetic drug interaction. Competition between antitumor agents and other drugs for plasma protein binding can alter the free concentration of the drug, potentially impacting its efficacy and increasing the risk of toxic side effects. Through a range of spectroscopic techniques, this study examined the interaction between limonin and human serum albumin (HSA) in the context of berberine (Ber) and curcumin (Cur) under physiological conditions to clarify the binding mechanisms of binary and ternary systems at the molecular level. As demonstrated by fluorescence quenching experiments, Static quenching was identified as the mechanism of interaction between HSA and limonin. The results of site competition experiments indicated that the binding site between limonin and HSA was site I, a result further supported by molecular docking simulations. Through the use of thermodynamic data calculations, it was determined that limonin forms a stable complex with HSA by establishing hydrogen bonds and van der Waals forces. Circular dichroism (CD) spectroscopy, three-dimensional (3D) fluorescence spectroscopy, and synchronous fluorescence spectroscopy (SFS) employed to validate the notion that limonin perturbed the microenvironment of amino acids and induced conformational changes in HSA. What's more, the presence of Ber or Cur was found to have further modified the alterations observed in the interaction between the original HSA-limonin binary system. In vitro cellular experiments showed that interaction with HSA reduced the antitumor activity of limonin. In contrast, adding Ber or Cur increased the inhibition rate of tumor cells. The coexistence of both Ber and Cur significantly diminished limonin's binding affinity to HSA. The current investigation enhances comprehension regarding the binding characteristics and interaction mechanisms involving limonin, Ber, Cur, and HSA. It explores the potential of HSA as a versatile drug carrier and furnishes theoretical underpinnings for co-administrative strategies.
Collapse
Affiliation(s)
- Liang Xu
- School of Pharmaceutical Sciences, Liaoning University, Shenyang 110036, China; Shenyang Key Laboratory for Causes and Drug Discovery of Chronic Diseases, Liaoning University, Shenyang 110036, China
| | - Xin-Yi Zhou
- School of Pharmaceutical Sciences, Liaoning University, Shenyang 110036, China
| | - Wan-Ting Ju
- School of Pharmaceutical Sciences, Liaoning University, Shenyang 110036, China
| | - Ying-Di Ge
- School of Pharmaceutical Sciences, Liaoning University, Shenyang 110036, China
| | - Mei-Yi Xing
- School of Pharmaceutical Sciences, Liaoning University, Shenyang 110036, China
| | - Xin Wang
- School of Pharmaceutical Sciences, Liaoning University, Shenyang 110036, China; Shenyang Key Laboratory for Causes and Drug Discovery of Chronic Diseases, Liaoning University, Shenyang 110036, China.
| |
Collapse
|
3
|
Al-Shabib NA, Khan JM, Malik A, AlAmri A, Rehman MT, AlAjmi MF, Husain FM. Integrated spectroscopic and computational analyses unravel the molecular interaction of pesticide azinphos-methyl with bovine beta-lactoglobulin. J Mol Recognit 2024; 37:e3086. [PMID: 38686702 DOI: 10.1002/jmr.3086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Revised: 03/25/2024] [Accepted: 04/17/2024] [Indexed: 05/02/2024]
Abstract
Organophosphorus are typically hazardous chemicals used in the pharmaceutical, agricultural, and other industries. They pose a serious risk to human life and can be fatal upon direct exposure. Hence, studying the interaction between such compounds with proteins is crucial for environmental, health, and food safety. In this study, we investigated the interaction mechanism between azinphos-methyl (AZM) and β-lactoglobulin (BLG) at pH 7.4 using a combination of biophysical techniques. Intrinsic fluorescence investigations revealed that BLG fluorescence was quenched in the presence of increasing AZM concentrations. The quenching mechanism was identified as static, as evidenced by a decrease in the fluorescence quenching constant (1.25 × 104, 1.18 × 104, and 0.86 × 104 M-1) with an increase in temperatures. Thermodynamic calculations (ΔH > 0; ΔS > 0) affirmed the formation of a complex between AZM and BLG through hydrophobic interactions. The BLG's secondary structure was found to be increased due to AZM interaction. Ultraviolet -visible spectroscopy data showed alterations in BLG conformation in the presence of AZM. Molecular docking highlighted the significant role of hydrophobic interactions involving residues such as Val43, Ile56, Ile71, Val92, Phe105, and Met107 in the binding between BLG and AZM. A docking energy of -6.9 kcal mol-1, and binding affinity of 1.15 × 105 M-1 suggest spontaneous interaction between AZM and BLG with moderate to high affinity. These findings underscore the potential health risks associated with the entry of AZM into the food chain, emphasizing the need for further consideration of its impact on human health.
Collapse
Affiliation(s)
- Nasser Abdulatif Al-Shabib
- Department of Food Science and Nutrition, Faculty of Food and Agricultural Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Javed Masood Khan
- Department of Food Science and Nutrition, Faculty of Food and Agricultural Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Ajamaluddin Malik
- Department of Biochemistry, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Abdulaziz AlAmri
- Department of Biochemistry, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Md Tabish Rehman
- Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Mohamed F AlAjmi
- Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Fohad Mabood Husain
- Department of Food Science and Nutrition, Faculty of Food and Agricultural Sciences, King Saud University, Riyadh, Saudi Arabia
| |
Collapse
|
4
|
Khan MS, Al-Twaijry N, Alotaibi FN, Alenad AM, Alokail MS, Arshad M, Al Kheraif AA, Elrobh M, Shaik GM. Unveiling the Detrimental Effect of Glipizide on Structure and Function of Catalase: Spectroscopic, Thermodynamics and Simulation Studies. J Fluoresc 2024:10.1007/s10895-024-03792-9. [PMID: 38913089 DOI: 10.1007/s10895-024-03792-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Accepted: 06/06/2024] [Indexed: 06/25/2024]
Abstract
Free radicals, products of oxidative processes, induce cellular damage linked to diseases like Parkinson's and diabetes due to increased reactive oxygen species (ROS) levels. Catalase, crucial for scavenging ROS, emerges as a therapeutic agent against ailments including atherosclerosis and tumor progression. Its primary function involves breaking down hydrogen peroxide into water and oxygen. Research on catalase-drug interactions reveals structural changes under specific conditions, affecting its activity and cellular antioxidant balance, highlighting its pivotal role in defending against oxidative stress-related diseases. Hence, targeting catalase is considered an effective strategy for controlling ROS-induced cellular damage. This study investigates the interaction between bovine liver catalase and glipizide using spectroscopic and computational methods. It also explores glipizide's effect on catalase activity. More than 20% inhibition of catalase enzymatic activity was recorded in the presence of 50 µM glipizide. To investigate the inhibition of catalase activity by glipizide, we performed a series of binding studies. Glipizide was found to form a complex with catalase with moderate affinity and binding constant in the range of 3.822 to 5.063 × 104 M-1. The binding was spontaneous and entropically favourable. The α-helical content of catalase increased from 24.04 to 29.53% upon glipizide complexation. Glipizide binding does not alter the local environment surrounding the tyrosine residues while a notable decrease in polarity around the tryptophan residues of catalase was recorded. Glipizide interacted with numerous active site residues of catalase including His361, Tyr357, Ala332, Asn147, Arg71, and Thr360. Molecular simulations revealed that the catalase-glipizide complex remained relatively stable in an aqueous environment. The binding of glipizide had a negligible effect on the secondary structure of catalase, and hydrogen bonds persisted consistently throughout the trajectory. These results could aid in the development of glipizide as a potent catalase inhibitor, potentially reducing the impact of reactive oxygen species (ROS) in the human body.
Collapse
Affiliation(s)
- Mohd Shahnawaz Khan
- Department of Biochemistry, College of Science, King Saud University, 11451, Riyadh, Saudi Arabia.
| | - Nojood Al-Twaijry
- Department of Biochemistry, College of Science, King Saud University, 11451, Riyadh, Saudi Arabia
| | - Fai N Alotaibi
- Department of Biochemistry, College of Science, King Saud University, 11451, Riyadh, Saudi Arabia
| | - Amal M Alenad
- Department of Biochemistry, College of Science, King Saud University, 11451, Riyadh, Saudi Arabia
| | - Majed S Alokail
- Department of Biochemistry, College of Science, King Saud University, 11451, Riyadh, Saudi Arabia
| | - Mohammed Arshad
- College of Applied Medical Science, King Saud University, Riyadh, Saudi Arabia
| | | | - Mohamed Elrobh
- Department of Biochemistry, College of Science, King Saud University, 11451, Riyadh, Saudi Arabia
| | - Gouse M Shaik
- Department of Biochemistry, College of Science, King Saud University, 11451, Riyadh, Saudi Arabia
| |
Collapse
|
5
|
Samandar F, Malek-Mohammadi S, Aram Z, Rastin F, Tolou-Shikhzadeh-Yazdi S, Amiri-Tehranizadeh Z, Saberi MR, Chamani J. New Perspective on the Interaction Behavior Between Riboflavin and β Lactoglobulin-β Casein Complex by Biophysical Techniques. Cell Biochem Biophys 2024; 82:175-191. [PMID: 37978103 DOI: 10.1007/s12013-023-01197-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Accepted: 10/30/2023] [Indexed: 11/19/2023]
Abstract
Riboflavin (RF) is a vitamin that only exists in plants and microorganisms and must be procured externally by humans. On the other hand, there are two major allergic factors in cow's milk, including β-lactoglobulin (βLG) and β-casein (βCN), while their allergic properties can be eliminated by binding to micronutrients. In this regard, we examined the binding process of RF to βLG and βCN in the binary and ternary systems by different spectroscopies such as zeta potential, electric conductivity, and molecular modeling. According to the result of the fluorescence spectrum regarding the interaction of RF with βLG and βCN in binary and ternary systems, an increase in RF concentration declined the fluorescence intensity of three systems and also caused the quenching of proteins. Static quenching plays a pivotal role in the formation of stable interactions. The obtained thermodynamic parameters by Van't Hoff equation ascertained the predominance of hydrogen bonds and van der Waals interaction in all the systems. Considering how the negative value of ΔH0 resulted in the negative value of ΔG0, the systems were assumed to be enthalpy driven. The outcomes of circular dichroism (CD) disclosed that the attachment of RF to the targets of systems increased their a-helix content, which particularly included the binding of RF to βLG that led to the conversion of β-sheet to α-helix content. As indicated by the results of zeta potential, the low concentration of RF contained the dominance of hydrophobic forces in the interactions, whereas the enlargement of this concentration prevailed electrostatic forces. Moreover, conductometry measurements showed an extension in the rate of ionizable groups due to the addition of RF to the systems, which may increase the probability of an interaction between RF, βCN, and βLG in binary and ternary systems. In consistency with the outcomes of molecular dynamics simulation, the data of molecular docking approved the capability of RF in forming strong and stable interactions with βCN and βLG.
Collapse
Affiliation(s)
- Farzaneh Samandar
- Department of Biology, Mashhad Branch, Islamic Azad University, Mashhad, Iran
| | | | - Zahra Aram
- Department of Biology, Mashhad Branch, Islamic Azad University, Mashhad, Iran
| | - Farangis Rastin
- Department of Biology, Mashhad Branch, Islamic Azad University, Mashhad, Iran
| | | | - Zeinab Amiri-Tehranizadeh
- Medical Chemistry Department, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohammad Reza Saberi
- Medical Chemistry Department, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Jamshidkhan Chamani
- Department of Biology, Mashhad Branch, Islamic Azad University, Mashhad, Iran.
| |
Collapse
|
6
|
Sharma K, Sharma M. Invitro anti-biofilm activity and the artificial chaperone activity of quinoline-based ionic liquids. Colloids Surf B Biointerfaces 2024; 235:113773. [PMID: 38350204 DOI: 10.1016/j.colsurfb.2024.113773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Revised: 01/19/2024] [Accepted: 01/28/2024] [Indexed: 02/15/2024]
Abstract
The maintenance of protein conformation under stressful conditions is one of the prevailing challenges. This has led to a rapid growth in the ingenious protein therapies, in the past few decades, prioritizing the investigation of the structure and function of proteins in novel environments. Ionic Liquids (ILs) are currently dominating the biomedical industry, by endowing great solubility and stability to bio-molecules, especially proteins. Recently, researchers have devoted their attention towards the artificial chaperone activity of several classes of ILs. Thus, comprehending the long-term as well as momentary stability of protein conformation in IL formulations is an absolute necessity. In this context, we present the activity of quinoline-based ionic liquids (ILs) as artificial cheperones against time-dependent, self induced fibril formation in Bovine Serum Albumin (BSA). Herein, a series of quinoline-based ILs were synthesized and characterized. The structural and morphological changes induced in BSA in the presence and absence of these ILs are corroborated using several spectroscopic measurements and in-silico studies. The anti-microbial and antibiofilm activity of these compounds demonstrating their medicinal properties is substantiated in this study. Furthermore, the present research also gives an account of the toxicity of these compounds under in vivo conditions, using C. elegans as the model organism.
Collapse
Affiliation(s)
- Kajal Sharma
- Molecular Genetics of Aging, Dr. B.R. Ambedkar Center for Biomedical Research (ACBR), University of Delhi (North Campus), Delhi 110007, India
| | - Meenakshi Sharma
- Molecular Genetics of Aging, Dr. B.R. Ambedkar Center for Biomedical Research (ACBR), University of Delhi (North Campus), Delhi 110007, India.
| |
Collapse
|
7
|
Guo S, He F, Hu S, Zong W, Liu R. Novel evidence on iodoacetic acid-induced immune protein functional and conformational changes: Focusing on cellular and molecular aspects. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 912:169359. [PMID: 38103599 DOI: 10.1016/j.scitotenv.2023.169359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 12/10/2023] [Accepted: 12/11/2023] [Indexed: 12/19/2023]
Abstract
Elevated levels of iodide occur in raw water in certain regions, where iodination disinfection byproducts are formed during chloramine-assisted disinfection of naturally iodide-containing water. Iodoacetic acid (IAA) is one of the typical harmful products. The mechanisms underlying IAA-induced immunotoxicity and its direct effects on biomolecules remained unclear in the past. Cellular, biochemical, and molecular methods were used to investigate the mechanism of IAA-induced immunotoxicity and its binding to lysozyme. In the presence of IAA, the cell viability of coelomocytes was significantly reduced to 70.8 %, as was the intracellular lysozyme activity. Upon binding to IAA, lysozyme underwent structural and conformational changes, causing elongation and unfolding of the protein due to loosening of the backbone and polypeptide chains. IAA effectively quenched the fluorescence of lysozyme and induced a reduction in particle sizes. Molecular docking revealed that the catalytic residue, Glu 35, which is crucial for lysozyme activity, resided within the docking range, suggesting the preferential binding of IAA to the active site of lysozyme. Moreover, electrostatic interaction emerged as the primary driving force behind the interaction between IAA and lysozyme. In conclusion, the structural and conformational changes induced by IAA in lysozyme resulted in impaired immune protein function in coelomocytes, leading to cellular dysfunction.
Collapse
Affiliation(s)
- Shuqi Guo
- School of Environmental Science and Engineering, Shandong University, China-America CRC for Environment & Health, Shandong Province, 72# Jimo Binhai Road, Qingdao, Shandong 266237, PR China
| | - Falin He
- School of Environmental Science and Engineering, Shandong University, China-America CRC for Environment & Health, Shandong Province, 72# Jimo Binhai Road, Qingdao, Shandong 266237, PR China
| | - Shaoyang Hu
- School of Environmental Science and Engineering, Shandong University, China-America CRC for Environment & Health, Shandong Province, 72# Jimo Binhai Road, Qingdao, Shandong 266237, PR China
| | - Wansong Zong
- College of Geography and Environment, Shandong Normal University, 88# East Wenhua Road, Jinan, Shandong 250014, PR China
| | - Rutao Liu
- School of Environmental Science and Engineering, Shandong University, China-America CRC for Environment & Health, Shandong Province, 72# Jimo Binhai Road, Qingdao, Shandong 266237, PR China.
| |
Collapse
|
8
|
Asngari NJM, Bakar KA, Feroz SR, Razak FA, Halim AAA. Interaction mechanism of a cysteine protease inhibitor, odanacatib, with human serum albumin: In vitro and bioinformatics studies. Biophys Chem 2024; 305:107140. [PMID: 38118338 DOI: 10.1016/j.bpc.2023.107140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Revised: 10/04/2023] [Accepted: 11/07/2023] [Indexed: 12/22/2023]
Abstract
Odanacatib (ODN) is a selective cathepsin K inhibitor that acts as an anti-resorptive agent to treat osteoporosis. ODN is also found effective in reducing the effect of severe periodontitis. The interaction between ODN and human serum albumin (HSA) was investigated using spectroscopic, microscopic, and in silico approaches to characterize their binding. The fluorescence intensity of HSA increased upon the addition of increasing concentrations of ODN accompanied by blueshift in the fluorescence spectrum, which suggested hydrophobic formation around the microenvironment of the fluorophores upon ODN binding. A moderate binding affinity was obtained for ODN-HSA binding, with binding constant (Ka) values of ∼104 M-1. Circular dichroism results suggested that the overall secondary and tertiary structures of HSA were both only slightly altered upon ODN binding. The surface morphology of HSA was also affected upon ODN binding, showing aggregate formation. Drug displacement and molecular docking results revealed that ODN preferably binds to site III in subdomain IB of HSA, while molecular dynamics simulations indicated formation of a stable protein complex when site III was occupied by ODN. The ODN-HSA complex was mainly stabilized by a combination of hydrogen bonding, hydrophobic interactions, and van der Waals forces. These findings provide additional information to understand the interaction mechanism of ODN in blood circulation and may help in future improvements on the adverse effects of ODN.
Collapse
Affiliation(s)
- Nurul Jannah Mohd Asngari
- Department of Oral & Craniofacial Sciences, Faculty of Dentistry, Universiti Malaya, 50603 Kuala Lumpur, Malaysia
| | - Khairul Azreena Bakar
- Department of Biological Sciences and Biotechnology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor, Malaysia
| | - Shevin Rizal Feroz
- Department of Biological Sciences and Biotechnology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor, Malaysia
| | - Fathilah Abdul Razak
- Department of Oral & Craniofacial Sciences, Faculty of Dentistry, Universiti Malaya, 50603 Kuala Lumpur, Malaysia; Adjunct Professor, Faculty of Dentistry, Universitas Padjadjaran, Bandung, Indonesia
| | - Adyani Azizah Abd Halim
- Department of Oral & Craniofacial Sciences, Faculty of Dentistry, Universiti Malaya, 50603 Kuala Lumpur, Malaysia.
| |
Collapse
|
9
|
Hussain I, Fatima S, Tabish M. Unravelling the molecular interactions of phenyl isothiocyanate and benzoyl isothiocyanate with human lysozyme: Biophysical and computational analyses. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 304:123408. [PMID: 37717484 DOI: 10.1016/j.saa.2023.123408] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 09/11/2023] [Accepted: 09/12/2023] [Indexed: 09/19/2023]
Abstract
Phenyl isothiocyanate and benzoyl isothiocyanate are the phytochemicals present in the Brassicaceae family. They have antibacterial, antiapoptotic and antifungal properties. Protein-small molecule interaction studies are done to assess the changes in structure, dynamics, and functions of protein and to decipher the binding mechanism. This study is based on the comparative binding of PT and BT with human lysozyme using in vitro and computational techniques. UV, fluorescence emission, and FRET spectra gave insight into the complex formation, quenching mechanism, and binding parameters. Both PT and BT quenched the intrinsic fluorescence of Lyz by a static quenching mechanism. Synchronous, 3D fluorescence and CD spectroscopy substantiated conformational and microenvironmental alterations in the Lyz. The metal ions and β-cyclodextrin had a pronounced effect on the binding strength of Lyz-PT and Lyz-BT complexes. Accessible surface area analysis was determined to characterise the amino acid residue packing. Molecular docking further validated the wet lab experimental results.
Collapse
Affiliation(s)
- Irfan Hussain
- Department of Biochemistry, Faculty of Life Sciences, A.M.U, Aligarh, UP 202002, India
| | - Sana Fatima
- Department of Biochemistry, Faculty of Life Sciences, A.M.U, Aligarh, UP 202002, India
| | - Mohammad Tabish
- Department of Biochemistry, Faculty of Life Sciences, A.M.U, Aligarh, UP 202002, India.
| |
Collapse
|
10
|
Bhattacharjee B, Chakrovorty A, Biswas M, Samadder A, Nandi S. To Explore the Putative Molecular Targets of Diabetic Nephropathy and their Inhibition Utilizing Potential Phytocompounds. Curr Med Chem 2024; 31:3752-3790. [PMID: 37211853 DOI: 10.2174/0929867330666230519112312] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 03/17/2023] [Accepted: 03/31/2023] [Indexed: 05/23/2023]
Abstract
BACKGROUND This review critically addresses the putative molecular targets of Diabetic Nephropathy (DN) and screens effective phytocompounds that can be therapeutically beneficial, and highlights their mechanistic modalities of action. INTRODUCTION DN has become one of the most prevalent complications of clinical hyperglycemia, with individual-specific variations in the disease spectrum that leads to fatal consequences. Diverse etiologies involving oxidative and nitrosative stress, activation of polyol pathway, inflammasome formation, Extracellular Matrix (ECM) modifications, fibrosis, and change in dynamics of podocyte functional and mesangial cell proliferation adds up to the clinical complexity of DN. Current synthetic therapeutics lacks target-specific approach, and is associated with the development of inevitable residual toxicity and drug resistance. Phytocompounds provides a vast diversity of novel compounds that can become an alternative therapeutic approach to combat the DN. METHODS Relevant publications were searched and screened from research databases like GOOGLE SCHOLAR, PUBMED and SCISEARCH. Out of 4895 publications, the most relevant publications were selected and included in this article. RESULT This study critically reviews over 60 most promising phytochemical and provides with their molecular targets, that can be of pharmacological significance in context to current treatment and concomitant research in DN. CONCLUSION This review highlights those most promising phytocompounds that have the potential of becoming new safer naturally-sourced therapeutic candidates and demands further attention at clinical level.
Collapse
Affiliation(s)
- Banani Bhattacharjee
- Endocrinology and Reproductive Biology Laboratory, Department of Zoology, University of Kalyani, Kalyani, 741235, West Bengal, India
| | - Arnob Chakrovorty
- Cytogenetics and Molecular Biology Laboratory, Department of Zoology, University of Kalyani, Kalyani, 741235, India
| | - Maharaj Biswas
- Endocrinology and Reproductive Biology Laboratory, Department of Zoology, University of Kalyani, Kalyani, 741235, West Bengal, India
| | - Asmita Samadder
- Cytogenetics and Molecular Biology Laboratory, Department of Zoology, University of Kalyani, Kalyani, 741235, India
| | - Sisir Nandi
- Department of Pharmaceutical Chemistry, Global Institute of Pharmaceutical Education and Research, Affiliated to Uttarakhand Technical University, Kashipur, 244713, India
| |
Collapse
|
11
|
Shahwan M, Anwar S, Yadav DK, Khan MS, Shamsi A. Experimental and Computational Insights into the Molecular Interactions between Human Transferrin and Apigenin: Implications of Natural Compounds in Targeting Neuroinflammation. ACS OMEGA 2023; 8:46967-46976. [PMID: 38107922 PMCID: PMC10719914 DOI: 10.1021/acsomega.3c06799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 10/18/2023] [Accepted: 10/30/2023] [Indexed: 12/19/2023]
Abstract
Neuroinflammation plays a vital role in Alzheimer's disease (AD) pathogenesis and other neurodegenerative disorders (NDs). Presently, only symptomatic treatments are available and no disease-modifying drugs are available for AD and other NDs. Thus, targeting AD-associated neuroinflammation with anti-inflammatory compounds and antioxidants has recently been given much focus. Now, flavonoids are being increasingly investigated as therapeutic agents to treat inflammation; apigenin has a neuroprotective effect. Iron dyshomeostasis plays a key role in sustaining the neuroinflammatory phenotype, highlighting the importance of maintaining iron balance, in which human transferrin (HTF) plays a vital role in this aspect. Herein, we explored the binding and dynamics of the HTF-apigenin complex using multifaceted computational and experimental approaches. Molecular docking revealed that apigenin occupies the iron-binding pocket of HTF, forming hydrogen bonds with critical residues Arg475 and Thr686. Molecular dynamics simulations deciphered a dynamic view of the HTF-apigenin complex's behavior (300 ns) and suggested that the complex maintained a relatively stable conformation. The results of spectroscopic observations delineated significant binding of apigenin with HTF and stable HTF-apigenin complex formation. The observed binding mechanism and conformational stability could pave the way for developing novel therapeutic strategies to target neuroinflammation by apigenin in the context of iron homeostasis.
Collapse
Affiliation(s)
- Moyad Shahwan
- Center
for Medical and Bio-Allied Health Sciences Research, Ajman University, Ajman 346, United Arab
Emirates
| | - Saleha Anwar
- Centre
for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India
| | - Dharmendra Kumar Yadav
- College
of Pharmacy, Gachon University of Medicine
and Science, Incheon 21565, Republic
of Korea
| | - Mohd Shahnawaz Khan
- Department
of Biochemistry, College of Science, King
Saud University, Riyadh 11451, Saudi Arabia
| | - Anas Shamsi
- Center
for Medical and Bio-Allied Health Sciences Research, Ajman University, Ajman 346, United Arab
Emirates
| |
Collapse
|
12
|
Azeem K, Ahmed M, Uddin A, Singh S, Patel R, Abid M. Comparative investigation on interaction between potent antimalarials and human serum albumin using multispectroscopic and computational approaches. LUMINESCENCE 2023; 38:2018-2033. [PMID: 37654050 DOI: 10.1002/bio.4590] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 08/22/2023] [Accepted: 08/28/2023] [Indexed: 09/02/2023]
Abstract
This study performed a comparative investigation to explore the interaction mechanisms between two potential antimalarial compounds, JMI 346 and JMI 105, and human serum albumin (HSA), a vital carrier protein responsible for maintaining important biological functions. Our aim was to assess the pharmacological efficiency of these compounds while comprehensively analyzing their impact on the dynamic behavior and overall stability of the protein. A comprehensive array of multispectroscopic techniques, including UV-Vis. spectroscopy, steady-state fluorescence analysis, synchronous fluorescence spectroscopy, three-dimensional fluorescence and circular dichroism spectroscopy, docking studies, and molecular dynamics simulations, were performed to probe the intricate details of the interaction between the compounds and HSA. Our results revealed that both JMI 346 and JMI 105 exhibited promising pharmacological effectiveness within the context of malaria therapy. However, JMI 346 was found to exhibit a significantly higher affinity and only minor altered impact on HSA, suggesting a more favorable interaction with the protein on the dynamic behavior and overall stability of the protein in comparison to JMI 105. Further studies can build on these results to optimize the drug-protein interaction and enable the development of more potent and targeted antimalarial treatments.
Collapse
Affiliation(s)
- Kashish Azeem
- Medicinal Chemistry Laboratory, Department of Biosciences, Jamia Millia Islamia, New Delhi, India
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, India
| | - Mofieed Ahmed
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, India
| | - Amad Uddin
- Medicinal Chemistry Laboratory, Department of Biosciences, Jamia Millia Islamia, New Delhi, India
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi, India
| | - Shailja Singh
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi, India
| | - Rajan Patel
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, India
| | - Mohammad Abid
- Medicinal Chemistry Laboratory, Department of Biosciences, Jamia Millia Islamia, New Delhi, India
| |
Collapse
|
13
|
Mahanthappa M, Savanur MA, Ramu J, Tatagar A. Elucidating the significance of molecular interaction between sulphur doped zinc oxide nanoparticles and serum albumin using multispectroscopic approach. J Mol Recognit 2023; 36:e3054. [PMID: 37696651 DOI: 10.1002/jmr.3054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 07/14/2023] [Accepted: 08/08/2023] [Indexed: 09/13/2023]
Abstract
Ingenious nanomaterials with improved biocompatibility and multifunctional properties are gaining vital significance in biomedical applications, including advanced drug delivery and nanotheranostics. In a biological system, these nanoparticles interact with serum proteins forming a dynamic corona that affects their biological or toxicological properties producing undesirable effects. Thus, the current study focuses on the synthesis of sulphur-doped zinc oxide nanoparticles (ZnO/S NPs) and characterizing their mechanism of interaction with serum proteins using multispectroscopic approach. ZnO/S NPs were synthesized by employing a co-precipitation approach and characterized using various analytical techniques. The results of interaction studies demonstrated that ZnO/S NPs interact with serum albumins via the static quenching process. Analysis of thermodynamic parameters (ΔG, ΔH and ΔS) revealed that the binding process is spontaneous, exothermic and van der Waals force or hydrogen bonding plays a major role. The interaction of ZnO/S NPs with tyrosine residue in bovine serum albumin was established by synchronous fluorescence spectroscopy. In addition, the results of UV-visible, circular dichroism, Fourier transform infrared, Forster's resonance energy transfer theory and dynamic light scattering spectroscopic studies revealed that the ZnO/S NPs interact with albumin by inducing the conformational changes in secondary structure and reducing the α-helix content.
Collapse
Affiliation(s)
- Mallappa Mahanthappa
- Department of Chemistry, School of Applied Sciences, REVA University, Bangalore, India
| | - Mohammed Azharuddin Savanur
- Department of Immunology, MIGAL-Galilee Research Institute, Kiryat Shmona, Israel
- Department of Biochemistry, Indian Institute of Science, Bangalore, India
| | - Jagadish Ramu
- Department of Chemistry, Maharani's Science College for Women, Mysore, India
- Department of Chemistry, Government First Grade College, Chikkaballapur, India
| | - Asma Tatagar
- Department of Chemistry, SDM College of Engineering and Technology, Dharwad, India
| |
Collapse
|
14
|
Hiremath KB, Shivashankar M, Chandrasekaran N. Multispectroscopic Studies on HSA Interaction, DFT Calculations, Molecular Docking, and Antimicrobial Activities of Imine‐ Functionalized Tris(hydroxymethyl)aminomethane Derivatives. ChemistrySelect 2023; 8. [DOI: 10.1002/slct.202301772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Accepted: 06/06/2023] [Indexed: 10/26/2023]
Abstract
AbstractFollowing recent work on new Tris hydroxymethyl aminomethane Schiff base derivatives were synthesized and characterized by using NMR (1H, 13C, and depth), FT‐IR, and Mass spectroscopy. The crystal structure of STB has been determined by X‐ray diffraction analysis. The binding interaction of the 3 chemically synthesized molecules with human serum albumin has been examined under the pH=7.40 through UV‐visible absorption and fluorescence spectroscopy analysis. The result obtained from the fluorescence experiment (1014) suggests a static mechanism of quenching. By utilizing fluorescence spectroscopy to determine the binding constant (Kb=106), it was determined which ligands have the highest affinity for HSA and that these ligands had changed the structure of HSA. Through hydrophobic interactions, the ligands bind to HSA on site I (subdomain II), according to thermodynamic parameters like enthalpy change (ΔHo), entropy change (ΔSo), and Gibbs free energy change (ΔGo). The result of 3D fluorescence spectra also showed that albumin conformational changes were brought on by these ligands. The results of the experiments were supported by DFT and molecular docking of ligands with HSA. Escherichia coli, Stap. aureus, Aspergillus niger, and Aspergillus flavus were tested for antimicrobial activity against the synthesized compounds respectively.
Collapse
|
15
|
Al-Shabib N, Khan JM, Al-Amri AM, Malik A, Husain FM, Sharma P, Emerson A, Kumar V, Sen P. Interaction Mechanism between α-Lactalbumin and Caffeic Acid: A Multispectroscopic and Molecular Docking Study. ACS OMEGA 2023; 8:19853-19861. [PMID: 37305235 PMCID: PMC10249380 DOI: 10.1021/acsomega.3c01755] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Accepted: 05/08/2023] [Indexed: 06/13/2023]
Abstract
Caffeic acid (CA) is a phenolic acid found in a variety of foods. In this study, the interaction mechanism between α-lactalbumin (ALA) and CA was explored with the use of spectroscopic and computational techniques. The Stern-Volmer quenching constant data suggest a static mode of quenching between CA and ALA, depicting a gradual decrease in quenching constants with temperature rise. The binding constant, Gibbs free energy, enthalpy, and entropy values at 288, 298, and 310 K were calculated, and the obtained values suggest that the reaction is spontaneous and exothermic. Both in vitro and in silico studies show that hydrogen bonding is the dominant force in the CA-ALA interaction. Ser112 and Lys108 of ALA are predicted to form three hydrogen bonds with CA. The UV-visible spectroscopy measurements demonstrated that the absorbance peak A280nm increased after addition of CA due to conformational change. The secondary structure of ALA was also slightly modified due to CA interaction. The circular dichroism (CD) studies showed that ALA gains more α-helical structure in response to increasing concentration of CA. The surface hydrophobicity of ALA is not changed in the presence of ethanol and CA. The present findings shown herein are helpful in understanding the binding mechanism of CA with whey proteins for the dairy processing industry and food nutrition security.
Collapse
Affiliation(s)
- Nasser
Abdulatif Al-Shabib
- College
of Food and Agriculture Sciences, Department of Food and Nutrition, King Saud University, Riyadh 11451, Saudi Arabia
| | - Javed Masood Khan
- College
of Food and Agriculture Sciences, Department of Food and Nutrition, King Saud University, Riyadh 11451, Saudi Arabia
| | - Abdulaziz M. Al-Amri
- College
of Science, Department of Biochemistry, King Saud University, Riyadh 11451, Saudi Arabia
| | - Ajamaluddin Malik
- College
of Science, Department of Biochemistry, King Saud University, Riyadh 11451, Saudi Arabia
| | - Fohad Mabood Husain
- College
of Food and Agriculture Sciences, Department of Food and Nutrition, King Saud University, Riyadh 11451, Saudi Arabia
| | - Prerna Sharma
- Geisinger
Commonwealth School of Medicine, Scranton, Pennsylvania 18509-3240, United States
| | - Arnold Emerson
- Department
of Biotechnology, School of Bio Sciences and Technology, VIT University, Vellore, Tamil Nadu 632014, India
| | - Vijay Kumar
- Himalayan
School of Biosciences, Swami Rama Himalayan
University, Dehradun, Uttarakhand 248016, India
| | - Priyankar Sen
- Centre for
Bioseparation Technology, VIT University, Vellore, Tamil Nadu 632014, India
| |
Collapse
|
16
|
Hu S, Xu M, Cui Z, Xiao Y, Liu C, Liu R, Li X. Study on the binding of polystyrene microplastics with superoxide dismutase at the molecular level by multi-spectroscopy methods. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2023; 294:122511. [PMID: 36854229 DOI: 10.1016/j.saa.2023.122511] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 01/30/2023] [Accepted: 02/14/2023] [Indexed: 06/18/2023]
Abstract
Microplastics are harmful pollutants that widely exist worldwide and pose a severe threat to all types of organisms. The effects of polystyrene microplastics (PS-MPs) on organisms have been extensively studied, but the interaction mechanism between PS-MPs and superoxide dismutase (SOD) at the molecular level has not been reported yet. Therefore, based on multiple spectroscopic methods and enzyme activity measurements, the molecular mechanism of the interaction between PS-MPs and SOD was investigated. The multispectral results showed that the protein skeleton and secondary structure of SOD were altered by PS-MPs, resulting in decreased α-helix and β-sheet content. After PS-MPs exposure, fluorescence sensitization occurred, and micelles were formed, along with the enhanced hydrophobicity of aromatic amino acids in SOD. Moreover, the resonance light scattering (RLS) spectra result suggested that the PS-MPs and SOD combined to form a larger complex. Eventually, the activity of SOD was increased due to these structural changes, and the concentration of PS-MPs is positively correlated with SOD activity. This study can provide experimental support for studying the toxicological effects of PS-MPs.
Collapse
Affiliation(s)
- Shuncheng Hu
- School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao 266033, PR China
| | - Mengchen Xu
- School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao 266033, PR China.
| | - Zhaohao Cui
- Qingdao Ecological Environment Monitoring Center, Qingdao 266003, PR China
| | - Yihua Xiao
- School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao 266033, PR China
| | - Changqing Liu
- School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao 266033, PR China
| | - Rutao Liu
- School of Environmental Science and Engineering, Shandong University, China-America CRC for Environment & Health, Shandong Province, 72# Jimo Binhai Road, Qingdao, Shandong 266237, PR China
| | - Xiangxiang Li
- School of Environmental Science and Engineering, Shandong University, China-America CRC for Environment & Health, Shandong Province, 72# Jimo Binhai Road, Qingdao, Shandong 266237, PR China
| |
Collapse
|
17
|
Parveen S, Ali MS, Al-Lohedan HA, Hoti N, Tabassum S. Molecular interaction of lysozyme with therapeutic drug azithromycin: Effect of sodium dodecyl sulfate on binding profile. Int J Biol Macromol 2023; 242:124844. [PMID: 37210056 DOI: 10.1016/j.ijbiomac.2023.124844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 05/08/2023] [Accepted: 05/09/2023] [Indexed: 05/22/2023]
Abstract
This paper describes an inclusive biophysical study elucidating the interaction of therapeutic drug azithromycin (Azith) with hen egg white lysozyme (HEWL). Spectroscopic and computational tools have been employed to study the interaction of Azith with HEWL at pH 7.4. The fluorescence quenching constant values (Ksv) exhibited a decrease with the increase in temperature which revealed the occurrence of static quenching mechanism between Azith and HEWL. The thermodynamic data demonstrated that hydrophobic interactions were predominantly involved in the Azith-HEWL interaction. The negative value of standard Gibbs free energy (ΔG°) stated that the Azith-HEWL complex formed via spontaneous molecular interactions. The effect of sodium dodecyl sulfate (SDS) surfactant monomers on the binding propensity of Azith with HEWL was insignificant at lower concentrations however the binding significantly decreased at increased concentrations of the former. Far-UV CD data revealed alteration in the secondary structure of HEWL in the presence of Azith and the overall HEWL conformation changed. Molecular docking results revealed that the binding of Azith with HEWL takes place through hydrophobic interactions and hydrogen bonds.
Collapse
Affiliation(s)
- Sabiha Parveen
- Department of Chemistry, Aligarh Muslim University, Aligarh 202002, India
| | - Mohd Sajid Ali
- Department of Chemistry, College of Sciences, King Saud University, Riyadh 11451, the Kingdom of Saudi Arabia
| | - Hamad A Al-Lohedan
- Department of Chemistry, College of Sciences, King Saud University, Riyadh 11451, the Kingdom of Saudi Arabia
| | | | - Sartaj Tabassum
- Department of Chemistry, Aligarh Muslim University, Aligarh 202002, India.
| |
Collapse
|
18
|
Li Y, Li X, Cui Z, He F, Zong W, Liu R. Probing the toxic effect of quinoline to catalase and superoxide dismutase by multispectral method. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2023; 293:122449. [PMID: 36753919 DOI: 10.1016/j.saa.2023.122449] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 01/29/2023] [Accepted: 02/01/2023] [Indexed: 06/18/2023]
Abstract
Quinoline is a common nitrogen heterocyclic aromatic hydrocarbon with high water solubility. Studies have shown that quinoline can be teratogenic, carcinogenic and mutagenic. And Hepatocytes are the target cell of quinoline, which contain a large number of mitochondria and are related to cell function and the balance of reactive oxygen species (ROS). However, the research on the effect of quinoline on hepatocyte damage and anti-oxidation system is still unclear. Through the means of multispectral experiments, it is concluded that quinoline can affect the catalase (CAT) and superoxide dismutase (SOD), change their structure and affect their activity. The binding mode and binding site of quinoline to CAT/SOD were analyzed by isothermal calorimetric titration (ITC) and Molecular Operating Environment (MOE). In molecular docking simulation, the binding site of quinoline-CAT system is close to the active site, and affect the microenvironment of Tyr 357. This may be the reason why quinoline affects CAT activity and synchronous fluorescence (Δλ = 15 nm). This study demonstrated that quinoline has a great effect on CAT, which may affect the intracellular ROS balance and become a potential way to cause hepatocyte damage.
Collapse
Affiliation(s)
- Yuze Li
- School of Environmental Science and Engineering, China - America CRC for Environment & Health, Shandong University, 72# Jimo Binhai Road, Qingdao, Shandong 266237, PR China
| | - Xiangxiang Li
- School of Environmental Science and Engineering, China - America CRC for Environment & Health, Shandong University, 72# Jimo Binhai Road, Qingdao, Shandong 266237, PR China
| | - Zhihan Cui
- School of Environmental Science and Engineering, China - America CRC for Environment & Health, Shandong University, 72# Jimo Binhai Road, Qingdao, Shandong 266237, PR China
| | - Falin He
- School of Environmental Science and Engineering, China - America CRC for Environment & Health, Shandong University, 72# Jimo Binhai Road, Qingdao, Shandong 266237, PR China
| | - Wansong Zong
- College of Geography and Environment, Shandong Normal University, 88# East Wenhua Road, Jinan, Shandong 250014, PR China
| | - Rutao Liu
- School of Environmental Science and Engineering, China - America CRC for Environment & Health, Shandong University, 72# Jimo Binhai Road, Qingdao, Shandong 266237, PR China.
| |
Collapse
|
19
|
Attia MS, Radwan MF, Ibrahim TS, Ibrahim TM. Development of Carvedilol-Loaded Albumin-Based Nanoparticles with Factorial Design to Optimize In Vitro and In Vivo Performance. Pharmaceutics 2023; 15:pharmaceutics15051425. [PMID: 37242667 DOI: 10.3390/pharmaceutics15051425] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 04/21/2023] [Accepted: 05/02/2023] [Indexed: 05/28/2023] Open
Abstract
Carvedilol, an anti-hypertensive medication commonly prescribed by healthcare providers, falls under the BCS class II category due to its low-solubility and high-permeability characteristics, resulting in limited dissolution and low absorption when taken orally. Herein, carvedilol was entrapped into bovine serum albumin (BSA)-based nanoparticles using the desolvation method to obtain a controlled release profile. Carvedilol-BSA nanoparticles were prepared and optimized using 32 factorial design. The nanoparticles were characterized for their particle size (Y1), entrapment efficiency (Y2), and time to release 50% of carvedilol (Y3). The optimized formulation was assessed for its in vitro and in vivo performance by solid-state, microscopical, and pharmacokinetic evaluations. The factorial design showed that an increment of BSA concentration demonstrated a significant positive effect on Y1 and Y2 responses with a negative effect on Y3 response. Meanwhile, the carvedilol percentage in BSA nanoparticles represented its obvious positive impact on both Y1 and Y3 responses, along with a negative impact on Y2 response. The optimized nanoformulation entailed BSA at a concentration of 0.5%, whereas the carvedilol percentage was 6%. The DSC thermograms indicated the amorphization of carvedilol inside the nanoparticles, which confirmed its entrapment into the BSA structure. The plasma concentrations of carvedilol released were observable from optimized nanoparticles up to 72 h subsequent to their injection into rats, revealing their longer in vivo circulation time compared to pure carvedilol suspension. This study offers new insight into the significance of BSA-based nanoparticles in sustaining the release of carvedilol and presents a potential value-added in the remediation of hypertension.
Collapse
Affiliation(s)
- Mohamed S Attia
- Department of Pharmaceutics, Faculty of Pharmacy, Zagazig University, Zagazig 44519, Egypt
| | - Mohamed F Radwan
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Tarek S Ibrahim
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Tarek M Ibrahim
- Department of Pharmaceutics, Faculty of Pharmacy, Zagazig University, Zagazig 44519, Egypt
| |
Collapse
|
20
|
Nedić O, Penezić A, Minić S, Radomirović M, Nikolić M, Ćirković Veličković T, Gligorijević N. Food Antioxidants and Their Interaction with Human Proteins. Antioxidants (Basel) 2023; 12:antiox12040815. [PMID: 37107190 PMCID: PMC10135064 DOI: 10.3390/antiox12040815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 03/22/2023] [Accepted: 03/25/2023] [Indexed: 03/29/2023] Open
Abstract
Common to all biological systems and living organisms are molecular interactions, which may lead to specific physiological events. Most often, a cascade of events occurs, establishing an equilibrium between possibly competing and/or synergistic processes. Biochemical pathways that sustain life depend on multiple intrinsic and extrinsic factors contributing to aging and/or diseases. This article deals with food antioxidants and human proteins from the circulation, their interaction, their effect on the structure, properties, and function of antioxidant-bound proteins, and the possible impact of complex formation on antioxidants. An overview of studies examining interactions between individual antioxidant compounds and major blood proteins is presented with findings. Investigating antioxidant/protein interactions at the level of the human organism and determining antioxidant distribution between proteins and involvement in the particular physiological role is a very complex and challenging task. However, by knowing the role of a particular protein in certain pathology or aging, and the effect exerted by a particular antioxidant bound to it, it is possible to recommend specific food intake or resistance to it to improve the condition or slow down the process.
Collapse
Affiliation(s)
- Olgica Nedić
- Institute for the Application of Nuclear Energy, Department for Metabolism, University of Belgrade, Banatska 31b, 11080 Belgrade, Serbia
- Correspondence:
| | - Ana Penezić
- Institute for the Application of Nuclear Energy, Department for Metabolism, University of Belgrade, Banatska 31b, 11080 Belgrade, Serbia
| | - Simeon Minić
- Center of Excellence for Molecular Food Sciences, Department of Biochemistry, Faculty of Chemistry, University of Belgrade, 11000 Belgrade, Serbia
| | - Mirjana Radomirović
- Center of Excellence for Molecular Food Sciences, Department of Biochemistry, Faculty of Chemistry, University of Belgrade, 11000 Belgrade, Serbia
| | - Milan Nikolić
- Center of Excellence for Molecular Food Sciences, Department of Biochemistry, Faculty of Chemistry, University of Belgrade, 11000 Belgrade, Serbia
| | - Tanja Ćirković Veličković
- Center of Excellence for Molecular Food Sciences, Department of Biochemistry, Faculty of Chemistry, University of Belgrade, 11000 Belgrade, Serbia
- Serbian Academy of Sciences and Arts, Knez Mihailova 35, 11000 Belgrade, Serbia
| | - Nikola Gligorijević
- Institute for the Application of Nuclear Energy, Department for Metabolism, University of Belgrade, Banatska 31b, 11080 Belgrade, Serbia
| |
Collapse
|
21
|
Li X, He F, Hu S, Sun N, Huo C, Liu R. The culprits of superoxide dismutase inactivation under size-dependent stress of ultrafine carbon black: Superoxide anion, genotoxicity and protein corona. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 862:160770. [PMID: 36502967 DOI: 10.1016/j.scitotenv.2022.160770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 11/28/2022] [Accepted: 12/04/2022] [Indexed: 06/17/2023]
Abstract
As a critical component of atmospheric ultrafine particulates, ultrafine carbon black (UFCB) brings great exposure risk to organisms. At present, the action pathway and activity regulation mechanism of UFCB on functional proteins in vivo are not clear, and the size-dependent effects of UFCB during this process need to be elucidated. Superoxide dismutase (SOD), one of the most applied biomarkers to assess the environmental impact of pollutants, plays crucial roles in resistance to oxidative stress. Here, based on the inactivation of SOD (84.79 %, 86.81 % and 91.70 %) in primary mouse hepatocytes exposed to UFCB (13 nm, 50 nm and 95 nm), oxidative stress, genotoxicity and protein molecular studies were employed to elucidate the inactivation mechanisms. Results showed that inhibition of UFCB-mediated superoxide anion (O2-) contributed to a decrease in SOD activity. Furthermore, the significant increase in 8-hydroxy-2-deoxyguanosine content and the comet tail formation indicated the occurrence of DNA damage, supporting that concomitant aberrant transcriptional and protein translational under gene regulation should be responsible for SOD inactivation. At the molecular level, the constricted backbone, reduced content of α-helix and fluorescence sensitization all demonstrated that the attachment-type binding of SOD on UFCB to form the 'protein corona' disrupted protein structure. Enzyme activity assays indicated that SOD backbone tightening and helix decay resulted in decreased activity, which should be another reason for intracellular SOD inactivation. More importantly, the particle sizes of UFCB exert powerful influences on SOD inactivation mechanisms. Smaller UFCB (13 nm) induced more severe O2- inhibition and DNA damage, while UFCB50nm with the best dispersity bound more SOD and induced stronger molecular toxicity, which are their different strengths in stressing SOD inactivation in hepatocytes. Our findings provide novel insights for exploring functional proteins activity and underscore a potentially size-dependent risk of nanoparticles.
Collapse
Affiliation(s)
- Xiangxiang Li
- School of Environmental Science and Engineering, China-America CRC for Environment & Health, Shandong University, 72# Jimo Binhai Road, Qingdao, Shandong 266237, PR China
| | - Falin He
- School of Environmental Science and Engineering, China-America CRC for Environment & Health, Shandong University, 72# Jimo Binhai Road, Qingdao, Shandong 266237, PR China
| | - Shaoyang Hu
- School of Environmental Science and Engineering, China-America CRC for Environment & Health, Shandong University, 72# Jimo Binhai Road, Qingdao, Shandong 266237, PR China
| | - Ning Sun
- School of Environmental Science and Engineering, China-America CRC for Environment & Health, Shandong University, 72# Jimo Binhai Road, Qingdao, Shandong 266237, PR China
| | - Chenqian Huo
- School of Environmental Science and Engineering, China-America CRC for Environment & Health, Shandong University, 72# Jimo Binhai Road, Qingdao, Shandong 266237, PR China
| | - Rutao Liu
- School of Environmental Science and Engineering, China-America CRC for Environment & Health, Shandong University, 72# Jimo Binhai Road, Qingdao, Shandong 266237, PR China.
| |
Collapse
|
22
|
Kunene K, Sayegh S, Weber M, Sabela M, Voiry D, Iatsunskyi I, Coy E, Kanchi S, Bisetty K, Bechelany M. Smart electrochemical immunosensing of aflatoxin B1 based on a palladium nanoparticle-boron nitride-coated carbon felt electrode for the wine industry. Talanta 2023. [DOI: 10.1016/j.talanta.2022.124000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
23
|
Miao W, Jia D, Rui Y, Liang W, Chen Y, Liu H, Yi Z. Interaction Mechanisms of the Binding of Polychlorinated Biphenyls to Thyroid Hormone Transporters Revealed based on Quantum Chemistry and Spectroscopy. J Mol Struct 2023. [DOI: 10.1016/j.molstruc.2023.135104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
24
|
Rajan D, Rajamanikandan R, Ilanchelian M. Investigating the biophysical interaction of serum albumins-gold nanorods using hybrid spectroscopic and computational approaches with the intent of enhancing cytotoxicity efficiency of targeted drug delivery. J Mol Liq 2023. [DOI: 10.1016/j.molliq.2023.121541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/04/2023]
|
25
|
Ansari F, Lal H, Osama M, Akram M, Kabir‐ud‐Din. Solution Behavior of Bovine Skin Gelatin in the Presence of Cationic Gemini Surfactants. ChemistrySelect 2023. [DOI: 10.1002/slct.202202080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Affiliation(s)
- Farah Ansari
- Department of Chemistry Aligarh Muslim University Aligarh 202002 India
- Present address: Department of Energy Science and Engineering Indian Institute of Technology Bombay Mumbai 400076 Maharashtra India
| | - Hira Lal
- Department of Chemistry Aligarh Muslim University Aligarh 202002 India
- Present address: Department of Energy Science and Engineering Indian Institute of Technology Bombay Mumbai 400076 Maharashtra India
| | - Mohammad Osama
- Department of Chemistry Aligarh Muslim University Aligarh 202002 India
- Present address: Department of Energy Science and Engineering Indian Institute of Technology Bombay Mumbai 400076 Maharashtra India
| | - Mohd. Akram
- Department of Chemistry Aligarh Muslim University Aligarh 202002 India
- Present address: Department of Energy Science and Engineering Indian Institute of Technology Bombay Mumbai 400076 Maharashtra India
| | - Kabir‐ud‐Din
- Department of Chemistry Arba Minch University, P.O. box no. 25 Arba Minch Ethiopia
| |
Collapse
|
26
|
Mohd Asngari NJ, Bakar KA, Feroz S, Razak F, Halim AAA. Interaction Mechanism of a Cysteine Protease Inhibitor, Odanacatib, with Human Serum Albumin: In-Vitro and Molecular Docking Studies.. [DOI: 10.2139/ssrn.4533988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
|
27
|
Bettelli MA, Capezza AJ, Nilsson F, Johansson E, Olsson RT, Hedenqvist MS. Sustainable Wheat Protein Biofoams: Dry Upscalable Extrusion at Low Temperature. Biomacromolecules 2022; 23:5116-5126. [PMID: 36349363 DOI: 10.1021/acs.biomac.2c00953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Glycerol-plasticized wheat gluten was explored for producing soft high-density biofoams using dry upscalable extrusion (avoiding purposely added water). The largest pore size was obtained when using the food grade ammonium bicarbonate (ABC) as blowing agent, also resulting in the highest saline liquid uptake. Foams were, however, also obtained without adding a blowing agent, possibly due to a rapid moisture uptake by the dried protein powder when fed to the extruder. ABC's low decomposition temperature enabled extrusion of the material at a temperature as low as 70 °C, well below the protein aggregation temperature. Sodium bicarbonate (SBC), the most common food-grade blowing agent, did not yield the same high foam qualities. SBC's alkalinity, and the need to use a higher processing temperature (120 °C), resulted in high protein cross-linking and aggregation. The results show the potential of an energy-efficient and industrially upscalable low-temperature foam extrusion process for competitive production of sustainable biofoams using inexpensive and readily available protein obtained from industrial biomass (wheat gluten).
Collapse
Affiliation(s)
- Mercedes A Bettelli
- Department of Fibre and Polymer Technology, Polymeric Materials Division, School of Engineering Sciences in Chemistry, Biotechnology, and Health, KTH Royal Institute of Technology, Stockholm10044, Sweden
| | - Antonio J Capezza
- Department of Fibre and Polymer Technology, Polymeric Materials Division, School of Engineering Sciences in Chemistry, Biotechnology, and Health, KTH Royal Institute of Technology, Stockholm10044, Sweden
| | - Fritjof Nilsson
- FSCN Research Centre, Mid Sweden University, Sundsvall85170, Sweden
| | - Eva Johansson
- Department of Plant Breeding, SLU Swedish University of Agriculture Sciences, Alnarp, Box 190 Lomma, SE-23422, Sweden
| | - Richard T Olsson
- Department of Fibre and Polymer Technology, Polymeric Materials Division, School of Engineering Sciences in Chemistry, Biotechnology, and Health, KTH Royal Institute of Technology, Stockholm10044, Sweden
| | - Mikael S Hedenqvist
- Department of Fibre and Polymer Technology, Polymeric Materials Division, School of Engineering Sciences in Chemistry, Biotechnology, and Health, KTH Royal Institute of Technology, Stockholm10044, Sweden
| |
Collapse
|
28
|
Li W, Chen S, Hong X, Fang M, Zong W, Li X, Wang J. The molecular interaction of three haloacetic acids with bovine serum albumin and the underlying mechanisms. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.120976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
|
29
|
Warsi MS, Habib S, Talha M, Khan S, Singh P, Mir AR, Abidi M, Ali A, Moinuddin. 4-Chloro-1,2-phenylenediamine induced structural perturbation and genotoxic aggregation in human serum albumin. Front Chem 2022; 10:1016354. [PMID: 36199663 PMCID: PMC9527296 DOI: 10.3389/fchem.2022.1016354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Accepted: 09/05/2022] [Indexed: 11/24/2022] Open
Abstract
4-Chloro-1,2-phenylenediamine (4-Cl-OPD) is a halogenated aromatic diamine used as a precursor in permanent hair color production. Despite its well-documented mutagenic and carcinogenic effects in various in vitro and in vivo models, its role in fibrillar aggregate formation and their genotoxic effect in therapeutic proteins has received less attention. The significance of human serum albumin (HSA) arises from its involvement in bio-regulatory and transport processes. HSA misfolding and aggregation are responsible for some of the most frequent neurodegenerative disorders. We used various complementary approaches to track the formation of amyloid fibrils and their genotoxic effect. Molecular dynamics study demonstrated the complex stability. The impact of 4-Cl-OPD on the structural dynamics of HSA was confirmed by Raman spectroscopy, X-ray diffraction, HPLC and SDS-PAGE. Fibrilllar aggregates were investigated using Congo red assay, DLS, and SEM. The genotoxic nature of 4-Cl-OPD was confirmed using plasmid nicking assay and DAPI staining, which revealed DNA damage and cell apoptosis. 4-Cl-OPD provides a model system for studying fibrillar aggregation and their genotoxic potential in the current investigation. Future studies should investigate the inhibition of the aggregation/fibrillation process, which may yield valuable clinical insights.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Moinuddin
- Department of Biochemistry, Faculty of Medicine, Jawaharlal Nehru Medical College, Aligarh Muslim University, Aligarh, India
| |
Collapse
|
30
|
Warsi MS, Habib S, Talha M, Khan S, Singh P, Mir AR, Abidi M, Ali A, Moinuddin. 4-Chloro-1,2-phenylenediamine induced structural perturbation and genotoxic aggregation in human serum albumin. Front Chem 2022; 10:1016354. [PMID: 36199663 PMCID: PMC9527296 DOI: 10.3389/fchem.2022.1016354,] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Accepted: 09/05/2022] [Indexed: 10/08/2024] Open
Abstract
4-Chloro-1,2-phenylenediamine (4-Cl-OPD) is a halogenated aromatic diamine used as a precursor in permanent hair color production. Despite its well-documented mutagenic and carcinogenic effects in various in vitro and in vivo models, its role in fibrillar aggregate formation and their genotoxic effect in therapeutic proteins has received less attention. The significance of human serum albumin (HSA) arises from its involvement in bio-regulatory and transport processes. HSA misfolding and aggregation are responsible for some of the most frequent neurodegenerative disorders. We used various complementary approaches to track the formation of amyloid fibrils and their genotoxic effect. Molecular dynamics study demonstrated the complex stability. The impact of 4-Cl-OPD on the structural dynamics of HSA was confirmed by Raman spectroscopy, X-ray diffraction, HPLC and SDS-PAGE. Fibrilllar aggregates were investigated using Congo red assay, DLS, and SEM. The genotoxic nature of 4-Cl-OPD was confirmed using plasmid nicking assay and DAPI staining, which revealed DNA damage and cell apoptosis. 4-Cl-OPD provides a model system for studying fibrillar aggregation and their genotoxic potential in the current investigation. Future studies should investigate the inhibition of the aggregation/fibrillation process, which may yield valuable clinical insights.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Moinuddin
- Department of Biochemistry, Faculty of Medicine, Jawaharlal Nehru Medical College, Aligarh Muslim University, Aligarh, India
| |
Collapse
|
31
|
Malik S, Zaidi N, Siddiqi MK, Majid N, Masroor A, Salam S, Khan RH. Mechanistic insight into inhibition of amyloid fibrillation of human serum albumin by Vildagliptin. Colloids Surf B Biointerfaces 2022; 216:112563. [PMID: 35588684 DOI: 10.1016/j.colsurfb.2022.112563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 05/05/2022] [Accepted: 05/10/2022] [Indexed: 11/25/2022]
Abstract
Protein aggregation leads to several human pathologies such as Alzheimer's disease (AD), type 2 diabetes (T2D), Parkinson's disease (PD), etc. Due to the overlap in the mechanisms of type 2 diabetes and brain disorders, common effective pharmacological interventions to treat both T2D and AD is under extensive research. Therefore, major aim of research is to repurpose already established treatment of diabetes to cure AD as well. This study evaluates mechanistic insight into anti-amyloidogenic potential of anti-diabetic drug Vildagliptin (VLD) on human serum albumin fibrillation (HSA) by using biophysical, calorimetric, imaging techniques along with hemolytic assay. Dynamic light scattering (DLS) and Rayleigh light scattering (RLS) results showed presence of few small-sized aggregates in the presence of VLD which are formed by deaccelerating the amyloidogenesis as shown by thioflavin T (ThT) fluorescence and Congo red (CR) binding assay. Further, Isothermal titration calorimetry (ITC), steady state fluorescence quenching, molecular docking results revealed that VLD form complex with amyloid facilitating state of HSA and consequently mask the hydrophobic residues involved in amyloidogenesis as evident from decrease in ANS fluorescence. Differential scanning calorimetry (DSC) results confirm that VLD stabilizes the amyloid facilitating state of HSA. In addition, SEM images demonstrated that VLD alleviates the hemolytic effect induced by fibrils of HSA. This study reports VLD as a potential inhibitor of amyloid fibrillation and provides promising results to repurpose VLD as a drug candidate for the cure of Alzheimer's diseases along with diabetes.
Collapse
Affiliation(s)
- Sadia Malik
- Interdisciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh 202002, India
| | - Nida Zaidi
- Interdisciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh 202002, India
| | | | - Nabeela Majid
- Interdisciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh 202002, India
| | - Aiman Masroor
- Interdisciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh 202002, India
| | - Samreen Salam
- Interdisciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh 202002, India
| | - Rizwan H Khan
- Interdisciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh 202002, India.
| |
Collapse
|
32
|
Li X, Li M, Sun N, He F, Chu S, Zong W, Niu Q, Liu R. Response of earthworm coelomocytes and catalase to pentanone and hexanone: a revelation of the toxicity of conventional solvents at the cellular and molecular level. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:44282-44296. [PMID: 35128610 DOI: 10.1007/s11356-022-18864-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Accepted: 01/21/2022] [Indexed: 06/14/2023]
Abstract
Organic solvents like 2-pentanone and 2-hexanone which are widely used in industrial production make up a large proportion of the source of chemical pollution. What is worrisome is that the cellular and molecular toxicity of 2-pentanone and 2-hexanone has not been reported yet. Based on this, earthworms and catalase (CAT) were chosen as target receptors for the toxicity studies. The cytotoxicity of 2-pentanone and 2-hexanone was revealed by measuring the multiple intracellular indicators of oxidative stress. At the molecular level, changes in the structure and function of CAT were characterized in vitro by the spectroscopy and molecular docking. The results show that 2-pentanone and 2-hexanone that induced the accumulation of reactive oxygen species can eventually reduce coelomocytes viability, accompanying by the regular changes of antioxidant activity and lipid peroxidation level. In addition, the exposure of 2-pentanone and 2-hexanone can shrink the backbone structure of CAT, quench the fluorescence, and misfold the secondary structure. The decrease in enzyme activity should be attributed to the structural changes induced by surface binding. This study discussed the toxicological effects and mechanisms of conventional solvents at the cellular and molecular level, which creatively proposed a joint research method.
Collapse
Affiliation(s)
- Xiangxiang Li
- School of Environmental Science and Engineering, China - America CRC for Environment & Health, Shandong University, 72# Jimo Binhai Road, Qingdao, Shandong, 266237, People's Republic of China
| | - Meifei Li
- School of Environmental Science and Engineering, China - America CRC for Environment & Health, Shandong University, 72# Jimo Binhai Road, Qingdao, Shandong, 266237, People's Republic of China
| | - Ning Sun
- School of Environmental Science and Engineering, China - America CRC for Environment & Health, Shandong University, 72# Jimo Binhai Road, Qingdao, Shandong, 266237, People's Republic of China
| | - Falin He
- School of Environmental Science and Engineering, China - America CRC for Environment & Health, Shandong University, 72# Jimo Binhai Road, Qingdao, Shandong, 266237, People's Republic of China
| | - Shanshan Chu
- School of Environmental Science and Engineering, China - America CRC for Environment & Health, Shandong University, 72# Jimo Binhai Road, Qingdao, Shandong, 266237, People's Republic of China
| | - Wansong Zong
- College of Population, Resources and Environment, Shandong Normal University, 88# East Wenhua Road, Jinan, 250014, People's Republic of China
| | - Qigui Niu
- School of Environmental Science and Engineering, China - America CRC for Environment & Health, Shandong University, 72# Jimo Binhai Road, Qingdao, Shandong, 266237, People's Republic of China
| | - Rutao Liu
- School of Environmental Science and Engineering, China - America CRC for Environment & Health, Shandong University, 72# Jimo Binhai Road, Qingdao, Shandong, 266237, People's Republic of China.
| |
Collapse
|
33
|
Huang GL, Liu TT, Ma JJ, Sun LX, Sui SY, Quan XY, Wang YN. Anti-polyphenol oxidase mechanism of oligomeric procyanidins and its application on browning control of “Baiyu” loquat during storage. FOOD BIOSCI 2022. [DOI: 10.1016/j.fbio.2022.101791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
34
|
Abstract
A major problem with patient treatments using anticancer compounds is accompanying bacterial infections, which makes more information on how such compounds impact bacterial growth desirable. In the following study, we investigated the growth effects of an anticancerous non-toxic Schiff base oxidovanadium(V) complex (N-(salicylideneaminato)-N′-(2-hydroxyethyl)ethane-1,2-diamine) coordinated to the 3,5-di-tert-butylcatecholato ligand on a representative bacterium, Mycobacterium smegmatis (M. smeg). We prepared the Schiff base V-complexes as reported previously and selected a few complexes to develop a V-complex series. Biological studies of M. smeg growth inhibition were complemented by spectroscopic studies using UV-Vis spectrophotometry and NMR spectroscopy to determine which complexes were intact under biologically relevant conditions. We specifically chose to examine (1) the growth effects of Schiff base oxidovanadium complexes coordinated to a catechol, (2) the growth effects of respective free catecholates on M. smeg, and (3) to identify complexes where the metal coordination complex was more potent than the ligand alone under biological conditions. Results from these studies showed that the observed effects of Schiff base V-catecholate complex are a combination of catechol properties including toxicity, hydrophobicity, and sterics.
Collapse
|
35
|
Naik R, Seetharamappa J. Elucidating the binding mechanism of an antimigraine agent with a model protein: insights from molecular spectroscopic, calorimetric and computational approaches. J Biomol Struct Dyn 2022; 41:3686-3701. [PMID: 35322751 DOI: 10.1080/07391102.2022.2053747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Sumatriptan (SUM), a serotonin activator used to treat migraines and cluster headaches. Molecular spectroscopic methods including fluorescence quenching, time dependent fluorescence, FRET, absorption, circular dichroism, differential scanning calorimetric and computational approaches were employed to unravel the interaction between sumatriptan and bovine serum albumin (BSA). The fluorescence quenching studies suggested the interaction between SUM and BSA with a moderate binding with the binding constant (Kb) in the order of 104. The findings of temperature and time dependent fluorescence quenching studies confirmed the role of static quenching mechanism. Thermodynamic parameters suggested the key role of electrostatic force in the interaction of SUM with BSA. Absorption and CD spectral studies revealed the bioenvironmental changes around the Trp in BSA upon binding of SUM. Calorimetric based thermal denaturation results confirmed that the thermal stability of BSA was improved in the presence of SUM. resulted in the this decreased flexibility of protein chain. Site competitive studies indicated SUM was located in the hydrophobic cavity of site I which was further confirmed by the docking and dynamic simulation studies. Additionally, molecular dynamics simulations inferred the microenvironmental condition around the SUM and the amino acids and forces involved in the binding of SUM with BSA.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Roopa Naik
- Department of Chemistry, Karnatak University, Dharwad, Karnataka, India
| | - J Seetharamappa
- Department of Chemistry, Karnatak University, Dharwad, Karnataka, India
| |
Collapse
|
36
|
Visentini FF, Perez AA, Santiago LG. Bioactive compounds: Application of albumin nanocarriers as delivery systems. Crit Rev Food Sci Nutr 2022; 63:7238-7268. [PMID: 35238254 DOI: 10.1080/10408398.2022.2045471] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Enriched products with bioactive compounds (BCs) show the capacity to produce a wide range of possible health effects. Most BCs are essentially hydrophobic and sensitive to environmental factors; so, encapsulation becomes a strategy to solve these problems. Many globular proteins have the intrinsic ability to bind, protect, encapsulate, and introduce BCs into nutraceutical or pharmaceutical matrices. Among them, albumins as human serum albumin (HSA), bovine serum albumin (BSA), ovalbumin (OVA) and α-lactalbumin (ALA) are widely abundant, available, and applied in many industrial sectors, becoming promissory materials to encapsulate BCs. Therefore, this review focuses on researches about the main groups of natural origin BCs (namely phenolic compounds, lipids, vitamins, and carotenoids), the different types of nanostructures based on albumins to encapsulate them and the main fields of application for BCs-loaded albumin systems. In this context, phenolic compounds (catechins, quercetin, and chrysin) are the most extensively BCs studied and encapsulated in albumin-based nanocarriers. Other extensively studied subgroups are stilbenes and curcuminoids. Regarding lipids and vitamins; terpenes, carotenoids (β-carotene), and xanthophylls (astaxanthin) are the most considered. The main application areas of BCs are related to their antitumor, anti-inflammatory, and antioxidant properties. Finally, BSA is the most used albumin to produced BCs-loaded nanocarriers.
Collapse
Affiliation(s)
- Flavia F Visentini
- Consejo Nacional de Investigaciones Científicas y Técnicas de la República Argentina, CONICET
- Área de Biocoloides y Nanotecnología, Instituto de Tecnología de Alimentos, Facultad de Ingeniería Química, Universidad Nacional del Litoral, Santa Fe, Argentina
| | - Adrián A Perez
- Consejo Nacional de Investigaciones Científicas y Técnicas de la República Argentina, CONICET
- Área de Biocoloides y Nanotecnología, Instituto de Tecnología de Alimentos, Facultad de Ingeniería Química, Universidad Nacional del Litoral, Santa Fe, Argentina
| | - Liliana G Santiago
- Área de Biocoloides y Nanotecnología, Instituto de Tecnología de Alimentos, Facultad de Ingeniería Química, Universidad Nacional del Litoral, Santa Fe, Argentina
| |
Collapse
|
37
|
Qureshi MA, Akbar M, Amir M, Javed S. Molecular interactions of esculin with bovine serum albumin and recognition of binding sites with spectroscopy and molecular docking. J Biomol Struct Dyn 2022; 41:2630-2644. [PMID: 35139760 DOI: 10.1080/07391102.2022.2036238] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Esculin is structurally a hydroxycoumarin found in various medicinal plants. This study investigates the binding mode of esculin with bovine serum albumin by employing numerous spectroscopic studies and molecular docking approaches. Ultraviolet absorption spectroscopy revealed ground state complex formation between esculin and bovine serum albumin. At the same time, steady-state fluorescence studies showed quenching in the fluorescence emission spectra of BSA in the presence of esculin. To get insight into the location of the binding pocket of esculin on BSA, warfarin and ibuprofen site markers were used. Competitive site marker displacement assay revealed that esculin binds to Sudlow's site I (subdomain IIA) in bovine serum albumin. Thermodynamic parameters suggested that hydrogen bonding and van der Waals interaction stabilizes the esculin-BSA complex. Förster's non-radiation energy transfer analysis described the high propensity of energy transfer between bovine serum albumin and esculin. The molecular docking approach facilitated locating the binding pocket, amino acid residues involved, types of interacting forces, and binding energy (ΔG) between esculin and BSA. Circular dichroism revealed the effect of the binding of esculin on the secondary structure and helped understand the thermal unfolding profile of BSA in the presence of esculin.Communicated by Ramaswamy H. Sarm.
Collapse
Affiliation(s)
- Mohd Aamir Qureshi
- Department of Biochemistry, Faculty of Life Sciences, Aligarh Muslim University, Aligarh, India
| | - Mahmood Akbar
- Department of Biochemistry, Faculty of Life Sciences, Aligarh Muslim University, Aligarh, India
| | - Mohd Amir
- Department of Biochemistry, Faculty of Life Sciences, Aligarh Muslim University, Aligarh, India
| | - Saleem Javed
- Department of Biochemistry, Faculty of Life Sciences, Aligarh Muslim University, Aligarh, India
| |
Collapse
|
38
|
Multifunctional novel rosin derivatives based on dehydroabietylamine with metal ion sensing and DNA/BSA binding activities. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2021.118273] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
39
|
Effects of Baicalein and Chrysin on the Structure and Functional Properties of β-Lactoglobulin. Foods 2022; 11:foods11020165. [PMID: 35053897 PMCID: PMC8774648 DOI: 10.3390/foods11020165] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 01/01/2022] [Accepted: 01/06/2022] [Indexed: 12/16/2022] Open
Abstract
Two flavonoids with similar structures, baicalein (Bai) and chrysin (Chr), were selected to investigate the interactions with β-lactoglobulin (BLG) and the influences on the structure and functional properties of BLG by multispectral methods combined with molecular docking and dynamic (MD) simulation techniques. The results of fluorescence quenching suggested that both Bai and Chr interacted with BLG to form complexes with the binding constant of the magnitude of 105 L·mol−1. The binding affinity between BLG and Bai was stronger than that of Chr due to more hydrogen bond formation in Bai–BLG binding. The existence of Bai or Chr induced a looser conformation of BLG, but Chr had a greater effect on the secondary structure of BLG. The surface hydrophobicity and free sulfhydryl group content of BLG lessened due to the presence of the two flavonoids. Molecular docking was performed at the binding site of Bai or Chr located in the surface of BLG, and hydrophobic interaction and hydrogen bond actuated the formation of the Bai/Chr–BLG complex. Molecular dynamics simulation verified that the combination of Chr and BLG decreased the stability of BLG, while Bai had little effect on it. Moreover, the foaming properties of BLG got better in the presence of the two flavonoids compounds and Bai improved its emulsification stability of the protein, but Chr had the opposite effect. This work provides a new idea for the development of novel dietary supplements using functional proteins as flavonoid delivery vectors.
Collapse
|
40
|
Li X, Chu S, Song Z, He F, Cui Z, Liu R. Discrepancy of apoptotic events in mouse hepatocytes and catalase performance: Size-dependent cellular and molecular toxicity of ultrafine carbon black. JOURNAL OF HAZARDOUS MATERIALS 2022; 421:126781. [PMID: 34396976 DOI: 10.1016/j.jhazmat.2021.126781] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 07/17/2021] [Accepted: 07/27/2021] [Indexed: 06/13/2023]
Abstract
The diversification of the production process and application of ultrafine carbon black (UFCB), one of the nanomaterials, make the difference in particle sizes that exposed to environment. Currently, few size-dependent toxicity studies of UFCB pay attention to targeted effects on detoxification organs. And there is a research gap in the size-dependent molecular toxicity of UFCB. Based on this, mouse hepatocytes and catalase (CAT) were used as targeted receptors for UFCB size-dependent cellular and molecular toxicity studies. Results indicate that UFCB13 nm induced higher ROS and lipid peroxidation levels. And the cell viability decreased to 22.5%, which is sharp contrast to UFCB50 nm (45.3%) and UFCB95 nm (55.1%). Mitochondrial dysfunction and a 25.2% early apoptosis rate are the further manifestation of the stronger cytotoxicity of UFCB13 nm. At the molecular level, the exposure of UFCB with better dispersity resulted in more significant changes in the CAT backbone and secondary structure, fluorescence sensitization and enzyme function inhibition. The combined experiments show that the cellular uptake and dispersity of UFCB are the dominating factors for the discrepancy in size-dependent cellular and molecular toxicity, respectively. This study provides a theoretical basis for the necessary circumvention and substitution of UFCB in engineering applications.
Collapse
Affiliation(s)
- Xiangxiang Li
- School of Environmental Science and Engineering, China-America CRC for Environment & Health, Shandong University, 72# Jimo Binhai Road, Qingdao, Shandong 266237, PR China
| | - Shanshan Chu
- School of Environmental Science and Engineering, China-America CRC for Environment & Health, Shandong University, 72# Jimo Binhai Road, Qingdao, Shandong 266237, PR China
| | - Zhaosheng Song
- Jining Ecological Environment Technology Guarantee Center, D301 Jining Provincial Games Command Center, 272000 PR China
| | - Falin He
- School of Environmental Science and Engineering, China-America CRC for Environment & Health, Shandong University, 72# Jimo Binhai Road, Qingdao, Shandong 266237, PR China
| | - Zhihan Cui
- School of Environmental Science and Engineering, China-America CRC for Environment & Health, Shandong University, 72# Jimo Binhai Road, Qingdao, Shandong 266237, PR China
| | - Rutao Liu
- School of Environmental Science and Engineering, China-America CRC for Environment & Health, Shandong University, 72# Jimo Binhai Road, Qingdao, Shandong 266237, PR China.
| |
Collapse
|
41
|
Huo C, Liu G, Xu M, Li X, Zong W, Liu R. Characterizing the binding interactions of sodiumbenzoatewithlysozymeat the molecular level using multi-spectroscopy, ITC and modeling methods. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2021; 263:120213. [PMID: 34325175 DOI: 10.1016/j.saa.2021.120213] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 07/12/2021] [Accepted: 07/17/2021] [Indexed: 06/13/2023]
Abstract
In this paper, we mainly study the interaction mechanism between food additives and antioxidant enzymes. Spectral methods were used to study the effect of sodium benzoate on the structure and function of lysozyme at the molecular level. Multi-spectroscopic results showed that sodium benzoate statically quenched the intrinsic fluorescence of lysozyme, formed complexes with lysozyme, increased the polarity of the aromatic amino acid, effected the molecular skeleton of lysozyme and stretched the secondary structure. The molecular docking and isothermal titration calorimetry (ITC) results showed that sodium benzoate entered the depression of the surface of lysozyme molecule both through hydrophobic interaction and hydrogen bond. Sodium benzoate was linked to tryptophan (Trp-63) by a hydrogen bond with a bond length of 2.48 Å. Thermodynamic studies showed that the combination was spontaneous, as the values of the enthalpy change (ΔH) and the entropy change (ΔS) were calculated to be 12.558 kJmol-1 and 25 kJmol-1k-1, respectively. Enzyme activity determination showed that Sodium benzoate increased lysozyme activity by 22.31%. This study can provide experimental support for evaluating the edible safety of sodium benzoate.
Collapse
Affiliation(s)
- Chengqian Huo
- School of Environmental Science and Engineering, Shandong University, China-America CRC for Environment & Health, Shandong Province, 72# Jimo Binhai Road, Qingdao, Shandong, 266237, PR China
| | - Guiliang Liu
- Shandong Institute for Food and Drug Control, 2749# Xinluo street, high tech Zone, Jinan City, Shandong Province 250100, PR China
| | - Mengchen Xu
- School of Environmental and Municipal Engineering, Qingdao University of Technology, Shandong Province, No. 11 Fushun Road, Qingdao 266033, PR China
| | - Xiangxiang Li
- School of Environmental Science and Engineering, Shandong University, China-America CRC for Environment & Health, Shandong Province, 72# Jimo Binhai Road, Qingdao, Shandong, 266237, PR China
| | - Wansong Zong
- College of Population, Resources and Environment, Shandong Normal University, 88# East Wenhua Road, Jinan 250014, PR China
| | - Rutao Liu
- School of Environmental Science and Engineering, Shandong University, China-America CRC for Environment & Health, Shandong Province, 72# Jimo Binhai Road, Qingdao, Shandong, 266237, PR China.
| |
Collapse
|
42
|
Guo T, Wang X, Shu Y, Wang J. Effects of alkyl side-chain length on binding with bovine serum albumin, cytotoxicity, and antibacterial properties of 1-alkyl-3-methylimidazolium dicyanamide ionic liquids. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.116835] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
43
|
He F, Liu Q, Jing M, Wan J, Huo C, Zong W, Tang J, Liu R. Toxic mechanism on phenanthrene-induced cytotoxicity, oxidative stress and activity changes of superoxide dismutase and catalase in earthworm (Eisenia foetida): A combined molecular and cellular study. JOURNAL OF HAZARDOUS MATERIALS 2021; 418:126302. [PMID: 34118541 DOI: 10.1016/j.jhazmat.2021.126302] [Citation(s) in RCA: 83] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 05/31/2021] [Accepted: 05/31/2021] [Indexed: 06/12/2023]
Abstract
Phenanthrene (PHE) is an important organic compound, which is widespread in the soil environment and exhibits potential threats to soil organisms. Toxic effects of PHE to earthworms have been extensively studied, but toxic mechanisms on PHE-induced cytotoxicity and oxidative stress at the molecular and cellular levels have not been reported yet. Therefore, we explored the cytotoxicity and oxidative stress caused by PHE in earthworm coelomocytes and the interaction mechanism between PHE and the major antioxidant enzymes SOD/CAT. It was shown that high-dose PHE exposure induced the intracellular reactive oxygen species (ROS) generation, mediated lipid peroxidation, reduced total antioxidant capacity (T-AOC) in coelomocytes, and triggered oxidative stress, thus resulted in a strong cytotoxicity at higher concentrations (0.6-1.0 mg/L). The intracellular SOD/CAT activity in cells after PHE exposure were congruent with that in molecular levels, which the activity of SOD enhanced and CAT inhibited. Spectroscopic studies showed the SOD/CAT protein skeleton and secondary structure, as well as the micro-environment of aromatic amino acids were changed after PHE binding. Molecular docking indicated PHE preferentially docked to the surface of SOD. However, the key residues Tyr 357, His 74, and Asn 147 for activity were in the binding pocket, indicating PHE more likely to dock to the active center of CAT. In addition, H-bonding and hydrophobic force were the primary driving force in the binding interaction between PHE and SOD/CAT. This study indicates that PHE can induce cytotoxicity and oxidative damage to coelomocytes and unearthes the potential effects of PHE on earthworms.
Collapse
Affiliation(s)
- Falin He
- School of Environmental Science and Engineering, Shandong University, China-America CRC for Environment & Health, Shandong Province, 72# Jimo Binhai Road, Qingdao, Shandong 266237, PR China
| | - Qiang Liu
- Solid Waste and Hazardous Chemicals Pollution Prevention and Control Center of Shandong Province, 145# Jingshi West Road, Jinan 250117, PR China
| | - Mingyang Jing
- School of Environmental Science and Engineering, Shandong University, China-America CRC for Environment & Health, Shandong Province, 72# Jimo Binhai Road, Qingdao, Shandong 266237, PR China
| | - Jingqiang Wan
- School of Environmental Science and Engineering, Shandong University, China-America CRC for Environment & Health, Shandong Province, 72# Jimo Binhai Road, Qingdao, Shandong 266237, PR China
| | - Chengqian Huo
- School of Environmental Science and Engineering, Shandong University, China-America CRC for Environment & Health, Shandong Province, 72# Jimo Binhai Road, Qingdao, Shandong 266237, PR China
| | - Wansong Zong
- College of Geography and Environment, Shandong Normal University, 88# East Wenhua Road, Jinan, Shandong 250014, PR China
| | - Jingchun Tang
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education), Tianjin Engineering Research Center of Environmental Diagnosis and Contamination Remediation, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, PR China
| | - Rutao Liu
- School of Environmental Science and Engineering, Shandong University, China-America CRC for Environment & Health, Shandong Province, 72# Jimo Binhai Road, Qingdao, Shandong 266237, PR China.
| |
Collapse
|
44
|
Wang J, Yu X, Jia R, Liu R, Zong W. An in vitro and in silico study to explore the response of catalase to 4-chlorophenol and their interacting mechanisms. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.116444] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
45
|
He F, Chu S, Sun N, Li X, Jing M, Wan J, Zong W, Tang J, Liu R. Binding interactions of acrylamide with lysozyme and its underlying mechanisms based on multi-spectra, isothermal titration microcalorimetry and docking simulation. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.116460] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
46
|
Qureshi MA, Javed S. Aflatoxin B 1 Induced Structural and Conformational Changes in Bovine Serum Albumin: A Multispectroscopic and Circular Dichroism-Based Study. ACS OMEGA 2021; 6:18054-18064. [PMID: 34308039 PMCID: PMC8296610 DOI: 10.1021/acsomega.1c01799] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2021] [Accepted: 06/23/2021] [Indexed: 05/15/2023]
Abstract
Aflatoxin B1 (AFB1) is a mutagen that has been categorized as a group 1 human carcinogen by the International Agency for Research on Cancer. It is produced as a secondary metabolite by soil fungi Aspergillus flavus and Aspergillus parasiticus . Here, in this study, the effect of AFB1 on the structure and conformation of bovine serum albumin (BSA) using multispectroscopic tools like fluorescence spectroscopy, ultraviolet-visible absorption spectroscopy, and circular dichroism spectropolarimetry has been ascertained. Ultraviolet absorption spectroscopy revealed hyperchromicity in the absorption spectra of BSA in the presence of AFB1. The binding constant was calculated in the range of 104 M-1, by fluorescence spectroscopy suggesting moderate binding of the toxin to BSA. The study also confirms the static nature of fluorescence quenching. The stoichiometry of binding sites was found to be unity. The competing capability of warfarin for AFB1 was higher than ibuprofen as calculated from site marker displacement assay. Förster resonance energy transfer confirmed the high efficiency of energy transfer from BSA to AFB1. Circular dichroism spectropolarimetry showed a decrease in the α-helix in BSA in the presence of AFB1. The melting temperature of BSA underwent an increment in the presence of a mycotoxin from 62.5 to 70.3 °C. Molecular docking confirmed the binding of AFB1 to subdomain IIA in BSA.
Collapse
|
47
|
Yu X, Zheng X, Yang B, Wang J. Investigating the interaction of CdTe quantum dots with plasma protein transferrin and their interacting consequences at the molecular and cellular level. Int J Biol Macromol 2021; 185:434-440. [PMID: 34197848 DOI: 10.1016/j.ijbiomac.2021.06.164] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 06/22/2021] [Accepted: 06/24/2021] [Indexed: 11/25/2022]
Abstract
This study investigated the interacting mechanism of CdTe quantum dots (QDs) with typical plasma protein transferrin (TF) as well as the impact of the formation of QDs-TF complex on the structure of TF and the cytotoxicity of mouse primary kidney cells. Dialysis experiments and cell viability assays revealed that the formation of QDs-TF complex reduced the contents of Cd released from CdTe QDs and thus counteracted the cytotoxicity of CdTe QDs. The assay of isothermal titration calorimetry found that CdTe QDs complexed with TF majorly through hydrophobic interaction. Multi-spectroscopic measurements showed that CdTe QDs caused the loosening of polypeptide chain, the changes of secondary and tertiary structures as well as the attenuated aggregation of TF molecule. Moreover, these structural and conformational changes were attributed to the nano-effects of CdTe QDs rather than the released Cd. This study is of great significance for fully evaluating the biocompatibility of Cd-QDs and comprehensively understanding the mechanism of Cd-QDs toxicity at the molecular and cellular level.
Collapse
Affiliation(s)
- Xinping Yu
- School of Environmental and Material Engineering, Yantai University, 30# Qingquan Road, Yantai 264005, PR China
| | - Xiaolin Zheng
- School of Environmental and Material Engineering, Yantai University, 30# Qingquan Road, Yantai 264005, PR China
| | - Bin Yang
- School of Environmental and Material Engineering, Yantai University, 30# Qingquan Road, Yantai 264005, PR China
| | - Jing Wang
- School of Environmental and Material Engineering, Yantai University, 30# Qingquan Road, Yantai 264005, PR China.
| |
Collapse
|
48
|
Paul S, Roy P, Das S, Ghosh S, Sardar PS, Majhi A. Addressing the Exigent Role of a Coumarin Fluorophore toward Finding the Suitable Microenvironment of Biomimicking and Biomolecular Systems: Steering to Project the Drug Designing and Drug Delivery Study. ACS OMEGA 2021; 6:11878-11896. [PMID: 34056342 PMCID: PMC8153980 DOI: 10.1021/acsomega.0c06152] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/10/2021] [Accepted: 04/09/2021] [Indexed: 06/12/2023]
Abstract
The photophysics of 4-azidocoumarin (4-AC), a novel fluorescent coumarin derivative, is well established by the investigation of the alteration of the microheterogeneous environment comprising two types of systems: supramolecular systems, cyclodextrins (CDs), and biomolecular systems, serum albumins (SAs). The enhanced emission of the ligand with the organized assemblies like α-CD, β-CD, and γ-CD by steady-state and time-resolved fluorescence and fluorescence anisotropy at 298 K is compared with those of bovine serum albumin (BSA) and human serum albumin (HSA). The remarkable enhancement of the emission of ligand 4-AC along with the blue shift of the emission for both the systems are visualized as the incorporation of 4-AC into the hydrophobic core of the CDs and proteins mainly due to reduction of nonradiative decay process in the hydrophobic interior of CDs and SAs. The binding constants at 298 K and the single binding site are estimated using enhanced emission and anisotropy of the bound ligand in both the systems. The marked enhancement of the fluorescence anisotropy indicates that the ligand molecule experiences a motionally constrained environment within the CDs and SAs. Rotational correlation time (θc) of the bound ligand 4-AC is calculated in both the categories of the confined environment using time-resolved anisotropy at 298 K. Molecular docking studies for both the variety of complexes of the ligand throw light to assess the location of the ligand and the microenvironment around the ligand in the ligand-CD and ligand-protein complexes. Solvent variation study of the probe 4-AC molecule in different polar protic and aprotic solvents clearly demonstrates the polarity and hydrogen-bonding ability of the solvents, which supports the alteration of the microenvironments around 4-AC due to binding with the biomimicking as well as biomolecular systems. Dynamic light scattering is employed to determine the hydrodynamic diameter of free BSA/HSA and complexes of BSA/HSA with the ligand 4-AC.
Collapse
Affiliation(s)
- Sandip Paul
- Department
of Chemistry, Presidency University, 86/1 College Street, Kolkata 700 073, India
| | - Pritam Roy
- Department
of Chemistry, Indian Institute of Technology, Kharagpur 721302, India
| | - Sourav Das
- Centre
for Surface Science, Physical Chemistry Section, Department of Chemistry, Jadavpur University, Kolkata 700032, West Bengal, India
| | - Soumen Ghosh
- Centre
for Surface Science, Physical Chemistry Section, Department of Chemistry, Jadavpur University, Kolkata 700032, West Bengal, India
| | - Pinki Saha Sardar
- Department
of Chemistry, The Bhawanipur Education Society
College, Kolkata 700020, India
| | - Anjoy Majhi
- Department
of Chemistry, Presidency University, 86/1 College Street, Kolkata 700 073, India
| |
Collapse
|
49
|
Chanda J, Mukherjee PK, Biswas R, Singha S, Kar A, Haldar PK. Lagenaria siceraria and it's bioactive constituents in carbonic anhydrase inhibition: A bioactivity guided LC-MS/MS approach. PHYTOCHEMICAL ANALYSIS : PCA 2021; 32:298-307. [PMID: 32683785 DOI: 10.1002/pca.2975] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Accepted: 06/17/2020] [Indexed: 06/11/2023]
Abstract
INTRODUCTION Lagenaria siceraria, is a popular food plant among Indians, contains a large number of phenolic compounds with several medicinal benefits, mentioned in Indian System of Medicine (ISM). OBJECTIVES To investigate the carbonic anhydrase inhibitory potential and inhibitory mechanism of the most potent fraction of L. siceraria fruits. MATERIALS AND METHODS The extract and fraction of dried fruit of L. siceraria screened for their in vitro carbonic anhydrase II (bCA II) inhibitory activity. The active fraction was purified by using flash chromatography. The bioactive compounds were identified and quantified through liquid chromatography quadrupole time-of-flight tandem mass spectrometry (LC-QTOF-MS/MS) and reverse-phase high-performance liquid chromatography (RP-HPLC). Finally, the underlying carbonic anhydrase inhibitory mechanism of the compounds was explained by enzyme kinetics and molecular docking study. RESULTS The LC-QTOF-MS based identification of the most active fraction revealed the presence of phenolic compounds. The results of the enzyme inhibition assay revealed that coniferyl alcohol, ferulic acid and p-Coumaric acid inhibited bCA II activity [half maximal inhibitory concentration (IC50 ) value range of 80 to 250 μM) in a dose dependent manner. The kinetics study of enzyme inhibition revealed that p-Coumaric acid binds to the enzyme competitively whereas the non-competitive type of inhibition was observed for ferulic acid and coniferyl alcohol. The molecular docking study explored the interaction mechanism of phenolic compounds at the active site of bCA II. CONCLUSION The present research led us to conclude that, the phenolic compounds from L. siceraria serve as major contributors for carbonic anhydrase inhibition, which could play a useful role in the management of oedema, hypertension, obesity and related metabolic disorders.
Collapse
Affiliation(s)
- Joydeb Chanda
- School of Natural Product Studies, Department of Pharmaceutical Technology, Jadavpur University, Kolkata, India
| | - Pulok K Mukherjee
- School of Natural Product Studies, Department of Pharmaceutical Technology, Jadavpur University, Kolkata, India
- Institute of Bio-resources and Sustainable Development, A National institute under Department of Biotechnology, Ministry of Science and Technology, Government of India, Imphal, India
| | - Rajarshi Biswas
- School of Natural Product Studies, Department of Pharmaceutical Technology, Jadavpur University, Kolkata, India
| | - Seha Singha
- School of Natural Product Studies, Department of Pharmaceutical Technology, Jadavpur University, Kolkata, India
| | - Amit Kar
- School of Natural Product Studies, Department of Pharmaceutical Technology, Jadavpur University, Kolkata, India
| | - Pallab Kanti Haldar
- School of Natural Product Studies, Department of Pharmaceutical Technology, Jadavpur University, Kolkata, India
| |
Collapse
|
50
|
Ferreira I, Braga AC, Lopes MA, Pina-Vaz I. Adjunctive procedure with solvent mixtures in non-surgical endodontic retreatment: does it affect root dentin hardness? Odontology 2021; 109:812-818. [PMID: 33811311 DOI: 10.1007/s10266-021-00603-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Accepted: 03/26/2021] [Indexed: 01/02/2023]
Abstract
The aim of this study was to compare the effects of new irrigation solvent mixtures with Methyl ethyl ketone (MEK)/Tetrachloroethylene (TCE) and MEK/Orange oil (OOil), and different agitation techniques on dentin hardness. One hundred forty-four mandibular teeth were prepared and standardized, with each root's middle part transversely sectioned. Initial hardness was measured using a Vickers microhardness tester. Specimens were divided into four groups of agitation techniques (n = 36): no agitation; EndoActivator; IrriSafe; and XP-endo Finisher R. Each group was subdivided into six subgroups of irrigation protocols (n = 6): saline solution; NaOCl + EDTA; NaOCl + EDTA + MEK/TCE; MEK/TCE; NaOCl + EDTA + MEK/OOil; MEK/OOil. Final hardness was measured. The irrigation protocols NaOCl + EDTA, NaOCl + EDTA + MEK/TCE, and NaOCl + EDTA + MEK/OOil significantly decreased dentin hardness, while MEK/OOil increased it (p < 0.05). Comparing to NaOCl + EDTA sequence, dentin hardness increased significantly with the additional exposure to MEK/TCE (3%NaOCl + 17%EDTA + MEK/TCE) or MEK/OOil (3%NaOCl + 17%EDTA + MEK/OOil) (p < 0.05). There were no significant differences regarding agitation effects on dentin hardness decrease. The irrigation protocols affected dentin hardness significantly. However, the additional solvent proposals do not seem to address further concerns on dentin's mechanical properties. Agitation did not show any influence on dentin's hardness reduction.
Collapse
Affiliation(s)
- Inês Ferreira
- Faculty of Medicine, CINTESIS, University of Porto, Porto, Portugal. .,Faculty of Medicine, University of Porto, Alameda Prof. Hernâni Monteiro, 4200-319, Porto, Portugal.
| | - Ana Cristina Braga
- Department of Production and Systems, ALGORITMI Center, University of Minho, Braga, Portugal
| | - Maria Ascensão Lopes
- Department of Metallurgical and Materials Engineering, Faculty of Engineering, REQUIMTE-LAQV, University of Porto, Porto, Portugal
| | - Irene Pina-Vaz
- Faculty of Dental Medicine, CINTESIS, University of Porto, Porto, Portugal
| |
Collapse
|