1
|
Habib S, Talhami M, Hassanein A, Mahdi E, Al-Ejji M, Hassan MK, Altaee A, Das P, Hawari AH. Advances in functionalization and conjugation mechanisms of dendrimers with iron oxide magnetic nanoparticles. NANOSCALE 2024; 16:13331-13372. [PMID: 38967017 DOI: 10.1039/d4nr01376j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/06/2024]
Abstract
Iron oxide magnetic nanoparticles (MNPs) are crucial in various areas due to their unique magnetic properties. However, their practical use is often limited by instability and aggregation in aqueous solutions. This review explores the advanced technique of dendrimer functionalization to enhance MNP stability and expand their application potential. Dendrimers, with their symmetric and highly branched structure, effectively stabilize MNPs and provide tailored functional sites for specific applications. We summarize key synthetic modifications, focusing on the impacts of dendrimer size, surface chemistry, and the balance of chemical (e.g., coordination, anchoring) and physical (e.g., electrostatic, hydrophobic) interactions on nanocomposite properties. Current challenges such as dendrimer toxicity, control over dendrimer distribution on MNPs, and the need for biocompatibility are discussed, alongside potential solutions involving advanced characterization techniques. This review highlights significant opportunities in environmental, biomedical, and water treatment applications, stressing the necessity for ongoing research to fully leverage dendrimer-functionalized MNPs. Insights offered here aim to guide further development and application of these promising nanocomposites.
Collapse
Affiliation(s)
- Salma Habib
- Department of Mechanical and Industrial Engineering, Qatar University, 2713 Doha, Qatar
- Department of Civil and Environmental Engineering, College of Engineering, Qatar University, PO Box 2713, Doha, Qatar.
| | - Mohammed Talhami
- Department of Civil and Environmental Engineering, College of Engineering, Qatar University, PO Box 2713, Doha, Qatar.
| | - Amani Hassanein
- Department of Civil and Environmental Engineering, College of Engineering, Qatar University, PO Box 2713, Doha, Qatar.
| | - Elsadig Mahdi
- Department of Mechanical and Industrial Engineering, Qatar University, 2713 Doha, Qatar
| | - Maryam Al-Ejji
- Center for Advanced Materials, Qatar University, PO Box 2713, Doha, Qatar
| | - Mohammad K Hassan
- Center for Advanced Materials, Qatar University, PO Box 2713, Doha, Qatar
| | - Ali Altaee
- School of Civil and Environmental Engineering, University of Technology Sydney, 15 Broadway, Ultimo, NSW 2007, Australia
| | - Probir Das
- Algal Technologies Program, Center for Sustainable Development, College of Arts and Sciences, Qatar University, 2713, Doha, Qatar
| | - Alaa H Hawari
- Department of Civil and Environmental Engineering, College of Engineering, Qatar University, PO Box 2713, Doha, Qatar.
| |
Collapse
|
2
|
Kostoudi S, Pampalakis G. Improvements, Variations and Biomedical Applications of the Michaelis-Arbuzov Reaction. Int J Mol Sci 2022; 23:ijms23063395. [PMID: 35328816 PMCID: PMC8955222 DOI: 10.3390/ijms23063395] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Revised: 03/11/2022] [Accepted: 03/15/2022] [Indexed: 01/27/2023] Open
Abstract
Compounds bearing the phosphorus–carbon (P–C) bond have important pharmacological, biochemical, and toxicological properties. Historically, the most notable reaction for the formation of the P–C bond is the Michaelis–Arbuzov reaction, first described in 1898. The classical Michaelis–Arbuzov reaction entails a reaction between an alkyl halide and a trialkyl phosphite to yield a dialkylalkylphosphonate. Nonetheless, deviations from the classical mechanisms and new modifications have appeared that allowed the expansion of the library of reactants and consequently the chemical space of the yielded products. These involve the use of Lewis acid catalysts, green methods, ultrasound, microwave, photochemically-assisted reactions, aryne-based reactions, etc. Here, a detailed presentation of the Michaelis–Arbuzov reaction and its developments and applications in the synthesis of biomedically important agents is provided. Certain examples of such applications include the development of alkylphosphonofluoridates as serine hydrolase inhibitors and activity-based probes, and the P–C containing antiviral and anticancer agents.
Collapse
|
3
|
Gencoglu T, Eren TN, Lalevée J, Avci D. A Water Soluble, Low Migration and Visible Light Photoinitiator by Thioxanthone‐Functionalization of Poly(ethylene glycol)‐Containing Poly(
β
‐amino ester). MACROMOL CHEM PHYS 2022. [DOI: 10.1002/macp.202100450] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Turkan Gencoglu
- Department of Chemistry Bogazici University Bebek Istanbul 34342 Turkey
| | - Tugce Nur Eren
- Department of Chemistry Bogazici University Bebek Istanbul 34342 Turkey
| | - Jacques Lalevée
- Institut de Science des Matériaux de Mulhouse IS2M UMR CNRS 7361 UHA 15 rue Jean Starcky Mulhouse Cedex 68057 France
| | - Duygu Avci
- Department of Chemistry Bogazici University Bebek Istanbul 34342 Turkey
| |
Collapse
|
4
|
Hou Z, Liu Y, Xu J, Zhu J. Surface engineering of magnetic iron oxide nanoparticles by polymer grafting: synthesis progress and biomedical applications. NANOSCALE 2020; 12:14957-14975. [PMID: 32648868 DOI: 10.1039/d0nr03346d] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Magnetic iron oxide nanoparticles (IONPs) have wide applications in magnetic resonance imaging (MRI), biomedicine, drug delivery, hyperthermia therapy, catalysis, magnetic separation, and others. However, these applications are usually limited by irreversible agglomeration of IONPs in aqueous media because of their dipole-dipole interactions, and their poor stability. A protecting polymeric shell provides IONPs with not only enhanced long-term stability, but also the functionality of polymer shells. Therefore, polymer-grafted IONPs have recently attracted much attention of scientists. In this tutorial review, we will present the current strategies for grafting polymers onto the surface of IONPs, basically including "grafting from" and "grafting to" methods. Available functional groups and chemical reactions, which could be employed to bind polymers onto the IONP surface, are comprehensively summarized. Moreover, the applications of polymer-grafted IONPs will be briefly discussed. Finally, future challenges and perspectives in the synthesis and application of polymer-grafted IONPs will also be discussed.
Collapse
Affiliation(s)
- Zaiyan Hou
- Key Laboratory of Materials Chemistry for Energy Conversion and Storage of Ministry of Education (HUST), School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), Wuhan 430074, China.
| | - Yijing Liu
- Key Laboratory of Materials Chemistry for Energy Conversion and Storage of Ministry of Education (HUST), School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), Wuhan 430074, China.
| | - Jiangping Xu
- Key Laboratory of Materials Chemistry for Energy Conversion and Storage of Ministry of Education (HUST), School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), Wuhan 430074, China.
| | - Jintao Zhu
- Key Laboratory of Materials Chemistry for Energy Conversion and Storage of Ministry of Education (HUST), School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), Wuhan 430074, China.
| |
Collapse
|
5
|
Stiegler LMS, Luchs T, Hirsch A. Shell-by-Shell Functionalization of Inorganic Nanoparticles. Chemistry 2020; 26:8483-8498. [PMID: 32167598 PMCID: PMC7687223 DOI: 10.1002/chem.202000195] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Revised: 03/11/2020] [Indexed: 12/31/2022]
Abstract
The current state of the hierarchical chemical functionalization of inorganic nanoparticles (NPs) by shell-by-shell (SbS)-assembly of organic layers around the NP cores is summarized. This supramolecular functionalization concept is based on two steps: 1) the covalent grafting of a first ligand-shell consisting of, for example, long chain phosphonic acids and 2) the noncovalent interdigitation of amphiphiles forming the second ligand shell. The latter process is guaranteed predominantly by solvophobic interactions. These highly order organic-inorganic hybrid architectures are currently an emerging field at the interface of synthetic chemistry, nanotechnology, and materials science. The doubly functionalized NPs display tunable materials properties, such a controlled dispersibility and stability in various solvents, highly efficient trapping of guest molecules in between the ligand shells (water cleaning) as well as compartmentalization and modification of electronic interactions between photoactive components integrated in such complex nano-architectures. Such SbS-functionalized NPs have a high potential as water-cleaning materials and also some first prototype applications as biomedicinal therapeutics have been presented.
Collapse
Affiliation(s)
- Lisa M. S. Stiegler
- Department of Chemistry & PharmacyFriedrich-Alexander-Universität Erlangen-NürnbergNikolaus-Fiebiger-Straße 1091058ErlangenGermany
| | - Tobias Luchs
- Department of Chemistry & PharmacyFriedrich-Alexander-Universität Erlangen-NürnbergNikolaus-Fiebiger-Straße 1091058ErlangenGermany
| | - Andreas Hirsch
- Department of Chemistry & PharmacyFriedrich-Alexander-Universität Erlangen-NürnbergNikolaus-Fiebiger-Straße 1091058ErlangenGermany
| |
Collapse
|
6
|
Eren TN, Gencoglu T, Abdallah M, Lalevée J, Avci D. A water soluble and highly reactive bisphosphonate functionalized thioxanthone-based photoinitiator. Eur Polym J 2020. [DOI: 10.1016/j.eurpolymj.2020.109906] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
7
|
Nguyen DV, Hugoni L, Filippi M, Perton F, Shi D, Voirin E, Power L, Cotin G, Krafft MP, Scherberich A, Lavalle P, Begin-Colin S, Felder-Flesch D. Mastering bioactive coatings of metal oxide nanoparticles and surfaces through phosphonate dendrons. NEW J CHEM 2020. [DOI: 10.1039/c9nj05565g] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Dendritic phosphonates are versatile coatings of several nanomaterials for health applications ranging from implants to nanoparticles and microbubbles.
Collapse
|
8
|
Filippi M, Nguyen DV, Garello F, Perton F, Bégin-Colin S, Felder-Flesch D, Power L, Scherberich A. Metronidazole-functionalized iron oxide nanoparticles for molecular detection of hypoxic tissues. NANOSCALE 2019; 11:22559-22574. [PMID: 31746914 DOI: 10.1039/c9nr08436c] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Being crucial under several pathological conditions, tumors, and tissue engineering, the MRI tracing of hypoxia within cells and tissues would be improved by the use of nanosystems allowing for direct recognition of low oxygenation and further treatment-oriented development. In the present study, we functionalized dendron-coated iron oxide nanoparticles (dendronized IONPs) with a bioreductive compound, a metronidazole-based ligand, to specifically detect the hypoxic tissues. Spherical IONPs with an average size of 10 nm were obtained and then decorated with the new metronidazole-conjugated dendron. The resulting nanoparticles (metro-NPs) displayed negligible effects on cell viability, proliferation, and metabolism, in both monolayer and 3D cell culture models, and a good colloidal stability in bio-mimicking media, as shown by DLS. Overtime quantitative monitoring of the IONP cell content revealed an enhanced intracellular retention of metro-NPs under anoxic conditions, confirmed by the in vitro MRI of cell pellets where a stronger negative contrast generation was observed in hypoxic primary stem cells and tumor cells after labeling with metro-NPs. Overall, these results suggest desirable properties in terms of interactions with the biological environment and capability of selective accumulation into the hypoxic tissue, and indicate that metro-NPs have considerable potential for the development of new nano-platforms especially in the field of anoxia-related diseases and tissue engineered models.
Collapse
Affiliation(s)
- Miriam Filippi
- Department of Biomedical Engineering, University of Basel, Gewerbestrasse 14, 4123, Allschwil, Basel, Switzerland.
| | | | | | | | | | | | | | | |
Collapse
|
9
|
Shi D, Nguyen DV, Maaloum M, Gallani JL, Felder-Flesch D, Krafft MP. Interfacial Behavior of Oligo(Ethylene Glycol) Dendrons Spread Alone and in Combination with a Phospholipid as Langmuir Monolayers at the Air/Water Interface. Molecules 2019; 24:E4114. [PMID: 31739495 PMCID: PMC6891365 DOI: 10.3390/molecules24224114] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Revised: 11/09/2019] [Accepted: 11/11/2019] [Indexed: 01/11/2023] Open
Abstract
Dendrons consisting of two phosphonate functions and three oligo(ethylene glycol) (OEG) chains grafted on a central phenoxyethylcarbamoylphenoxy group were synthesized and investigated as Langmuir monolayers at the surface of water. The OEG chain in the para position was grafted with a t-Bu end-group, a hydrocarbon chain, or a partially fluorinated chain. These dendrons are models of structurally related OEG dendrons that were found to significantly improve the stability of aqueous dispersions of iron oxide nanoparticles when grafted on their surface. Compression isotherms showed that all OEG dendrons formed liquid-expanded Langmuir monolayers at large molecular areas. Further compression led to a transition ascribed to the solubilization of the OEG chains in the aqueous phase. Brewster angle microscopy (BAM) provided evidence that the dendrons fitted with hydrocarbon chains formed liquid-expanded monolayers throughout compression, whilst those fitted with fluorinated end-groups formed crystalline-like domains, even at large molecular areas. Dimyristoylphosphatidylcholine and dendron molecules were partially miscible in monolayers. The deviations to ideality were larger for the dendrons fitted with a fluorocarbon end-group chain than for those fitted with a hydrocarbon chain. Brewster angle microscopy and atomic force microscopy supported the view that the dendrons were ejected from the phospholipid monolayer during the OEG conformational transition and formed crystalline domains on the surface of the monolayer.
Collapse
Affiliation(s)
- Da Shi
- Institut Charles Sadron (CNRS), University of Strasbourg, 23 rue du Loess, 67034 Strasbourg CEDEX 2, France; (D.S.); (M.M.)
| | - Dinh-Vu Nguyen
- Institut de Physique et Chimie des Matériaux de Strasbourg (IPCMS, CNRS), University of Strasbourg, 23 rue du Loess. 67034 Strasbourg CEDEX 2, France; (D.-V.N.); (J.-L.G.); (D.F.-F.)
| | - Mounir Maaloum
- Institut Charles Sadron (CNRS), University of Strasbourg, 23 rue du Loess, 67034 Strasbourg CEDEX 2, France; (D.S.); (M.M.)
| | - Jean-Louis Gallani
- Institut de Physique et Chimie des Matériaux de Strasbourg (IPCMS, CNRS), University of Strasbourg, 23 rue du Loess. 67034 Strasbourg CEDEX 2, France; (D.-V.N.); (J.-L.G.); (D.F.-F.)
| | - Delphine Felder-Flesch
- Institut de Physique et Chimie des Matériaux de Strasbourg (IPCMS, CNRS), University of Strasbourg, 23 rue du Loess. 67034 Strasbourg CEDEX 2, France; (D.-V.N.); (J.-L.G.); (D.F.-F.)
| | - Marie Pierre Krafft
- Institut Charles Sadron (CNRS), University of Strasbourg, 23 rue du Loess, 67034 Strasbourg CEDEX 2, France; (D.S.); (M.M.)
| |
Collapse
|
10
|
Shi D, Wallyn J, Nguyen DV, Perton F, Felder-Flesch D, Bégin-Colin S, Maaloum M, Krafft MP. Microbubbles decorated with dendronized magnetic nanoparticles for biomedical imaging: effective stabilization via fluorous interactions. BEILSTEIN JOURNAL OF NANOTECHNOLOGY 2019; 10:2103-2115. [PMID: 31728258 PMCID: PMC6839566 DOI: 10.3762/bjnano.10.205] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Accepted: 10/02/2019] [Indexed: 05/20/2023]
Abstract
Dendrons fitted with three oligo(ethylene glycol) (OEG) chains, one of which contains a fluorinated or hydrogenated end group and bears a bisphosphonate polar head (C n X2 n +1OEG8Den, X = F or H; n = 2 or 4), were synthesized and grafted on the surface of iron oxide nanoparticles (IONPs) for microbubble-mediated imaging and therapeutic purposes. The size and stability of the dendronized IONPs (IONP@C n X2 n +1OEG8Den) in aqueous dispersions were monitored by dynamic light scattering. The investigation of the spontaneous adsorption of IONP@C n X2 n +1OEG8Den at the interface between air or air saturated with perfluorohexane and an aqueous phase establishes that exposure to the fluorocarbon gas markedly increases the rate of adsorption of the dendronized IONPs to the gas/water interface and decreases the equilibrium interfacial tension. This suggests that fluorous interactions are at play between the supernatant fluorocarbon gas and the fluorinated end groups of the dendrons. Furthermore, small perfluorohexane-stabilized microbubbles (MBs) with a dipalmitoylphosphatidylcholine (DPPC) shell that incorporates IONP@C n X2 n +1OEG8Den (DPPC/Fe molar ratio 28:1) were prepared and subsequently characterized using both optical microscopy and an acoustical method of size determination. The dendrons fitted with fluorinated end groups lead to smaller and more stable MBs than those fitted with hydrogenated groups. The most effective result is already obtained with C2F5, for which MBs of ≈1.0 μm in radius reach a half-life of ≈6.0 h. An atomic force microscopy investigation of spin-coated mixed films of DPPC/IONP@C2X5OEG8Den combinations (molar ratio 28:1) shows that the IONPs grafted with the fluorinated dendrons are located within the phospholipid film, while those grafted with the hydrocarbon dendrons are located at the surface of the phospholipid film.
Collapse
Affiliation(s)
- Da Shi
- Institut Charles Sadron (CNRS), University of Strasbourg, 23 rue du Loess, 67034 Strasbourg, France
| | - Justine Wallyn
- Institut Charles Sadron (CNRS), University of Strasbourg, 23 rue du Loess, 67034 Strasbourg, France
| | - Dinh-Vu Nguyen
- Institut de Physique et de Chimie des Matériaux de Strasbourg (IPCMS), University of Strasbourg, 23 rue du Loess, 67034 Strasbourg, France
| | - Francis Perton
- Institut de Physique et de Chimie des Matériaux de Strasbourg (IPCMS), University of Strasbourg, 23 rue du Loess, 67034 Strasbourg, France
| | - Delphine Felder-Flesch
- Institut de Physique et de Chimie des Matériaux de Strasbourg (IPCMS), University of Strasbourg, 23 rue du Loess, 67034 Strasbourg, France
| | - Sylvie Bégin-Colin
- Institut de Physique et de Chimie des Matériaux de Strasbourg (IPCMS), University of Strasbourg, 23 rue du Loess, 67034 Strasbourg, France
| | - Mounir Maaloum
- Institut Charles Sadron (CNRS), University of Strasbourg, 23 rue du Loess, 67034 Strasbourg, France
| | - Marie Pierre Krafft
- Institut Charles Sadron (CNRS), University of Strasbourg, 23 rue du Loess, 67034 Strasbourg, France
| |
Collapse
|
11
|
Casset A, Jouhannaud J, Garofalo A, Spiegelhalter C, Nguyen DV, Felder-Flesch D, Pourroy G, Pons F. Macrophage functionality and homeostasis in response to oligoethyleneglycol-coated IONPs: Impact of a dendritic architecture. Int J Pharm 2018; 556:287-300. [PMID: 30557682 DOI: 10.1016/j.ijpharm.2018.12.024] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Revised: 11/29/2018] [Accepted: 12/06/2018] [Indexed: 12/20/2022]
Abstract
The engineering of iron oxide nanoparticles (IONPs) for biomedical use has received great interest over the past decade. In the present study we investigated the biocompatibility of IONPs grafted with linear (2P) or generation 1 (2PG1) or 2 (2PG2) dendronized oligoethyleneglycol units in THP-1-derived macrophages. To evaluate IONP effects on cell functionality and homeostasis, mitochondrial function (MTT assay), membrane permeability (LDH release), inflammation (IL-8), oxidative stress (reduced glutathione, GSH), NLRP3 inflammasome activation (IL-1β) and nanoparticle cellular uptake (intracellular iron content) were quantified after a 4-h or 24-h cell exposure to increasing IONP concentrations (0-300 µg Fe/mL). IONPs coated with a linear molecule, NP10COP@2P, were highly taken up by cells and induced significant dose-dependent IL-8 release, oxidative stress and NLRP3 inflammasome activation. In comparison, IONPs coated with dendrons of generation 1 (NP10COP@2PG1) and 2 (NP10COP@2PG2) exhibited better biocompatibility. Effect of the dendritic architecture of the surface coating was investigated in a kinetic experiment involving cell short-term exposure (30 min or 1 h 30) to the two dendronized IONPs. NP10COP@2PG2 disrupted cellular homeostasis (LDH release, IL-1β and IL-8 secretion) to a greater extend than NP10COP@2PG1, which makes this last IONP the best candidate as MRI contrast or theranostic agent.
Collapse
Affiliation(s)
- Anne Casset
- Université de Strasbourg, CNRS, CAMB UMR 7199, F-67000 Strasbourg, France.
| | - Julien Jouhannaud
- Université de Strasbourg, CNRS, Institut de Physique et Chimie des Matériaux Strasbourg, UMR 7504, F-67000 Strasbourg, France
| | - Antonio Garofalo
- Université de Strasbourg, CNRS, Institut de Physique et Chimie des Matériaux Strasbourg, UMR 7504, F-67000 Strasbourg, France
| | - Coralie Spiegelhalter
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), INSERM, CNRS, Université de Strasbourg, F-67404 Illkirch, France
| | - Dinh-Vu Nguyen
- Université de Strasbourg, CNRS, Institut de Physique et Chimie des Matériaux Strasbourg, UMR 7504, F-67000 Strasbourg, France
| | - Delphine Felder-Flesch
- Université de Strasbourg, CNRS, Institut de Physique et Chimie des Matériaux Strasbourg, UMR 7504, F-67000 Strasbourg, France
| | - Geneviève Pourroy
- Université de Strasbourg, CNRS, Institut de Physique et Chimie des Matériaux Strasbourg, UMR 7504, F-67000 Strasbourg, France
| | - Françoise Pons
- Université de Strasbourg, CNRS, CAMB UMR 7199, F-67000 Strasbourg, France
| |
Collapse
|
12
|
Interfacial charge transport studies and fabrication of high performance DSSC with ethylene cored unsymmetrical dendrimers as quasi electrolytes. J Mol Liq 2018. [DOI: 10.1016/j.molliq.2018.05.119] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
13
|
Bordeianu C, Parat A, Piant S, Walter A, Zbaraszczuk-Affolter C, Meyer F, Begin-Colin S, Boutry S, Muller RN, Jouberton E, Chezal JM, Labeille B, Cinotti E, Perrot JL, Miot-Noirault E, Laurent S, Felder-Flesch D. Evaluation of the Active Targeting of Melanin Granules after Intravenous Injection of Dendronized Nanoparticles. Mol Pharm 2018; 15:536-547. [PMID: 29298480 DOI: 10.1021/acs.molpharmaceut.7b00904] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The biodistribution of dendronized iron oxides, NPs10@D1_DOTAGA and melanin-targeting NPs10@D1_ICF_DOTAGA, was studied in vivo using magnetic resonance imaging (MRI) and planar scintigraphy through [177Lu]Lu-radiolabeling. MRI experiments showed high contrast power of both dendronized nanoparticles (DPs) and hepatobiliary and urinary excretions. Little tumor uptake could be highlighted after intravenous injection probably as a consequence of the negatively charged DOTAGA-derivatized shell, which reduces the diffusion across the cells' membrane. Planar scintigraphy images demonstrated a moderate specific tumor uptake of melanoma-targeted [177Lu]Lu-NPs10@D1_ICF_DOTAGA at 2 h post-intravenous injection (pi), and the highest tumor uptake of the control probe [177Lu]Lu-NPs10@D1_DOTAGA at 30 min pi, probably due to the enhanced permeability and retention effect. In addition, ex vivo confocal microscopy studies showed a high specific targeting of human melanoma samples impregnated with NPs10@D1_ICF_Alexa647_ DOTAGA.
Collapse
Affiliation(s)
- C Bordeianu
- Université de Strasbourg , CNRS, Institut de Physique et Chimie des Matériaux de Strasbourg, UMR 7504, F-67000 Strasbourg, France.,Fondation IcFRC/Université de Strasbourg , 8 allée Gaspard Monge BP 70028, F-67083 Strasbourg Cedex, France
| | - A Parat
- Université de Strasbourg , CNRS, Institut de Physique et Chimie des Matériaux de Strasbourg, UMR 7504, F-67000 Strasbourg, France.,Fondation IcFRC/Université de Strasbourg , 8 allée Gaspard Monge BP 70028, F-67083 Strasbourg Cedex, France
| | - S Piant
- Université de Strasbourg , CNRS, Institut de Physique et Chimie des Matériaux de Strasbourg, UMR 7504, F-67000 Strasbourg, France.,Fondation IcFRC/Université de Strasbourg , 8 allée Gaspard Monge BP 70028, F-67083 Strasbourg Cedex, France
| | - A Walter
- Université de Strasbourg , CNRS, Institut de Physique et Chimie des Matériaux de Strasbourg, UMR 7504, F-67000 Strasbourg, France.,Fondation IcFRC/Université de Strasbourg , 8 allée Gaspard Monge BP 70028, F-67083 Strasbourg Cedex, France
| | - C Zbaraszczuk-Affolter
- Université de Strasbourg , INSERM, UMR 1121 Biomatériaux et Bioingénierie, 11 rue Humann F-67000 Strasbourg, France
| | - F Meyer
- Université de Strasbourg , INSERM, UMR 1121 Biomatériaux et Bioingénierie, 11 rue Humann F-67000 Strasbourg, France
| | - S Begin-Colin
- Université de Strasbourg , CNRS, Institut de Physique et Chimie des Matériaux de Strasbourg, UMR 7504, F-67000 Strasbourg, France.,Fondation IcFRC/Université de Strasbourg , 8 allée Gaspard Monge BP 70028, F-67083 Strasbourg Cedex, France
| | - S Boutry
- University of Mons , General, Organic and Biomedical Chemistry NMR and Molecular Imaging Laboratory, Avenue Maistriau 19, 7000 Mons, Belgium.,CMMI - Center for Microscopy and Molecular Imaging, MRI & Optical Imaging , Rue Adrienne Bolland 8, 6041 Gosselies, Belgium
| | - R N Muller
- University of Mons , General, Organic and Biomedical Chemistry NMR and Molecular Imaging Laboratory, Avenue Maistriau 19, 7000 Mons, Belgium.,CMMI - Center for Microscopy and Molecular Imaging, MRI & Optical Imaging , Rue Adrienne Bolland 8, 6041 Gosselies, Belgium
| | - E Jouberton
- Clermont Université, Université d'Auvergne , Laboratoire d'Imagerie Moléculaire et Thérapie Vectorisée, BP 10448, F-63000 Clermont-Ferrand, France.,INSERM, U1240 , F-63005 Clermont-Ferrand, France
| | - J-M Chezal
- Clermont Université, Université d'Auvergne , Laboratoire d'Imagerie Moléculaire et Thérapie Vectorisée, BP 10448, F-63000 Clermont-Ferrand, France.,INSERM, U1240 , F-63005 Clermont-Ferrand, France
| | - B Labeille
- CHU , Département de Dermatologie, F-42000 St. Etienne, France
| | - E Cinotti
- Department of Medical, Surgical and Neurological Science, Dermatology Section, University of Siena , S. Maria alle Scotte Hospital, F-53100 Siena, Italy
| | - J-L Perrot
- CHU , Département de Dermatologie, F-42000 St. Etienne, France
| | - E Miot-Noirault
- Clermont Université, Université d'Auvergne , Laboratoire d'Imagerie Moléculaire et Thérapie Vectorisée, BP 10448, F-63000 Clermont-Ferrand, France.,INSERM, U1240 , F-63005 Clermont-Ferrand, France
| | - S Laurent
- University of Mons , General, Organic and Biomedical Chemistry NMR and Molecular Imaging Laboratory, Avenue Maistriau 19, 7000 Mons, Belgium.,CMMI - Center for Microscopy and Molecular Imaging, MRI & Optical Imaging , Rue Adrienne Bolland 8, 6041 Gosselies, Belgium
| | - D Felder-Flesch
- Université de Strasbourg , CNRS, Institut de Physique et Chimie des Matériaux de Strasbourg, UMR 7504, F-67000 Strasbourg, France.,Fondation IcFRC/Université de Strasbourg , 8 allée Gaspard Monge BP 70028, F-67083 Strasbourg Cedex, France
| |
Collapse
|
14
|
Draper SRE, Lawrence PB, Billings WM, Xiao Q, Brown NP, Bécar NA, Matheson DJ, Stephens AR, Price JL. Polyethylene Glycol Based Changes to β-Sheet Protein Conformational and Proteolytic Stability Depend on Conjugation Strategy and Location. Bioconjug Chem 2017; 28:2507-2513. [PMID: 28972368 DOI: 10.1021/acs.bioconjchem.7b00281] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The development of chemical strategies for site-specific protein modification now enables researchers to attach polyethylene glycol (PEG) to a protein drug at one or more specific locations (i.e., protein PEGylation). However, aside from avoiding enzyme active sites or protein-binding interfaces, distinguishing the optimal PEGylation site from the available alternatives has conventionally been a matter of trial and error. As part of a continuing effort to develop guidelines for identifying optimal PEGylation sites within proteins, we show here that the impact of PEGylation at various sites within the β-sheet model protein WW depends strongly on the identity of the PEG-protein linker. The PEGylation of Gln or of azidohomoalanine has a similar impact on WW conformational stability as does Asn-PEGylation, whereas the PEGylation of propargyloxyphenylalanine is substantially stabilizing at locations where Asn-PEGylation was destabilizing. Importantly, we find that at least one of these three site-specific PEGylation strategies leads to substantial PEG-based stabilization at each of the positions investigated, highlighting the importance of considering conjugation strategy as an important variable in selecting optimal PEGylation sites. We further demonstrate that using a branched PEG oligomer intensifies the impact of PEGylation on WW conformational stability and also show that PEG-based increases to conformational stability are strongly associated with corresponding increases in proteolytic stability.
Collapse
Affiliation(s)
- Steven R E Draper
- Department of Chemistry and Biochemistry, Brigham Young University , Provo, Utah 84602, United States
| | - Paul B Lawrence
- Department of Chemistry and Biochemistry, Brigham Young University , Provo, Utah 84602, United States
| | - Wendy M Billings
- Department of Chemistry and Biochemistry, Brigham Young University , Provo, Utah 84602, United States
| | - Qiang Xiao
- Department of Chemistry and Biochemistry, Brigham Young University , Provo, Utah 84602, United States
| | - Nathaniel P Brown
- Department of Chemistry and Biochemistry, Brigham Young University , Provo, Utah 84602, United States
| | - Natalie A Bécar
- Department of Chemistry and Biochemistry, Brigham Young University , Provo, Utah 84602, United States
| | - Derek J Matheson
- Department of Chemistry and Biochemistry, Brigham Young University , Provo, Utah 84602, United States
| | - Andrew R Stephens
- Department of Chemistry and Biochemistry, Brigham Young University , Provo, Utah 84602, United States
| | - Joshua L Price
- Department of Chemistry and Biochemistry, Brigham Young University , Provo, Utah 84602, United States
| |
Collapse
|
15
|
Walter A, Garofalo A, Bonazza P, Meyer F, Martinez H, Fleutot S, Billotey C, Taleb J, Felder-Flesch D, Begin-Colin S. Effect of the Functionalization Process on the Colloidal, Magnetic Resonance Imaging, and Bioelimination Properties of Mono- or Bisphosphonate-Anchored Dendronized Iron Oxide Nanoparticles. Chempluschem 2017; 82:647-659. [DOI: 10.1002/cplu.201700049] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Revised: 03/27/2017] [Indexed: 01/09/2023]
Affiliation(s)
- Aurélie Walter
- Institut de Physique et Chimie des Matériaux de Strasbourg (IPCMS), UMR 7504, CNRS; Université de Strasbourg; 23, rue du Loess, BP 43 67034 Strasbourg Cedex 2 France
| | - Antonio Garofalo
- Institut de Physique et Chimie des Matériaux de Strasbourg (IPCMS), UMR 7504, CNRS; Université de Strasbourg; 23, rue du Loess, BP 43 67034 Strasbourg Cedex 2 France
| | - Pauline Bonazza
- Université de Lyon; Université Jean Monnet; Equipe Mixte de Recherche 3738 “Ciblage Thérapeutique en Oncologie”, Bâtiment 10- Locaux IMTHERNAT, Hôpital Edouard Herriot, 5 place d'Arsonval; 69437 Lyon cedex 03 France
| | - Florent Meyer
- Université de Strasbourg, Inserm UMR 1121 Biomatériaux et Bioingénierie); Université de Strasbourg; 11, rue Humann 67000 Strasbourg Cedex France
| | - Hervé Martinez
- IPREM-UMR CNRS 5254; Université de Pau et des Pays de l'Adour; Hélioparc Pau-Pyrénées, 2 Av du Président Angot 64053 Pau Cedex 9 France
| | - Solenne Fleutot
- Institut de Physique et Chimie des Matériaux de Strasbourg (IPCMS), UMR 7504, CNRS; Université de Strasbourg; 23, rue du Loess, BP 43 67034 Strasbourg Cedex 2 France
| | - Claire Billotey
- Université de Lyon; Université Jean Monnet; Equipe Mixte de Recherche 3738 “Ciblage Thérapeutique en Oncologie”, Bâtiment 10- Locaux IMTHERNAT, Hôpital Edouard Herriot, 5 place d'Arsonval; 69437 Lyon cedex 03 France
| | - Jacqueline Taleb
- Université de Lyon; Université Jean Monnet; Equipe Mixte de Recherche 3738 “Ciblage Thérapeutique en Oncologie”, Bâtiment 10- Locaux IMTHERNAT, Hôpital Edouard Herriot, 5 place d'Arsonval; 69437 Lyon cedex 03 France
| | - Delphine Felder-Flesch
- Institut de Physique et Chimie des Matériaux de Strasbourg (IPCMS), UMR 7504, CNRS; Université de Strasbourg; 23, rue du Loess, BP 43 67034 Strasbourg Cedex 2 France
| | - Sylvie Begin-Colin
- Institut de Physique et Chimie des Matériaux de Strasbourg (IPCMS), UMR 7504, CNRS; Université de Strasbourg; 23, rue du Loess, BP 43 67034 Strasbourg Cedex 2 France
| |
Collapse
|
16
|
Lam T, Avti PK, Pouliot P, Tardif JC, Rhéaume É, Lesage F, Kakkar A. Surface engineering of SPIONs: role of phosphonate ligand multivalency in tailoring their efficacy. NANOTECHNOLOGY 2016; 27:415602. [PMID: 27608753 DOI: 10.1088/0957-4484/27/41/415602] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
We report the design of scaffolds containing mono-, bis-, and tris-phosphonate coordinating groups, and a polyethylene glycol chain, for stabilizing superparamagnetic iron oxide nanoparticles (SPIONs), using simple and versatile chemistry. We demonstrate that the number of anchoring phosphonate sites on the ligand influence the colloidal stability, magnetic and biological properties of SPIONs, and the latter do not solely depend on attaching moieties that can enhance their aqueous dispersion. These parameters can be tailored by the number of conjugation sites on the ligand, as evidenced from dynamic light scattering at various salt concentrations, magnetic relaxivities and cell viability studies.
Collapse
Affiliation(s)
- Tina Lam
- Department of Chemistry, McGill University, 801 Sherbrooke St. West, Montreal, Quebec H3A 0B8, Canada
| | - Pramod K Avti
- Department of Chemistry, McGill University, 801 Sherbrooke St. West, Montreal, Quebec H3A 0B8, Canada
- Department of Electrical Engineering, Ecole Polytechnique de Montreal, C.P. 6079 succ. Centre-Ville, Montreal, Quebec H3C 3A7, Canada
- Research Centre, Montreal Heart Institute, 5000 Belanger Street, Montreal, Quebec H1T 1C8, Canada
| | - Philippe Pouliot
- Department of Electrical Engineering, Ecole Polytechnique de Montreal, C.P. 6079 succ. Centre-Ville, Montreal, Quebec H3C 3A7, Canada
| | - Jean-Claude Tardif
- Research Centre, Montreal Heart Institute, 5000 Belanger Street, Montreal, Quebec H1T 1C8, Canada
- Department of Medicine, Universite de Montreal, Montreal, Quebec, Canada
| | - Éric Rhéaume
- Research Centre, Montreal Heart Institute, 5000 Belanger Street, Montreal, Quebec H1T 1C8, Canada
- Department of Medicine, Universite de Montreal, Montreal, Quebec, Canada
| | - Frederic Lesage
- Department of Electrical Engineering, Ecole Polytechnique de Montreal, C.P. 6079 succ. Centre-Ville, Montreal, Quebec H3C 3A7, Canada
- Research Centre, Montreal Heart Institute, 5000 Belanger Street, Montreal, Quebec H1T 1C8, Canada
| | - Ashok Kakkar
- Department of Chemistry, McGill University, 801 Sherbrooke St. West, Montreal, Quebec H3A 0B8, Canada
| |
Collapse
|
17
|
Lam T, Avti PK, Pouliot P, Maafi F, Tardif JC, Rhéaume É, Lesage F, Kakkar A. Fabricating Water Dispersible Superparamagnetic Iron Oxide Nanoparticles for Biomedical Applications through Ligand Exchange and Direct Conjugation. NANOMATERIALS (BASEL, SWITZERLAND) 2016; 6:E100. [PMID: 28335228 PMCID: PMC5302624 DOI: 10.3390/nano6060100] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/13/2016] [Revised: 04/29/2016] [Accepted: 05/13/2016] [Indexed: 12/20/2022]
Abstract
Stable superparamagnetic iron oxide nanoparticles (SPIONs), which can be easily dispersed in an aqueous medium and exhibit high magnetic relaxivities, are ideal candidates for biomedical applications including contrast agents for magnetic resonance imaging. We describe a versatile methodology to render water dispersibility to SPIONs using tetraethylene glycol (TEG)-based phosphonate ligands, which are easily introduced onto SPIONs by either a ligand exchange process of surface-anchored oleic-acid (OA) molecules or via direct conjugation. Both protocols confer good colloidal stability to SPIONs at different NaCl concentrations. A detailed characterization of functionalized SPIONs suggests that the ligand exchange method leads to nanoparticles with better magnetic properties but higher toxicity and cell death, than the direct conjugation methodology.
Collapse
Affiliation(s)
- Tina Lam
- Department of Chemistry, McGill University, 801 Sherbrooke Street West, Montreal, QC H3A 0B8, Canada.
| | - Pramod K Avti
- Department of Chemistry, McGill University, 801 Sherbrooke Street West, Montreal, QC H3A 0B8, Canada.
- Department of Electrical Engineering, École Polytechnique de Montréal, C.P. 6079 succ. Centre-ville, Montreal, QC H3C 3A7, Canada.
- Research Center, Montreal Heart Institute, 5000 Bélanger Street, Montreal, QC H1T 1C8, Canada.
| | - Philippe Pouliot
- Department of Electrical Engineering, École Polytechnique de Montréal, C.P. 6079 succ. Centre-ville, Montreal, QC H3C 3A7, Canada.
- Research Center, Montreal Heart Institute, 5000 Bélanger Street, Montreal, QC H1T 1C8, Canada.
| | - Foued Maafi
- Research Center, Montreal Heart Institute, 5000 Bélanger Street, Montreal, QC H1T 1C8, Canada.
| | - Jean-Claude Tardif
- Research Center, Montreal Heart Institute, 5000 Bélanger Street, Montreal, QC H1T 1C8, Canada.
- Department of Medicine, Université de Montréal, Montreal, QC H3T 1J4, Canada.
| | - Éric Rhéaume
- Research Center, Montreal Heart Institute, 5000 Bélanger Street, Montreal, QC H1T 1C8, Canada.
- Department of Medicine, Université de Montréal, Montreal, QC H3T 1J4, Canada.
| | - Frédéric Lesage
- Department of Electrical Engineering, École Polytechnique de Montréal, C.P. 6079 succ. Centre-ville, Montreal, QC H3C 3A7, Canada.
- Research Center, Montreal Heart Institute, 5000 Bélanger Street, Montreal, QC H1T 1C8, Canada.
| | - Ashok Kakkar
- Department of Chemistry, McGill University, 801 Sherbrooke Street West, Montreal, QC H3A 0B8, Canada.
| |
Collapse
|
18
|
Lam T, Avti PK, Pouliot P, Tardif JC, Rhéaume É, Lesage F, Kakkar A. Magnetic resonance imaging/fluorescence dual modality protocol using designed phosphonate ligands coupled to superparamagnetic iron oxide nanoparticles. J Mater Chem B 2016; 4:3969-3981. [PMID: 32263096 DOI: 10.1039/c6tb00821f] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
A simple and versatile methodology to tailor the surface of superparamagnetic iron oxide nanoparticles (SPIONs), and render additional fluorescence capability to these contrast agents, is reported. The dual modality imaging protocol was developed by designing multi-functional scaffolds with a combination of orthogonal moieties for aqueous dispersion and stealth, to covalently link them to SPIONs, and carry out post-functionalization of nanoparticles. SPIONs stabilized with ligands incorporating surface-anchoring phosphonate groups, ethylene glycol backbone for aqueous dispersion, and free surface exposed OH moieties were coupled to near-infrared dye Cy5.5A. Our results demonstrate that design of multi-tasking ligands with desired combination and spatial distribution of functions provides an ideal platform to construct highly efficient dual imaging probes with balanced magnetic, optical and cell viability properties.
Collapse
Affiliation(s)
- Tina Lam
- Department of Chemistry, McGill University, 801 Sherbrooke St. West, Montreal, Quebec H3A 0B8, Canada.
| | | | | | | | | | | | | |
Collapse
|
19
|
Salamończyk GM. Efficient synthesis of water-soluble, phosphonate-terminated polyester dendrimers. Tetrahedron Lett 2015. [DOI: 10.1016/j.tetlet.2015.11.035] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
20
|
Truong‐Phuoc L, Marie Kueny‐Stotz, Jouhannaud J, Garofalo A, Blé F, Simon H, Tellier F, Poulet P, Chirco P, Begin‐Colin S, Pourroy G, Felder‐Flesch D. Patent Blue Derivatized Dendronized Iron Oxide Nanoparticles for Multimodal Imaging. Eur J Inorg Chem 2015. [DOI: 10.1002/ejic.201500289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Lai Truong‐Phuoc
- Institut de Physique et de Chimie des Matériaux de Strasbourg, IPCMS, UMR 7504 CNRS‐ECPM‐Université de Strasbourg, 23 rue du loess BP 43, 67034 Strasbourg Cedex 2, France http://www.ipcms.unistra.fr/
| | - Marie Kueny‐Stotz
- Institut de Physique et de Chimie des Matériaux de Strasbourg, IPCMS, UMR 7504 CNRS‐ECPM‐Université de Strasbourg, 23 rue du loess BP 43, 67034 Strasbourg Cedex 2, France http://www.ipcms.unistra.fr/
| | - Julien Jouhannaud
- Institut de Physique et de Chimie des Matériaux de Strasbourg, IPCMS, UMR 7504 CNRS‐ECPM‐Université de Strasbourg, 23 rue du loess BP 43, 67034 Strasbourg Cedex 2, France http://www.ipcms.unistra.fr/
| | - Antonio Garofalo
- Institut de Physique et de Chimie des Matériaux de Strasbourg, IPCMS, UMR 7504 CNRS‐ECPM‐Université de Strasbourg, 23 rue du loess BP 43, 67034 Strasbourg Cedex 2, France http://www.ipcms.unistra.fr/
| | - François‐Xavier Blé
- Laboratoire des Sciences de l'Ingénieur, de l'Informatique et de l'Imagerie – iCUBE – UMR 7357 CNRS Université de Strasbourg Fédération de Médecine Translationnelle de Strasbourg Institut de Physique Biologique Faculté de Médecine, 4, rue Kirschleger 67085 Strasbourg Cedex, France
| | - Hervé Simon
- EURORAD S.A, 2, rue Ettore Bugarti 67201 Eckbolsheim, France, http://www.eurorad.com
| | - Franklin Tellier
- Laboratoire des Sciences de l'Ingénieur, de l'Informatique et de l'Imagerie – iCUBE – UMR 7357 CNRS Université de Strasbourg Fédération de Médecine Translationnelle de Strasbourg Institut de Physique Biologique Faculté de Médecine, 4, rue Kirschleger 67085 Strasbourg Cedex, France
| | - Patrick Poulet
- Laboratoire des Sciences de l'Ingénieur, de l'Informatique et de l'Imagerie – iCUBE – UMR 7357 CNRS Université de Strasbourg Fédération de Médecine Translationnelle de Strasbourg Institut de Physique Biologique Faculté de Médecine, 4, rue Kirschleger 67085 Strasbourg Cedex, France
| | - Piero Chirco
- SOFTEC srl, Via Stracciari 2 4014 Bologna, Italy
| | - Sylvie Begin‐Colin
- Institut de Physique et de Chimie des Matériaux de Strasbourg, IPCMS, UMR 7504 CNRS‐ECPM‐Université de Strasbourg, 23 rue du loess BP 43, 67034 Strasbourg Cedex 2, France http://www.ipcms.unistra.fr/
| | - Geneviève Pourroy
- Institut de Physique et de Chimie des Matériaux de Strasbourg, IPCMS, UMR 7504 CNRS‐ECPM‐Université de Strasbourg, 23 rue du loess BP 43, 67034 Strasbourg Cedex 2, France http://www.ipcms.unistra.fr/
| | - Delphine Felder‐Flesch
- Institut de Physique et de Chimie des Matériaux de Strasbourg, IPCMS, UMR 7504 CNRS‐ECPM‐Université de Strasbourg, 23 rue du loess BP 43, 67034 Strasbourg Cedex 2, France http://www.ipcms.unistra.fr/
| |
Collapse
|
21
|
Rydzek G, Toulemon D, Garofalo A, Leuvrey C, Dayen JF, Felder-Flesch D, Schaaf P, Jierry L, Begin-Colin S, Pichon BP, Boulmedais F. Selective Nanotrench Filling by One-Pot Electroclick Self-Constructed Nanoparticle Films. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2015; 11:4638-4642. [PMID: 26097151 DOI: 10.1002/smll.201500639] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2015] [Revised: 05/22/2015] [Indexed: 06/04/2023]
Abstract
Integration of nanoparticles (NPs) into nanodevices is a challenge for enhanced sensor development. Using NPs as building blocks, a bottom-up approach based on one-pot morphogen-driven electroclick chemistry is reported to self-construct dense and robust conductive Fe3O4 NP films. Deposited covalent NP assemblies establish an electrical connection between two gold electrodes separated by a 100 nm-wide nanotrench.
Collapse
Affiliation(s)
- Gaulthier Rydzek
- INSERM, UMR-S 1121, "Biomatériaux et Bioingénierie,", 11 rue Humann, F-67085, Strasbourg, Cedex, France
- Faculté de Chirurgie Dentaire, Université de Strasbourg, 8 rue Saint Elisabeth, 67000, Strasbourg, France
| | - Delphine Toulemon
- Institut de Physique et Chimie des Matériaux de Strasbourg, Centre National de la Recherche Scientifique, Université de Strasbourg, UMR 7504, 23 Rue du Loess BP 43, Strasbourg, Cedex, 267034, France
| | - Antonio Garofalo
- Institut de Physique et Chimie des Matériaux de Strasbourg, Centre National de la Recherche Scientifique, Université de Strasbourg, UMR 7504, 23 Rue du Loess BP 43, Strasbourg, Cedex, 267034, France
| | - Cedric Leuvrey
- Institut de Physique et Chimie des Matériaux de Strasbourg, Centre National de la Recherche Scientifique, Université de Strasbourg, UMR 7504, 23 Rue du Loess BP 43, Strasbourg, Cedex, 267034, France
| | - Jean-François Dayen
- Institut de Physique et Chimie des Matériaux de Strasbourg, Centre National de la Recherche Scientifique, Université de Strasbourg, UMR 7504, 23 Rue du Loess BP 43, Strasbourg, Cedex, 267034, France
| | - Delphine Felder-Flesch
- Institut de Physique et Chimie des Matériaux de Strasbourg, Centre National de la Recherche Scientifique, Université de Strasbourg, UMR 7504, 23 Rue du Loess BP 43, Strasbourg, Cedex, 267034, France
| | - Pierre Schaaf
- INSERM, UMR-S 1121, "Biomatériaux et Bioingénierie,", 11 rue Humann, F-67085, Strasbourg, Cedex, France
- Faculté de Chirurgie Dentaire, Université de Strasbourg, 8 rue Saint Elisabeth, 67000, Strasbourg, France
- Institut Charles Sadron, Centre National de la Recherche Scientifique, Université de Strasbourg, 23 rue du Loess, BP 84047, 67034, Strasbourg, Cedex 2, France
- Institut Universitaire de France, 103 boulevard Saint-Michel, 75005, Paris, France
- International Center for Frontier Research in Chemistry, 8 allée Gaspard Monge, 67083, Strasbourg, France
- Université de Strasbourg, Ecole Européenne de Chimie, Polymères et Matériaux, 25 rue Becquerel, 67087, Strasbourg, France
| | - Loïc Jierry
- Institut Charles Sadron, Centre National de la Recherche Scientifique, Université de Strasbourg, 23 rue du Loess, BP 84047, 67034, Strasbourg, Cedex 2, France
- Université de Strasbourg, Ecole Européenne de Chimie, Polymères et Matériaux, 25 rue Becquerel, 67087, Strasbourg, France
- University of Strasbourg Institute for Advanced Study, 5 allée du Général Rouvillois, 67083, Strasbourg, France
| | - Sylvie Begin-Colin
- Institut de Physique et Chimie des Matériaux de Strasbourg, Centre National de la Recherche Scientifique, Université de Strasbourg, UMR 7504, 23 Rue du Loess BP 43, Strasbourg, Cedex, 267034, France
- Université de Strasbourg, Ecole Européenne de Chimie, Polymères et Matériaux, 25 rue Becquerel, 67087, Strasbourg, France
| | - Benoît P Pichon
- Institut de Physique et Chimie des Matériaux de Strasbourg, Centre National de la Recherche Scientifique, Université de Strasbourg, UMR 7504, 23 Rue du Loess BP 43, Strasbourg, Cedex, 267034, France
- Université de Strasbourg, Ecole Européenne de Chimie, Polymères et Matériaux, 25 rue Becquerel, 67087, Strasbourg, France
| | - Fouzia Boulmedais
- Institut Charles Sadron, Centre National de la Recherche Scientifique, Université de Strasbourg, 23 rue du Loess, BP 84047, 67034, Strasbourg, Cedex 2, France
- University of Strasbourg Institute for Advanced Study, 5 allée du Général Rouvillois, 67083, Strasbourg, France
| |
Collapse
|
22
|
Parat A, Kryza D, Degoul F, Taleb J, Viallard C, Janier M, Garofalo A, Bonazza P, Heinrich-Balard L, Cohen R, Miot-Noirault E, Chezal JM, Billotey C, Felder-Flesch D. Radiolabeled dendritic probes as tools for high in vivo tumor targeting: application to melanoma. J Mater Chem B 2015; 3:2560-2571. [DOI: 10.1039/c5tb00235d] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A small-sized and bifunctional111In-radiolabeled dendron shows highin vivotargeting efficiency towards an intracellular target in a murine melanoma model.
Collapse
|
23
|
Walter A, Garofalo A, Parat A, Jouhannaud J, Pourroy G, Voirin E, Laurent S, Bonazza P, Taleb J, Billotey C, Vander Elst L, Muller RN, Begin-Colin S, Felder-Flesch D. Validation of a dendron concept to tune colloidal stability, MRI relaxivity and bioelimination of functional nanoparticles. J Mater Chem B 2015; 3:1484-1494. [DOI: 10.1039/c4tb01954g] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
A dendritic coating induces colloidal stability of nanoparticles through electrostatic and steric interactions.
Collapse
|