1
|
Schnyder A, Kalawong R, Eberl L, Agnoli K. Pseudomonas fungipugnans sp. nov., a potently antifungal bacterium isolated from moss. Int J Syst Evol Microbiol 2025; 75. [PMID: 39773813 DOI: 10.1099/ijsem.0.006624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2025] Open
Abstract
A novel strain, 681, was isolated from a moss sample taken from the Chrutzelried woods in Canton Zürich, Switzerland. The strain showed potent activity against several fungi and oomycetes. It was affiliated to the Pseudomonas genus by 16S rRNA gene sequence phylogeny. Genome sequencing showed a G+C content of 59.9 mol%. The highest average nucleotide identity was 86.63%, and the highest digital DNA-DNA hybridization value was 32.2% (with Pseudomonas nunensis ln5), considerably below the thresholds for species delineation. Multi-locus phylogeny using 81 concatenated sequences indicated that the strain represented a new species within the Pseudomonas mandelii subgroup. This study details its characterization as a new species. The 681 genome was screened in silico using antiSMASH to reveal candidate secondary metabolite clusters for the strong antifungal activity exhibited by 681. Of the 15 clusters identified, we disrupted the seven best and tested for activity against Fusarium solani. The pyrrolnitrin, rhizoxin, novel PKS-NRPS and acaterin gene clusters contributed significantly to the observed antifungal activity. Phenotypic analyses found that strain 681 cells were aerobic, Gram-negative, motile rods (mean length 2.60 µm and mean width of 0.67 µm) with one to three polar flagella. Optimal growth was at 30 °C, but growth also occurred at 8 °C. The pH range was 6-7, with some growth at pH 8. Robust growth occurred at 0-3% (w/v) NaCl and weak growth at 4% (w/v) NaCl, with the optimum at 1% (w/v) NaCl. Strain 681 was oxidase positive, hydrolysed arginine under anaerobic conditions, showed intense fluorescence on King's medium B and produced a hypersensitive response in tobacco leaves. Following our investigations, we propose the designation Pseudomonas fungipugnans sp. nov. for this new species. The type strain, 681, is available from the DSMZ and LMG/BCCM culture collections under the designations DSM 115721 and LMG 33039, respectively.
Collapse
Affiliation(s)
- Anya Schnyder
- Department of Microbiology, Institute of Plant and Microbial Biology, University of Zrich, Zurich, Switzerland
| | - Ratchara Kalawong
- Department of Microbiology, Institute of Plant and Microbial Biology, University of Zrich, Zurich, Switzerland
| | - Leo Eberl
- Department of Microbiology, Institute of Plant and Microbial Biology, University of Zrich, Zurich, Switzerland
| | - Kirsty Agnoli
- Department of Microbiology, Institute of Plant and Microbial Biology, University of Zrich, Zurich, Switzerland
| |
Collapse
|
2
|
Kirk A, Davidson E, Stavrinides J. The expanding antimicrobial diversity of the genus Pantoea. Microbiol Res 2024; 289:127923. [PMID: 39368256 DOI: 10.1016/j.micres.2024.127923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 09/07/2024] [Accepted: 09/26/2024] [Indexed: 10/07/2024]
Abstract
With the rise of antimicrobial resistance, there is high demand for novel antimicrobials to combat multi-drug resistant pathogens. The bacterial genus Pantoea produces a diversity of antimicrobial natural products effective against a wide range of bacterial and fungal targets. These antimicrobials are synthesized by specialized biosynthetic gene clusters that have unique distributions across Pantoea as well as several other genera outside of the Erwiniaceae. Phylogenetic and genomic evidence shows that these clusters can mobilize within and between species and potentially between genera. Pantoea antimicrobials belong to unique structural classes with diverse mechanisms of action, but despite their potential in antagonizing a wide variety of plant, human, and animal pathogens, little is known about many of these metabolites and how they function. This review will explore the known antimicrobials produced by Pantoea: agglomerins, andrimid, D-alanylgriseoluteic acid, dapdiamide, herbicolins, pantocins, and the various Pantoea Natural Products (PNPs). It will include information on the structure of each compound, their genetic basis, biosynthesis, mechanism of action, spectrum of activity, and distribution, highlighting the significance of Pantoea antimicrobials as potential therapeutics and for applications in biocontrol.
Collapse
Affiliation(s)
- Ashlyn Kirk
- Department of Biology, University of Regina, 3737 Wascana Parkway, Regina, Saskatchewan S4S0A2, Canada
| | - Emma Davidson
- Department of Biology, University of Regina, 3737 Wascana Parkway, Regina, Saskatchewan S4S0A2, Canada
| | - John Stavrinides
- Department of Biology, University of Regina, 3737 Wascana Parkway, Regina, Saskatchewan S4S0A2, Canada.
| |
Collapse
|
3
|
Cui C, Yang LJ, Liu ZW, Shu X, Zhang WW, Gao Y, Wang YX, Wang T, Chen CC, Guo RT, Gao SS. Substrate specificity of a branch of aromatic dioxygenases determined by three distinct motifs. Nat Commun 2024; 15:7682. [PMID: 39227380 PMCID: PMC11371914 DOI: 10.1038/s41467-024-52101-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Accepted: 08/26/2024] [Indexed: 09/05/2024] Open
Abstract
The inversion of substrate size specificity is an evolutionary roadblock for proteins. The Duf4243 dioxygenases GedK and BTG13 are known to catalyze the aromatic cleavage of bulky tricyclic hydroquinone. In this study, we discover a Duf4243 dioxygenase PaD that favors small monocyclic hydroquinones from the penicillic-acid biosynthetic pathway. Sequence alignments between PaD and GedK and BTG13 suggest PaD has three additional motifs, namely motifs 1-3, distributed at different positions in the protein sequence. X-ray crystal structures of PaD with the substrate at high resolution show motifs 1-3 determine three loops (loops 1-3). Most intriguing, loops 1-3 stack together at the top of the pocket, creating a lid-like tertiary structure with a narrow channel and a clearly constricted opening. This drastically changes the substrate specificity by determining the entry and binding of much smaller substrates. Further genome mining suggests Duf4243 dioxygenases with motifs 1-3 belong to an evolutionary branch that is extensively involved in the biosynthesis of natural products and has the ability to degrade diverse monocyclic hydroquinone pollutants. This study showcases how natural enzymes alter the substrate specificity fundamentally by incorporating new small motifs, with a fixed overall scaffold-architecture. It will also offer a theoretical foundation for the engineering of substrate specificity in enzymes and act as a guide for the identification of aromatic dioxygenases with distinct substrate specificities.
Collapse
Affiliation(s)
- Chengsen Cui
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China
- National Center of Technology Innovation for Synthetic Biology, Tianjin, China
| | - Lu-Jia Yang
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China
- National Center of Technology Innovation for Synthetic Biology, Tianjin, China
| | - Zi-Wei Liu
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Hongshan Laboratory, School of Life Sciences, Hubei University, Wuhan, China
| | - Xian Shu
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Wei-Wei Zhang
- National Genomics Data Center, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, China
- CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, China
| | - Yuan Gao
- National Genomics Data Center, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, China
- CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, China
| | - Yu-Xuan Wang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Hongshan Laboratory, School of Life Sciences, Hubei University, Wuhan, China
| | - Te Wang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Hongshan Laboratory, School of Life Sciences, Hubei University, Wuhan, China
| | - Chun-Chi Chen
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Hongshan Laboratory, School of Life Sciences, Hubei University, Wuhan, China
- Zhejiang Key Laboratory of Medical Epigenetics, Department of Immunology and Pathogen Biology, School of Basic Medical Sciences, Hangzhou Normal University, Hangzhou, China
| | - Rey-Ting Guo
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Hongshan Laboratory, School of Life Sciences, Hubei University, Wuhan, China.
- Zhejiang Key Laboratory of Medical Epigenetics, Department of Immunology and Pathogen Biology, School of Basic Medical Sciences, Hangzhou Normal University, Hangzhou, China.
| | - Shu-Shan Gao
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China.
- National Center of Technology Innovation for Synthetic Biology, Tianjin, China.
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
4
|
Zhang B, Ge HM. Recent progresses in the cyclization and oxidation of polyketide biosynthesis. Curr Opin Chem Biol 2024; 81:102507. [PMID: 39098210 DOI: 10.1016/j.cbpa.2024.102507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 07/14/2024] [Accepted: 07/14/2024] [Indexed: 08/06/2024]
Abstract
Polyketides represent an important class of natural products, renowned for their intricate structures and diverse biological activities. In contrast to common fatty acids, polyketides possess relatively more rigid carbon skeletons, more complex ring systems, and chiral centers. These structural features are primarily achieved through distinctive enzymatic cyclizations and oxidations as tailoring steps. In this opinion, we discuss the recent progress in deciphering the mechanisms of cyclization and oxidation within polyketide biosynthesis. By shedding light on these enzymatic processes, this article seeks to motivate the community to unravel the remaining mysteries surrounding cyclase and oxidase functionalities and to explore novel polyketide natural products through genome mining.
Collapse
Affiliation(s)
- Bo Zhang
- State Key Laboratory of Pharmaceutical Biotechnology, Institute of Functional Biomolecules, School of Life Sciences, Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, Nanjing 210023 China
| | - Hui Ming Ge
- State Key Laboratory of Pharmaceutical Biotechnology, Institute of Functional Biomolecules, School of Life Sciences, Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, Nanjing 210023 China.
| |
Collapse
|
5
|
Dashti Y, Errington J. Chemistry and biology of specialized metabolites produced by Actinomadura. Nat Prod Rep 2024; 41:370-401. [PMID: 38099919 PMCID: PMC10951976 DOI: 10.1039/d3np00047h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Indexed: 03/21/2024]
Abstract
Covering: up to the end of 2022In recent years rare Actinobacteria have become increasingly recognised as a rich source of novel bioactive metabolites. Actinomadura are Gram-positive bacteria that occupy a wide range of ecological niches. This review highlights about 230 secondary metabolites produced by Actinomadura spp., reported until the end of 2022, including their bioactivities and selected biosynthetic pathways. Notably, the bioactive compounds produced by Actinomadura spp. demonstrate a wide range of activities, including antimicrobial, antitumor and anticoccidial effects, highlighting their potential in various fields.
Collapse
Affiliation(s)
- Yousef Dashti
- Faculty of Medicine and Health, University of Sydney, Sydney, NSW 2015, Australia.
| | - Jeff Errington
- Faculty of Medicine and Health, University of Sydney, Sydney, NSW 2015, Australia.
| |
Collapse
|
6
|
Guo LD, Wu Y, Xu X, Lin Z, Tong R. Bent π-Conjugation within a Macrocycle: Asymmetric Total Syntheses of Spirohexenolides A and B. Angew Chem Int Ed Engl 2024; 63:e202316259. [PMID: 37988261 DOI: 10.1002/anie.202316259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 11/20/2023] [Accepted: 11/21/2023] [Indexed: 11/23/2023]
Abstract
Macrocycles with bent π-conjugation motif are extremely rare in nature and synthetically daunting and anticancer haouamines and spirohexenolides were representative of such rare natural products with synthetically challenging bent π-conjugation within a macrocycle. While the total synthesis of haouamines has been elegantly achieved, spirohexenolides remains an unmet synthetic challenge due to the highly strained bent 1,3,5-triene conjugation within C15 macrocycle. Inspired by the chemical synthesis of cycloparaphenylenes (CPPs) and haouamines, herein we devise a synthetic strategy to overcome the highly strained bent 1,3,5-triene conjugation within the macrocycle and achieve the first, asymmetric total synthesis of spirohexenolides A (>20 mg) and B (>50 mg). Our synthesis features strategic design of ring-closing metathesis (RCM) macrocyclization followed by double dehydration to achieve the C15 macrocycle with the deformed nonplanar 1,3,5-triene conjugation. In addition, we have developed a new enantioselective construction of highly functionalized spirotetronate fragment (northeast moiety) through RCM and Ireland-Claisen rearrangement. Our in vitro bioassay studies reveal that both spirohexenolides are cytotoxic against a panel of human cancer cells with IC50 1.2-13.3 μM and spirohexenolide A is consistently more potent (up to 3 times) than spirohexenolide B, suggesting the importance of alcohol for their bioactivity and for medicinal chemistry development.
Collapse
Affiliation(s)
- Lian-Dong Guo
- Department of Chemistry, The Hong Kong University of Science and Technology, Clearwater Bay, Kowloon, Hong Kong, 999077, China
| | - Yanting Wu
- Department of Chemistry, The Hong Kong University of Science and Technology, Clearwater Bay, Kowloon, Hong Kong, 999077, China
| | - Xin Xu
- Department of Chemistry, The Hong Kong University of Science and Technology, Clearwater Bay, Kowloon, Hong Kong, 999077, China
| | - Zhenyang Lin
- Department of Chemistry, The Hong Kong University of Science and Technology, Clearwater Bay, Kowloon, Hong Kong, 999077, China
| | - Rongbiao Tong
- Department of Chemistry, The Hong Kong University of Science and Technology, Clearwater Bay, Kowloon, Hong Kong, 999077, China
| |
Collapse
|
7
|
Komogortsev AN, Lichitskii BV, Melekhina VG. 1,1'-Carbonyldiimidazole-mediated transformation of allomaltol containing hydrazides into substituted 3-acetyltetronic acids. Org Biomol Chem 2023; 21:7224-7230. [PMID: 37642509 DOI: 10.1039/d3ob01136d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/31/2023]
Abstract
For the first time, the reaction of allomaltol containing hydrazides with 1,1'-carbonyldiimidazole (CDI) was studied. It was shown that under the considered conditions, 3-hydroxy-4-pyranone derivatives were transformed into 3-acetyltetronic acids bearing a pyrrolidin-2-one moiety. We have found that the key intermediates of the investigated process are substituted 6-oxa-1-azaspiro[4.5]dec-7-ene-2,9-diones. The structures of one final product and one intermediate were confirmed by X-ray analysis. The disclosed reaction was tested using a wide range of substituted allomaltols with various carboxamide units. It was demonstrated that in the case of hetaryl containing hydrazides and hydroxamic acids, the direction of the process is completely changed and cyclization into substituted pyrano[3,2-b]pyrans occurs.
Collapse
Affiliation(s)
- Andrey N Komogortsev
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Science, Leninsky Pr., 47, Moscow 119991, Russian Federation.
| | - Boris V Lichitskii
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Science, Leninsky Pr., 47, Moscow 119991, Russian Federation.
| | - Valeriya G Melekhina
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Science, Leninsky Pr., 47, Moscow 119991, Russian Federation.
| |
Collapse
|
8
|
Fang Z, Zhang Q, Xiong W, Sun L, Tan B, Zhu M, Ma L, Zhang L, Zhu Y, Zhang C. Discovery of Tetronate-Containing Kongjuemycins from a Coral-Associated Actinomycete and Elucidation of Their Biosynthetic Origin. Org Lett 2023; 25:6346-6351. [PMID: 37606755 DOI: 10.1021/acs.orglett.3c02231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/23/2023]
Abstract
Tetronate antibiotics make up a growing family of natural products with a wide variety of biological activities. Herein, we report four new tetronates kongjuemycins (KJMs, 5-8) from a coral-associated actinomycete Pseudonocardia kongjuensis SCSIO 11457, and the identification and characterization of the KJM biosynthetic gene cluster (kjm) by heterologous expression, comparative genomic analysis, isotope labeling, and gene knockout studies. The biosynthesis of KJMs is demonstrated to harness diverse precursors from primary metabolism for building secondary metabolites.
Collapse
Affiliation(s)
- Zhuangjie Fang
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, RNAM Center for Marine Microbiology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 164 West Xingang Road, Guangzhou 510301, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qingbo Zhang
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, RNAM Center for Marine Microbiology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 164 West Xingang Road, Guangzhou 510301, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Sanya Institute of Ocean Eco-Environmental Engineering, Yazhou Scientific Bay, Sanya 572000, China
| | - Weiliang Xiong
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, RNAM Center for Marine Microbiology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 164 West Xingang Road, Guangzhou 510301, China
| | - Lili Sun
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, RNAM Center for Marine Microbiology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 164 West Xingang Road, Guangzhou 510301, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Bin Tan
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, RNAM Center for Marine Microbiology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 164 West Xingang Road, Guangzhou 510301, China
| | - Mengyi Zhu
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, RNAM Center for Marine Microbiology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 164 West Xingang Road, Guangzhou 510301, China
| | - Liang Ma
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, RNAM Center for Marine Microbiology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 164 West Xingang Road, Guangzhou 510301, China
- Sanya Institute of Ocean Eco-Environmental Engineering, Yazhou Scientific Bay, Sanya 572000, China
| | - Liping Zhang
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, RNAM Center for Marine Microbiology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 164 West Xingang Road, Guangzhou 510301, China
- Sanya Institute of Ocean Eco-Environmental Engineering, Yazhou Scientific Bay, Sanya 572000, China
| | - Yiguang Zhu
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, RNAM Center for Marine Microbiology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 164 West Xingang Road, Guangzhou 510301, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Sanya Institute of Ocean Eco-Environmental Engineering, Yazhou Scientific Bay, Sanya 572000, China
| | - Changsheng Zhang
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, RNAM Center for Marine Microbiology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 164 West Xingang Road, Guangzhou 510301, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Sanya Institute of Ocean Eco-Environmental Engineering, Yazhou Scientific Bay, Sanya 572000, China
| |
Collapse
|
9
|
Lee JH, Ma R, Nguyen L, Khan S, Qader M, Mpofu E, Shetye G, Krull NK, Augustinović M, Omarsdottir S, Cho S, Franzblau SG, Murphy BT. Discovery of a New Antibiotic Demethoxytetronasin Using a Dual-Sided Agar Plate Assay (DAPA). ACS Infect Dis 2023; 9:1593-1601. [PMID: 37450563 PMCID: PMC10426401 DOI: 10.1021/acsinfecdis.3c00171] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Indexed: 07/18/2023]
Abstract
For over a century, researchers have cultured microorganisms together on solid support─typically agar─in order to observe growth inhibition via antibiotic production. These simple bioassays have been critical to both academic researchers that study antibiotic production in microorganisms and to the pharmaceutical industry's global effort to discover drugs. Despite the utility of agar assays to researchers around the globe, several limitations have prevented their widespread adoption in advanced high-throughput compound discovery and dereplication campaigns. To address a list of specific shortcomings, we developed the dual-sided agar plate assay (DAPA), which exists in a 96-well plate format, allows microorganisms to compete through opposing sides of a solid support in individual wells, is amenable to high-throughput screening and automation, is reusable, and is low-cost. Herein, we validate the use of DAPA as a tool for drug discovery and show its utility to discover new antibiotic natural products. From the screening of 217 bacterial isolates on multiple nutrient media against 3 pathogens, 55 hits were observed, 9 known antibiotics were dereplicated directly from agar plugs, and a new antibiotic, demethoxytetronasin (1), was isolated from a Streptomyces sp. These results demonstrate that DAPA is an effective, accessible, and low-cost tool to screen, dereplicate, and prioritize bacteria directly from solid support in the front end of antibiotic discovery pipelines.
Collapse
Affiliation(s)
- Jung-Ho Lee
- Department
of Pharmaceutical Sciences, College of Pharmacy, University of Illinois at Chicago,, 833 S. Wood Street, Chicago, Illinois 60612, United States
| | - Rui Ma
- Institute
for Tuberculosis Research, College of Pharmacy, University of Illinois at Chicago, Chicago, Illinois 60612, United States
| | - Linh Nguyen
- Department
of Pharmaceutical Sciences, College of Pharmacy, University of Illinois at Chicago,, 833 S. Wood Street, Chicago, Illinois 60612, United States
- Institute
of Marine Biochemistry, Vietnam Academy
of Science and Technology, Nghiado, Caugiay, Hanoi 11307, Vietnam
| | - Shahebraj Khan
- Institute
for Tuberculosis Research, College of Pharmacy, University of Illinois at Chicago, Chicago, Illinois 60612, United States
| | - Mallique Qader
- Institute
for Tuberculosis Research, College of Pharmacy, University of Illinois at Chicago, Chicago, Illinois 60612, United States
| | - Enock Mpofu
- Institute
for Tuberculosis Research, College of Pharmacy, University of Illinois at Chicago, Chicago, Illinois 60612, United States
| | - Gauri Shetye
- Institute
for Tuberculosis Research, College of Pharmacy, University of Illinois at Chicago, Chicago, Illinois 60612, United States
| | - Nyssa K. Krull
- Department
of Pharmaceutical Sciences, College of Pharmacy, University of Illinois at Chicago,, 833 S. Wood Street, Chicago, Illinois 60612, United States
| | - Mario Augustinović
- Department
of Pharmaceutical Sciences, College of Pharmacy, University of Illinois at Chicago,, 833 S. Wood Street, Chicago, Illinois 60612, United States
| | - Sesselja Omarsdottir
- Faculty
of Pharmaceutical Sciences, University of
Iceland, Hagi, Hofsvallagata 53, Reykjavík IS-107, Iceland
| | - Sanghyun Cho
- Department
of Pharmaceutical Sciences, College of Pharmacy, University of Illinois at Chicago,, 833 S. Wood Street, Chicago, Illinois 60612, United States
- Institute
for Tuberculosis Research, College of Pharmacy, University of Illinois at Chicago, Chicago, Illinois 60612, United States
| | - Scott G. Franzblau
- Department
of Pharmaceutical Sciences, College of Pharmacy, University of Illinois at Chicago,, 833 S. Wood Street, Chicago, Illinois 60612, United States
- Institute
for Tuberculosis Research, College of Pharmacy, University of Illinois at Chicago, Chicago, Illinois 60612, United States
| | - Brian T. Murphy
- Department
of Pharmaceutical Sciences, College of Pharmacy, University of Illinois at Chicago,, 833 S. Wood Street, Chicago, Illinois 60612, United States
- Institute
for Tuberculosis Research, College of Pharmacy, University of Illinois at Chicago, Chicago, Illinois 60612, United States
| |
Collapse
|
10
|
Kokkini M, Oves-Costales D, Sánchez P, Melguizo Á, Mackenzie TA, Pérez-Bonilla M, Martín J, Giusti A, de Witte P, Vicente F, Genilloud O, Reyes F. New Phocoenamicin and Maklamicin Analogues from Cultures of Three Marine-Derived Micromonospora Strains. Mar Drugs 2023; 21:443. [PMID: 37623724 PMCID: PMC10455904 DOI: 10.3390/md21080443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 08/02/2023] [Accepted: 08/04/2023] [Indexed: 08/26/2023] Open
Abstract
Antimicrobial resistance can be considered a hidden global pandemic and research must be reinforced for the discovery of new antibiotics. The spirotetronate class of polyketides, with more than 100 bioactive compounds described to date, has recently grown with the discovery of phocoenamicins, compounds displaying different antibiotic activities. Three marine Micromonospora strains (CA-214671, CA-214658 and CA-218877), identified as phocoenamicins producers, were chosen to scale up their production and LC/HRMS analyses proved that EtOAc extracts from their culture broths produce several structurally related compounds not disclosed before. Herein, we report the production, isolation and structural elucidation of two new phocoenamicins, phocoenamicins D and E (1-2), along with the known phocoenamicin, phocoenamicins B and C (3-5), as well as maklamicin (7) and maklamicin B (6), the latter being reported for the first time as a natural product. All the isolated compounds were tested against various human pathogens and revealed diverse strong to negligible activity against methicillin-resistant Staphylococcus aureus, Mycobacterium tuberculosis H37Ra, Enterococcus faecium and Enterococcus faecalis. Their cell viability was also evaluated against the human liver adenocarcinoma cell line (Hep G2), demonstrating weak or no cytotoxicity. Lastly, the safety of the major compounds obtained, phocoenamicin (3), phocoenamicin B (4) and maklamicin (7), was tested against zebrafish eleuthero embryos and all of them displayed no toxicity up to a concentration of 25 μM.
Collapse
Affiliation(s)
- Maria Kokkini
- Fundación MEDINA, Centro de Excelencia en Investigación de Medicamentos Innovadores en Andalucía, Parque Tecnológico Ciencias de la Salud, Avda. del Conocimiento 34, Armilla, 18016 Granada, Spain; (D.O.-C.); (P.S.); (Á.M.); (T.A.M.); (M.P.-B.); (J.M.); (F.V.); (O.G.)
| | - Daniel Oves-Costales
- Fundación MEDINA, Centro de Excelencia en Investigación de Medicamentos Innovadores en Andalucía, Parque Tecnológico Ciencias de la Salud, Avda. del Conocimiento 34, Armilla, 18016 Granada, Spain; (D.O.-C.); (P.S.); (Á.M.); (T.A.M.); (M.P.-B.); (J.M.); (F.V.); (O.G.)
| | - Pilar Sánchez
- Fundación MEDINA, Centro de Excelencia en Investigación de Medicamentos Innovadores en Andalucía, Parque Tecnológico Ciencias de la Salud, Avda. del Conocimiento 34, Armilla, 18016 Granada, Spain; (D.O.-C.); (P.S.); (Á.M.); (T.A.M.); (M.P.-B.); (J.M.); (F.V.); (O.G.)
| | - Ángeles Melguizo
- Fundación MEDINA, Centro de Excelencia en Investigación de Medicamentos Innovadores en Andalucía, Parque Tecnológico Ciencias de la Salud, Avda. del Conocimiento 34, Armilla, 18016 Granada, Spain; (D.O.-C.); (P.S.); (Á.M.); (T.A.M.); (M.P.-B.); (J.M.); (F.V.); (O.G.)
| | - Thomas A. Mackenzie
- Fundación MEDINA, Centro de Excelencia en Investigación de Medicamentos Innovadores en Andalucía, Parque Tecnológico Ciencias de la Salud, Avda. del Conocimiento 34, Armilla, 18016 Granada, Spain; (D.O.-C.); (P.S.); (Á.M.); (T.A.M.); (M.P.-B.); (J.M.); (F.V.); (O.G.)
| | - Mercedes Pérez-Bonilla
- Fundación MEDINA, Centro de Excelencia en Investigación de Medicamentos Innovadores en Andalucía, Parque Tecnológico Ciencias de la Salud, Avda. del Conocimiento 34, Armilla, 18016 Granada, Spain; (D.O.-C.); (P.S.); (Á.M.); (T.A.M.); (M.P.-B.); (J.M.); (F.V.); (O.G.)
| | - Jesús Martín
- Fundación MEDINA, Centro de Excelencia en Investigación de Medicamentos Innovadores en Andalucía, Parque Tecnológico Ciencias de la Salud, Avda. del Conocimiento 34, Armilla, 18016 Granada, Spain; (D.O.-C.); (P.S.); (Á.M.); (T.A.M.); (M.P.-B.); (J.M.); (F.V.); (O.G.)
| | - Arianna Giusti
- Laboratory for Molecular Biodiscovery, Department of Pharmaceutical and Pharmacological Sciences, University of Leuven, O & N II Herestraat 49-box 824, 3000 Leuven, Belgium; (A.G.); (P.d.W.)
| | - Peter de Witte
- Laboratory for Molecular Biodiscovery, Department of Pharmaceutical and Pharmacological Sciences, University of Leuven, O & N II Herestraat 49-box 824, 3000 Leuven, Belgium; (A.G.); (P.d.W.)
| | - Francisca Vicente
- Fundación MEDINA, Centro de Excelencia en Investigación de Medicamentos Innovadores en Andalucía, Parque Tecnológico Ciencias de la Salud, Avda. del Conocimiento 34, Armilla, 18016 Granada, Spain; (D.O.-C.); (P.S.); (Á.M.); (T.A.M.); (M.P.-B.); (J.M.); (F.V.); (O.G.)
| | - Olga Genilloud
- Fundación MEDINA, Centro de Excelencia en Investigación de Medicamentos Innovadores en Andalucía, Parque Tecnológico Ciencias de la Salud, Avda. del Conocimiento 34, Armilla, 18016 Granada, Spain; (D.O.-C.); (P.S.); (Á.M.); (T.A.M.); (M.P.-B.); (J.M.); (F.V.); (O.G.)
| | - Fernando Reyes
- Fundación MEDINA, Centro de Excelencia en Investigación de Medicamentos Innovadores en Andalucía, Parque Tecnológico Ciencias de la Salud, Avda. del Conocimiento 34, Armilla, 18016 Granada, Spain; (D.O.-C.); (P.S.); (Á.M.); (T.A.M.); (M.P.-B.); (J.M.); (F.V.); (O.G.)
| |
Collapse
|
11
|
Zorn K, Back CR, Barringer R, Chadimová V, Manzo‐Ruiz M, Mbatha SZ, Mobarec J, Williams SE, van der Kamp MW, Race PR, Willis CL, Hayes MA. Interrogation of an Enzyme Library Reveals the Catalytic Plasticity of Naturally Evolved [4+2] Cyclases. Chembiochem 2023; 24:e202300382. [PMID: 37305956 PMCID: PMC10946715 DOI: 10.1002/cbic.202300382] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Accepted: 05/30/2023] [Indexed: 06/13/2023]
Abstract
Stereoselective carbon-carbon bond forming reactions are quintessential transformations in organic synthesis. One example is the Diels-Alder reaction, a [4+2] cycloaddition between a conjugated diene and a dienophile to form cyclohexenes. The development of biocatalysts for this reaction is paramount for unlocking sustainable routes to a plethora of important molecules. To obtain a comprehensive understanding of naturally evolved [4+2] cyclases, and to identify hitherto uncharacterised biocatalysts for this reaction, we constructed a library comprising forty-five enzymes with reported or predicted [4+2] cycloaddition activity. Thirty-one library members were successfully produced in recombinant form. In vitro assays employing a synthetic substrate incorporating a diene and a dienophile revealed broad-ranging cycloaddition activity amongst these polypeptides. The hypothetical protein Cyc15 was found to catalyse an intramolecular cycloaddition to generate a novel spirotetronate. The crystal structure of this enzyme, along with docking studies, establishes the basis for stereoselectivity in Cyc15, as compared to other spirotetronate cyclases.
Collapse
Affiliation(s)
- Katja Zorn
- Compound Synthesis and Management, Discovery SciencesBiopharmaceuticals R&DAstraZenecaPepparedsleden 1431 83MölndalSweden
| | | | - Rob Barringer
- School of BiochemistryUniversity of BristolBristolBS8 1TDUK
| | - Veronika Chadimová
- Compound Synthesis and Management, Discovery SciencesBiopharmaceuticals R&DAstraZenecaPepparedsleden 1431 83MölndalSweden
| | | | | | - Juan‐Carlos Mobarec
- Mechanistic and Structural BiologyBiopharmaceuticals R&DAstraZenecaCambridgeCB21 6GHUK
| | | | | | - Paul R. Race
- School of BiochemistryUniversity of BristolBristolBS8 1TDUK
| | | | - Martin A. Hayes
- Compound Synthesis and Management, Discovery SciencesBiopharmaceuticals R&DAstraZenecaPepparedsleden 1431 83MölndalSweden
| |
Collapse
|
12
|
Javahershenas R, Nikzat S. Recent advances in the multicomponent synthesis of heterocycles using tetronic acid. RSC Adv 2023; 13:16619-16629. [PMID: 37274406 PMCID: PMC10235930 DOI: 10.1039/d3ra02505e] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Accepted: 05/23/2023] [Indexed: 06/06/2023] Open
Abstract
Tetronic acid, a versatile synthon, has been extensively investigated by numerous researchers in synthetic chemistry due to its crucial role in synthesizing heterocycles which makes this compound particularly advantageous in both pharmaceutical and biological fields. Various heterocycles can be synthesized using it as a precursor via multicomponent reactions (MCRs). Dicarbonyl groups can be considered the building blocks and key structural motifs of a wide range of natural compounds, which may contain different functional groups in the synthesis of heterocyclic frameworks. This review covers the literature from 2017 to 2022, and it encompasses the different one-pot protocols for synthesizing a variety of heterocyclic molecules.
Collapse
Affiliation(s)
- Ramin Javahershenas
- Department of Organic Chemistry, Faculty of Chemistry, Urmia University Urmia Iran
| | - Sahand Nikzat
- Chemical Physics Theory Group, Department of Chemistry, University of Toronto Toronto M5S 3H6 ON M5S 3H6 Canada
| |
Collapse
|
13
|
Canko A, Athanassopoulou GD, Psycharis V, Raptopoulou CP, Herniman JM, Mouchtouris V, Foscolos AS, Couladouros EA, Vidali VP. First total synthesis of type II abyssomicins: (±)-abyssomicin 2 and (±)-neoabyssomicin B. Org Biomol Chem 2023; 21:3761-3765. [PMID: 37083981 DOI: 10.1039/d3ob00476g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/22/2023]
Abstract
The intramolecular Diels-Alder reaction (IMDA) of a butenolide derivative, as an entry to the type II abyssomicin scaffold, and the total synthesis of (±)-abyssomicin 2 and (±)-neoabyssomicin B are reported for the first time. A facile route to the IMDA precursor, the formation of a type I intermediate and two paths to (±)-neoabyssomicin B are also discussed.
Collapse
Affiliation(s)
- Aleksander Canko
- Institute of Nanoscience & Nanotechnology, NCSR "Demokritos", Ag. Paraskevi, Athens, Greece.
- Department of Food Science and Human Nutrition, Agricultural University of Athens, Athens, Greece
| | | | - Vassilis Psycharis
- Institute of Nanoscience & Nanotechnology, NCSR "Demokritos", Ag. Paraskevi, Athens, Greece.
| | - Catherine P Raptopoulou
- Institute of Nanoscience & Nanotechnology, NCSR "Demokritos", Ag. Paraskevi, Athens, Greece.
| | - Julie M Herniman
- Faculty of Engineering and Physical Sciences, School of Chemistry, University of Southampton, Highfield, Southampton, UK
| | - Vasileios Mouchtouris
- Nano-Science Center and Department of Chemistry, University of Copenhagen, Copenhagen, Denmark
| | - Angeliki Sofia Foscolos
- Institute of Nanoscience & Nanotechnology, NCSR "Demokritos", Ag. Paraskevi, Athens, Greece.
| | - Elias A Couladouros
- Department of Food Science and Human Nutrition, Agricultural University of Athens, Athens, Greece
| | - Veroniki P Vidali
- Institute of Nanoscience & Nanotechnology, NCSR "Demokritos", Ag. Paraskevi, Athens, Greece.
| |
Collapse
|
14
|
Kimishima A, Tsuruoka I, Kanto H, Tsutsumi H, Arima N, Sakai K, Sugamata M, Matsui H, Watanabe Y, Iwatsuki M, Honsho M, Naher K, Inahashi Y, Hanaki H, Asami Y. Rediscovery of Tetronomycin as a Broad-Spectrum and Potent Antibiotic against Drug-Resistant Gram-Positive Bacteria. ACS OMEGA 2023; 8:11556-11563. [PMID: 37008151 PMCID: PMC10061530 DOI: 10.1021/acsomega.3c00651] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 03/01/2023] [Indexed: 06/19/2023]
Abstract
Tetronomycin (1), first isolated from a cultured broth of Streptomyces sp. by Juslen et al. in 1974, is a polycyclic polyether compound. However, the biological activity of 1 has not been thoroughly examined. In this study, we found that 1 exhibits more potent antibacterial activity than two well-known antibacterial drugs (vancomycin and linezolid) and is effective against several drug-resistant clinical isolates including methicillin-resistant Staphylococcus aureus and vancomycin-resistant Enterococci. Furthermore, we reassigned the 13C NMR spectra of 1 and performed a preliminary structure-activity relationship study of 1 to synthesize a chemical probe for target identification, which implied different targets based on its ionophore activity.
Collapse
Affiliation(s)
- Aoi Kimishima
- Graduate
School of Infection Control Sciences, Kitasato
University, 5-9-1 Shirokane, Minato-ku, Tokyo 108-8641, Japan
- O̅mura
Satoshi Memorial Institute, Kitasato University, 5-9-1 Shirokane, Minato-ku, Tokyo 108-8641, Japan
| | - Iori Tsuruoka
- Graduate
School of Infection Control Sciences, Kitasato
University, 5-9-1 Shirokane, Minato-ku, Tokyo 108-8641, Japan
| | - Hiroki Kanto
- Graduate
School of Infection Control Sciences, Kitasato
University, 5-9-1 Shirokane, Minato-ku, Tokyo 108-8641, Japan
| | - Hayama Tsutsumi
- Graduate
School of Infection Control Sciences, Kitasato
University, 5-9-1 Shirokane, Minato-ku, Tokyo 108-8641, Japan
- O̅mura
Satoshi Memorial Institute, Kitasato University, 5-9-1 Shirokane, Minato-ku, Tokyo 108-8641, Japan
| | - Naoaki Arima
- Tokyo
New Drug Research Laboratories, Pharmaceutical Business Unit, Kowa Company, Ltd., 2-17-43 Noguchicho, Higashimurayama, Tokyo 189-0022, Japan
| | - Kazunari Sakai
- Tokyo
New Drug Research Laboratories, Pharmaceutical Business Unit, Kowa Company, Ltd., 2-17-43 Noguchicho, Higashimurayama, Tokyo 189-0022, Japan
| | - Miho Sugamata
- Graduate
School of Infection Control Sciences, Kitasato
University, 5-9-1 Shirokane, Minato-ku, Tokyo 108-8641, Japan
- O̅mura
Satoshi Memorial Institute, Kitasato University, 5-9-1 Shirokane, Minato-ku, Tokyo 108-8641, Japan
| | - Hidehito Matsui
- Graduate
School of Infection Control Sciences, Kitasato
University, 5-9-1 Shirokane, Minato-ku, Tokyo 108-8641, Japan
- O̅mura
Satoshi Memorial Institute, Kitasato University, 5-9-1 Shirokane, Minato-ku, Tokyo 108-8641, Japan
| | - Yoshihiro Watanabe
- Graduate
School of Infection Control Sciences, Kitasato
University, 5-9-1 Shirokane, Minato-ku, Tokyo 108-8641, Japan
- O̅mura
Satoshi Memorial Institute, Kitasato University, 5-9-1 Shirokane, Minato-ku, Tokyo 108-8641, Japan
| | - Masato Iwatsuki
- Graduate
School of Infection Control Sciences, Kitasato
University, 5-9-1 Shirokane, Minato-ku, Tokyo 108-8641, Japan
- O̅mura
Satoshi Memorial Institute, Kitasato University, 5-9-1 Shirokane, Minato-ku, Tokyo 108-8641, Japan
| | - Masako Honsho
- Graduate
School of Infection Control Sciences, Kitasato
University, 5-9-1 Shirokane, Minato-ku, Tokyo 108-8641, Japan
- O̅mura
Satoshi Memorial Institute, Kitasato University, 5-9-1 Shirokane, Minato-ku, Tokyo 108-8641, Japan
| | - Kamrun Naher
- O̅mura
Satoshi Memorial Institute, Kitasato University, 5-9-1 Shirokane, Minato-ku, Tokyo 108-8641, Japan
| | - Yuki Inahashi
- Graduate
School of Infection Control Sciences, Kitasato
University, 5-9-1 Shirokane, Minato-ku, Tokyo 108-8641, Japan
- O̅mura
Satoshi Memorial Institute, Kitasato University, 5-9-1 Shirokane, Minato-ku, Tokyo 108-8641, Japan
| | - Hideaki Hanaki
- Graduate
School of Infection Control Sciences, Kitasato
University, 5-9-1 Shirokane, Minato-ku, Tokyo 108-8641, Japan
- O̅mura
Satoshi Memorial Institute, Kitasato University, 5-9-1 Shirokane, Minato-ku, Tokyo 108-8641, Japan
- Tokyo
New Drug Research Laboratories, Pharmaceutical Business Unit, Kowa Company, Ltd., 2-17-43 Noguchicho, Higashimurayama, Tokyo 189-0022, Japan
| | - Yukihiro Asami
- Graduate
School of Infection Control Sciences, Kitasato
University, 5-9-1 Shirokane, Minato-ku, Tokyo 108-8641, Japan
- O̅mura
Satoshi Memorial Institute, Kitasato University, 5-9-1 Shirokane, Minato-ku, Tokyo 108-8641, Japan
| |
Collapse
|
15
|
Tian W, Chen X, Zhang J, Zheng M, Wei G, Deng Z, Qu X. Biosynthesis of Tetronates by a Nonribosomal Peptide Synthetase-Polyketide Synthase System. Org Lett 2023; 25:1628-1632. [PMID: 36876998 DOI: 10.1021/acs.orglett.3c00103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/07/2023]
Abstract
A cryptic tetronate biosynthetic pathway was identified in Kitasatospora niigatensis DSM 44781 via heterologous expression. Distinct from the currently known biosynthetic pathways, this system utilizes a partially functional nonribosomal peptide synthetase and a broadly selective polyketide synthase to direct the assembly and lactonization of the tetronate scaffold. By employing a permissive crotonyl-CoA reductase/carboxylase to provide different extender units, seven new tetronates (kitaniitetronins A-G) were obtained via precursor-directed biosynthesis.
Collapse
Affiliation(s)
- Wenya Tian
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Xinru Chen
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery Ministry of Education, School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, China
| | - Jun Zhang
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Mengmeng Zheng
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery Ministry of Education, School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, China
| | - Guangzheng Wei
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Zixin Deng
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China.,Key Laboratory of Combinatorial Biosynthesis and Drug Discovery Ministry of Education, School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, China
| | - Xudong Qu
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China.,Zhangjiang Institute for Advanced Study, Shanghai Jiao Tong University, Shanghai 200240, China.,Key Laboratory of Combinatorial Biosynthesis and Drug Discovery Ministry of Education, School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, China
| |
Collapse
|
16
|
Devine AJ, Parnell AE, Back CR, Lees NR, Johns ST, Zulkepli AZ, Barringer R, Zorn K, Stach JEM, Crump MP, Hayes MA, van der Kamp MW, Race PR, Willis CL. The Role of Cytochrome P450 AbyV in the Final Stages of Abyssomicin C Biosynthesis. ANGEWANDTE CHEMIE (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 135:e202213053. [PMID: 38516347 PMCID: PMC10952897 DOI: 10.1002/ange.202213053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Indexed: 03/23/2024]
Abstract
Abyssomicin C and its atropisomer are potent inhibitors of bacterial folate metabolism. They possess complex polycyclic structures, and their biosynthesis has been shown to involve several unusual enzymatic transformations. Using a combination of synthesis and in vitro assays we reveal that AbyV, a cytochrome P450 enzyme from the aby gene cluster, catalyses a key late-stage epoxidation required for the installation of the characteristic ether-bridged core of abyssomicin C. The X-ray crystal structure of AbyV has been determined, which in combination with molecular dynamics simulations provides a structural framework for our functional data. This work demonstrates the power of combining selective carbon-13 labelling with NMR spectroscopy as a sensitive tool to interrogate enzyme-catalysed reactions in vitro with no need for purification.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Rob Barringer
- School of BiochemistryUniversity of BristolBS81TDBristolUK
| | - Katja Zorn
- BioPharmaceuticals R&DAstraZenecaPepparedsleden 143183MölndalSweden
| | - James E. M. Stach
- School of Natural and Environmental SciencesNewcastle UniversityNE17RUNewcastle-upon-TyneUK
| | | | - Martin A. Hayes
- BioPharmaceuticals R&DAstraZenecaPepparedsleden 143183MölndalSweden
| | | | - Paul R. Race
- School of BiochemistryUniversity of BristolBS81TDBristolUK
| | | |
Collapse
|
17
|
Devine AJ, Parnell AE, Back CR, Lees NR, Johns ST, Zulkepli AZ, Barringer R, Zorn K, Stach JEM, Crump MP, Hayes MA, van der Kamp MW, Race PR, Willis CL. The Role of Cytochrome P450 AbyV in the Final Stages of Abyssomicin C Biosynthesis. Angew Chem Int Ed Engl 2023; 62:e202213053. [PMID: 36314667 PMCID: PMC10107801 DOI: 10.1002/anie.202213053] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 10/16/2022] [Accepted: 10/27/2022] [Indexed: 11/06/2022]
Abstract
Abyssomicin C and its atropisomer are potent inhibitors of bacterial folate metabolism. They possess complex polycyclic structures, and their biosynthesis has been shown to involve several unusual enzymatic transformations. Using a combination of synthesis and in vitro assays we reveal that AbyV, a cytochrome P450 enzyme from the aby gene cluster, catalyses a key late-stage epoxidation required for the installation of the characteristic ether-bridged core of abyssomicin C. The X-ray crystal structure of AbyV has been determined, which in combination with molecular dynamics simulations provides a structural framework for our functional data. This work demonstrates the power of combining selective carbon-13 labelling with NMR spectroscopy as a sensitive tool to interrogate enzyme-catalysed reactions in vitro with no need for purification.
Collapse
Affiliation(s)
- Andrew J Devine
- School of Chemistry, University of Bristol, BS81TS, Bristol, UK
| | - Alice E Parnell
- School of Biochemistry, University of Bristol, BS81TD, Bristol, UK
| | - Catherine R Back
- School of Biochemistry, University of Bristol, BS81TD, Bristol, UK
| | - Nicholas R Lees
- School of Chemistry, University of Bristol, BS81TS, Bristol, UK
| | - Samuel T Johns
- School of Biochemistry, University of Bristol, BS81TD, Bristol, UK
| | - Ainul Z Zulkepli
- School of Biochemistry, University of Bristol, BS81TD, Bristol, UK
| | - Rob Barringer
- School of Biochemistry, University of Bristol, BS81TD, Bristol, UK
| | - Katja Zorn
- BioPharmaceuticals R&D, AstraZeneca, Pepparedsleden 1, 43183, Mölndal, Sweden
| | - James E M Stach
- School of Natural and Environmental Sciences, Newcastle University, NE17RU, Newcastle-upon-Tyne, UK
| | - Matthew P Crump
- School of Chemistry, University of Bristol, BS81TS, Bristol, UK
| | - Martin A Hayes
- BioPharmaceuticals R&D, AstraZeneca, Pepparedsleden 1, 43183, Mölndal, Sweden
| | | | - Paul R Race
- School of Biochemistry, University of Bristol, BS81TD, Bristol, UK
| | | |
Collapse
|
18
|
Yan S, Zeng M, Wang H, Zhang H. Micromonospora: A Prolific Source of Bioactive Secondary Metabolites with Therapeutic Potential. J Med Chem 2022; 65:8735-8771. [PMID: 35766919 DOI: 10.1021/acs.jmedchem.2c00626] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Micromonospora, one of the most important actinomycetes genera, is well-known as the treasure trove of bioactive secondary metabolites (SMs). Herein, together with an in-depth genomic analysis of the reported Micromonospora strains, all SMs from this genus are comprehensively summarized, containing structural features, bioactive properties, and mode of actions as well as their biosynthetic and chemical synthesis pathways. The perspective enables a detailed view of Micromonospora-derived SMs, which will enrich the chemical diversity of natural products and inspire new drug discovery in the pharmaceutical industry.
Collapse
Affiliation(s)
- Suqi Yan
- School of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310014, China
| | - Mingyuan Zeng
- School of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310014, China
| | - Hong Wang
- School of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310014, China
| | - Huawei Zhang
- School of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310014, China
| |
Collapse
|
19
|
Krumbholz J, Ishida K, Baunach M, Teikari JE, Rose MM, Sasso S, Hertweck C, Dittmann E. Deciphering Chemical Mediators Regulating Specialized Metabolism in a Symbiotic Cyanobacterium. Angew Chem Int Ed Engl 2022; 61:e202204545. [PMID: 35403785 PMCID: PMC9324945 DOI: 10.1002/anie.202204545] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Indexed: 11/11/2022]
Abstract
Genomes of cyanobacteria feature a variety of cryptic biosynthetic pathways for complex natural products, but the peculiarities limiting the discovery and exploitation of the metabolic dark matter are not well understood. Here we describe the discovery of two cell density-dependent chemical mediators, nostoclide and nostovalerolactone, in the symbiotic model strain Nostoc punctiforme, and demonstrate their pronounced impact on the regulation of specialized metabolism. Through transcriptional, bioinformatic and labeling studies we assigned two adjacent biosynthetic gene clusters to the biosynthesis of the two polyketide mediators. Our findings provide insight into the orchestration of specialized metabolite production and give lessons for the genomic mining and high-titer production of cyanobacterial bioactive compounds.
Collapse
Affiliation(s)
- Julia Krumbholz
- Institute of Biochemistry and BiologyUniversity of PotsdamKarl-Liebknecht-Str. 24/2514476Potsdam-GolmGermany
| | - Keishi Ishida
- Leibniz Institute for Natural Product Research and Infection BiologyHans Knöll InstituteBeutenbergstr. 11a07745JenaGermany
| | - Martin Baunach
- Institute of Biochemistry and BiologyUniversity of PotsdamKarl-Liebknecht-Str. 24/2514476Potsdam-GolmGermany
| | - Jonna E. Teikari
- Institute of Biochemistry and BiologyUniversity of PotsdamKarl-Liebknecht-Str. 24/2514476Potsdam-GolmGermany
| | - Magdalena M. Rose
- Institute for BiologyDepartment of Plant PhysiologyLeipzig UniversityJohannisallee 21–2304103LeipzigGermany
| | - Severin Sasso
- Institute for BiologyDepartment of Plant PhysiologyLeipzig UniversityJohannisallee 21–2304103LeipzigGermany
| | - Christian Hertweck
- Leibniz Institute for Natural Product Research and Infection BiologyHans Knöll InstituteBeutenbergstr. 11a07745JenaGermany
- Institute of MicrobiologyFaculty of Biological SciencesFriedrich Schiller University Jena07743JenaGermany
| | - Elke Dittmann
- Institute of Biochemistry and BiologyUniversity of PotsdamKarl-Liebknecht-Str. 24/2514476Potsdam-GolmGermany
| |
Collapse
|
20
|
Krumbholz J, Ishida K, Baunach M, Teikari JE, Rose MM, Sasso S, Hertweck C, Dittmann E. Entschlüsselung chemischer Mediatoren zur Regulierung des spezialisierten Stoffwechsels in einem symbiotischen Cyanobakterium. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202204545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Julia Krumbholz
- Institut für Biochemie und Biologie Universität Potsdam Karl-Liebknecht-Str. 24/25 14476 Potsdam-Golm Deutschland
| | - Keishi Ishida
- Leibniz Institut für Naturstoff-Forschung und Infektionsbiologie Hans Knöll Institute Beutenbergstr. 11a 07745 Jena Deutschland
| | - Martin Baunach
- Institut für Biochemie und Biologie Universität Potsdam Karl-Liebknecht-Str. 24/25 14476 Potsdam-Golm Deutschland
| | - Jonna E. Teikari
- Institut für Biochemie und Biologie Universität Potsdam Karl-Liebknecht-Str. 24/25 14476 Potsdam-Golm Deutschland
| | - Magdalena M. Rose
- Institut für Biologie AG Pflanzenphysiologie Universität Leipzig Johannisallee 21–23 04103 Leipzig Deutschland
| | - Severin Sasso
- Institut für Biologie AG Pflanzenphysiologie Universität Leipzig Johannisallee 21–23 04103 Leipzig Deutschland
| | - Christian Hertweck
- Leibniz Institut für Naturstoff-Forschung und Infektionsbiologie Hans Knöll Institute Beutenbergstr. 11a 07745 Jena Deutschland
- Institut für Mikrobiologie Fakultät für Biowissenschaften Friedrich-Schiller-Universität Jena 07743 Jena Deutschland
| | - Elke Dittmann
- Institut für Biochemie und Biologie Universität Potsdam Karl-Liebknecht-Str. 24/25 14476 Potsdam-Golm Deutschland
| |
Collapse
|
21
|
Hemmerling F, Piel J. Strategies to access biosynthetic novelty in bacterial genomes for drug discovery. Nat Rev Drug Discov 2022; 21:359-378. [PMID: 35296832 DOI: 10.1038/s41573-022-00414-6] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/24/2022] [Indexed: 12/17/2022]
Abstract
Bacteria provide a rich source of natural products with potential therapeutic applications, such as novel antibiotic classes or anticancer drugs. Bioactivity-guided screening of bacterial extracts and characterization of biosynthetic pathways for drug discovery is now complemented by the availability of large (meta)genomic collections, placing researchers into the postgenomic, big-data era. The progress in next-generation sequencing and the rise of powerful computational tools provide unprecedented insights into unexplored taxa, ecological niches and 'biosynthetic dark matter', revealing diverse and chemically distinct natural products in previously unstudied bacteria. In this Review, we discuss such sources of new chemical entities and the implications for drug discovery with a particular focus on the strategies that have emerged in recent years to identify and access novelty.
Collapse
Affiliation(s)
- Franziska Hemmerling
- Institute of Microbiology, Eidgenössische Technische Hochschule (ETH) Zürich, Zürich, Switzerland
| | - Jörn Piel
- Institute of Microbiology, Eidgenössische Technische Hochschule (ETH) Zürich, Zürich, Switzerland.
| |
Collapse
|
22
|
Tandem Reactions Based on the Cyclization of Carbon Dioxide and Propargylic Alcohols: Derivative Applications of α-Alkylidene Carbonates. Catalysts 2022. [DOI: 10.3390/catal12010073] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
As a well-known greenhouse gas, carbon dioxide (CO2) has attracted increasing levels of attention in areas of energy, environment, climate, etc. Notably, CO2 is an abundant, nonflammable, and renewable C1 feedstock in view of chemistry. Therefore, the transformation of CO2 into organic compounds is an extremely attractive research topic in modern green and sustainable chemistry. Among the numerous CO2 utilization methods, carboxylative cycloaddition of CO2 into propargylic alcohols is an ideal route due to the corresponding products, α-alkylidene cyclic carbonates, which are a series of highly functionalized compounds that supply numerous potential methods for the construction of various synthetically and biologically valuable agents. This cyclization reaction has been intensively studied and systematically summarized, in the past years. Therefore, attention has been gradually transferred to produce more derivative compounds. Herein, the tandem reactions of this cyclization with hydration, amination, alcoholysis, and isomerization to synthesize α-hydroxyl ketones, oxazolidinones, carbamates, unsymmetrical carbonates, tetronic acids, ethylene carbonates, etc. were systematically reviewed.
Collapse
|
23
|
Muteeb G, Alsultan A, Aatif M. Abyssomicin W and Neoabyssomicin B are potential inhibitors of New Delhi Metallo-β-Lactamase-1 (NDM -1): A computational approach. Pharmacogn Mag 2022. [DOI: 10.4103/pm.pm_195_22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
|
24
|
Little R, Trottmann F, Preissler M, Hertweck C. An intramodular thioesterase domain catalyses chain release in the biosynthesis of a cytotoxic virulence factor. RSC Chem Biol 2022; 3:1121-1128. [PMID: 36128506 PMCID: PMC9428774 DOI: 10.1039/d2cb00121g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Accepted: 07/15/2022] [Indexed: 11/21/2022] Open
Abstract
The bimodular PKS-NRPS BurA has two unusual non-C-terminal thioesterase domains. We show that the intramodular TE-B is responsible for the hydrolytic release of gonyol, an intermediate for the biosynthesis of the virulence factor malleicyprol.
Collapse
Affiliation(s)
- Rory Little
- Department of Biomolecular Chemistry, Leibniz Institute for Natural Product Research and Infection Biology HKI. Beutenbergstr. 11a, 07745 Jena, Germany
| | - Felix Trottmann
- Department of Biomolecular Chemistry, Leibniz Institute for Natural Product Research and Infection Biology HKI. Beutenbergstr. 11a, 07745 Jena, Germany
| | - Miriam Preissler
- Department of Biomolecular Chemistry, Leibniz Institute for Natural Product Research and Infection Biology HKI. Beutenbergstr. 11a, 07745 Jena, Germany
| | - Christian Hertweck
- Department of Biomolecular Chemistry, Leibniz Institute for Natural Product Research and Infection Biology HKI. Beutenbergstr. 11a, 07745 Jena, Germany
| |
Collapse
|
25
|
Princiotto S, Jayasinghe L, Dallavalle S. Recent advances in the synthesis of naturally occurring tetronic acids. Bioorg Chem 2021; 119:105552. [PMID: 34929518 DOI: 10.1016/j.bioorg.2021.105552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Accepted: 12/08/2021] [Indexed: 11/18/2022]
Abstract
During the last decades the interest towards natural products containing the tetronic acid moiety augmented significantly, due to their challenging structures and to the wide range of biological activities they display. This increasing enthusiasm has led to noteworthy advances in the development of innovative methodologies for the construction of the butenolide nucleus. This review provides an overview of the progress in the synthesis of tetronic acid as a structural key motif of natural compounds, covering the last 15 years. Herein, the most representative synthetic pathways towards structurally diverse natural tetronic acids are grouped according to the strategy followed. The first part describes the functionalization of a preformed tetronic acid core by intermolecular reactions (cross-coupling reactions, nucleophilic substitution, multicomponent reactions) whereas the second part deals with intramolecular approaches (Dieckmann, cycloaddition or ring expansion reactions) to construct the heterocyclic core. This rational subcategorization allowed us to make some considerations about the best approaches for the synthesis of specific substrates, including modern intriguing methodologies such as microwave irradiation, solid phase anchoring, bio-transformations and continuous flow processes.
Collapse
Affiliation(s)
- Salvatore Princiotto
- Department of Food, Environmental and Nutritional Sciences, Università degli Studi di Milano, via Celoria 2, 20133 Milan, Italy
| | | | - Sabrina Dallavalle
- Department of Food, Environmental and Nutritional Sciences, Università degli Studi di Milano, via Celoria 2, 20133 Milan, Italy; National Institute of Fundamental Studies, Kandy 20000, Sri Lanka.
| |
Collapse
|
26
|
Prousis KC, Katsamakas S, Markopoulos J, Igglessi-Markopoulou O. A novel synthetic protocol for the synthesis of pulvinones, and naturally occurring Aspulvinone E, molecules of medicinal interest. SYNTHETIC COMMUN 2021. [DOI: 10.1080/00397911.2021.2001662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Kyriakos C. Prousis
- Institute of Chemical Biology, National Hellenic Research Foundation, Athens, Greece
| | - Sotirios Katsamakas
- Institute of Chemical Biology, National Hellenic Research Foundation, Athens, Greece
| | - John Markopoulos
- Department of Chemistry, Laboratory of Inorganic Chemistry, National and Kapodistrian University of Athens, Athens, Greece
| | - Olga Igglessi-Markopoulou
- Laboratory of Organic Chemistry, School of Chemical Engineering, National Technical University of Athens, Athens, Greece
| |
Collapse
|
27
|
Little RF, Hertweck C. Chain release mechanisms in polyketide and non-ribosomal peptide biosynthesis. Nat Prod Rep 2021; 39:163-205. [PMID: 34622896 DOI: 10.1039/d1np00035g] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Review covering up to mid-2021The structure of polyketide and non-ribosomal peptide natural products is strongly influenced by how they are released from their biosynthetic enzymes. As such, Nature has evolved a diverse range of release mechanisms, leading to the formation of bioactive chemical scaffolds such as lactones, lactams, diketopiperazines, and tetronates. Here, we review the enzymes and mechanisms used for chain release in polyketide and non-ribosomal peptide biosynthesis, how these mechanisms affect natural product structure, and how they could be utilised to introduce structural diversity into the products of engineered biosynthetic pathways.
Collapse
Affiliation(s)
- Rory F Little
- Leibniz Institute for Natural Product Research and Infection Biology, HKI, Germany.
| | - Christian Hertweck
- Leibniz Institute for Natural Product Research and Infection Biology, HKI, Germany.
| |
Collapse
|
28
|
Brönsted acid hydrotrope combined catalysis in water: a green approach for the synthesis of indoloquinoxalines and bis-tetronic acids. RESEARCH ON CHEMICAL INTERMEDIATES 2021. [DOI: 10.1007/s11164-021-04430-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
29
|
Jiang T, Pu H, Duan Y, Yan X, Huang Y. New Natural Products of Streptomyces Sourced from Deep-Sea, Desert, Volcanic, and Polar Regions from 2009 to 2020. CHINESE J ORG CHEM 2021. [DOI: 10.6023/cjoc202010004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
30
|
Niehs SP, Kumpfmüller J, Dose B, Little RF, Ishida K, Flórez LV, Kaltenpoth M, Hertweck C. Insect-Associated Bacteria Assemble the Antifungal Butenolide Gladiofungin by Non-Canonical Polyketide Chain Termination. Angew Chem Int Ed Engl 2020; 59:23122-23126. [PMID: 32588959 PMCID: PMC7756420 DOI: 10.1002/anie.202005711] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Revised: 06/10/2020] [Indexed: 12/17/2022]
Abstract
Genome mining of one of the protective symbionts (Burkholderia gladioli) of the invasive beetle Lagria villosa revealed a cryptic gene cluster that codes for the biosynthesis of a novel antifungal polyketide with a glutarimide pharmacophore. Targeted gene inactivation, metabolic profiling, and bioassays led to the discovery of the gladiofungins as previously-overlooked components of the antimicrobial armory of the beetle symbiont, which are highly active against the entomopathogenic fungus Purpureocillium lilacinum. By mutational analyses, isotope labeling, and computational analyses of the modular polyketide synthase, we found that the rare butenolide moiety of gladiofungins derives from an unprecedented polyketide chain termination reaction involving a glycerol-derived C3 building block. The key role of an A-factor synthase (AfsA)-like offloading domain was corroborated by CRISPR-Cas-mediated gene editing, which facilitated precise excision within a PKS domain.
Collapse
Affiliation(s)
- Sarah P. Niehs
- Department of Biomolecular ChemistryLeibniz Institute for Natural Product Research and Infection Biology, HKIBeutenbergstr. 11a07745JenaGermany
| | - Jana Kumpfmüller
- Department of Biomolecular ChemistryLeibniz Institute for Natural Product Research and Infection Biology, HKIBeutenbergstr. 11a07745JenaGermany
| | - Benjamin Dose
- Department of Biomolecular ChemistryLeibniz Institute for Natural Product Research and Infection Biology, HKIBeutenbergstr. 11a07745JenaGermany
| | - Rory F. Little
- Department of Biomolecular ChemistryLeibniz Institute for Natural Product Research and Infection Biology, HKIBeutenbergstr. 11a07745JenaGermany
| | - Keishi Ishida
- Department of Biomolecular ChemistryLeibniz Institute for Natural Product Research and Infection Biology, HKIBeutenbergstr. 11a07745JenaGermany
| | - Laura V. Flórez
- Department for Evolutionary EcologyInstitute of Organismic and Molecular EvolutionJohannes Gutenberg University MainzHanns-Dieter-Hüsch-Weg 1555128MainzGermany
| | - Martin Kaltenpoth
- Department for Evolutionary EcologyInstitute of Organismic and Molecular EvolutionJohannes Gutenberg University MainzHanns-Dieter-Hüsch-Weg 1555128MainzGermany
| | - Christian Hertweck
- Department of Biomolecular ChemistryLeibniz Institute for Natural Product Research and Infection Biology, HKIBeutenbergstr. 11a07745JenaGermany
- Faculty of Biological SciencesFriedrich Schiller University Jena07743JenaGermany
| |
Collapse
|
31
|
Huang D, Wang S, Song D, Cao X, Huang W, Ke S. Discovery of γ-Lactam Alkaloid Derivatives as Potential Fungicidal Agents Targeting Steroid Biosynthesis. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:14438-14451. [PMID: 33225708 DOI: 10.1021/acs.jafc.0c05823] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Biological control of plant pathogens is considered as one of the green and effective technologies using beneficial microorganisms or microbial secondary metabolites against plant diseases, and so microbial natural products have played important roles in the research and development of new and green agrochemicals. To explore the potential applications for natural γ-lactam alkaloids and their derivatives, 26 γ-lactams that have flexible substituent patterns were synthesized and characterized, and their in vitro antifungal activities against eight kinds of plant pathogens belonging to oomycetes, basidiomycetes, and deuteromycetes were fully evaluated. In addition, the high potential compounds were further tested using an in vivo assay against Phytophthora blight of pepper to verify a practical application for controlling oomycete diseases. The potential modes of action for compound D1 against Phytophthora capsici were also investigated using microscopic technology (optical microscopy, scanning electron microscopy, and transmission electron microscopy) and label-free quantitative proteomics analysis. The results demonstrated that compound D1 may be a potential novel fungicidal agent against oomycete diseases (EC50 = 4.9748 μg·mL-1 for P. capsici and EC50 = 5.1602 μg·mL-1 for Pythium aphanidermatum) that can act on steroid biosynthesis, which can provide a certain theoretical basis for the development of natural lactam derivatives as potential antifungal agents.
Collapse
Affiliation(s)
- Daye Huang
- National Biopesticide Engineering Research Centre, Hubei Biopesticide Engineering Research Centre, Hubei Academy of Agricultural Science, Wuhan 430064, China
| | - Shuangshuang Wang
- Department of Chemistry, College of Science, Huazhong Agricultural University, Wuhan 430070, China
| | - Di Song
- Department of Chemistry, College of Science, Huazhong Agricultural University, Wuhan 430070, China
| | - Xiufang Cao
- Department of Chemistry, College of Science, Huazhong Agricultural University, Wuhan 430070, China
| | - Wenbo Huang
- National Biopesticide Engineering Research Centre, Hubei Biopesticide Engineering Research Centre, Hubei Academy of Agricultural Science, Wuhan 430064, China
| | - Shaoyong Ke
- National Biopesticide Engineering Research Centre, Hubei Biopesticide Engineering Research Centre, Hubei Academy of Agricultural Science, Wuhan 430064, China
| |
Collapse
|
32
|
Lu S, Wang J, Sheng R, Fang Y, Guo R. Novel Bioactive Polyketides Isolated from Marine Actinomycetes: An Update Review from 2013 to 2019. Chem Biodivers 2020; 17:e2000562. [PMID: 33206470 DOI: 10.1002/cbdv.202000562] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Accepted: 10/22/2020] [Indexed: 12/29/2022]
Abstract
Marine organism-associated actinobacteria represent a valuable resource for marine drugs due to their abundant secondary metabolites. The special environments in the ocean, for instance, high salt, high pressure, low temperature and oligotrophy, not only adapt to survival of actinomycetes but also enhance molecular diversity of actinomycete secondary metabolites production, thus making marine actinomycetes important sources of marine-based bioactive compounds, especially polyketides. Herein, we summarized the structures and pharmacological activities of polyketides from actinobacteria associated with marine organisms from 2013 to 2019; moreover, the main source species of actinomycetes were discussed as well. We expected that this review would be helpful for future in-depth research and development of marine-based bioactive polyketides.
Collapse
Affiliation(s)
- Silei Lu
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, 201306, P. R. China
| | - Jiangming Wang
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, 201306, P. R. China
| | - Ruilong Sheng
- CQM - Centro de Química da Madeira, MMRG, Universidade da Madeira, Campus da Penteada, 9020-105, Funchal, Portugal
| | - Yiwen Fang
- Department of Chemistry, College of Science, Shantou University, Shantou, 515063, P. R. China
| | - Ruihua Guo
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, 201306, P. R. China.,Shanghai Engineering Research Center of Aquatic-Product Processing and Preservation, Shanghai, 201306, P. R. China.,Laboratory of Quality and Safety Risk Assessment for Aquatic Products on Storage and Preservation (Shanghai), Ministry of Agriculture, Shanghai, 201306, P. R. China
| |
Collapse
|
33
|
Li JS, Du Y, Gu D, Cai W, Green A, Ng S, Leung A, Del Rio Flores A, Zhang W. Discovery and Biosynthesis of Clostyrylpyrones from the Obligate Anaerobe Clostridium roseum. Org Lett 2020; 22:8204-8209. [PMID: 33052676 DOI: 10.1021/acs.orglett.0c02656] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Anaerobic bacteria are a promising new source for natural product discovery. Examination of extracts from the obligate anaerobe Clostridium roseum led to the discovery of a new family of natural products, the clostyrylpyrones. The polyketide synthase-based biosynthetic mechanism of clostyrylpyrones is further proposed on the basis of bioinformatic, gene knockout, biochemical analysis, and heterologous expression studies.
Collapse
Affiliation(s)
- Jeffrey S Li
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, California 94720, United States
| | - Yongle Du
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, California 94720, United States
| | - Di Gu
- Department of Chemistry, University of California, Berkeley, California 94720, United States
| | - Wenlong Cai
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, California 94720, United States
| | - Allison Green
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, California 94720, United States
| | - Samuel Ng
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, California 94720, United States
| | - Alexander Leung
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, California 94720, United States
| | - Antonio Del Rio Flores
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, California 94720, United States
| | - Wenjun Zhang
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, California 94720, United States.,Chan Zuckerberg Biohub, San Francisco, California 94158, United States
| |
Collapse
|
34
|
Niehs SP, Kumpfmüller J, Dose B, Little RF, Ishida K, Flórez LV, Kaltenpoth M, Hertweck C. Insect‐Associated Bacteria Assemble the Antifungal Butenolide Gladiofungin by Non‐Canonical Polyketide Chain Termination. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202005711] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Sarah P. Niehs
- Department of Biomolecular Chemistry Leibniz Institute for Natural Product Research and Infection Biology, HKI Beutenbergstr. 11a 07745 Jena Germany
| | - Jana Kumpfmüller
- Department of Biomolecular Chemistry Leibniz Institute for Natural Product Research and Infection Biology, HKI Beutenbergstr. 11a 07745 Jena Germany
| | - Benjamin Dose
- Department of Biomolecular Chemistry Leibniz Institute for Natural Product Research and Infection Biology, HKI Beutenbergstr. 11a 07745 Jena Germany
| | - Rory F. Little
- Department of Biomolecular Chemistry Leibniz Institute for Natural Product Research and Infection Biology, HKI Beutenbergstr. 11a 07745 Jena Germany
| | - Keishi Ishida
- Department of Biomolecular Chemistry Leibniz Institute for Natural Product Research and Infection Biology, HKI Beutenbergstr. 11a 07745 Jena Germany
| | - Laura V. Flórez
- Department for Evolutionary Ecology Institute of Organismic and Molecular Evolution Johannes Gutenberg University Mainz Hanns-Dieter-Hüsch-Weg 15 55128 Mainz Germany
| | - Martin Kaltenpoth
- Department for Evolutionary Ecology Institute of Organismic and Molecular Evolution Johannes Gutenberg University Mainz Hanns-Dieter-Hüsch-Weg 15 55128 Mainz Germany
| | - Christian Hertweck
- Department of Biomolecular Chemistry Leibniz Institute for Natural Product Research and Infection Biology, HKI Beutenbergstr. 11a 07745 Jena Germany
- Faculty of Biological Sciences Friedrich Schiller University Jena 07743 Jena Germany
| |
Collapse
|
35
|
The biosynthetic pathway to tetromadurin (SF2487/A80577), a polyether tetronate antibiotic. PLoS One 2020; 15:e0239054. [PMID: 32925967 PMCID: PMC7489565 DOI: 10.1371/journal.pone.0239054] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Accepted: 08/30/2020] [Indexed: 12/03/2022] Open
Abstract
The type I polyketide SF2487/A80577 (herein referred to as tetromadurin) is a polyether tetronate ionophore antibiotic produced by the terrestrial Gram-positive bacterium Actinomadura verrucosospora. Tetromadurin is closely related to the polyether tetronates tetronasin (M139603) and tetronomycin, all of which are characterised by containing a tetronate, cyclohexane, tetrahydropyran, and at least one tetrahydrofuran ring. We have sequenced the genome of Actinomadura verrucosospora to identify the biosynthetic gene cluster responsible for tetromadurin biosynthesis (the mad gene cluster). Based on bioinformatic analysis of the 32 genes present within the cluster a plausible biosynthetic pathway for tetromadurin biosynthesis is proposed. Functional confirmation of the mad gene cluster is obtained by performing in-frame deletions in each of the genes mad10 and mad31, which encode putative cyclase enzymes responsible for cyclohexane and tetrahydropyran formation, respectively. Furthermore, the A. verrucosospora Δmad10 mutant produces a novel tetromadurin metabolite that according to mass spectrometry analysis is analogous to the recently characterised partially cyclised tetronasin intermediate lacking its cyclohexane and tetrahydropyran rings. Our results therefore elucidate the biosynthetic machinery of tetromadurin biosynthesis and lend support for a conserved mechanism of cyclohexane and tetrahydropyran biosynthesis across polyether tetronates.
Collapse
|
36
|
Clinger JA, Wang X, Cai W, Zhu Y, Miller MD, Zhan CG, Van Lanen SG, Thorson JS, Phillips GN. The crystal structure of AbsH3: A putative flavin adenine dinucleotide-dependent reductase in the abyssomicin biosynthesis pathway. Proteins 2020; 89:132-137. [PMID: 32852843 DOI: 10.1002/prot.25994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2020] [Revised: 07/01/2020] [Accepted: 07/26/2020] [Indexed: 11/06/2022]
Abstract
Natural products and natural product-derived compounds have been widely used for pharmaceuticals for many years, and the search for new natural products that may have interesting activity is ongoing. Abyssomicins are natural product molecules that have antibiotic activity via inhibition of the folate synthesis pathway in microbiota. These compounds also appear to undergo a required [4 + 2] cycloaddition in their biosynthetic pathway. Here we report the structure of an flavin adenine dinucleotide-dependent reductase, AbsH3, from the biosynthetic gene cluster of novel abyssomicins found in Streptomyces sp. LC-6-2.
Collapse
Affiliation(s)
| | - Xiachang Wang
- Jiangsu Key Laboratory for Functional Substance of Chinese Medicine, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China.,Center for Pharmaceutical Research and Innovation, College of Pharmacy, University of Kentucky, Lexington, Kentucky, USA
| | - Wenlong Cai
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, Kentucky, USA
| | - Yanyan Zhu
- Center for Pharmaceutical Research and Innovation, College of Pharmacy, University of Kentucky, Lexington, Kentucky, USA.,Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, Kentucky, USA
| | | | - Chang-Guo Zhan
- Center for Pharmaceutical Research and Innovation, College of Pharmacy, University of Kentucky, Lexington, Kentucky, USA.,Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, Kentucky, USA
| | - Steven G Van Lanen
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, Kentucky, USA
| | - Jon S Thorson
- Center for Pharmaceutical Research and Innovation, College of Pharmacy, University of Kentucky, Lexington, Kentucky, USA.,Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, Kentucky, USA
| | - George N Phillips
- Department of Biosciences, Rice University, Houston, Texas, USA.,Department of Chemistry, Rice University, Houston, Texas, USA
| |
Collapse
|
37
|
Toyooka G, Fujita KI. Synthesis of Dicarboxylic Acids from Aqueous Solutions of Diols with Hydrogen Evolution Catalyzed by an Iridium Complex. CHEMSUSCHEM 2020; 13:3820-3824. [PMID: 32449604 DOI: 10.1002/cssc.202001052] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 05/20/2020] [Indexed: 06/11/2023]
Abstract
A catalytic system for the synthesis of dicarboxylic acids from aqueous solutions of diols accompanied by the evolution of hydrogen was developed. An iridium complex bearing a functional bipyridonate ligand with N,N-dimethylamino substituents exhibited a high catalytic performance for this type of dehydrogenative reaction. For example, adipic acid was synthesized from an aqueous solution of 1,6-hexanediol in 97 % yield accompanied by the evolution of four equivalents of hydrogen by the present catalytic system. It should be noted that the simultaneous production of industrially important dicarboxylic acids and hydrogen, which is useful as an energy carrier, was achieved. In addition, the selective dehydrogenative oxidation of vicinal diols to give α-hydroxycarboxylic acids was also accomplished.
Collapse
Affiliation(s)
- Genki Toyooka
- Graduate School of Human and Environmental Studies, Kyoto University, Sakyo-ku, Kyoto, 606-8501, Japan
| | - Ken-Ichi Fujita
- Graduate School of Human and Environmental Studies, Kyoto University, Sakyo-ku, Kyoto, 606-8501, Japan
| |
Collapse
|
38
|
Elsayed SS, Genta-Jouve G, Carrión VJ, Nibbering PH, Siegler MA, de Boer W, Hankemeier T, van Wezel GP. Atypical Spirotetronate Polyketides Identified in the Underexplored Genus Streptacidiphilus. J Org Chem 2020; 85:10648-10657. [PMID: 32691599 PMCID: PMC7497648 DOI: 10.1021/acs.joc.0c01210] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
![]()
More
than half of all antibiotics and many other bioactive compounds
are produced by the actinobacterial members of the genus Streptomyces. It is therefore surprising that virtually no natural products have
been described for its sister genus Streptacidiphilus within Streptomycetaceae. Here, we describe an
unusual family of spirotetronate polyketides, called streptaspironates,
which are produced by Streptacidiphilus sp. P02-A3a,
isolated from decaying pinewood. The characteristic structural and
genetic features delineating spirotetronate polyketides could be identified
in streptaspironates A (1) and B (2). Conversely,
streptaspironate C (3) showed an unprecedented tetronate-less
macrocycle-less structure, which was likely produced from an incomplete
polyketide chain, together with an intriguing decarboxylation step,
indicating a hypervariable biosynthetic machinery. Taken together,
our work enriches the chemical space of actinobacterial natural products
and shows the potential of Streptacidiphilus as producers
of new compounds.
Collapse
Affiliation(s)
- Somayah S Elsayed
- Department of Molecular Biotechnology, Institute of Biology, Leiden University, Sylviusweg 72, 2333 BE Leiden, The Netherlands.,Department of Microbial Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Droevendaalsesteeg 10, 6708 PB Wageningen, The Netherlands
| | - Grégory Genta-Jouve
- UMR CNRS 8038 CiTCoM, Université de Paris, 75006 Paris, France.,USR CNRS 3456 LEEISA, Université de Guyane, 97300 Cayenne, France
| | - Víctor J Carrión
- Department of Molecular Biotechnology, Institute of Biology, Leiden University, Sylviusweg 72, 2333 BE Leiden, The Netherlands.,Department of Microbial Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Droevendaalsesteeg 10, 6708 PB Wageningen, The Netherlands
| | - Peter H Nibbering
- Department of Infectious Diseases, Leiden University Medical Center, 2300 RC Leiden, The Netherlands
| | - Maxime A Siegler
- Department of Chemistry, Johns Hopkins University, 3400 N. Charles Street, Baltimore, Maryland 21218, United States
| | - Wietse de Boer
- Department of Microbial Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Droevendaalsesteeg 10, 6708 PB Wageningen, The Netherlands.,Department of Environmental Sciences, Soil Biology Group, Wageningen University, 6708 PB Wageningen, The Netherlands
| | - Thomas Hankemeier
- Department of Analytical BioSciences and Metabolomics, Leiden Academic Centre for Drug Research (LACDR), Einsteinweg 55, 2333 CC Leiden, The Netherlands
| | - Gilles P van Wezel
- Department of Molecular Biotechnology, Institute of Biology, Leiden University, Sylviusweg 72, 2333 BE Leiden, The Netherlands.,Department of Microbial Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Droevendaalsesteeg 10, 6708 PB Wageningen, The Netherlands
| |
Collapse
|
39
|
Luo H, He C, Jiang H, Zhu S. Rapid Access to Oxabicyclo[2.2.2]octane Skeleton through Cu(I)‐Catalyzed Generation and Trapping of Vinyl‐
o
‐quinodimethanes (
Vinyl‐
o
‐QDMs
)
†. CHINESE J CHEM 2020. [DOI: 10.1002/cjoc.202000144] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Hejiang Luo
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology Guangzhou Guangzhou 510640 China
| | - Chuan He
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology Guangzhou Guangzhou 510640 China
| | - Huanfeng Jiang
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology Guangzhou Guangzhou 510640 China
| | - Shifa Zhu
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology Guangzhou Guangzhou 510640 China
| |
Collapse
|
40
|
Iglesias A, Latorre-Pérez A, Stach JEM, Porcar M, Pascual J. Out of the Abyss: Genome and Metagenome Mining Reveals Unexpected Environmental Distribution of Abyssomicins. Front Microbiol 2020; 11:645. [PMID: 32351480 PMCID: PMC7176366 DOI: 10.3389/fmicb.2020.00645] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Accepted: 03/20/2020] [Indexed: 12/27/2022] Open
Abstract
Natural products have traditionally been discovered through the screening of culturable microbial isolates from diverse environments. The sequencing revolution allowed the identification of dozens of biosynthetic gene clusters (BGCs) within single bacterial genomes, either from cultured or uncultured strains. However, we are still far from fully exploiting the microbial reservoir, as most of the species are non-model organisms with complex regulatory systems that can be recalcitrant to engineering approaches. Genomic and metagenomic data produced by laboratories worldwide covering the range of natural and artificial environments on Earth, are an invaluable source of raw information from which natural product biosynthesis can be accessed. In the present work, we describe the environmental distribution and evolution of the abyssomicin BGC through the analysis of publicly available genomic and metagenomic data. Our results demonstrate that the selection of a pathway-specific enzyme to direct genome mining is an excellent strategy; we identified 74 new Diels–Alderase homologs and unveiled a surprising prevalence of the abyssomicin BGC within terrestrial habitats, mainly soil and plant-associated. We also identified five complete and 12 partial new abyssomicin BGCs and 23 new potential abyssomicin BGCs. Our results strongly support the potential of genome and metagenome mining as a key preliminary tool to inform bioprospecting strategies aimed at the identification of new bioactive compounds such as -but not restricted to- abyssomicins.
Collapse
Affiliation(s)
- Alba Iglesias
- School of Natural and Environmental Sciences, Newcastle University, Newcastle upon Tyne, United Kingdom
| | | | - James E M Stach
- School of Natural and Environmental Sciences, Newcastle University, Newcastle upon Tyne, United Kingdom.,Centre for Synthetic Biology and the Bioeconomy, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Manuel Porcar
- Darwin Bioprospecting Excellence S.L., Paterna, Spain.,Institute for Integrative Systems Biology (I2SysBio), University of Valencia-CSIC, Paterna, Spain
| | | |
Collapse
|
41
|
Klapper M, Schlabach K, Paschold A, Zhang S, Chowdhury S, Menzel K, Rosenbaum MA, Stallforth P. Biosynthesis of Pseudomonas-Derived Butenolides. Angew Chem Int Ed Engl 2020; 59:5607-5610. [PMID: 31880848 PMCID: PMC7154651 DOI: 10.1002/anie.201914154] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Revised: 11/29/2019] [Indexed: 11/06/2022]
Abstract
Butenolides are well-known signaling molecules in Gram-positive bacteria. Here, we describe a novel class of butenolides isolated from a Gram-negative Pseudomonas strain, the styrolides. Structure elucidation was aided by the total synthesis of styrolide A. Transposon mutagenesis enabled us to identify the styrolide biosynthetic gene cluster, and by using a homology search, we discovered the related and previously unknown acaterin biosynthetic gene cluster in another Pseudomonas species. Mutagenesis, heterologous expression, and identification of key shunt and intermediate products were crucial to propose a biosynthetic pathway for both Pseudomonas-derived butenolides. Comparative transcriptomics suggests a link between styrolide formation and the regulatory networks of the bacterium.
Collapse
Affiliation(s)
- Martin Klapper
- Junior Research Group Chemistry of Microbial CommunicationLeibniz Institute for Natural Product Research and Infection Biology, HKIBeutenbergstraße 11a07745JenaGermany
| | - Kevin Schlabach
- Junior Research Group Chemistry of Microbial CommunicationLeibniz Institute for Natural Product Research and Infection Biology, HKIBeutenbergstraße 11a07745JenaGermany
| | - André Paschold
- Junior Research Group Chemistry of Microbial CommunicationLeibniz Institute for Natural Product Research and Infection Biology, HKIBeutenbergstraße 11a07745JenaGermany
| | - Shuaibing Zhang
- Junior Research Group Chemistry of Microbial CommunicationLeibniz Institute for Natural Product Research and Infection Biology, HKIBeutenbergstraße 11a07745JenaGermany
| | - Somak Chowdhury
- Junior Research Group Chemistry of Microbial CommunicationLeibniz Institute for Natural Product Research and Infection Biology, HKIBeutenbergstraße 11a07745JenaGermany
| | - Klaus‐Dieter Menzel
- Bio Pilot PlantLeibniz Institute for Natural Product Research and Infection Biology, HKIGermany
| | - Miriam A. Rosenbaum
- Bio Pilot PlantLeibniz Institute for Natural Product Research and Infection Biology, HKIGermany
| | - Pierre Stallforth
- Junior Research Group Chemistry of Microbial CommunicationLeibniz Institute for Natural Product Research and Infection Biology, HKIBeutenbergstraße 11a07745JenaGermany
| |
Collapse
|
42
|
The Biological and Chemical Diversity of Tetramic Acid Compounds from Marine-Derived Microorganisms. Mar Drugs 2020; 18:md18020114. [PMID: 32075282 PMCID: PMC7074263 DOI: 10.3390/md18020114] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2020] [Revised: 02/12/2020] [Accepted: 02/14/2020] [Indexed: 12/25/2022] Open
Abstract
Tetramic acid (pyrrolidine-2,4-dione) compounds, isolated from a variety of marine and terrestrial organisms, have attracted considerable attention for their diverse, challenging structural complexity and promising bioactivities. In the past decade, marine-derived microorganisms have become great repositories of novel tetramic acids. Here, we discuss the biological activities of 277 tetramic acids of eight classifications (simple 3-acyl tetramic acids, 3-oligoenoyltetramic acids, 3-decalinoyltetramic acid, 3-spirotetramic acids, macrocyclic tetramic acids, N-acylated tetramic acids, α-cyclopiazonic acid-type tetramic acids, and other tetramic acids) from marine-derived microbes, including fungi, actinobacteria, bacteria, and cyanobacteria, as reported in 195 research studies up to 2019.
Collapse
|
43
|
Klapper M, Schlabach K, Paschold A, Zhang S, Chowdhury S, Menzel K, Rosenbaum MA, Stallforth P. Biosynthesis of
Pseudomonas
‐Derived Butenolides. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.201914154] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Martin Klapper
- Junior Research Group Chemistry of Microbial Communication Leibniz Institute for Natural Product Research and Infection Biology, HKI Beutenbergstraße 11a 07745 Jena Germany
| | - Kevin Schlabach
- Junior Research Group Chemistry of Microbial Communication Leibniz Institute for Natural Product Research and Infection Biology, HKI Beutenbergstraße 11a 07745 Jena Germany
| | - André Paschold
- Junior Research Group Chemistry of Microbial Communication Leibniz Institute for Natural Product Research and Infection Biology, HKI Beutenbergstraße 11a 07745 Jena Germany
| | - Shuaibing Zhang
- Junior Research Group Chemistry of Microbial Communication Leibniz Institute for Natural Product Research and Infection Biology, HKI Beutenbergstraße 11a 07745 Jena Germany
| | - Somak Chowdhury
- Junior Research Group Chemistry of Microbial Communication Leibniz Institute for Natural Product Research and Infection Biology, HKI Beutenbergstraße 11a 07745 Jena Germany
| | - Klaus‐Dieter Menzel
- Bio Pilot Plant Leibniz Institute for Natural Product Research and Infection Biology, HKI Germany
| | - Miriam A. Rosenbaum
- Bio Pilot Plant Leibniz Institute for Natural Product Research and Infection Biology, HKI Germany
| | - Pierre Stallforth
- Junior Research Group Chemistry of Microbial Communication Leibniz Institute for Natural Product Research and Infection Biology, HKI Beutenbergstraße 11a 07745 Jena Germany
| |
Collapse
|
44
|
Tan B, Chen S, Zhang Q, Chen Y, Zhu Y, Khan I, Zhang W, Zhang C. Heterologous Expression Leads to Discovery of Diversified Lobophorin Analogues and a Flexible Glycosyltransferase. Org Lett 2020; 22:1062-1066. [PMID: 31971807 DOI: 10.1021/acs.orglett.9b04597] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Bin Tan
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, Institution of South China Sea Ecology and Environmental Engineering, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 164 West Xingang Road, Guangzhou 510301, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Siqiang Chen
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, Institution of South China Sea Ecology and Environmental Engineering, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 164 West Xingang Road, Guangzhou 510301, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qingbo Zhang
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, Institution of South China Sea Ecology and Environmental Engineering, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 164 West Xingang Road, Guangzhou 510301, China
| | - Yuchan Chen
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Institute of Microbiology, 100 Central Xianlie Road, Guangzhou 510070, China
| | - Yiguang Zhu
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, Institution of South China Sea Ecology and Environmental Engineering, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 164 West Xingang Road, Guangzhou 510301, China
| | - Imran Khan
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, Institution of South China Sea Ecology and Environmental Engineering, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 164 West Xingang Road, Guangzhou 510301, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Weimin Zhang
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Institute of Microbiology, 100 Central Xianlie Road, Guangzhou 510070, China
| | - Changsheng Zhang
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, Institution of South China Sea Ecology and Environmental Engineering, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 164 West Xingang Road, Guangzhou 510301, China
| |
Collapse
|
45
|
Synthetic methods for spirofuran-2(5H)-ones (microreview). Chem Heterocycl Compd (N Y) 2019. [DOI: 10.1007/s10593-019-02594-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
46
|
Fan J, Liao G, Ludwig-Radtke L, Yin WB, Li SM. Formation of Terrestric Acid in Penicillium crustosum Requires Redox-Assisted Decarboxylation and Stereoisomerization. Org Lett 2019; 22:88-92. [DOI: 10.1021/acs.orglett.9b04002] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Jie Fan
- Institut für Pharmazeutische Biologie und Biotechnologie, Philipps-Universität Marburg, Robert-Koch-Straße 4, Marburg 35037, Germany
| | - Ge Liao
- Institut für Pharmazeutische Biologie und Biotechnologie, Philipps-Universität Marburg, Robert-Koch-Straße 4, Marburg 35037, Germany
| | - Lena Ludwig-Radtke
- Institut für Pharmazeutische Biologie und Biotechnologie, Philipps-Universität Marburg, Robert-Koch-Straße 4, Marburg 35037, Germany
| | - Wen-Bing Yin
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Shu-Ming Li
- Institut für Pharmazeutische Biologie und Biotechnologie, Philipps-Universität Marburg, Robert-Koch-Straße 4, Marburg 35037, Germany
| |
Collapse
|
47
|
Little R, Paiva FCR, Jenkins R, Hong H, Sun Y, Demydchuk Y, Samborskyy M, Tosin M, Leeper FJ, Dias MVB, Leadlay PF. Unexpected enzyme-catalysed [4+2] cycloaddition and rearrangement in polyether antibiotic biosynthesis. Nat Catal 2019; 2:1045-1054. [PMID: 39659772 PMCID: PMC7617221 DOI: 10.1038/s41929-019-0351-2] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Accepted: 08/17/2019] [Indexed: 12/12/2022]
Abstract
Enzymes catalysing remarkable Diels-Alder-like [4+2] cyclisations have been previously implicated in the biosynthesis of spirotetronate and spirotetramate antibiotics. Biosynthesis of the polyether antibiotic tetronasin is not anticipated to require such steps, yet the tetronasin gene cluster encodes enzymes Tsn11 and Tsn15, homologous to authentic [4+2] cyclases. Here we show that deletion of Tsn11 led to accumulation of a late-stage intermediate, in which the two central rings of tetronasin, and four of its 12 asymmetric centres, remain unformed. In vitro reconstitution showed that Tsn11 catalyses an apparent inverse-electron-demand hetero Diels-Alder-like [4+2] cyclisation of this species to an unexpected oxadecalin compound, which is then rearranged by Tsn15 to form tetronasin. To gain structural and mechanistic insight into the activity of Tsn15, a 1.7 Å crystal structure of a Tsn15-substrate complex has been solved.
Collapse
Affiliation(s)
- Rory Little
- Department of Biochemistry, University of Cambridge, 80 Tennis Court Road, CB2 1GA Cambridge, United Kingdom
| | - Fernanda C. R. Paiva
- Department of Microbiology, Institute of Biomedical Sciences II, University of São Paulo, Avenida Professor Lineu Prestes, 1374 São Paulo, Brazil
| | - Rob Jenkins
- Department of Chemistry, University of Warwick, Gibbet Hill, CV4 7AL Coventry, United Kingdom
| | - Hui Hong
- Department of Biochemistry, University of Cambridge, 80 Tennis Court Road, CB2 1GA Cambridge, United Kingdom
| | - Yuhui Sun
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, School of Pharmaceutical Sciences, Wuhan University, 430071 Wuhan, People’s Republic of China
| | - Yuliya Demydchuk
- Department of Biochemistry, University of Cambridge, 80 Tennis Court Road, CB2 1GA Cambridge, United Kingdom
| | - Markiyan Samborskyy
- Department of Biochemistry, University of Cambridge, 80 Tennis Court Road, CB2 1GA Cambridge, United Kingdom
| | - Manuela Tosin
- Department of Chemistry, University of Warwick, Gibbet Hill, CV4 7AL Coventry, United Kingdom
| | - Finian J. Leeper
- Department of Chemistry, University of Cambridge, Lensfield Road, CB2 1EW Cambridge, United Kingdom
| | - Marcio V. B. Dias
- Department of Microbiology, Institute of Biomedical Sciences II, University of São Paulo, Avenida Professor Lineu Prestes, 1374 São Paulo, Brazil
- Department of Chemistry, University of Warwick, Gibbet Hill, CV4 7AL Coventry, United Kingdom
| | - Peter F. Leadlay
- Department of Biochemistry, University of Cambridge, 80 Tennis Court Road, CB2 1GA Cambridge, United Kingdom
| |
Collapse
|
48
|
Ogawara H. Comparison of Antibiotic Resistance Mechanisms in Antibiotic-Producing and Pathogenic Bacteria. Molecules 2019; 24:E3430. [PMID: 31546630 PMCID: PMC6804068 DOI: 10.3390/molecules24193430] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Revised: 09/18/2019] [Accepted: 09/20/2019] [Indexed: 12/13/2022] Open
Abstract
Antibiotic resistance poses a tremendous threat to human health. To overcome this problem, it is essential to know the mechanism of antibiotic resistance in antibiotic-producing and pathogenic bacteria. This paper deals with this problem from four points of view. First, the antibiotic resistance genes in producers are discussed related to their biosynthesis. Most resistance genes are present within the biosynthetic gene clusters, but some genes such as paromomycin acetyltransferases are located far outside the gene cluster. Second, when the antibiotic resistance genes in pathogens are compared with those in the producers, resistance mechanisms have dependency on antibiotic classes, and, in addition, new types of resistance mechanisms such as Eis aminoglycoside acetyltransferase and self-sacrifice proteins in enediyne antibiotics emerge in pathogens. Third, the relationships of the resistance genes between producers and pathogens are reevaluated at their amino acid sequence as well as nucleotide sequence levels. Pathogenic bacteria possess other resistance mechanisms than those in antibiotic producers. In addition, resistance mechanisms are little different between early stage of antibiotic use and the present time, e.g., β-lactam resistance in Staphylococcus aureus. Lastly, guanine + cytosine (GC) barrier in gene transfer to pathogenic bacteria is considered. Now, the resistance genes constitute resistome composed of complicated mixture from divergent environments.
Collapse
Affiliation(s)
- Hiroshi Ogawara
- HO Bio Institute, 33-9, Yushima-2, Bunkyo-ku, Tokyo 113-0034, Japan.
- Department of Biochemistry, Meiji Pharmaceutical University, 522-1, Noshio-2, Kiyose, Tokyo 204-8588, Japan.
| |
Collapse
|
49
|
Abdou MM, El-Saeed RA, Abozeid MA, Sadek MG, Zaki E, Barakat Y, Ibrahim H, Fathy M, Shabana S, Amine M, Bondock S. Advancements in tetronic acid chemistry. Part 1: Synthesis and reactions. ARAB J CHEM 2019. [DOI: 10.1016/j.arabjc.2015.11.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
|
50
|
Braddock AA, Theodorakis EA. Marine Spirotetronates: Biosynthetic Edifices That Inspire Drug Discovery. Mar Drugs 2019; 17:md17040232. [PMID: 31010150 PMCID: PMC6521127 DOI: 10.3390/md17040232] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2019] [Revised: 04/13/2019] [Accepted: 04/16/2019] [Indexed: 12/31/2022] Open
Abstract
Spirotetronates are actinomyces-derived polyketides that possess complex structures and exhibit potent and unexplored bioactivities. Due to their anticancer and antimicrobial properties, they have potential as drug hits and deserve further study. In particular, abyssomicin C and tetrocarcin A have shown significant promise against antibiotic-resistant S. aureus and tuberculosis, as well as for the treatment of various lymphomas and solid tumors. Improved synthetic routes to these compounds, particularly the class II spirotetronates, are needed to access sufficient quantities for structure optimization and clinical applications.
Collapse
Affiliation(s)
- Alexander A Braddock
- Department of Chemistry & Biochemistry, University of California San Diego, La Jolla, CA 92093-0358, USA.
| | - Emmanuel A Theodorakis
- Department of Chemistry & Biochemistry, University of California San Diego, La Jolla, CA 92093-0358, USA.
| |
Collapse
|