• Reference Citation Analysis
  • v
  • v
  • Find an Article
Find an Article PDF (4615863)   Today's Articles (293)   Subscriber (49393)
For: Luan F, Kleandrova VV, González-Díaz H, Ruso JM, Melo A, Speck-Planche A, Cordeiro MNDS. Computer-aided nanotoxicology: assessing cytotoxicity of nanoparticles under diverse experimental conditions by using a novel QSTR-perturbation approach. Nanoscale 2014;6:10623-10630. [PMID: 25083742 DOI: 10.1039/c4nr01285b] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [What about the content of this article? (0)] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Number Cited by Other Article(s)
1
He S, Nader K, Abarrategi JS, Bediaga H, Nocedo-Mena D, Ascencio E, Casanola-Martin GM, Castellanos-Rubio I, Insausti M, Rasulev B, Arrasate S, González-Díaz H. NANO.PTML model for read-across prediction of nanosystems in neurosciences. computational model and experimental case of study. J Nanobiotechnology 2024;22:435. [PMID: 39044265 PMCID: PMC11267683 DOI: 10.1186/s12951-024-02660-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Accepted: 06/24/2024] [Indexed: 07/25/2024]  Open
2
Maity T, Balachandran AK, Krishnamurthy LP, Nagar KL, Upadhyayula RS, Sengupta S, Maiti PK. Data-Driven Approaches to Predict Dendrimer Cytotoxicity. ACS OMEGA 2024;9:24899-24906. [PMID: 38882163 PMCID: PMC11173563 DOI: 10.1021/acsomega.4c01775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 05/10/2024] [Accepted: 05/17/2024] [Indexed: 06/18/2024]
3
Toropova AP, Toropov AA. The coefficient of conformism of a correlative prediction (CCCP): Building up reliable nano-QSPRs/QSARs for endpoints of nanoparticles in different experimental conditions encoded via quasi-SMILES. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024;927:172119. [PMID: 38569951 DOI: 10.1016/j.scitotenv.2024.172119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 03/12/2024] [Accepted: 03/29/2024] [Indexed: 04/05/2024]
4
He S, Segura Abarrategi J, Bediaga H, Arrasate S, González-Díaz H. On the additive artificial intelligence-based discovery of nanoparticle neurodegenerative disease drug delivery systems. BEILSTEIN JOURNAL OF NANOTECHNOLOGY 2024;15:535-555. [PMID: 38774585 PMCID: PMC11106676 DOI: 10.3762/bjnano.15.47] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Accepted: 04/23/2024] [Indexed: 05/24/2024]
5
Gakis GP, Aviziotis IG, Charitidis CA. A structure-activity approach towards the toxicity assessment of multicomponent metal oxide nanomaterials. NANOSCALE 2023;15:16432-16446. [PMID: 37791566 DOI: 10.1039/d3nr03174h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/05/2023]
6
Ningthoujam SS, Nath R, Kityania S, Mazumder PB, Dutta Choudhury M, Talukdar AD, Nahar L, Sarker SD. R software for QSAR analysis in phytopharmacological studies. PHYTOCHEMICAL ANALYSIS : PCA 2023;34:709-728. [PMID: 37392081 DOI: 10.1002/pca.3239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2023] [Revised: 05/11/2023] [Accepted: 05/11/2023] [Indexed: 07/02/2023]
7
Furxhi I, Kalapus M, Costa A, Puzyn T. Artificial augmented dataset for the enhancement of nano-QSARs models. A methodology based on topological projections. Nanotoxicology 2023;17:529-544. [PMID: 37885250 DOI: 10.1080/17435390.2023.2268163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Accepted: 10/02/2023] [Indexed: 10/28/2023]
8
Kleandrova VV, Cordeiro MNDS, Speck-Planche A. Optimizing drug discovery using multitasking models for quantitative structure-biological effect relationships: an update of the literature. Expert Opin Drug Discov 2023;18:1231-1243. [PMID: 37639708 DOI: 10.1080/17460441.2023.2251385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Accepted: 08/21/2023] [Indexed: 08/31/2023]
9
Furxhi I, Willighagen E, Evelo C, Costa A, Gardini D, Ammar A. A data reusability assessment in the nanosafety domain based on the NSDRA framework followed by an exploratory quantitative structure activity relationships (QSAR) modeling targeting cellular viability. NANOIMPACT 2023;31:100475. [PMID: 37423508 DOI: 10.1016/j.impact.2023.100475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 07/03/2023] [Accepted: 07/04/2023] [Indexed: 07/11/2023]
10
Shirokii N, Din Y, Petrov I, Seregin Y, Sirotenko S, Razlivina J, Serov N, Vinogradov V. Quantitative Prediction of Inorganic Nanomaterial Cellular Toxicity via Machine Learning. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023;19:e2207106. [PMID: 36772908 DOI: 10.1002/smll.202207106] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 01/09/2023] [Indexed: 05/11/2023]
11
Banaye Yazdipour A, Masoorian H, Ahmadi M, Mohammadzadeh N, Ayyoubzadeh SM. Predicting the toxicity of nanoparticles using artificial intelligence tools: a systematic review. Nanotoxicology 2023;17:62-77. [PMID: 36883698 DOI: 10.1080/17435390.2023.2186279] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/09/2023]
12
Li J, Wang C, Yue L, Chen F, Cao X, Wang Z. Nano-QSAR modeling for predicting the cytotoxicity of metallic and metal oxide nanoparticles: A review. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022;243:113955. [PMID: 35961199 DOI: 10.1016/j.ecoenv.2022.113955] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 07/11/2022] [Accepted: 08/03/2022] [Indexed: 06/15/2023]
13
Computational Indicator Approach for Assessment of Nanotoxicity of Two-Dimensional Nanomaterials. NANOMATERIALS 2022;12:nano12040650. [PMID: 35214977 PMCID: PMC8879952 DOI: 10.3390/nano12040650] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/19/2021] [Revised: 01/30/2022] [Accepted: 02/11/2022] [Indexed: 12/17/2022]
14
Ji Z, Guo W, Wood EL, Liu J, Sakkiah S, Xu X, Patterson TA, Hong H. Machine Learning Models for Predicting Cytotoxicity of Nanomaterials. Chem Res Toxicol 2022;35:125-139. [PMID: 35029374 DOI: 10.1021/acs.chemrestox.1c00310] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
15
Furxhi I. Health and environmental safety of nanomaterials: O Data, Where Art Thou? NANOIMPACT 2022;25:100378. [PMID: 35559884 DOI: 10.1016/j.impact.2021.100378] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 12/15/2021] [Accepted: 12/17/2021] [Indexed: 06/15/2023]
16
Diéguez-Santana K, González-Díaz H. Towards machine learning discovery of dual antibacterial drug-nanoparticle systems. NANOSCALE 2021;13:17854-17870. [PMID: 34671801 DOI: 10.1039/d1nr04178a] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
17
Prediction of Anti-Glioblastoma Drug-Decorated Nanoparticle Delivery Systems Using Molecular Descriptors and Machine Learning. Int J Mol Sci 2021;22:ijms222111519. [PMID: 34768951 PMCID: PMC8584266 DOI: 10.3390/ijms222111519] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 10/08/2021] [Accepted: 10/22/2021] [Indexed: 12/22/2022]  Open
18
Gomes SIL, Amorim MJB, Pokhrel S, Mädler L, Fasano M, Chiavazzo E, Asinari P, Jänes J, Tämm K, Burk J, Scott-Fordsmand JJ. Machine learning and materials modelling interpretation of in vivo toxicological response to TiO2 nanoparticles library (UV and non-UV exposure). NANOSCALE 2021;13:14666-14678. [PMID: 34533558 DOI: 10.1039/d1nr03231c] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
19
Pérez Santín E, Rodríguez Solana R, González García M, García Suárez MDM, Blanco Díaz GD, Cima Cabal MD, Moreno Rojas JM, López Sánchez JI. Toxicity prediction based on artificial intelligence: A multidisciplinary overview. WIRES COMPUTATIONAL MOLECULAR SCIENCE 2021. [DOI: 10.1002/wcms.1516] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
20
Toropova AP, Toropov AA, Leszczynski J, Sizochenko N. Using quasi-SMILES for the predictive modeling of the safety of 574 metal oxide nanoparticles measured in different experimental conditions. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2021;86:103665. [PMID: 33895354 DOI: 10.1016/j.etap.2021.103665] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 03/31/2021] [Accepted: 04/20/2021] [Indexed: 06/12/2023]
21
Zhang H, Barnard AS. Impact of atomistic or crystallographic descriptors for classification of gold nanoparticles. NANOSCALE 2021;13:11887-11898. [PMID: 34190263 DOI: 10.1039/d1nr02258j] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
22
Mirzaei M, Furxhi I, Murphy F, Mullins M. A Machine Learning Tool to Predict the Antibacterial Capacity of Nanoparticles. NANOMATERIALS (BASEL, SWITZERLAND) 2021;11:1774. [PMID: 34361160 PMCID: PMC8308172 DOI: 10.3390/nano11071774] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 06/13/2021] [Accepted: 07/06/2021] [Indexed: 12/22/2022]
23
Subramanian N, Palaniappan A. NanoTox: Development of a Parsimonious In Silico Model for Toxicity Assessment of Metal-Oxide Nanoparticles Using Physicochemical Features. ACS OMEGA 2021;6:11729-11739. [PMID: 34056326 PMCID: PMC8154018 DOI: 10.1021/acsomega.1c01076] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Accepted: 04/14/2021] [Indexed: 05/30/2023]
24
Ortega-Tenezaca B, González-Díaz H. IFPTML mapping of nanoparticle antibacterial activity vs. pathogen metabolic networks. NANOSCALE 2021;13:1318-1330. [PMID: 33410431 DOI: 10.1039/d0nr07588d] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
25
Sampaio-Dias IE, Rodríguez-Borges JE, Yáñez-Pérez V, Arrasate S, Llorente J, Brea JM, Bediaga H, Viña D, Loza MI, Caamaño O, García-Mera X, González-Díaz H. Synthesis, Pharmacological, and Biological Evaluation of 2-Furoyl-Based MIF-1 Peptidomimetics and the Development of a General-Purpose Model for Allosteric Modulators (ALLOPTML). ACS Chem Neurosci 2021;12:203-215. [PMID: 33347281 DOI: 10.1021/acschemneuro.0c00687] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]  Open
26
Chan C, Du S, Dong Y, Cheng X. Computational and Experimental Approaches to Investigate Lipid Nanoparticles as Drug and Gene Delivery Systems. Curr Top Med Chem 2021;21:92-114. [PMID: 33243123 PMCID: PMC8191596 DOI: 10.2174/1568026620666201126162945] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2020] [Revised: 10/16/2020] [Accepted: 10/22/2020] [Indexed: 02/06/2023]
27
Ortega-Tenezaca B, Quevedo-Tumailli V, Bediaga H, Collados J, Arrasate S, Madariaga G, Munteanu CR, Cordeiro MND, González-Díaz H. PTML Multi-Label Algorithms: Models, Software, and Applications. Curr Top Med Chem 2020;20:2326-2337. [DOI: 10.2174/1568026620666200916122616] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 07/19/2020] [Accepted: 07/20/2020] [Indexed: 12/17/2022]
28
Cabrera-Andrade A, López-Cortés A, Munteanu CR, Pazos A, Pérez-Castillo Y, Tejera E, Arrasate S, González-Díaz H. Perturbation-Theory Machine Learning (PTML) Multilabel Model of the ChEMBL Dataset of Preclinical Assays for Antisarcoma Compounds. ACS OMEGA 2020;5:27211-27220. [PMID: 33134682 PMCID: PMC7594149 DOI: 10.1021/acsomega.0c03356] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Accepted: 10/06/2020] [Indexed: 06/11/2023]
29
Rybińska-Fryca A, Mikolajczyk A, Puzyn T. Structure-activity prediction networks (SAPNets): a step beyond Nano-QSAR for effective implementation of the safe-by-design concept. NANOSCALE 2020;12:20669-20676. [PMID: 33048104 DOI: 10.1039/d0nr05220e] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
30
Kleandrova VV, Speck-Planche A. PTML Modeling for Alzheimer’s Disease: Design and Prediction of Virtual Multi-Target Inhibitors of GSK3B, HDAC1, and HDAC6. Curr Top Med Chem 2020;20:1661-1676. [DOI: 10.2174/1568026620666200607190951] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Revised: 12/12/2019] [Accepted: 01/05/2020] [Indexed: 01/23/2023]
31
Singh AV, Ansari MHD, Rosenkranz D, Maharjan RS, Kriegel FL, Gandhi K, Kanase A, Singh R, Laux P, Luch A. Artificial Intelligence and Machine Learning in Computational Nanotoxicology: Unlocking and Empowering Nanomedicine. Adv Healthc Mater 2020;9:e1901862. [PMID: 32627972 DOI: 10.1002/adhm.201901862] [Citation(s) in RCA: 119] [Impact Index Per Article: 29.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2019] [Revised: 04/17/2020] [Indexed: 12/22/2022]
32
Urista DV, Carrué DB, Otero I, Arrasate S, Quevedo-Tumailli VF, Gestal M, González-Díaz H, Munteanu CR. Prediction of Antimalarial Drug-Decorated Nanoparticle Delivery Systems with Random Forest Models. BIOLOGY 2020;9:biology9080198. [PMID: 32751710 PMCID: PMC7465777 DOI: 10.3390/biology9080198] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 07/22/2020] [Accepted: 07/27/2020] [Indexed: 12/13/2022]
33
Furxhi I, Murphy F. Predicting In Vitro Neurotoxicity Induced by Nanoparticles Using Machine Learning. Int J Mol Sci 2020;21:E5280. [PMID: 32722414 PMCID: PMC7432486 DOI: 10.3390/ijms21155280] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 07/21/2020] [Accepted: 07/23/2020] [Indexed: 12/31/2022]  Open
34
Malaviya P, Shukal D, Vasavada AR. Nanotechnology-based Drug Delivery, Metabolism and Toxicity. Curr Drug Metab 2020;20:1167-1190. [PMID: 31902350 DOI: 10.2174/1389200221666200103091753] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Revised: 10/02/2019] [Accepted: 11/23/2019] [Indexed: 11/22/2022]
35
Santana R, Zuluaga R, Gañán P, Arrasate S, Onieva E, Montemore MM, González-Díaz H. PTML Model for Selection of Nanoparticles, Anticancer Drugs, and Vitamins in the Design of Drug-Vitamin Nanoparticle Release Systems for Cancer Cotherapy. Mol Pharm 2020;17:2612-2627. [PMID: 32459098 DOI: 10.1021/acs.molpharmaceut.0c00308] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
36
Santana R, Zuluaga R, Gañán P, Arrasate S, Onieva E, González-Díaz H. Predicting coated-nanoparticle drug release systems with perturbation-theory machine learning (PTML) models. NANOSCALE 2020;12:13471-13483. [PMID: 32613998 DOI: 10.1039/d0nr01849j] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
37
Ali I, Mukhtar SD, Ali HS, Scotti MT, Scotti L. Advances in Nanoparticles as Anticancer Drug Delivery Vector: Need of this Century. Curr Pharm Des 2020;26:1637-1649. [DOI: 10.2174/1381612826666200203124330] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Accepted: 12/02/2019] [Indexed: 12/17/2022]
38
Halder AK, Melo A, Cordeiro MNDS. A unified in silico model based on perturbation theory for assessing the genotoxicity of metal oxide nanoparticles. CHEMOSPHERE 2020;244:125489. [PMID: 31812055 DOI: 10.1016/j.chemosphere.2019.125489] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Revised: 11/19/2019] [Accepted: 11/26/2019] [Indexed: 06/10/2023]
39
Santana R, Zuluaga R, Gañán P, Arrasate S, Onieva Caracuel E, González-Díaz H. PTML Model of ChEMBL Compounds Assays for Vitamin Derivatives. ACS COMBINATORIAL SCIENCE 2020;22:129-141. [PMID: 32011854 DOI: 10.1021/acscombsci.9b00166] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
40
Furxhi I, Murphy F, Mullins M, Arvanitis A, Poland CA. Nanotoxicology data for in silico tools: a literature review. Nanotoxicology 2020;14:612-637. [PMID: 32100604 DOI: 10.1080/17435390.2020.1729439] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
41
Furxhi I, Murphy F, Mullins M, Arvanitis A, Poland CA. Practices and Trends of Machine Learning Application in Nanotoxicology. NANOMATERIALS (BASEL, SWITZERLAND) 2020;10:E116. [PMID: 31936210 PMCID: PMC7023261 DOI: 10.3390/nano10010116] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Revised: 12/31/2019] [Accepted: 01/06/2020] [Indexed: 02/07/2023]
42
Carracedo-Reboredo P, Corona R, Martinez-Nunes M, Fernandez-Lozano C, Tsiliki G, Sarimveis H, Aranzamendi E, Arrasate S, Sotomayor N, Lete E, Munteanu CR, González-Díaz H. MCDCalc: Markov Chain Molecular Descriptors Calculator for Medicinal Chemistry. Curr Top Med Chem 2019;20:305-317. [PMID: 31878856 DOI: 10.2174/1568026620666191226092431] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Revised: 09/17/2019] [Accepted: 09/17/2019] [Indexed: 11/22/2022]
43
Buglak AA, Zherdev AV, Dzantiev BB. Nano-(Q)SAR for Cytotoxicity Prediction of Engineered Nanomaterials. Molecules 2019;24:molecules24244537. [PMID: 31835808 PMCID: PMC6943593 DOI: 10.3390/molecules24244537] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 11/24/2019] [Accepted: 12/10/2019] [Indexed: 12/12/2022]  Open
44
Santana R, Onieva E, Zuluaga R, Duardo-Sánchez A, Gañán P. Machine Learning as a Proposal for a Better Application of Food Nanotechnology Regulation in the European Union. Curr Top Med Chem 2019;20:324-332. [PMID: 31804168 DOI: 10.2174/1568026619666191205152538] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Revised: 09/07/2019] [Accepted: 09/10/2019] [Indexed: 11/22/2022]
45
Santana R, Zuluaga R, Gañán P, Arrasate S, Onieva E, González-Díaz H. Designing nanoparticle release systems for drug-vitamin cancer co-therapy with multiplicative perturbation-theory machine learning (PTML) models. NANOSCALE 2019;11:21811-21823. [PMID: 31691701 DOI: 10.1039/c9nr05070a] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
46
Diez-Alarcia R, Yáñez-Pérez V, Muneta-Arrate I, Arrasate S, Lete E, Meana JJ, González-Díaz H. Big Data Challenges Targeting Proteins in GPCR Signaling Pathways; Combining PTML-ChEMBL Models and [35S]GTPγS Binding Assays. ACS Chem Neurosci 2019;10:4476-4491. [PMID: 31618004 DOI: 10.1021/acschemneuro.9b00302] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]  Open
47
Pérez-Parras Toledano J, García-Pedrajas N, Cerruela-García G. Multilabel and Missing Label Methods for Binary Quantitative Structure-Activity Relationship Models: An Application for the Prediction of Adverse Drug Reactions. J Chem Inf Model 2019;59:4120-4130. [PMID: 31514503 DOI: 10.1021/acs.jcim.9b00611] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
48
Zhang H, Mao J, Qi HZ, Ding L. In silico prediction of drug-induced developmental toxicity by using machine learning approaches. Mol Divers 2019;24:1281-1290. [PMID: 31486961 DOI: 10.1007/s11030-019-09991-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Accepted: 08/28/2019] [Indexed: 02/05/2023]
49
Vásquez-Domínguez E, Armijos-Jaramillo VD, Tejera E, González-Díaz H. Multioutput Perturbation-Theory Machine Learning (PTML) Model of ChEMBL Data for Antiretroviral Compounds. Mol Pharm 2019;16:4200-4212. [PMID: 31426639 DOI: 10.1021/acs.molpharmaceut.9b00538] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
50
Tang J, Wang Y, Li Y, Zhang Y, Zhang R, Xiao Z, Luo Y, Guo X, Tao L, Lou Y, Xue W, Zhu F. Recent Technological Advances in the Mass Spectrometry-based Nanomedicine Studies: An Insight from Nanoproteomics. Curr Pharm Des 2019;25:1536-1553. [PMID: 31258068 DOI: 10.2174/1381612825666190618123306] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Accepted: 06/11/2019] [Indexed: 11/22/2022]
PrevPage 1 of 2 12Next
© 2004-2024 Baishideng Publishing Group Inc. All rights reserved. 7041 Koll Center Parkway, Suite 160, Pleasanton, CA 94566, USA