1
|
Varzandeh M, Sabouri L, Mansouri V, Gharibshahian M, Beheshtizadeh N, Hamblin MR, Rezaei N. Application of nano-radiosensitizers in combination cancer therapy. Bioeng Transl Med 2023; 8:e10498. [PMID: 37206240 PMCID: PMC10189501 DOI: 10.1002/btm2.10498] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 11/08/2022] [Accepted: 01/27/2023] [Indexed: 02/12/2023] Open
Abstract
Radiosensitizers are compounds or nanostructures, which can improve the efficiency of ionizing radiation to kill cells. Radiosensitization increases the susceptibility of cancer cells to radiation-induced killing, while simultaneously reducing the potentially damaging effect on the cellular structure and function of the surrounding healthy tissues. Therefore, radiosensitizers are therapeutic agents used to boost the effectiveness of radiation treatment. The complexity and heterogeneity of cancer, and the multifactorial nature of its pathophysiology has led to many approaches to treatment. The effectiveness of each approach has been proven to some extent, but no definitive treatment to eradicate cancer has been discovered. The current review discusses a broad range of nano-radiosensitizers, summarizing possible combinations of radiosensitizing NPs with several other types of cancer therapy options, focusing on the benefits and drawbacks, challenges, and future prospects.
Collapse
Affiliation(s)
- Mohammad Varzandeh
- Department of Materials EngineeringIsfahan University of TechnologyIsfahanIran
| | - Leila Sabouri
- AmitisGen TECH Dev GroupTehranIran
- Regenerative Medicine Group (REMED)Universal Scientific Education and Research Network (USERN)TehranIran
| | - Vahid Mansouri
- Regenerative Medicine Group (REMED)Universal Scientific Education and Research Network (USERN)TehranIran
- Gene Therapy Research Center, Digestive Diseases Research Institute, Shariati Hospital, Tehran University of Medical SciencesTehranIran
| | - Maliheh Gharibshahian
- Regenerative Medicine Group (REMED)Universal Scientific Education and Research Network (USERN)TehranIran
- Student Research CommitteeSchool of Medicine, Shahroud University of Medical SciencesShahroudIran
| | - Nima Beheshtizadeh
- Regenerative Medicine Group (REMED)Universal Scientific Education and Research Network (USERN)TehranIran
- Department of Tissue EngineeringSchool of Advanced Technologies in Medicine, Tehran University of Medical SciencesTehranIran
| | - Michael R. Hamblin
- Laser Research Center, Faculty of Health ScienceUniversity of JohannesburgDoornfonteinSouth Africa
- Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA)Universal Scientific Education and Research Network (USERN)TehranIran
| | - Nima Rezaei
- Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA)Universal Scientific Education and Research Network (USERN)TehranIran
- Research Center for ImmunodeficienciesChildren's Medical Center, Tehran University of Medical SciencesTehranIran
- Department of ImmunologySchool of Medicine, Tehran University of Medical SciencesTehranIran
| |
Collapse
|
2
|
Spin Trapping Hydroxyl and Aryl Radicals of One-Electron Reduced Anticancer Benzotriazine 1,4-Dioxides. Molecules 2022; 27:molecules27030812. [PMID: 35164077 PMCID: PMC8840461 DOI: 10.3390/molecules27030812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 01/19/2022] [Accepted: 01/21/2022] [Indexed: 02/06/2023] Open
Abstract
Hypoxia in tumors results in resistance to both chemotherapy and radiotherapy treatments but affords an environment in which hypoxia-activated prodrugs (HAP) are activated upon bioreduction to release targeted cytotoxins. The benzotriazine 1,4-di-N-oxide (BTO) HAP, tirapazamine (TPZ, 1), has undergone extensive clinical evaluation in combination with radiotherapy to assist in the killing of hypoxic tumor cells. Although compound 1 did not gain approval for clinical use, it has spurred on the development of other BTOs, such as the 3-alkyl analogue, SN30000, 2. There is general agreement that the cytotoxin(s) from BTOs arise from the one-electron reduced form of the compounds. Identifying the cytotoxic radicals, and whether they play a role in the selective killing of hypoxic tumor cells, is important for continued development of the BTO class of anticancer prodrugs. In this study, nitrone spin-traps, combined with electron spin resonance, give evidence for the formation of aryl radicals from compounds 1, 2 and 3-phenyl analogues, compounds 3 and 4, which form carbon C-centered radicals. In addition, high concentrations of DEPMPO (5-(diethoxyphosphoryl)-5-methyl-1-pyrroline N-oxide) spin-trap the •OH radical. The combination of spin-traps with high concentrations of DMSO and methanol also give evidence for the involvement of strongly oxidizing radicals. The failure to spin-trap methyl radicals with PBN (N-tert-butylphenylnitrone) on the bioreduction of compound 2, in the presence of DMSO, implies that free •OH radicals are not released from the protonated radical anions of compound 2. The spin-trapping of •OH radicals by high concentrations of DEPMPO, and the radical species arising from DMSO and methanol give both direct and indirect evidence for the scavenging of •OH radicals that are involved in an intramolecular process. Hypoxia-selective cytotoxicity is not related to the formation of aryl radicals from the BTO compounds as they are associated with high aerobic cytotoxicity.
Collapse
|
3
|
Lecot N, Dávila B, Sánchez C, Fernández M, González M, Cabral P, Cerecetto H, Glisoni R. Development and Evaluation of 2-Amino-7-Fluorophenazine 5,10-Dioxide Polymeric Micelles as Antitumoral Agents for 4T1 Breast Cancer. Polymers (Basel) 2021; 14:71. [PMID: 35012094 PMCID: PMC8747360 DOI: 10.3390/polym14010071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 12/18/2021] [Accepted: 12/22/2021] [Indexed: 11/23/2022] Open
Abstract
2-Amino-7-fluorophenazine 5,10-dioxide (FNZ) is a bioreducible prodrug, poorly soluble in water, with potential anticancer activity on hypoxic-tumors. This poor solubility limits its potential applications in clinic. Amphiphilic pristine polymeric micelles (PMs) based on triblock copolymers Pluronic® and Tetronic®, glycosylated derivatives and their mixtures with preformed-liposomes (LPS), were analyzed as strategies to improve the bioavailability of FNZ. FNZ encapsulations were performed and the obtaining nanostructures were characterized using UV-visible spectroscopy (UV-VIS), Transmission Electron Microscopy (TEM) and Dynamic Light Scattering (DLS). The most promising nanoformulations were analyzed for their potential toxicity and pharmacologically, at 20 mg/kg FNZ-doses, in a stage-IV murine metastatic-breast tumor model. The results revealed that the solubility of the encapsulated-FNZ increased up to 14 times and the analysis (UV-VIS, DLS and TEM) confirmed the interaction between vehicles and FNZ. In all the cases appropriate encapsulation efficiencies (greater than 75%), monodisperse nanometric particle sizes (PDI = 0.180-0.335), adequate Z-potentials (-1.59 to -26.4 mV), stabilities and spherical morphologies were obtained. The in vitro profile of FNZ controlled releases corresponded mainly to a kinetic Higuchi model. The in vitro/in vivo biological studies revealed non-toxicity and relevant tumor-weight diminution (up to 61%).
Collapse
Affiliation(s)
- Nicole Lecot
- Laboratorio de Radiofarmacia, Centro de Investigaciones Nucleares, Facultad de Ciencias, Universidad de la República, Mataojo 2055, Montevideo 11400, Uruguay; (P.C.); (H.C.)
- Grupo de Química Orgánica Medicinal, Instituto de Química Biológica, Facultad de Ciencias, Universidad de la República, Mataojo 2055, Montevideo 11400, Uruguay; (B.D.); (C.S.); (M.G.)
| | - Belén Dávila
- Grupo de Química Orgánica Medicinal, Instituto de Química Biológica, Facultad de Ciencias, Universidad de la República, Mataojo 2055, Montevideo 11400, Uruguay; (B.D.); (C.S.); (M.G.)
| | - Carina Sánchez
- Grupo de Química Orgánica Medicinal, Instituto de Química Biológica, Facultad de Ciencias, Universidad de la República, Mataojo 2055, Montevideo 11400, Uruguay; (B.D.); (C.S.); (M.G.)
| | - Marcelo Fernández
- Laboratorio de Experimentación Animal, Centro de Investigaciones Nucleares, Facultad de Ciencias, Universidad de la República, Mataojo 2055, Montevideo 11400, Uruguay;
| | - Mercedes González
- Grupo de Química Orgánica Medicinal, Instituto de Química Biológica, Facultad de Ciencias, Universidad de la República, Mataojo 2055, Montevideo 11400, Uruguay; (B.D.); (C.S.); (M.G.)
| | - Pablo Cabral
- Laboratorio de Radiofarmacia, Centro de Investigaciones Nucleares, Facultad de Ciencias, Universidad de la República, Mataojo 2055, Montevideo 11400, Uruguay; (P.C.); (H.C.)
| | - Hugo Cerecetto
- Laboratorio de Radiofarmacia, Centro de Investigaciones Nucleares, Facultad de Ciencias, Universidad de la República, Mataojo 2055, Montevideo 11400, Uruguay; (P.C.); (H.C.)
- Grupo de Química Orgánica Medicinal, Instituto de Química Biológica, Facultad de Ciencias, Universidad de la República, Mataojo 2055, Montevideo 11400, Uruguay; (B.D.); (C.S.); (M.G.)
| | - Romina Glisoni
- Departamento de Tecnología Farmacéutica, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Junín 956, Buenos Aires C1113AAD, Argentina
- Instituto de Nanobiotecnología (NANOBIOTEC), CONICET-Universidad de Buenos Aires, Junín 956, Buenos Aires C1113AAD, Argentina
| |
Collapse
|
4
|
van der Wiel AM, Jackson-Patel V, Niemans R, Yaromina A, Liu E, Marcus D, Mowday AM, Lieuwes NG, Biemans R, Lin X, Fu Z, Kumara S, Jochems A, Ashoorzadeh A, Anderson RF, Hicks KO, Bull MR, Abbattista MR, Guise CP, Deschoemaeker S, Thiolloy S, Heyerick A, Solivio MJ, Balbo S, Smaill JB, Theys J, Dubois LJ, Patterson AV, Lambin P. Selectively Targeting Tumor Hypoxia With the Hypoxia-Activated Prodrug CP-506. Mol Cancer Ther 2021; 20:2372-2383. [PMID: 34625504 PMCID: PMC9398139 DOI: 10.1158/1535-7163.mct-21-0406] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 07/23/2021] [Accepted: 09/30/2021] [Indexed: 01/07/2023]
Abstract
Hypoxia-activated prodrugs (HAP) are a promising class of antineoplastic agents that can selectively eliminate hypoxic tumor cells. This study evaluates the hypoxia-selectivity and antitumor activity of CP-506, a DNA alkylating HAP with favorable pharmacologic properties. Stoichiometry of reduction, one-electron affinity, and back-oxidation rate of CP-506 were characterized by fast-reaction radiolytic methods with observed parameters fulfilling requirements for oxygen-sensitive bioactivation. Net reduction, metabolism, and cytotoxicity of CP-506 were maximally inhibited at oxygen concentrations above 1 μmol/L (0.1% O2). CP-506 demonstrated cytotoxicity selectively in hypoxic 2D and 3D cell cultures with normoxic/anoxic IC50 ratios up to 203. Complete resistance to aerobic (two-electron) metabolism by aldo-keto reductase 1C3 was confirmed through gain-of-function studies while retention of hypoxic (one-electron) bioactivation by various diflavin oxidoreductases was also demonstrated. In vivo, the antitumor effects of CP-506 were selective for hypoxic tumor cells and causally related to tumor oxygenation. CP-506 effectively decreased the hypoxic fraction and inhibited growth of a wide range of hypoxic xenografts. A multivariate regression analysis revealed baseline tumor hypoxia and in vitro sensitivity to CP-506 were significantly correlated with treatment response. Our results demonstrate that CP-506 selectively targets hypoxic tumor cells and has broad antitumor activity. Our data indicate that tumor hypoxia and cellular sensitivity to CP-506 are strong determinants of the antitumor effects of CP-506.
Collapse
Affiliation(s)
- Alexander M.A. van der Wiel
- The D-Lab and The M-Lab, Department of Precision Medicine, GROW – School for Oncology and Developmental Biology, Maastricht University, Maastricht, the Netherlands
| | - Victoria Jackson-Patel
- Auckland Cancer Society Research Centre, School of Medical Sciences, University of Auckland, Auckland, New Zealand.,Maurice Wilkins Centre for Molecular Biodiscovery, University of Auckland, Auckland, New Zealand
| | - Raymon Niemans
- The D-Lab and The M-Lab, Department of Precision Medicine, GROW – School for Oncology and Developmental Biology, Maastricht University, Maastricht, the Netherlands
| | - Ala Yaromina
- The D-Lab and The M-Lab, Department of Precision Medicine, GROW – School for Oncology and Developmental Biology, Maastricht University, Maastricht, the Netherlands
| | - Emily Liu
- Auckland Cancer Society Research Centre, School of Medical Sciences, University of Auckland, Auckland, New Zealand
| | - Damiënne Marcus
- The D-Lab and The M-Lab, Department of Precision Medicine, GROW – School for Oncology and Developmental Biology, Maastricht University, Maastricht, the Netherlands
| | - Alexandra M. Mowday
- The D-Lab and The M-Lab, Department of Precision Medicine, GROW – School for Oncology and Developmental Biology, Maastricht University, Maastricht, the Netherlands.,Auckland Cancer Society Research Centre, School of Medical Sciences, University of Auckland, Auckland, New Zealand
| | - Natasja G. Lieuwes
- The D-Lab and The M-Lab, Department of Precision Medicine, GROW – School for Oncology and Developmental Biology, Maastricht University, Maastricht, the Netherlands
| | - Rianne Biemans
- The D-Lab and The M-Lab, Department of Precision Medicine, GROW – School for Oncology and Developmental Biology, Maastricht University, Maastricht, the Netherlands
| | - Xiaojing Lin
- Auckland Cancer Society Research Centre, School of Medical Sciences, University of Auckland, Auckland, New Zealand.,Maurice Wilkins Centre for Molecular Biodiscovery, University of Auckland, Auckland, New Zealand
| | - Zhe Fu
- Auckland Cancer Society Research Centre, School of Medical Sciences, University of Auckland, Auckland, New Zealand.,Maurice Wilkins Centre for Molecular Biodiscovery, University of Auckland, Auckland, New Zealand
| | - Sisira Kumara
- Auckland Cancer Society Research Centre, School of Medical Sciences, University of Auckland, Auckland, New Zealand.,Maurice Wilkins Centre for Molecular Biodiscovery, University of Auckland, Auckland, New Zealand
| | - Arthur Jochems
- The D-Lab and The M-Lab, Department of Precision Medicine, GROW – School for Oncology and Developmental Biology, Maastricht University, Maastricht, the Netherlands
| | - Amir Ashoorzadeh
- Auckland Cancer Society Research Centre, School of Medical Sciences, University of Auckland, Auckland, New Zealand.,Maurice Wilkins Centre for Molecular Biodiscovery, University of Auckland, Auckland, New Zealand
| | - Robert F. Anderson
- Auckland Cancer Society Research Centre, School of Medical Sciences, University of Auckland, Auckland, New Zealand.,Maurice Wilkins Centre for Molecular Biodiscovery, University of Auckland, Auckland, New Zealand
| | - Kevin O. Hicks
- Auckland Cancer Society Research Centre, School of Medical Sciences, University of Auckland, Auckland, New Zealand.,Maurice Wilkins Centre for Molecular Biodiscovery, University of Auckland, Auckland, New Zealand
| | - Matthew R. Bull
- Auckland Cancer Society Research Centre, School of Medical Sciences, University of Auckland, Auckland, New Zealand.,Maurice Wilkins Centre for Molecular Biodiscovery, University of Auckland, Auckland, New Zealand
| | - Maria R. Abbattista
- Auckland Cancer Society Research Centre, School of Medical Sciences, University of Auckland, Auckland, New Zealand.,Maurice Wilkins Centre for Molecular Biodiscovery, University of Auckland, Auckland, New Zealand
| | - Christopher P. Guise
- Auckland Cancer Society Research Centre, School of Medical Sciences, University of Auckland, Auckland, New Zealand.,Maurice Wilkins Centre for Molecular Biodiscovery, University of Auckland, Auckland, New Zealand
| | | | | | | | | | - Silvia Balbo
- Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota
| | - Jeff B. Smaill
- Auckland Cancer Society Research Centre, School of Medical Sciences, University of Auckland, Auckland, New Zealand.,Maurice Wilkins Centre for Molecular Biodiscovery, University of Auckland, Auckland, New Zealand
| | - Jan Theys
- The D-Lab and The M-Lab, Department of Precision Medicine, GROW – School for Oncology and Developmental Biology, Maastricht University, Maastricht, the Netherlands
| | - Ludwig J. Dubois
- The D-Lab and The M-Lab, Department of Precision Medicine, GROW – School for Oncology and Developmental Biology, Maastricht University, Maastricht, the Netherlands
| | - Adam V. Patterson
- Auckland Cancer Society Research Centre, School of Medical Sciences, University of Auckland, Auckland, New Zealand.,Maurice Wilkins Centre for Molecular Biodiscovery, University of Auckland, Auckland, New Zealand.,Corresponding Author: Adam V. Patterson, Auckland Cancer Society Research Centre, University of Auckland, Faculty of Medicine and Health Sciences, Auckland 1142, New Zealand. E-mail:
| | - Philippe Lambin
- The D-Lab and The M-Lab, Department of Precision Medicine, GROW – School for Oncology and Developmental Biology, Maastricht University, Maastricht, the Netherlands
| |
Collapse
|
5
|
Dávila B, Sánchez C, Fernández M, Cerecetto H, Lecot N, Cabral P, Glisoni R, González M. Selective Hypoxia‐Cytotoxin 7‐Fluoro‐2‐Aminophenazine 5,10‐Dioxide: Toward “Candidate‐to‐Drug” Stage in the Drug‐Development Pipeline. ChemistrySelect 2019. [DOI: 10.1002/slct.201902601] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Belén Dávila
- Laboratorio de Química Orgánica MedicinalInstituto de Química Biológica. Facultad de CienciasUniversidad de la República. Iguá 4225 Montevideo 11400 Uruguay
| | - Carina Sánchez
- Laboratorio de Química Orgánica MedicinalInstituto de Química Biológica. Facultad de CienciasUniversidad de la República. Iguá 4225 Montevideo 11400 Uruguay
| | - Marcelo Fernández
- Laboratorio de Experimentación AnimalCentro de Investigaciones Nucleares. Facultad de CienciasUniversidad de la República. Mataojo 2055 Montevideo 11400 Uruguay
| | - Hugo Cerecetto
- Laboratorio de Química Orgánica MedicinalInstituto de Química Biológica. Facultad de CienciasUniversidad de la República. Iguá 4225 Montevideo 11400 Uruguay
- Área de RadiofarmaciaCentro de Investigaciones Nucleares. Facultad de CienciasUniversidad de la República. Mataojo 2055 Montevideo 11400 Uruguay
| | - Nicole Lecot
- Laboratorio de Química Orgánica MedicinalInstituto de Química Biológica. Facultad de CienciasUniversidad de la República. Iguá 4225 Montevideo 11400 Uruguay
- Laboratorio de Técnicas Nucleareas Aplicadas a Bioquímica y BiotecnologíaCentro de Investigaciones Nucleares. Facultad de CienciasUniversidad de la República. Mataojo 2055 Montevideo 11400 Uruguay
| | - Pablo Cabral
- Área de RadiofarmaciaCentro de Investigaciones Nucleares. Facultad de CienciasUniversidad de la República. Mataojo 2055 Montevideo 11400 Uruguay
| | - Romina Glisoni
- Departamento de Tecnología FarmacéuticaCátedra de Tecnología Farmacéutica II. CONICETInstituto de Nanobiotecnología (NANOBIOTEC). Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires
| | - Mercedes González
- Laboratorio de Química Orgánica MedicinalInstituto de Química Biológica. Facultad de CienciasUniversidad de la República. Iguá 4225 Montevideo 11400 Uruguay
| |
Collapse
|
6
|
Hay MP, Shin HN, Wong WW, Sahimi WW, Vaz ATD, Yadav P, Anderson RF, Hicks KO, Wilson WR. Benzotriazine Di-Oxide Prodrugs for Exploiting Hypoxia and Low Extracellular pH in Tumors. Molecules 2019; 24:E2524. [PMID: 31295864 PMCID: PMC6680510 DOI: 10.3390/molecules24142524] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Revised: 07/05/2019] [Accepted: 07/06/2019] [Indexed: 12/31/2022] Open
Abstract
Extracellular acidification is an important feature of tumor microenvironments but has yet to be successfully exploited in cancer therapy. The reversal of the pH gradient across the plasma membrane in cells that regulate intracellular pH (pHi) has potential to drive the selective uptake of weak acids at low extracellular pH (pHe). Here, we investigate the dual targeting of low pHe and hypoxia, another key feature of tumor microenvironments. We prepared eight bioreductive prodrugs based on the benzotriazine di-oxide (BTO) nucleus by appending alkanoic or aminoalkanoic acid sidechains. The BTO acids showed modest selectivity for both low pHe (pH 6.5 versus 7.4, ratios 2 to 5-fold) and anoxia (ratios 2 to 8-fold) in SiHa and FaDu cell cultures. Related neutral BTOs were not selective for acidosis, but had greater cytotoxic potency and hypoxic selectivity than the BTO acids. Investigation of the uptake and metabolism of representative BTO acids confirmed enhanced uptake at low pHe, but lower intracellular concentrations than expected for passive diffusion. Further, the modulation of intracellular reductase activity and competition by the cell-excluded electron acceptor WST-1 suggests that the majority of metabolic reductions of BTO acids occur at the cell surface, compromising the engagement of the resulting free radicals with intracellular targets. Thus, the present study provides support for designing bioreductive prodrugs that exploit pH-dependent partitioning, suggesting, however, that that the approach should be applied to prodrugs with obligate intracellular activation.
Collapse
Affiliation(s)
- Michael P Hay
- Auckland Cancer Society Research Centre, School of Medical Sciences, Faculty of Medical and Health Sciences, University of Auckland, Auckland 1142, New Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery, University of Auckland, Symonds St, Auckland 1142, New Zealand
| | - Hong Nam Shin
- Auckland Cancer Society Research Centre, School of Medical Sciences, Faculty of Medical and Health Sciences, University of Auckland, Auckland 1142, New Zealand
| | - Way Wua Wong
- Auckland Cancer Society Research Centre, School of Medical Sciences, Faculty of Medical and Health Sciences, University of Auckland, Auckland 1142, New Zealand
| | - Wan Wan Sahimi
- School of Chemical Sciences, University of Auckland, Auckland 1142, New Zealand
| | - Aaron T D Vaz
- Auckland Cancer Society Research Centre, School of Medical Sciences, Faculty of Medical and Health Sciences, University of Auckland, Auckland 1142, New Zealand
| | - Pooja Yadav
- Auckland Cancer Society Research Centre, School of Medical Sciences, Faculty of Medical and Health Sciences, University of Auckland, Auckland 1142, New Zealand
| | - Robert F Anderson
- Auckland Cancer Society Research Centre, School of Medical Sciences, Faculty of Medical and Health Sciences, University of Auckland, Auckland 1142, New Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery, University of Auckland, Symonds St, Auckland 1142, New Zealand
- School of Chemical Sciences, University of Auckland, Auckland 1142, New Zealand
| | - Kevin O Hicks
- Auckland Cancer Society Research Centre, School of Medical Sciences, Faculty of Medical and Health Sciences, University of Auckland, Auckland 1142, New Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery, University of Auckland, Symonds St, Auckland 1142, New Zealand
| | - William R Wilson
- Auckland Cancer Society Research Centre, School of Medical Sciences, Faculty of Medical and Health Sciences, University of Auckland, Auckland 1142, New Zealand.
- Maurice Wilkins Centre for Molecular Biodiscovery, University of Auckland, Symonds St, Auckland 1142, New Zealand.
| |
Collapse
|
7
|
Su MX, Zhang LL, Huang ZJ, Shi JJ, Lu JJ. Investigational Hypoxia-Activated Prodrugs: Making Sense of Future Development. Curr Drug Targets 2019; 20:668-678. [DOI: 10.2174/1389450120666181123122406] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Revised: 11/12/2018] [Accepted: 11/16/2018] [Indexed: 01/04/2023]
Abstract
Hypoxia, which occurs in most cancer cases, disrupts the efficacy of anticarcinogens. Fortunately,
hypoxia itself is a potential target for cancer treatment. Hypoxia-activated prodrugs (HAPs)
can be selectively activated by reductase under hypoxia. Some promising HAPs have been already
achieved, and many clinical trials of HAPs in different types of cancer are ongoing. However, none of
them has been approved in clinic to date. From the studies on HAPs began, some achievements are
obtained but more challenges are put forward. In this paper, we reviewed the research progress of
HAPs to discuss the strategies for HAPs development. According to the research status and results of
these studies, administration pattern, reductase activity, and patient selection need to be taken into
consideration to further improve the efficacy of existing HAPs. As the requirement of new drug research
and development, design of optimal preclinical models and clinical trials are quite important in
HAPs development, while different drug delivery systems and anticancer drugs with different mechanisms
can be sources of novel HAPs.
Collapse
Affiliation(s)
- Min-Xia Su
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, China
| | - Le-Le Zhang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, China
| | - Zhang-Jian Huang
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics, China Pharmaceutical University, Nanjing, China
| | - Jia-Jie Shi
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, China
| | - Jin-Jian Lu
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, China
| |
Collapse
|
8
|
Shen X, Gates KS. Enzyme-Activated Generation of Reactive Oxygen Species from Heterocyclic N-Oxides under Aerobic and Anaerobic Conditions and Its Relevance to Hypoxia-Selective Prodrugs. Chem Res Toxicol 2019; 32:348-361. [PMID: 30817135 DOI: 10.1021/acs.chemrestox.9b00036] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Enzymatic one-electron reduction of heterocyclic N-oxides can lead to the intracellular generation of reactive oxygen species via several different chemical pathways. These reactions may be relevant to hypoxia-selective anticancer drugs, antimicrobial agents, and unwanted toxicity of heterocylic nitrogen compounds.
Collapse
|
9
|
Jackson RK, Liew LP, Hay MP. Overcoming Radioresistance: Small Molecule Radiosensitisers and Hypoxia-activated Prodrugs. Clin Oncol (R Coll Radiol) 2019; 31:290-302. [PMID: 30853148 DOI: 10.1016/j.clon.2019.02.004] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Accepted: 02/12/2019] [Indexed: 12/25/2022]
Abstract
The role of hypoxia in radiation resistance is well established and many approaches to overcome hypoxia in tumours have been explored, with variable success. Two small molecule strategies for targeting hypoxia have dominated preclinical and clinical efforts. One approach has been the use of electron-affinic nitroheterocycles as oxygen-mimetic sensitisers. These agents are best exemplified by the 5-nitroimidazole nimorazole, which has limited use in conjunction with radiotherapy in head and neck squamous cell carcinoma. The second approach seeks to leverage tumour hypoxia as a tumour-specific address for hypoxia-activated prodrugs. These prodrugs are selectively activated by reductases under hypoxia to release cytotoxins, which in some instances may diffuse to kill surrounding oxic tumour tissue. A number of these hypoxia-activated prodrugs have been examined in clinical trial and the merits and shortcomings of recent examples are discussed. There has been an evolution from delivering DNA-interactive cytotoxins to molecularly targeted agents. Efforts to implement these strategies clinically continue today, but success has been elusive. Several issues have been identified that compromised these clinical campaigns. A failure to consider the extravascular transport and the micropharmacokinetic properties of the prodrugs has reduced efficacy. One key element for these 'targeted' approaches is the need to co-develop biomarkers to identify appropriate patients. Hypoxia-activated prodrugs require biomarkers for hypoxia, but also for appropriate activating reductases in tumours, as well as markers of intrinsic sensitivity to the released drug. The field is still evolving and changes in radiation delivery and the impact of immune-oncology will provide fertile ground for future innovation.
Collapse
Affiliation(s)
- R K Jackson
- Auckland Cancer Society Research Centre, School of Medical Sciences, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| | - L P Liew
- Auckland Cancer Society Research Centre, School of Medical Sciences, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand; Maurice Wilkins Centre for Molecular Biodiscovery, University of Auckland, Auckland, New Zealand
| | - M P Hay
- Auckland Cancer Society Research Centre, School of Medical Sciences, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand; Maurice Wilkins Centre for Molecular Biodiscovery, University of Auckland, Auckland, New Zealand.
| |
Collapse
|
10
|
Sharma A, Arambula JF, Koo S, Kumar R, Singh H, Sessler JL, Kim JS. Hypoxia-targeted drug delivery. Chem Soc Rev 2019; 48:771-813. [PMID: 30575832 PMCID: PMC6361706 DOI: 10.1039/c8cs00304a] [Citation(s) in RCA: 324] [Impact Index Per Article: 54.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Hypoxia is a state of low oxygen tension found in numerous solid tumours. It is typically associated with abnormal vasculature, which results in a reduced supply of oxygen and nutrients, as well as impaired delivery of drugs. The hypoxic nature of tumours often leads to the development of localized heterogeneous environments characterized by variable oxygen concentrations, relatively low pH, and increased levels of reactive oxygen species (ROS). The hypoxic heterogeneity promotes tumour invasiveness, metastasis, angiogenesis, and an increase in multidrug-resistant proteins. These factors decrease the therapeutic efficacy of anticancer drugs and can provide a barrier to advancing drug leads beyond the early stages of preclinical development. This review highlights various hypoxia-targeted and activated design strategies for the formulation of drugs or prodrugs and their mechanism of action for tumour diagnosis and treatment.
Collapse
Affiliation(s)
- Amit Sharma
- Department of Chemistry, Korea University, Seoul, 02841, Korea.
| | | | | | | | | | | | | |
Collapse
|
11
|
Mao X, McManaway S, Jaiswal JK, Patel PB, Wilson WR, Hicks KO, Bogle G. An agent-based model for drug-radiation interactions in the tumour microenvironment: Hypoxia-activated prodrug SN30000 in multicellular tumour spheroids. PLoS Comput Biol 2018; 14:e1006469. [PMID: 30356233 PMCID: PMC6218095 DOI: 10.1371/journal.pcbi.1006469] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Revised: 11/05/2018] [Accepted: 08/27/2018] [Indexed: 02/07/2023] Open
Abstract
Multicellular tumour spheroids capture many characteristics of human tumour microenvironments, including hypoxia, and represent an experimentally tractable in vitro model for studying interactions between radiotherapy and anticancer drugs. However, interpreting spheroid data is challenging because of limited ability to observe cell fate within spheroids dynamically. To overcome this limitation, we have developed a hybrid continuum/agent-based model (ABM) for HCT116 tumour spheroids, parameterised using experimental models (monolayers and multilayers) in which reaction and diffusion can be measured directly. In the ABM, cell fate is simulated as a function of local oxygen, glucose and drug concentrations, determined by solving diffusion equations and intracellular reactions. The model is lattice-based, with cells occupying discrete locations on a 3D grid embedded within a coarser grid that encompasses the culture medium; separate solvers are employed for each grid. The generated concentration fields account for depletion in the medium and specify concentration-time profiles within the spheroid. Cell growth and survival are determined by intracellular oxygen and glucose concentrations, the latter based on direct measurement of glucose diffusion/reaction (in multilayers) for the first time. The ABM reproduces known features of spheroids including overall growth rate, its oxygen and glucose dependence, peripheral cell proliferation, central hypoxia and necrosis. We extended the ABM to describe in detail the hypoxia-dependent interaction between ionising radiation and a hypoxia-activated prodrug (SN30000), again using experimentally determined parameters; the model accurately simulated clonogenic cell killing in spheroids, while inclusion of reversible cell cycle delay was required to account for the marked spheroid growth delay after combined radiation and SN30000. This ABM of spheroid growth and response exemplifies the utility of integrating computational and experimental tools for investigating radiation/drug interactions, and highlights the critical importance of understanding oxygen, glucose and drug concentration gradients in interpreting activity of therapeutic agents in spheroid models. Studies in 3D cultures, notably multicellular tumour spheroids that mimic many features of solid tumours, have great potential for speeding up anticancer drug development. However the increased complexity of 3D cultures makes interpretation of experiments more difficult. We have developed a hybrid continuum/agent-based mathematical model, validated by experiments, to aid interpretation of spheroid experiments in developing drugs designed to eliminate radiation-resistant hypoxic cells. This model includes key features of the tumour microenvironment including oxygen and glucose transport and regions of hypoxia where the cells are resistant to radiation, but sensitive to hypoxia-activated prodrugs such as SN30000. This enables us to predict the growth and cell response in untreated spheroids and compare the results to spheroids treated with radiation and SN30000. We demonstrate good prediction of cellular responses in spheroids treated with radiation and SN30000 and good agreement with spheroid regrowth after treatment when additional effects of cellular growth delay are added. This demonstrates that the modelling approach has potential to improve interpretation of experimental investigations of drug and radiation combinations.
Collapse
Affiliation(s)
- Xinjian Mao
- Auckland Cancer Society Research Centre, School of Medical Sciences, University of Auckland, Auckland, New Zealand
| | - Sarah McManaway
- Auckland Cancer Society Research Centre, School of Medical Sciences, University of Auckland, Auckland, New Zealand
| | - Jagdish K. Jaiswal
- Auckland Cancer Society Research Centre, School of Medical Sciences, University of Auckland, Auckland, New Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery, University of Auckland, Auckland, New Zealand
| | - Priyanka B. Patel
- Auckland Cancer Society Research Centre, School of Medical Sciences, University of Auckland, Auckland, New Zealand
| | - William R. Wilson
- Auckland Cancer Society Research Centre, School of Medical Sciences, University of Auckland, Auckland, New Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery, University of Auckland, Auckland, New Zealand
| | - Kevin O. Hicks
- Auckland Cancer Society Research Centre, School of Medical Sciences, University of Auckland, Auckland, New Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery, University of Auckland, Auckland, New Zealand
- * E-mail:
| | - Gib Bogle
- Maurice Wilkins Centre for Molecular Biodiscovery, University of Auckland, Auckland, New Zealand
- Auckland Bioengineering Institute, University of Auckland, Auckland, New Zealand
| |
Collapse
|
12
|
Hong CR, Bogle G, Wang J, Patel K, Pruijn FB, Wilson WR, Hicks KO. Bystander Effects of Hypoxia-Activated Prodrugs: Agent-Based Modeling Using Three Dimensional Cell Cultures. Front Pharmacol 2018; 9:1013. [PMID: 30279659 PMCID: PMC6153434 DOI: 10.3389/fphar.2018.01013] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Accepted: 08/20/2018] [Indexed: 12/19/2022] Open
Abstract
Intra-tumor heterogeneity represents a major barrier to anti-cancer therapies. One strategy to minimize this limitation relies on bystander effects via diffusion of cytotoxins from targeted cells. Hypoxia-activated prodrugs (HAPs) have the potential to exploit hypoxia in this way, but robust methods for measuring bystander effects are lacking. The objective of this study is to develop experimental models (monolayer, multilayer, and multicellular spheroid co-cultures) comprising 'activator' cells with high expression of prodrug-activating reductases and reductase-deficient 'target' cells, and to couple these with agent-based models (ABMs) that describe diffusion and reaction of prodrugs and their active metabolites, and killing probability for each cell. HCT116 cells were engineered as activators by overexpressing P450 oxidoreductase (POR) and as targets by knockout of POR, with fluorescent protein and antibiotic resistance markers to enable their quantitation in co-cultures. We investigated two HAPs with very different pharmacology: SN30000 is metabolized to DNA-breaking free radicals under hypoxia, while the dinitrobenzamide PR104A generates DNA-crosslinking nitrogen mustard metabolites. In anoxic spheroid co-cultures, increasing the proportion of activator cells decreased killing of both activators and targets by SN30000. An ABM parameterized by measuring SN30000 cytotoxicity in monolayers and diffusion-reaction in multilayers accurately predicted SN30000 activity in spheroids, demonstrating the lack of bystander effects and that rapid metabolic consumption of SN30000 inhibited prodrug penetration. In contrast, killing of targets by PR104A in anoxic spheroids was markedly increased by activators, demonstrating that a bystander effect more than compensates any penetration limitation. However, the ABM based on the well-studied hydroxylamine and amine metabolites of PR104A did not fit the cell survival data, indicating a need to reassess its cellular pharmacology. Characterization of extracellular metabolites of PR104A in anoxic cultures identified more stable, lipophilic, activated dichloro mustards with greater tissue diffusion distances. Including these metabolites explicitly in the ABM provided a good description of activator and target cell killing by PR104A in spheroids. This study represents the most direct demonstration of a hypoxic bystander effect for PR104A to date, and demonstrates the power of combining mathematical modeling of pharmacokinetics/pharmacodynamics with multicellular culture models to dissect bystander effects of targeted drug carriers.
Collapse
Affiliation(s)
- Cho R. Hong
- Auckland Cancer Society Research Centre, University of Auckland, Auckland, New Zealand
| | - Gib Bogle
- Auckland Bioengineering Institute, University of Auckland, Auckland, New Zealand
- Maurice Wilkins Centre, University of Auckland, Auckland, New Zealand
| | - Jingli Wang
- Auckland Cancer Society Research Centre, University of Auckland, Auckland, New Zealand
| | - Kashyap Patel
- Auckland Cancer Society Research Centre, University of Auckland, Auckland, New Zealand
| | - Frederik B. Pruijn
- Auckland Cancer Society Research Centre, University of Auckland, Auckland, New Zealand
| | - William R. Wilson
- Auckland Cancer Society Research Centre, University of Auckland, Auckland, New Zealand
- Maurice Wilkins Centre, University of Auckland, Auckland, New Zealand
| | - Kevin O. Hicks
- Auckland Cancer Society Research Centre, University of Auckland, Auckland, New Zealand
- Maurice Wilkins Centre, University of Auckland, Auckland, New Zealand
| |
Collapse
|
13
|
Wang H, Mu X, He H, Zhang XD. Cancer Radiosensitizers. Trends Pharmacol Sci 2017; 39:24-48. [PMID: 29224916 DOI: 10.1016/j.tips.2017.11.003] [Citation(s) in RCA: 356] [Impact Index Per Article: 44.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2017] [Revised: 11/08/2017] [Accepted: 11/09/2017] [Indexed: 02/07/2023]
Abstract
Radiotherapy (RT) is a mainstay treatment for many types of cancer, although it is still a large challenge to enhance radiation damage to tumor tissue and reduce side effects to healthy tissue. Radiosensitizers are promising agents that enhance injury to tumor tissue by accelerating DNA damage and producing free radicals. Several strategies have been exploited to develop highly effective and low-toxicity radiosensitizers. In this review, we highlight recent progress on radiosensitizers, including small molecules, macromolecules, and nanomaterials. First, small molecules are reviewed based on free radicals, pseudosubstrates, and other mechanisms. Second, nanomaterials, such as nanometallic materials, especially gold-based materials that have flexible surface engineering and favorable kinetic properties, have emerged as promising radiosensitizers. Finally, emerging macromolecules have shown significant advantages in RT because these molecules can be combined with biological therapy as well as drug delivery. Further research on the mechanisms of radioresistance and multidisciplinary approaches will accelerate the development of radiosensitizers.
Collapse
Affiliation(s)
- Hao Wang
- Tianjin Key Laboratory of Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Number 238, Baidi Road, Tianjin 300192, China; These authors have contributed equally
| | - Xiaoyu Mu
- Department of Physics and Tianjin Key Laboratory of Low Dimensional Materials Physics and Preparing Technology, School of Sciences, Tianjin University, Tianjin 300350, China; These authors have contributed equally
| | - Hua He
- State Key Laboratory of Heavy Oil Processing and Center for Bioengineering and Biotechnology, China University of Petroleum (East China), Qingdao 266580, China
| | - Xiao-Dong Zhang
- Department of Physics and Tianjin Key Laboratory of Low Dimensional Materials Physics and Preparing Technology, School of Sciences, Tianjin University, Tianjin 300350, China; Tianjin Collaborative Innovation Center of Chemical Science and Engineering, Tianjin 300072, China.
| |
Collapse
|
14
|
Gu Y, Chang TTA, Wang J, Jaiswal JK, Edwards D, Downes NJ, Liyanage HDS, Lynch CRH, Pruijn FB, Hickey AJR, Hay MP, Wilson WR, Hicks KO. Reductive Metabolism Influences the Toxicity and Pharmacokinetics of the Hypoxia-Targeted Benzotriazine Di-Oxide Anticancer Agent SN30000 in Mice. Front Pharmacol 2017; 8:531. [PMID: 28848445 PMCID: PMC5554537 DOI: 10.3389/fphar.2017.00531] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2017] [Accepted: 07/28/2017] [Indexed: 12/23/2022] Open
Abstract
3-(3-Morpholinopropyl)-7,8-dihydro-6H-indeno[5,6-e][1,2,4]triazine 1,4-dioxide (SN30- 000), an analog of the well-studied bioreductive prodrug tirapazamine (TPZ), has improved activity against hypoxic cells in tumor xenografts. However, little is known about its biotransformation in normal tissues. Here, we evaluate implications of biotransformation of SN30000 for its toxicokinetics in NIH-III mice. The metabolite profile demonstrated reduction to the 1-N-oxide (M14), oxidation of the morpholine side-chain (predominantly to the alkanoic acid M18) and chromophore, and subsequent glucuronidation. Plasma pharmacokinetics of SN30000 and its reduced metabolites was unaffected by the presence of HT29 tumor xenografts, indicating extensive reduction in normal tissues. This bioreductive metabolism, as modeled by hepatic S9 preparations, was strongly inhibited by oxygen indicating that it proceeds via the one-electron (radical) intermediate previously implicated in induction of DNA double strand breaks and cytotoxicity by SN30000. Plasma pharmacokinetics of SN30000 and M14 (but not M18) corresponded closely to the timing of reversible acute clinical signs (reduced mobility) and marked hypothermia (rectal temperature drop of ∼8°C at nadir following the maximum tolerated dose). Similar acute toxicity was elicited by dosing with TPZ or M14, although M14 did not induce the kidney and lung histopathology caused by SN30000. M14 also lacked antiproliferative potency in hypoxic cell cultures. In addition M14 showed much slower redox cycling than SN30000 in oxic cultures. Thus a non-bioreductive mechanism, mediated through M14, appears to be responsible for the acute toxicity of SN30000 while late toxicities are consistent with DNA damage resulting from its one-electron reduction. A two-compartment pharmacokinetic model, in which clearance of SN30000 is determined by temperature-dependent bioreductive metabolism to M14, was shown to describe the non-linear PK of SN30000 in mice. This study demonstrates the importance of non-tumor bioreductive metabolism in the toxicology and pharmacokinetics of benzotriazine di-oxides designed to target tumor hypoxia.
Collapse
Affiliation(s)
- Yongchuan Gu
- Experimental Therapeutics Group, Auckland Cancer Society Research Centre, School of Medical Sciences, The University of AucklandAuckland, New Zealand
| | - Tony T-A Chang
- Experimental Therapeutics Group, Auckland Cancer Society Research Centre, School of Medical Sciences, The University of AucklandAuckland, New Zealand
| | - Jingli Wang
- Experimental Therapeutics Group, Auckland Cancer Society Research Centre, School of Medical Sciences, The University of AucklandAuckland, New Zealand
| | - Jagdish K Jaiswal
- Experimental Therapeutics Group, Auckland Cancer Society Research Centre, School of Medical Sciences, The University of AucklandAuckland, New Zealand
| | - David Edwards
- Cancer Research Centre for Drug Development, Cancer Research UK (CRUK)London, United Kingdom
| | | | - H D Sarath Liyanage
- Experimental Therapeutics Group, Auckland Cancer Society Research Centre, School of Medical Sciences, The University of AucklandAuckland, New Zealand
| | - Courtney R H Lynch
- Experimental Therapeutics Group, Auckland Cancer Society Research Centre, School of Medical Sciences, The University of AucklandAuckland, New Zealand
| | - Frederik B Pruijn
- Experimental Therapeutics Group, Auckland Cancer Society Research Centre, School of Medical Sciences, The University of AucklandAuckland, New Zealand
| | - Anthony J R Hickey
- School of Biological Sciences, The University of AucklandAuckland, New Zealand
| | - Michael P Hay
- Experimental Therapeutics Group, Auckland Cancer Society Research Centre, School of Medical Sciences, The University of AucklandAuckland, New Zealand
| | - William R Wilson
- Experimental Therapeutics Group, Auckland Cancer Society Research Centre, School of Medical Sciences, The University of AucklandAuckland, New Zealand
| | - Kevin O Hicks
- Experimental Therapeutics Group, Auckland Cancer Society Research Centre, School of Medical Sciences, The University of AucklandAuckland, New Zealand
| |
Collapse
|
15
|
Mistry IN, Thomas M, Calder EDD, Conway SJ, Hammond EM. Clinical Advances of Hypoxia-Activated Prodrugs in Combination With Radiation Therapy. Int J Radiat Oncol Biol Phys 2017; 98:1183-1196. [PMID: 28721903 DOI: 10.1016/j.ijrobp.2017.03.024] [Citation(s) in RCA: 93] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2016] [Revised: 02/24/2017] [Accepted: 03/14/2017] [Indexed: 12/29/2022]
Abstract
With the increasing incidence of cancer worldwide, the need for specific, effective therapies is ever more urgent. One example of targeted cancer therapeutics is hypoxia-activated prodrugs (HAPs), also known as bioreductive prodrugs. These prodrugs are inactive in cells with normal oxygen levels but in hypoxic cells (with low oxygen levels) undergo chemical reduction to the active compound. Hypoxia is a common feature of solid tumors and is associated with a more aggressive phenotype and resistance to all modes of therapy. Therefore, the combination of radiation therapy and bioreductive drugs presents an attractive opportunity for synergistic effects, because the HAP targets the radiation-resistant hypoxic cells. Hypoxia-activated prodrugs have typically been precursors of DNA-damaging agents, but a new generation of molecularly targeted HAPs is emerging. By targeting proteins associated with tumorigenesis and survival, these compounds may result in greater selectivity over healthy tissue. We review the clinical progress of HAPs as adjuncts to radiation therapy and conclude that the use of HAPs alongside radiation is vastly underexplored at the clinical level.
Collapse
Affiliation(s)
- Ishna N Mistry
- Cancer Research UK/Medical Research Council Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, Oxford, United Kingdom
| | - Matthew Thomas
- Cancer Research UK/Medical Research Council Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, Oxford, United Kingdom
| | - Ewen D D Calder
- Chemistry Research Laboratory, Department of Chemistry, University of Oxford, Oxford, United Kingdom
| | - Stuart J Conway
- Chemistry Research Laboratory, Department of Chemistry, University of Oxford, Oxford, United Kingdom
| | - Ester M Hammond
- Cancer Research UK/Medical Research Council Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, Oxford, United Kingdom.
| |
Collapse
|
16
|
Sarkar U, Hillebrand R, Johnson KM, Cummings AH, Phung NL, Rajapakse A, Zhou H, Willis JR, Barnes CL, Gates KS. Application of Suzuki-Miyaura and Buchwald-Hartwig Cross-coupling Reactions to the Preparation of Substituted 1,2,4-Benzotriazine 1-Oxides Related to the Antitumor Agent Tirapazamine. J Heterocycl Chem 2017; 54:155-160. [PMID: 28439141 DOI: 10.1002/jhet.2559] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Many 1,2,4-benzotriazine 1,4-dioxides display the ability to selectively kill the oxygen-poor cells found in solid tumors. As a result, there is a desire for synthetic routes that afford access to substituted 1,2,4-benzotriazine 1-oxides that can be used as direct precursors in the synthesis of 1,2,4-benzotriazine 1,4-dioxides. Here we describe the use of Suzuki-Miyaura and Buchwald-Hartwig cross-coupling reactions for the construction of various 1,2,4-benzotriazine 1-oxide analogs bearing substituents at the 3-, 6-, and 7-positions.
Collapse
Affiliation(s)
- Ujjal Sarkar
- University of Missouri, Department of Chemistry, 125 Chemistry Building, Columbia, MO 65211
| | - Roman Hillebrand
- University of Missouri, Department of Chemistry, 125 Chemistry Building, Columbia, MO 65211
| | - Kevin M Johnson
- University of Missouri, Department of Chemistry, 125 Chemistry Building, Columbia, MO 65211
| | - Andrea H Cummings
- University of Missouri, Department of Chemistry, 125 Chemistry Building, Columbia, MO 65211
| | - Ngoc Linh Phung
- University of Missouri, Department of Chemistry, 125 Chemistry Building, Columbia, MO 65211
| | - Anuruddha Rajapakse
- University of Missouri, Department of Chemistry, 125 Chemistry Building, Columbia, MO 65211
| | - Haiying Zhou
- University of Missouri, Department of Chemistry, 125 Chemistry Building, Columbia, MO 65211
| | - Jordan R Willis
- University of Missouri, Department of Chemistry, 125 Chemistry Building, Columbia, MO 65211
| | - Charles L Barnes
- University of Missouri, Department of Chemistry, 125 Chemistry Building, Columbia, MO 65211
| | - Kent S Gates
- University of Missouri, Department of Chemistry, 125 Chemistry Building, Columbia, MO 65211.,University of Missouri, Department of Biochemistry, 125 Chemistry Building, Columbia, MO 65211
| |
Collapse
|
17
|
Anderson RF, Yadav P, Shinde SS, Hong CR, Pullen SM, Reynisson J, Wilson WR, Hay MP. Radical Chemistry and Cytotoxicity of Bioreductive 3-Substituted Quinoxaline Di-N-Oxides. Chem Res Toxicol 2016; 29:1310-24. [PMID: 27380897 DOI: 10.1021/acs.chemrestox.6b00133] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The radical chemistry and cytotoxicity of a series of quinoxaline di-N-oxide (QDO) compounds has been investigated to explore the mechanism of action of this class of bioreductive drugs. A series of water-soluble 3-trifluoromethyl (4-10), 3-phenyl (11-19), and 3-methyl (20-21) substituted QDO compounds were designed to span a range of electron affinities consistent with bioreduction. The stoichiometry of loss of QDOs by steady-state radiolysis of anaerobic aqueous formate buffer indicated that one-electron reduction of QDOs generates radicals able to initiate chain reactions by oxidation of formate. The 3-trifluoromethyl analogues exhibited long chain reactions consistent with the release of the HO(•), as identified in EPR spin trapping experiments. Several carbon-centered radical intermediates, produced by anaerobic incubation of the QDO compounds with N-terminal truncated cytochrome P450 reductase (POR), were characterized using N-tert-butyl-α-phenylnitrone (PBN) and 5-(diethoxyphosphoryl)-5-methyl-1-pyrroline-N-oxide (DEPMPO) spin traps and were observed by EPR. Experimental data were well simulated for the production of strongly oxidizing radicals, capable of H atom abstraction from methyl groups. The kinetics of formation and decay of the radicals produced following one-electron reduction of the parent compounds, both in oxic and anoxic solutions, were determined using pulse radiolysis. Back oxidation of the initially formed radical anions by molecular oxygen did not compete effectively with the breakdown of the radical anions to form oxidizing radicals. The QDO compounds displayed low hypoxic selectivity when tested against oxic and hypoxic cancer cell lines in vitro. The results from this study form a kinetic description and explanation of the low hypoxia-selective cytotoxicity of QDOs against cancer cells compared to the related benzotriazine 1,4-dioxide (BTO) class of compounds.
Collapse
Affiliation(s)
- Robert F Anderson
- School of Chemical Sciences, ‡Auckland Cancer Society Research Centre, and §Maurice Wilkins Centre, University of Auckland , Private Bag 92019, Auckland 1142, New Zealand
| | - Pooja Yadav
- School of Chemical Sciences, ‡Auckland Cancer Society Research Centre, and §Maurice Wilkins Centre, University of Auckland , Private Bag 92019, Auckland 1142, New Zealand
| | - Sujata S Shinde
- School of Chemical Sciences, ‡Auckland Cancer Society Research Centre, and §Maurice Wilkins Centre, University of Auckland , Private Bag 92019, Auckland 1142, New Zealand
| | - Cho R Hong
- School of Chemical Sciences, ‡Auckland Cancer Society Research Centre, and §Maurice Wilkins Centre, University of Auckland , Private Bag 92019, Auckland 1142, New Zealand
| | - Susan M Pullen
- School of Chemical Sciences, ‡Auckland Cancer Society Research Centre, and §Maurice Wilkins Centre, University of Auckland , Private Bag 92019, Auckland 1142, New Zealand
| | - Jóhannes Reynisson
- School of Chemical Sciences, ‡Auckland Cancer Society Research Centre, and §Maurice Wilkins Centre, University of Auckland , Private Bag 92019, Auckland 1142, New Zealand
| | - William R Wilson
- School of Chemical Sciences, ‡Auckland Cancer Society Research Centre, and §Maurice Wilkins Centre, University of Auckland , Private Bag 92019, Auckland 1142, New Zealand
| | - Michael P Hay
- School of Chemical Sciences, ‡Auckland Cancer Society Research Centre, and §Maurice Wilkins Centre, University of Auckland , Private Bag 92019, Auckland 1142, New Zealand
| |
Collapse
|
18
|
Cheng G, Sa W, Cao C, Guo L, Hao H, Liu Z, Wang X, Yuan Z. Quinoxaline 1,4-di-N-Oxides: Biological Activities and Mechanisms of Actions. Front Pharmacol 2016; 7:64. [PMID: 27047380 PMCID: PMC4800186 DOI: 10.3389/fphar.2016.00064] [Citation(s) in RCA: 67] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2016] [Accepted: 03/07/2016] [Indexed: 11/29/2022] Open
Abstract
Quinoxaline 1,4-di-N-oxides (QdNOs) have manifold biological properties, including antimicrobial, antitumoral, antitrypanosomal and antiinflammatory/antioxidant activities. These diverse activities endow them broad applications and prospects in human and veterinary medicines. As QdNOs arouse widespread interest, the evaluation of their medicinal chemistry is still in progress. In the meantime, adverse effects have been reported in some of the QdNO derivatives. For example, genotoxicity and bacterial resistance have been found in QdNO antibacterial growth promoters, conferring urgent need for discovery of new QdNO drugs. However, the modes of actions of QdNOs are not fully understood, hindering the development and innovation of these promising compounds. Here, QdNOs are categorized based on the activities and usages, among which the antimicrobial activities are consist of antibacterial, antimycobacterial and anticandida activities, and the antiprotozoal activities include antitrypanosomal, antimalarial, antitrichomonas, and antiamoebic activities. The structure-activity relationship and the mode of actions of each type of activity of QdNOs are summarized, and the toxicity and the underlying mechanisms are also discussed, providing insight for the future research and development of these fascinating compounds.
Collapse
Affiliation(s)
- Guyue Cheng
- MOA Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Huazhong Agricultural UniversityWuhan, China; College of Veterinary Medicine, Huazhong Agricultural UniversityWuhan, China
| | - Wei Sa
- College of Veterinary Medicine, Huazhong Agricultural University Wuhan, China
| | - Chen Cao
- College of Veterinary Medicine, Huazhong Agricultural University Wuhan, China
| | - Liangliang Guo
- College of Veterinary Medicine, Huazhong Agricultural University Wuhan, China
| | - Haihong Hao
- MOA Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Huazhong Agricultural UniversityWuhan, China; College of Veterinary Medicine, Huazhong Agricultural UniversityWuhan, China
| | - Zhenli Liu
- College of Veterinary Medicine, Huazhong Agricultural UniversityWuhan, China; National Reference Laboratory of Veterinary Drug Residues and MOA Key Laboratory for the Detection of Veterinary Drug Residues in Foods, Huazhong Agricultural UniversityWuhan, China
| | - Xu Wang
- MOA Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Huazhong Agricultural UniversityWuhan, China; College of Veterinary Medicine, Huazhong Agricultural UniversityWuhan, China
| | - Zonghui Yuan
- MOA Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Huazhong Agricultural UniversityWuhan, China; College of Veterinary Medicine, Huazhong Agricultural UniversityWuhan, China; National Reference Laboratory of Veterinary Drug Residues and MOA Key Laboratory for the Detection of Veterinary Drug Residues in Foods, Huazhong Agricultural UniversityWuhan, China
| |
Collapse
|
19
|
Abstract
The presence of a microenvironment within most tumours containing regions of low oxygen tension or hypoxia has profound biological and therapeutic implications. Tumour hypoxia is known to promote the development of an aggressive phenotype, resistance to both chemotherapy and radiotherapy and is strongly associated with poor clinical outcome. Paradoxically, it is recognised as a high-priority target and one of the therapeutic strategies designed to eradicate hypoxic cells in tumours is a group of compounds known collectively as hypoxia-activated prodrugs (HAPs) or bioreductive drugs. These drugs are inactive prodrugs that require enzymatic activation (typically by 1 or 2 electron oxidoreductases) to generate cytotoxic species with selectivity for hypoxic cells being determined by (1) the ability of oxygen to either reverse or inhibit the activation process and (2) the presence of elevated expression of oxidoreductases in tumours. The concepts underpinning HAP development were established over 40 years ago and have been refined over the years to produce a new generation of HAPs that are under preclinical and clinical development. The purpose of this article is to describe current progress in the development of HAPs focusing on the mechanisms of action, preclinical properties and clinical progress of leading examples.
Collapse
|
20
|
Phillips RM. Targeting the hypoxic fraction of tumours using hypoxia-activated prodrugs. Cancer Chemother Pharmacol 2016; 77:441-57. [PMID: 26811177 PMCID: PMC4767869 DOI: 10.1007/s00280-015-2920-7] [Citation(s) in RCA: 159] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2015] [Accepted: 11/13/2015] [Indexed: 12/17/2022]
Abstract
The presence of a microenvironment within most tumours containing regions of low oxygen tension or hypoxia has profound biological and therapeutic implications. Tumour hypoxia is known to promote the development of an aggressive phenotype, resistance to both chemotherapy and radiotherapy and is strongly associated with poor clinical outcome. Paradoxically, it is recognised as a high-priority target and one of the therapeutic strategies designed to eradicate hypoxic cells in tumours is a group of compounds known collectively as hypoxia-activated prodrugs (HAPs) or bioreductive drugs. These drugs are inactive prodrugs that require enzymatic activation (typically by 1 or 2 electron oxidoreductases) to generate cytotoxic species with selectivity for hypoxic cells being determined by (1) the ability of oxygen to either reverse or inhibit the activation process and (2) the presence of elevated expression of oxidoreductases in tumours. The concepts underpinning HAP development were established over 40 years ago and have been refined over the years to produce a new generation of HAPs that are under preclinical and clinical development. The purpose of this article is to describe current progress in the development of HAPs focusing on the mechanisms of action, preclinical properties and clinical progress of leading examples.
Collapse
Affiliation(s)
- Roger M Phillips
- Department of Pharmacy, University of Huddersfield, Queensgate, Huddersfield, HD1 3DH, UK.
| |
Collapse
|
21
|
Hunter FW, Young RJ, Shalev Z, Vellanki RN, Wang J, Gu Y, Joshi N, Sreebhavan S, Weinreb I, Goldstein DP, Moffat J, Ketela T, Brown KR, Koritzinsky M, Solomon B, Rischin D, Wilson WR, Wouters BG. Identification of P450 Oxidoreductase as a Major Determinant of Sensitivity to Hypoxia-Activated Prodrugs. Cancer Res 2015; 75:4211-23. [PMID: 26297733 DOI: 10.1158/0008-5472.can-15-1107] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2015] [Accepted: 07/15/2015] [Indexed: 11/16/2022]
Affiliation(s)
- Francis W Hunter
- Auckland Cancer Society Research Centre, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| | - Richard J Young
- Research Division, Peter MacCallum Cancer Centre, East Melbourne, Victoria, Australia. Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, Victoria, Australia
| | - Zvi Shalev
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Ravi N Vellanki
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Jingli Wang
- Auckland Cancer Society Research Centre, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| | - Yongchuan Gu
- Auckland Cancer Society Research Centre, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand. AnQual Laboratories, School of Pharmacy, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| | - Naveen Joshi
- Auckland Cancer Society Research Centre, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| | - Sreevalsan Sreebhavan
- Auckland Cancer Society Research Centre, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| | - Ilan Weinreb
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - David P Goldstein
- Department of Otolaryngology-Head and Neck Surgery, University of Toronto, Toronto, Ontario, Canada
| | - Jason Moffat
- Department of Radiation Oncology, University of Toronto, Toronto, Ontario, Canada
| | - Troy Ketela
- Donnelly Centre and Banting and Best Department of Medical Research, University of Toronto, Toronto, Ontario, Canada
| | - Kevin R Brown
- Donnelly Centre and Banting and Best Department of Medical Research, University of Toronto, Toronto, Ontario, Canada
| | - Marianne Koritzinsky
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada. Department of Radiation Oncology, University of Toronto, Toronto, Ontario, Canada. Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada
| | - Benjamin Solomon
- Research Division, Peter MacCallum Cancer Centre, East Melbourne, Victoria, Australia. Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, Victoria, Australia. Department of Medical Oncology, Peter MacCallum Cancer Centre, East Melbourne, Victoria, Australia
| | - Danny Rischin
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, Victoria, Australia. Department of Medical Oncology, Peter MacCallum Cancer Centre, East Melbourne, Victoria, Australia
| | - William R Wilson
- Auckland Cancer Society Research Centre, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| | - Bradly G Wouters
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada. Department of Radiation Oncology, University of Toronto, Toronto, Ontario, Canada. Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada. Ontario Institute for Cancer Research, Toronto, Ontario, Canada.
| |
Collapse
|
22
|
Yadav P, Marshall AJ, Reynisson J, Denny WA, Hay MP, Anderson RF. Fragmentation of the quinoxaline N-oxide bond to the ˙OH radical upon one-electron bioreduction. Chem Commun (Camb) 2014; 50:13729-31. [DOI: 10.1039/c4cc05657d] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
One-electron reduction of 3-trifluoromethyl-quinoxaline 1,4-dioxide breaks the N-oxide bond to release the ˙OH radical.
Collapse
Affiliation(s)
- Pooja Yadav
- Auckland Cancer Society Research Centre
- University of Auckland
- Auckland 1142, New Zealand
| | - Andrew J. Marshall
- Auckland Cancer Society Research Centre
- University of Auckland
- Auckland 1142, New Zealand
| | - Jóhannes Reynisson
- School of Chemical Sciences
- University of Auckland
- Auckland 1142, New Zealand
| | - William A. Denny
- Auckland Cancer Society Research Centre
- University of Auckland
- Auckland 1142, New Zealand
| | - Michael P. Hay
- Auckland Cancer Society Research Centre
- University of Auckland
- Auckland 1142, New Zealand
| | - Robert F. Anderson
- Auckland Cancer Society Research Centre
- University of Auckland
- Auckland 1142, New Zealand
- School of Chemical Sciences
- University of Auckland
| |
Collapse
|