1
|
Ravaioli S, De Donno A, Bottau G, Campoccia D, Maso A, Dolzani P, Balaji P, Pegreffi F, Daglia M, Arciola CR. The Opportunistic Pathogen Staphylococcus warneri: Virulence and Antibiotic Resistance, Clinical Features, Association with Orthopedic Implants and Other Medical Devices, and a Glance at Industrial Applications. ANTIBIOTICS 2024; 13:972. [PMID: 39452238 PMCID: PMC11505160 DOI: 10.3390/antibiotics13100972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 09/29/2024] [Accepted: 10/11/2024] [Indexed: 10/26/2024]
Abstract
In recent decades, the risk of developing opportunistic infections has increased in parallel with the ever-increasing number of people suffering from chronic immunosuppressive diseases or undergoing prosthetic surgery. Staphylococcus warneri is a Gram-positive and coagulase-negative bacterium. Usually found as a component of the healthy human and animal microbiota of the skin and mucosae, it can take on the role of an opportunistic pathogen capable of causing a variety of infections, ranging from mild to life-threatening, not only in immunocompromised patients but even, although rarely, in healthy people. Here, in addition to a concise discussion of the identification and distinguishing features of S. warneri compared to other staphylococcal species, a systematic overview of the findings from case reports and clinical studies is provided. The paper highlights the virulence and antibiotic resistance profiles of S. warneri, the different clinical contexts in which it has proven to be a serious pathogen, emphasizing its ability to colonize artificial prosthetic materials and its tropism for musculoskeletal and cardiovascular tissues. Some original data on orthopedic implant infections by S. warneri complement the discussion. Finally, from a different perspective, the paper addresses the possibilities of industrial exploitation of this bacterium.
Collapse
Affiliation(s)
- Stefano Ravaioli
- Laboratorio di Patologia delle Infezioni Associate all’Impianto, IRCCS Istituto Ortopedico Rizzoli, Via di Barbiano 1/10, 40136 Bologna, Italy; (A.D.D.); (G.B.); (D.C.)
| | - Andrea De Donno
- Laboratorio di Patologia delle Infezioni Associate all’Impianto, IRCCS Istituto Ortopedico Rizzoli, Via di Barbiano 1/10, 40136 Bologna, Italy; (A.D.D.); (G.B.); (D.C.)
| | - Giulia Bottau
- Laboratorio di Patologia delle Infezioni Associate all’Impianto, IRCCS Istituto Ortopedico Rizzoli, Via di Barbiano 1/10, 40136 Bologna, Italy; (A.D.D.); (G.B.); (D.C.)
| | - Davide Campoccia
- Laboratorio di Patologia delle Infezioni Associate all’Impianto, IRCCS Istituto Ortopedico Rizzoli, Via di Barbiano 1/10, 40136 Bologna, Italy; (A.D.D.); (G.B.); (D.C.)
| | - Alessandra Maso
- Quality Control in GMP, IRCCS Istituto Ortopedico Rizzoli, 40136 Bologna, Italy;
| | - Paolo Dolzani
- Laboratorio di Immunoreumatologia e Rigenerazione Tissutale, IRCCS Istituto Ortopedico Rizzoli, Via di Barbiano 1/10, 40136 Bologna, Italy;
| | - Paulraj Balaji
- PG and Research Centre in Biotechnology, MGR College, Hosur 635130, TN, India;
| | - Francesco Pegreffi
- Department of Medicine and Surgery, School of Medicine and Surgery, “Kore” University of Enna, 94100 Enna, Italy;
- Unit of Recovery and Functional Rehabilitation, P. Osp. Umberto I, 94100 Enna, Italy
| | - Maria Daglia
- Department of Pharmacy, University of Napoli Federico II, Via D. Montesano 49, 80131 Naples, Italy
- International Research Center for Food Nutrition and Safety, Jiangsu University, Zhenjiang 212013, China
| | - Carla Renata Arciola
- Laboratory of Immunorheumatology and Tissue Regeneration, Laboratory on Pathology of Implant Infections, IRCCS Istituto Ortopedico Rizzoli, Via di Barbiano 1/10, 40136 Bologna, Italy
- Department of Medical and Surgical Sciences (DIMEC), University of Bologna, Via San Giacomo 14, 40126 Bologna, Italy
| |
Collapse
|
2
|
Xu X, Yang M, Jiang Y, Tao N, Fu Y, Fan J, Xu X, Shi H, Lu Z, Shen C. A new acridine-based photosensitizer with ultra-low light requirement efficiently inactivates carbapenem-resistant Acinetobacter baumannii and methicillin-resistant Staphylococcus aureus and degrades their antibiotic resistance genes. ENVIRONMENT INTERNATIONAL 2023; 173:107839. [PMID: 36822004 DOI: 10.1016/j.envint.2023.107839] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 01/20/2023] [Accepted: 02/17/2023] [Indexed: 06/18/2023]
Abstract
The spread of antibiotic resistant pathogens and antibiotic resistance genes (ARGs) in the environment poses a serious threat to public health. However, existing methods are difficult to effectively remove antibiotic resistant pathogens and ARGs from the environment. In this study, we synthesized a new acridine-based photosensitizer, 2,7-dibromo-9-mesityl-10-methylacridinium perchlorate (YM-3), by the heavy atom effect, which could photodynamically inactivate antibiotic resistant pathogens and reduce ARGs by generating singlet oxygen (1O2) in an aqueous environment. The 1O2 yield of YM-3 was 4.9 times that of its modified precursor. YM-3 could reduce the culturable number and even the viable counts of methicillin-resistant Staphylococcus aureus and carbapenem-resistant Acinetobacter baumannii to 0 (inactivation rate > 99.99999%) after 2 and 8 h of low-intensity blue light (15 W/m2) irradiation, respectively. After 20 h of light exposure, the copy numbers of ARGs in both bacteria were reduced by 5.80 and 4.48 log, respectively, which might indicate that ARGs had been degraded. In addition, YM-3 still had an efficient bactericidal effect after five inactivation cycle. These characteristics of ultra-low light intensity requirement and efficient bactericidal ability make YM-3 have good application prospects for disinfection in indoor and sunlight environment.
Collapse
Affiliation(s)
- Xiaojie Xu
- Department of Environmental Engineering, Zhejiang University, Hangzhou 310058, PR China
| | - Min Yang
- Department of Chemistry, Zhejiang University, Hangzhou 310058, PR China
| | - Yunhan Jiang
- Department of Environmental Engineering, Zhejiang University, Hangzhou 310058, PR China
| | - Ningyao Tao
- Zhejiang Key Laboratory of Drinking Water Safety and Distribution Technology, Zhejiang University, Hangzhou 310058, PR China
| | - Yulong Fu
- Department of Environmental Engineering, Zhejiang University, Hangzhou 310058, PR China
| | - Jiahui Fan
- Department of Environmental Engineering, Zhejiang University, Hangzhou 310058, PR China
| | - Xin Xu
- Department of Environmental Engineering, Zhejiang University, Hangzhou 310058, PR China
| | - Huixiang Shi
- Department of Environmental Engineering, Zhejiang University, Hangzhou 310058, PR China
| | - Zhan Lu
- Department of Chemistry, Zhejiang University, Hangzhou 310058, PR China.
| | - Chaofeng Shen
- Department of Environmental Engineering, Zhejiang University, Hangzhou 310058, PR China.
| |
Collapse
|
3
|
Bartolomeu M, Monteiro CJP, Fontes M, Neves MGPMS, Faustino MAF, Almeida A. Photodynamic inactivation of microorganisms in different water matrices: The effect of physicochemical parameters on the treatment outcome. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 860:160427. [PMID: 36435255 DOI: 10.1016/j.scitotenv.2022.160427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 11/17/2022] [Accepted: 11/19/2022] [Indexed: 06/16/2023]
Abstract
Wastewater (WW) insufficiently treated for the disinfection of microorganisms, including pathogenic ones, is a source of concern and a possible generator of public health problems. Traditional disinfection methods to reduce pathogens concentration (e.g., chlorination, ozonation, UV) are expensive, unsafe, and/or sometimes ineffective, highlighting the need for new disinfection technologies. The promising results of photodynamic inactivation (PDI) treatment to eradicate microorganisms suggest the efficacy of this treatment to improve WW quality. This work aimed to assess if PDI can be successfully extended to real contexts for the microbial inactivation in WW. For the first time, PDI experiments with 9 different water matrices compositions were performed to inquire about the influence of some of their physicochemical parameters on the effectiveness of microbial inactivation. Bacterial photoinactivation was tested in freshwater, aquaculture water, and seawater samples, as well as in influents and effluents samples from domestic, industrial, and a mixture of industrial and domestic WW receiving wastewater treatment plants (WWTPs). Additionally, PDI assays were performed in phosphate-buffered saline isotonic solution (PBS), used as an aqueous comparative matrix. To relate the PDI disinfection efficiency with the physicochemical compositions of the different used water matrices, a series of statistical analysis were performed, in order to support our main conclusions. Overall, the results showed that PDI is an effective and promising alternative to traditionally used WW disinfection methods, with a bacterial reduction of >3.0 log CFU/mL in all the water matrices within the first hour of PDI treatment, but also that the physicochemical composition of the aqueous matrices to be PDI-disinfected must be taken into account since they seem to influence the PDI efficacy, namely the pH, with acidic pH conditions seeming to be associated to a better PDI performance in general.
Collapse
Affiliation(s)
- Maria Bartolomeu
- CESAM & Department of Biology, University of Aveiro, 3810-193 Aveiro, Portugal.
| | - Carlos J P Monteiro
- LAQV-REQUIMTE & Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal.
| | - Milton Fontes
- Águas do Centro Litoral (AdCL), 3030-410 Coimbra, Portugal.
| | | | | | - Adelaide Almeida
- CESAM & Department of Biology, University of Aveiro, 3810-193 Aveiro, Portugal.
| |
Collapse
|
4
|
Sabino CP, Ribeiro MS, Wainwright M, Dos Anjos C, Sellera FP, Dropa M, Nunes NB, Brancini GTP, Braga GUL, Arana-Chavez VE, Freitas RO, Lincopan N, Baptista MS. The Biochemical Mechanisms of Antimicrobial Photodynamic Therapy. PHOTOCHEMISTRY AND PHOTOBIOLOGY 2022; 99:742-750. [PMID: 35913428 DOI: 10.1111/php.13685] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Accepted: 07/22/2022] [Indexed: 11/27/2022]
Abstract
The unbridled dissemination of multidrug-resistant pathogens is a major threat to global health and urgently demands novel therapeutic alternatives. Antimicrobial photodynamic therapy (aPDT) has been developed as a promising approach to treat localized infections regardless of drug resistance profile or taxonomy. Even though this technique has been known for more than a century, discussions and speculations regarding the biochemical mechanisms of microbial inactivation have never reached a consensus on what is the primary cause of cell death. Since photochemically generated oxidants promote ubiquitous reactions with various biomolecules, researchers simply assumed that all cellular structures are equally damaged. In this study, biochemical, molecular, biological, and advanced microscopy techniques were employed to investigate whether protein, membrane or DNA damage correlates better with dose-dependent microbial inactivation kinetics. We showed that although mild membrane permeabilization and late DNA damage occur, no correlation with inactivation kinetics was found. On the other hand, protein degradation was analyzed by 3 different methods and showed a dose-dependent trend that matches microbial inactivation kinetics. Our results provide a deeper mechanistic understanding of aPDT that can guide the scientific community towards the development of optimized photosensitizing drugs and also rationally propose synergistic combinations with antimicrobial chemotherapy.
Collapse
Affiliation(s)
- Caetano P Sabino
- BioLambda, Scientific and Commercial Ltd., São Paulo, SP, Brazil, 05595-000.,Department of Clinical and Toxicological Analysis, School of Pharmaceutical Sciences, University of São Paulo, São Paulo, SP, Brazil, 05508-000
| | - Martha S Ribeiro
- Center for Lasers and Applications, Energy and Nuclear Research Institute, São Paulo, SP, Brazil, 05508-000
| | - Mark Wainwright
- School of Pharmacy & Biomolecular Sciences, Liverpool John Moores University, Liverpool, UK
| | - Carolina Dos Anjos
- Department of Internal Medicine, School of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo, SP, Brazil, 05508-270.,Wellman Center for Photomedicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA.,Vaccine and Immunotherapy Center, Massachusetts General Hospital, Harvard Medical School, Boston, USA
| | - Fábio P Sellera
- Department of Internal Medicine, School of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo, SP, Brazil, 05508-270.,School of Veterinary Medicine, Metropolitan University of Santos, Santos, SP, Brazil, 11080-300
| | - Milena Dropa
- Public Health Laboratory, School of Public Health, University of São Paulo, São Paulo, Brazil
| | - Nathalia B Nunes
- School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, 14040-903, Brazil
| | - Guilherme T P Brancini
- School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, 14040-903, Brazil
| | - Gilberto U L Braga
- School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, 14040-903, Brazil
| | - Victor E Arana-Chavez
- Department of Biomaterials and Oral Biology, University of São Paulo, São Paulo, São Paulo, Brazil
| | - Raul O Freitas
- Brazilian Synchrotron Light Laboratory, Brazilian Center for Research in Energy and Materials, 13083-970, Campinas, SP, Brazil, 13083-970
| | - Nilton Lincopan
- Department of Clinical and Toxicological Analysis, School of Pharmaceutical Sciences, University of São Paulo, São Paulo, SP, Brazil, 05508-000.,Department of Microbiology, Institute for Biomedical Sciences, University of São Paulo, São Paulo, SP, Brazil, 05508-000
| | - Maurício S Baptista
- Department of Biochemistry, Institute of Chemistry, University of São Paulo, São Paulo, SP, Brazil, 05513-970
| |
Collapse
|
5
|
Sheng L, Li X, Wang L. Photodynamic inactivation in food systems: A review of its application, mechanisms, and future perspective. TRENDS IN FOOD SCIENCE & TECHNOLOGY 2022. [DOI: 10.1016/j.tifs.2022.04.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
6
|
Yu Y, Zhao Y, He Y, Pang J, Yang Z, Zheng M, Yin R. Inhibition of efflux pump encoding genes and biofilm formation by sub-lethal photodynamic therapy in methicillin susceptible and resistant Staphylococcus aureus. PHOTODIAGNOSIS AND PHOTODYNAMIC THERAPY 2022; 39:102900. [PMID: 35525433 DOI: 10.1016/j.pdpdt.2022.102900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 04/28/2022] [Accepted: 05/03/2022] [Indexed: 11/17/2022]
Abstract
BACKGROUND Photodynamic therapy (PDT) is an effective method to inactivate microorganisms based on reactive oxygen species (ROS) generated by photosensitizer and light at certain wavelength. Exposure to sub-lethal dose of PDT (sPDT) could activate the regulatory systems in the surviving bacteria in response to oxidative stress. This study aimed to evaluate the effect of sPDT on efflux pump and biofilm formation in Staphylococcus aureus (S. aureus), which are two important virulence related factors. METHODS Different light irradiation time and toluidine blue O (TBO) concentrations were tested to select a sPDT in methicillin-susceptible and methicillin-resistant S. aureus (MSSA and MRSA). Efflux function was evaluated with EtBr efflux experiment. Biofilm formation was evaluated by crystal violet staining. Gene expressions of norA, norB, sepA, mepA and mdeA following sPDT were analyzed with real-time PCR. RESULTS Sub-lethal PDT was set at 40 J/cm2 associated with 0.5 μM TBO. Efflux function was significantly inhibited in both strains. The average expression levels of mdeA and mepA in MSSA and MRSA were increased by (3.09, 1.77, 1.57) and (3,44, 1.59, 6.29) fold change respectively, norB and sepA were decreased by (3.77, 6.14) and (3.02, 3.47) fold change respectively. Expression level of norA was decreased by 5.44-fold change in MSSA but increased by 2.80-fold change in MRSA. Biofilm formation in both strains was impeded. CONCLUSIONS TBO-mediated sPDT could inhibit efflux pump function, alter efflux pump encoding gene expression levels and retard biofilm formation in MSSA and MRSA. Therefore, sPDT is proposed as a potential adjuvant therapy for infections.
Collapse
Affiliation(s)
- Yanlan Yu
- Department of Dermatology, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400030, China.
| | - Yan Zhao
- Department of Microbiology,Third Military Medical University (Army Medical University), Chongqing, 400030, China.
| | - Yaxiong He
- Department of Dermatology, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400030, China.
| | - Jiayin Pang
- Department of Dermatology, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400030, China.
| | - Zengjun Yang
- Department of Dermatology, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400030, China.
| | - Mengxue Zheng
- Department of Dermatology, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400030, China.
| | - Rui Yin
- Department of Dermatology, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400030, China.
| |
Collapse
|
7
|
Pucelik B, Dąbrowski JM. Photodynamic inactivation (PDI) as a promising alternative to current pharmaceuticals for the treatment of resistant microorganisms. ADVANCES IN INORGANIC CHEMISTRY 2022; 79:65-103. [PMID: 35095189 PMCID: PMC8787646 DOI: 10.1016/bs.adioch.2021.12.003] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Although the whole world is currently observing the global battle against COVID-19, it should not be underestimated that in the next 30 years, approximately 10 million people per year could be exposed to infections caused by multi-drug resistant bacteria. As new antibiotics come under pressure from unpredictable resistance patterns and relegation to last-line therapy, immediate action is needed to establish a radically different approach to countering resistant microorganisms. Among the most widely explored alternative methods for combating bacterial infections are metal complexes and nanoparticles, often in combination with light, but strategies using monoclonal antibodies and bacteriophages are increasingly gaining acceptance. Photodynamic inactivation (PDI) uses light and a dye termed a photosensitizer (PS) in the presence of oxygen to generate reactive oxygen species (ROS) in the field of illumination that eventually kill microorganisms. Over the past few years, hundreds of photomaterials have been investigated, seeking ideal strategies based either on single molecules (e.g., tetrapyrroles, metal complexes) or in combination with various delivery systems. The present work describes some of the most recent advances of PDI, focusing on the design of suitable photosensitizers, their formulations, and their potential to inactivate bacteria, viruses, and fungi. Particular attention is focused on the compounds and materials developed in our laboratories that are capable of killing in the exponential growth phase (up to seven logarithmic units) of bacteria without loss of efficacy or resistance, while being completely safe for human cells. Prospectively, PDI using these photomaterials could potentially cure infected wounds and oral infections caused by various multidrug-resistant bacteria. It is also possible to treat the surfaces of medical equipment with the materials described, in order to disinfect them with light, and reduce the risk of nosocomial infections.
Collapse
Affiliation(s)
- Barbara Pucelik
- Faculty of Chemistry, Jagiellonian University, Kraków, Poland
- Małopolska Centre of Biotechnology, Jagiellonian University, Kraków, Poland
| | - Janusz M Dąbrowski
- Faculty of Chemistry, Jagiellonian University, Kraków, Poland
- Małopolska Centre of Biotechnology, Jagiellonian University, Kraków, Poland
| |
Collapse
|
8
|
Photodynamic inactivation of Shigella flexneri by curcumin. LWT-FOOD SCIENCE AND TECHNOLOGY 2022. [DOI: 10.1016/j.lwt.2021.112491] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
9
|
Tuchin VV, Genina EA, Tuchina ES, Svetlakova AV, Svenskaya YI. Optical clearing of tissues: Issues of antimicrobial phototherapy and drug delivery. ADVANCED DRUG DELIVERY REVIEWS 2022; 180:114037. [PMID: 34752842 DOI: 10.1016/j.addr.2021.114037] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 09/23/2021] [Accepted: 10/28/2021] [Indexed: 02/08/2023]
Abstract
This review presents principles and novelties in the field of tissue optical clearing (TOC) technology, as well as application for optical monitoring of drug delivery and effective antimicrobial phototherapy. TOC is based on altering the optical properties of tissue through the introduction of immersion optical cleaning agents (OCA), which impregnate the tissue of interest. We also analyze various methods and kinetics of delivery of photodynamic agents, nanoantibiotics and their mixtures with OCAs into the tissue depth in the context of antimicrobial and antifungal phototherapy. In vitro and in vivo studies of antimicrobial phototherapies, such as photodynamic, photothermal plasmonic and photocatalytic, are summarized, and the prospects of a new TOC technology for effective killing of pathogens are discussed.
Collapse
|
10
|
Souza TH, Sarmento-Neto JF, Souza SO, Raposo BL, Silva BP, Borges CP, Santos BS, Cabral Filho PE, Rebouças JS, Fontes A. Advances on antimicrobial photodynamic inactivation mediated by Zn(II) porphyrins. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY C: PHOTOCHEMISTRY REVIEWS 2021. [DOI: 10.1016/j.jphotochemrev.2021.100454] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
11
|
Yang W, Yoon Y, Lee Y, Oh H, Choi J, Shin S, Lee S, Lee H, Lee Y, Seo J. Photosensitizer-peptoid conjugates for photoinactivation of Gram-negative bacteria: structure-activity relationship and mechanistic studies. ORGANIC & BIOMOLECULAR CHEMISTRY 2021; 19:6546-6557. [PMID: 34259297 DOI: 10.1039/d1ob00926e] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Multitarget engagement is considered an effective strategy to overcome the threat of bacterial infection, and antimicrobials with multiple mechanisms of action have been successful as natural chemical weaponry. Here, we synthesized a library of photosensitizer-peptoid conjugates (PsPCs) as novel antimicrobial photodynamic therapy (aPDT) agents. The peptoids, linkers, and photosensitizers were varied, and their structure-antimicrobial activity relationships against Escherichia coli were evaluated; PsPC 9 was indicated to be the most promising photoresponsive antimicrobial agent among the synthesized PsPCs. Spectroscopic analyses indicated that 9 generated singlet oxygen upon absorption of visible light (420 nm) while maintaining the weakly helical conformation of the peptoid. Mechanistic studies suggested that damage to the bacterial membrane and cleavage of DNA upon light irradiation were the main causes of bactericidal activity, which was supported by flow cytometry and DNA gel electrophoresis experiments. We demonstrated that the optimal combination of membrane-active peptoids and photosensitizers can generate an efficient aPDT agent that targets multiple sites of bacterial components and kills bacteria by membrane disruption and reactive oxygen species generation.
Collapse
Affiliation(s)
- Woojin Yang
- Department of Chemistry, Gwangju Institute of Science and Technology, 123 Cheomdan-gwagiro, Buk-gu, Gwangju 61005, South Korea.
| | - Younggun Yoon
- School of Earth Sciences and Environmental Engineering, Gwangju Institute of Science and Technology, 123 Cheomdan-gwagiro, Buk-gu, Gwangju 61005, South Korea.
| | - Yunjee Lee
- Department of Chemistry, Gwangju Institute of Science and Technology, 123 Cheomdan-gwagiro, Buk-gu, Gwangju 61005, South Korea.
| | - Hyeongyeol Oh
- Department of Chemistry, Gwangju Institute of Science and Technology, 123 Cheomdan-gwagiro, Buk-gu, Gwangju 61005, South Korea.
| | - Jieun Choi
- Department of Chemistry, Gwangju Institute of Science and Technology, 123 Cheomdan-gwagiro, Buk-gu, Gwangju 61005, South Korea.
| | - Sujin Shin
- School of Earth Sciences and Environmental Engineering, Gwangju Institute of Science and Technology, 123 Cheomdan-gwagiro, Buk-gu, Gwangju 61005, South Korea.
| | - Seongsoo Lee
- Gwangju Center, Korea Basic Science Institute (KBSI), 49 Dosicheomdansaneopro, Nam-gu, Gwangju 61751, South Korea
| | - Hohjai Lee
- Department of Chemistry, Gwangju Institute of Science and Technology, 123 Cheomdan-gwagiro, Buk-gu, Gwangju 61005, South Korea.
| | - Yunho Lee
- School of Earth Sciences and Environmental Engineering, Gwangju Institute of Science and Technology, 123 Cheomdan-gwagiro, Buk-gu, Gwangju 61005, South Korea.
| | - Jiwon Seo
- Department of Chemistry, Gwangju Institute of Science and Technology, 123 Cheomdan-gwagiro, Buk-gu, Gwangju 61005, South Korea.
| |
Collapse
|
12
|
Zhao J, Xu L, Zhang H, Zhuo Y, Weng Y, Li S, Yu D. Surfactin-methylene blue complex under LED illumination for antibacterial photodynamic therapy: Enhanced methylene blue transcellular accumulation assisted by surfactin. COLLOIDS AND SURFACES. B, BIOINTERFACES 2021; 207:111974. [PMID: 34303113 DOI: 10.1016/j.colsurfb.2021.111974] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 05/29/2021] [Accepted: 07/12/2021] [Indexed: 12/24/2022]
Abstract
Recently, increased attention has been focused on antibacterial photodynamic therapy (APDT) to treat multidrug-resistant bacterial infection due to the antibiotic abuse. Methylene blue has been used as a kind of efficient and cheap commercial photosensitizer in APDT. However, due to high hydrophilicity, methylene blue is not able to be transcellular intaken and accumulated efficiently. To promote accumulation and APDT efficiency of methylene blue, lipopeptide surfactin-methylene blue complex has been prepared through electrostatic interaction. The complex under LED irradiation was found to effectively reduce 5.0 Log10 CFU and 7.6 Log10 CFU for P. aeruginosa and S. aureus, respectively. The bacterial reduction efficiency is slightly higher than free methylene blue. The photosensitizers accumulation and APDT targeting protein have been characterized by fluorescence spectroscopy, fluorescence microscopy and protein electrophoresis techniques. These results demonstrated that more surfactin-methylene blue complex could be accumulated more into the cell, and inactivate bacteria through destroying intracellular protein under LED illumination. In comparison, free methylene blue under light could inactivate bacteria through destroying membrane protein and lipid structures. These results would provide valuable insight for developing advanced clinical medicine and designing photo-drug for photodynamic therapy.
Collapse
Affiliation(s)
- Juan Zhao
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, 211816, PR China
| | - Lixian Xu
- Department of Dermatology, The Second Affiliated Hospital of Nanjing Medical University, No.121 Jiangjiayuan Road, Nanjing, 210000, PR China
| | - Hao Zhang
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, 211816, PR China
| | - Yuhong Zhuo
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, 211816, PR China
| | - Yanan Weng
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, 211816, PR China
| | - Shuang Li
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, 211816, PR China
| | - Dinghua Yu
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, 211816, PR China.
| |
Collapse
|
13
|
Bartolomeu M, Oliveira C, Pereira C, Neves MGPMS, Faustino MAF, Almeida A. Antimicrobial Photodynamic Approach in the Inactivation of Viruses in Wastewater: Influence of Alternative Adjuvants. ANTIBIOTICS 2021; 10:767. [PMID: 34202496 PMCID: PMC8300698 DOI: 10.3390/antibiotics10070767] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 06/19/2021] [Accepted: 06/21/2021] [Indexed: 11/24/2022]
Abstract
Pathogenic viruses are frequently present in marine and estuarine waters, due to poor wastewater (WW) treatments, which consequently affect water quality and human health. Chlorination, one of the most common methods used to ensure microbiological safety in tertiarily treated effluents, may lead to the formation of toxic chemical disinfection by-products on reaction with organic matter present in the effluents. Antimicrobial photodynamic therapy (aPDT) can be a promising disinfecting approach for the inactivation of pathogens, without the formation of known toxic by-products. Additionally, some studies have reported the potentiator effect on aPDT of some compounds, such as potassium iodide (KI) and hydrogen peroxide (H2O2). In the present study, the aPDT efficiency of a PS formulation constituted of five cationic porphyrins (Form) in the inactivation of E. coli T4-like bacteriophage, a model of mammalian viruses, in different aqueous matrices with different organic matter content, was evaluated. Photoinactivation studies were performed at different concentrations of Form and in the presence of the adjuvants KI and H2O2. The results showed that the efficiency of bacteriophage photoinactivation is correlated with the Form concentration, the amount of the organic matter in WW, and the adjuvant type. Form can be an effective alternative to controlling viruses in WW, particularly if combined with H2O2, allowing to significantly reduce PS concentration and treatment time. When combined with KI, the Form is less effective in inactivating T4-like bacteriophage in WW.
Collapse
Affiliation(s)
- Maria Bartolomeu
- Department of Biology and CESAM, University of Aveiro, 3810-193 Aveiro, Portugal; (M.B.); (C.O.); (C.P.)
| | - Cristiana Oliveira
- Department of Biology and CESAM, University of Aveiro, 3810-193 Aveiro, Portugal; (M.B.); (C.O.); (C.P.)
| | - Carla Pereira
- Department of Biology and CESAM, University of Aveiro, 3810-193 Aveiro, Portugal; (M.B.); (C.O.); (C.P.)
| | | | - M. Amparo F. Faustino
- Department of Chemistry and LAQV-REQUIMTE, University of Aveiro, 3810-193 Aveiro, Portugal;
| | - Adelaide Almeida
- Department of Biology and CESAM, University of Aveiro, 3810-193 Aveiro, Portugal; (M.B.); (C.O.); (C.P.)
| |
Collapse
|
14
|
Synthesis of high-performance conjugated microporous polymer/TiO 2 photocatalytic antibacterial nanocomposites. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2021; 126:112121. [PMID: 34082938 DOI: 10.1016/j.msec.2021.112121] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 03/31/2021] [Accepted: 04/18/2021] [Indexed: 12/14/2022]
Abstract
High-performance conjugated microporous polymer (CMP)/TiO2 photocatalytic antibacterial nanocomposites were successfully synthesized by in situ Sonogashira polymerization. TiO2 was uniformly dispersed onto the surface and within the CMP which show the microporous nature with narrow pore size distribution. The high crystallinity and thermal stability of the CMP/TiO2 nanocomposites are attractive for use as antibacterial materials. The composites we prepared showed excellent photocatalytic antibacterial properties for the inactivation of Escherichia coli (E. coli) and Staphylococcus aureus (S. aureus) under visible light irradiation. The photocatalytic antibacterial rates of nanocomposites against E. coli and S. aureus after 120 min of visible light irradiation were 98.14% and 100%, respectively. The superoxide anion (O2-) was confirmed to be an important substance in the antibacterial process above. The cytocompatibility of the antibacterial agents was studied in terms of cytotoxicity against NIH 3T3 fibroblasts. More than 95% of the cells were still alive in the presence of the nanocomposites, both without and with light irradiation, indicating the good cytocompatibility of the nanocomposites. Judging from the excellent photocatalytic antibacterial properties and ultralow toxicity of nanocomposites, these materials can be used in many fields such as medical treatment, transportation and construction.
Collapse
|
15
|
Ballatore MB, Milanesio ME, Fujita H, Lindsey JS, Durantini EN. Bacteriochlorin-bis(spermine) conjugate affords an effective photodynamic action to eradicate microorganisms. JOURNAL OF BIOPHOTONICS 2020; 13:e201960061. [PMID: 31602791 DOI: 10.1002/jbio.201960061] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Revised: 09/07/2019] [Accepted: 09/23/2019] [Indexed: 06/10/2023]
Abstract
A novel bacteriochlorin bearing two spermine units (BCS) was synthesized from 3,13-dibromo-8,8,18,18-tetramethylbacteriochlorin (BC-Br 3,13 ). The synthesis involved the Suzuki coupling of BC-Br 3,13 to obtain a bacteriochlorin-dibenzaldehyde (BCA), which was subjected to reductive amination with spermine. The resulting bacteriochlorin BCS presents a strong near-infrared absorption band at 747 nm, emits at 750 nm with fluorescence quantum yield of 0.14, and generates singlet molecular oxygen, O2 (1 Δg ), with a quantum yield of 0.27. Photokilling capacities mediated by BCS were evaluated in microbial cells. The viability of Staphylococcus aureus decreased 7 logs when cells were incubated with 1 μM BCS and irradiated for 15 minutes. Comparable photocytotoxic effect was obtained with Escherichia coli, when cells were treated for 30 minutes with visible light. BCS was also an effective photosensitizer to inactivate Candida albicans. In addition, this bacteriochlorin was able to eradicate bacteria at short incubation times. The structure of BCS contains eight basic amino groups that, when protonated in water, increase the binding to the cell envelope. In summary, the readily accessible bacteriochlorin BCS was highly effective at low concentrations as a broad-spectrum antimicrobial photosensitizer.
Collapse
Affiliation(s)
- María B Ballatore
- IDAS-CONICET, Departamento de Química, Facultad de Ciencias Exactas, Físico-Químicas y Naturales, Universidad Nacional de Río Cuarto, Córdoba, Argentina
| | - María E Milanesio
- IDAS-CONICET, Departamento de Química, Facultad de Ciencias Exactas, Físico-Químicas y Naturales, Universidad Nacional de Río Cuarto, Córdoba, Argentina
| | - Hikaru Fujita
- Department of Chemistry, North Carolina State University, Raleigh, North Carolina
| | - Jonathan S Lindsey
- Department of Chemistry, North Carolina State University, Raleigh, North Carolina
| | - Edgardo N Durantini
- IDAS-CONICET, Departamento de Química, Facultad de Ciencias Exactas, Físico-Químicas y Naturales, Universidad Nacional de Río Cuarto, Córdoba, Argentina
| |
Collapse
|
16
|
Castro KADF, Moura NMM, Figueira F, Ferreira RI, Simões MMQ, Cavaleiro JAS, Faustino MAF, Silvestre AJD, Freire CSR, Tomé JPC, Nakagaki S, Almeida A, Neves MGPMS. New Materials Based on Cationic Porphyrins Conjugated to Chitosan or Titanium Dioxide: Synthesis, Characterization and Antimicrobial Efficacy. INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES 2019; 20:E2522. [PMID: 31121942 PMCID: PMC6566955 DOI: 10.3390/ijms20102522] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Revised: 05/15/2019] [Accepted: 05/18/2019] [Indexed: 11/28/2022]
Abstract
The post-functionalization of 5,10,15-tris(1-methylpyridinium-4-yl)-20-(pentafluorophenyl)porphyrin tri-iodide, known as a highly efficient photosensitizer (PS) for antimicrobial photodynamic therapy (aPDT), in the presence of 3- or 4-mercaptobenzoic acid, afforded two new tricationic porphyrins with adequate carboxylic pending groups to be immobilized on chitosan or titanium oxide. The structural characterization of the newly obtained materials confirmed the success of the porphyrin immobilization on the solid supports. The photophysical properties and the antimicrobial photodynamic efficacy of the non-immobilized porphyrins and of the new conjugates were evaluated. The results showed that the position of the carboxyl group in the mercapto units or the absence of these substituents in the porphyrin core could modulate the action of the photosensitizer towards the bioluminescent Gram-negative Escherichia coli bacterium. The antimicrobial activity was also influenced by the interaction between the photosensitizer and the type of support (chitosan or titanium dioxide). The new cationic porphyrins and some of the materials were shown to be very stable in PBS and effective in the photoinactivation of E. coli bacterium. The physicochemical properties of TiO2 allowed the interaction of the PS with its surface, increasing the absorption profile of TiO2, which enables the use of visible light, inactivating the bacteria more efficiently than the corresponding PS immobilized on chitosan.
Collapse
Affiliation(s)
- Kelly A D F Castro
- QOPNA & LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal.
| | - Nuno M M Moura
- QOPNA & LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal.
| | - Flávio Figueira
- QOPNA & LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal.
- CICECO, Departamento de Química, Universidade de Aveiro, 3810-193 Aveiro, Portugal.
| | - Rosalina I Ferreira
- CESAM, Department of Biology, University of Aveiro, 3810-193 Aveiro, Portugal.
| | - Mário M Q Simões
- QOPNA & LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal.
| | - José A S Cavaleiro
- QOPNA & LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal.
| | - M Amparo F Faustino
- QOPNA & LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal.
| | | | - Carmen S R Freire
- CICECO, Departamento de Química, Universidade de Aveiro, 3810-193 Aveiro, Portugal.
| | - João P C Tomé
- CQE, Departamento de Engenharia Química, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, n1, 1049-001 Lisboa, Portugal.
| | - Shirley Nakagaki
- Laboratório de Bioinorgânica e Catálise, Departamento de Química, Universidade Federal do Paraná, Curitiba, Paraná 81531-990, Brasil.
| | - A Almeida
- CESAM, Department of Biology, University of Aveiro, 3810-193 Aveiro, Portugal.
| | - M Graça P M S Neves
- QOPNA & LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal.
| |
Collapse
|
17
|
Cabral J, Ag R. Blue Light Disinfection in Hospital Infection Control: Advantages, Drawbacks, and Pitfalls. ANTIBIOTICS 2019; 8:antibiotics8020058. [PMID: 31067733 PMCID: PMC6627448 DOI: 10.3390/antibiotics8020058] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Revised: 04/27/2019] [Accepted: 05/02/2019] [Indexed: 01/09/2023]
Abstract
Hospital acquired infections (HAIs) are a serious problem that potentially affects millions of patients whenever in contact with hospital settings. Worsening the panorama is the emergence of antimicrobial resistance by most microorganisms implicated in HAIs. Therefore, the improvement of the actual surveillance methods and the discovery of alternative approaches with novel modes of action is vital to overcome the threats created by the emergence of such resistances. Light therapy modalities represent a viable and effective alternative to the conventional antimicrobial treatment and can be preponderant in the control of HAIs, even against multidrug resistant organisms (MDROs). This review will initially focus on the actual state of HAIs and MDROs and which methods are currently available to fight them, which is followed by the exploration of antimicrobial photodynamic therapy (aPDT) and antimicrobial blue light therapy (aBLT) as alternative approaches to control microorganisms involved in HAIs. The advantages and drawbacks of BLT relatively to aPDT and conventional antimicrobial drugs as well as its potential applications to destroy microorganisms in the healthcare setting will also be discussed.
Collapse
Affiliation(s)
- João Cabral
- Division of Microbiology, Department of Pathology, Porto Faculty of Medicine, University of Porto, 4200-319 Porto, Portugal.
| | - Rodrigues Ag
- Division of Microbiology, Department of Pathology, Porto Faculty of Medicine, University of Porto, 4200-319 Porto, Portugal.
- CINTESIS-Center for Health Technology and Services Research, 4200-450 Porto, Portugal.
| |
Collapse
|
18
|
The effect of antimicrobial photodynamic therapy on the expression of biofilm associated genes in Staphylococcus aureus strains isolated from wound infections in burn patients. PHOTODIAGNOSIS AND PHOTODYNAMIC THERAPY 2019; 25:406-413. [DOI: 10.1016/j.pdpdt.2019.01.028] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Revised: 12/15/2018] [Accepted: 01/22/2019] [Indexed: 01/07/2023]
|
19
|
Q Mesquita M, J Dias C, P M S Neves MG, Almeida A, F Faustino MA. Revisiting Current Photoactive Materials for Antimicrobial Photodynamic Therapy. MOLECULES 2018; 23:E2424. [PMID: 30248888 PMCID: PMC6222430 DOI: 10.3390/molecules23102424] [Citation(s) in RCA: 125] [Impact Index Per Article: 17.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Revised: 09/14/2018] [Accepted: 09/18/2018] [Indexed: 12/22/2022]
Abstract
Microbial infection is a severe concern, requiring the use of significant amounts of antimicrobials/biocides, not only in the hospital setting, but also in other environments. The increasing use of antimicrobial drugs and the rapid adaptability of microorganisms to these agents, have contributed to a sharp increase of antimicrobial resistance. It is obvious that the development of new strategies to combat planktonic and biofilm-embedded microorganisms is required. Photodynamic inactivation (PDI) is being recognized as an effective method to inactivate a broad spectrum of microorganisms, including those resistant to conventional antimicrobials. In the last few years, the development and biological assessment of new photosensitizers for PDI were accompanied by their immobilization in different supports having in mind the extension of the photodynamic principle to new applications, such as the disinfection of blood, water, and surfaces. In this review, we intended to cover a significant amount of recent work considering a diversity of photosensitizers and supports to achieve an effective photoinactivation. Special attention is devoted to the chemistry behind the preparation of the photomaterials by recurring to extensive examples, illustrating the design strategies. Additionally, we highlighted the biological challenges of each formulation expecting that the compiled information could motivate the development of other effective photoactive materials.
Collapse
Affiliation(s)
- Mariana Q Mesquita
- Department of Chemistry and QOPNA, University of Aveiro, 3810-193 Aveiro, Portugal.
- Department of Biomedical Sciences and iBiMED, University of Aveiro, 3810-193 Aveiro, Portugal.
| | - Cristina J Dias
- Department of Chemistry and QOPNA, University of Aveiro, 3810-193 Aveiro, Portugal.
| | - Maria G P M S Neves
- Department of Chemistry and QOPNA, University of Aveiro, 3810-193 Aveiro, Portugal.
| | - Adelaide Almeida
- Department of Biology CESAM, University of Aveiro, 3810-193 Aveiro, Portugal.
| | - M Amparo F Faustino
- Department of Chemistry and QOPNA, University of Aveiro, 3810-193 Aveiro, Portugal.
| |
Collapse
|
20
|
Photodynamic therapy as an alternative to antibiotic therapy for the treatment of infected leg ulcers. PHOTODIAGNOSIS AND PHOTODYNAMIC THERAPY 2018; 23:132-143. [DOI: 10.1016/j.pdpdt.2018.05.001] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Revised: 03/25/2018] [Accepted: 05/02/2018] [Indexed: 12/29/2022]
|
21
|
Hu J, Lin S, Tan BK, Hamzah SS, Lin Y, Kong Z, Zhang Y, Zheng B, Zeng S. Photodynamic inactivation of Burkholderia cepacia by curcumin in combination with EDTA. FOOD RESEARCH INTERNATIONAL 2018; 111:265-271. [DOI: 10.1016/j.foodres.2018.05.042] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2018] [Revised: 05/14/2018] [Accepted: 05/18/2018] [Indexed: 10/16/2022]
|
22
|
An efficient formulation based on cationic porphyrins to photoinactivate Staphylococcus aureus and Escherichia coli. FUTURE MEDICINAL CHEMISTRY 2018; 10:1821-1833. [PMID: 30019927 DOI: 10.4155/fmc-2018-0010] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
AIM Antibiotic resistance is an increasingly serious worldwide problem that needs to be addressed with alternative tools. Antimicrobial photodynamic therapy seems a promising approach but in some cases the synthesis of highly efficient photosensitizers requires laborious processes burdened by extensive chromatographic purifications. In this study, we evaluate the suitability of a formulation (Form-1) containing porphyrins bearing different charges, obtained during the synthesis of the highly efficient photosensitizer 5,10,15-tris(1-methylpyridinium-4-yl)-20-(pentafluorophenyl)porphyrin tri-iodide. RESULTS Form-1 was equally effective in the photoinactivation of Escherichia coli and Staphylococcus aureus (reductions >5 log) as the best stand-alone photosensitizer. CONCLUSION The effective reduction of bacteria with Form-1 provided promising indications supporting its use, leading to a substantial decrease in costs and production time.
Collapse
|
23
|
Brancini GTP, Rodrigues GB, Rambaldi MDSL, Izumi C, Yatsuda AP, Wainwright M, Rosa JC, Braga GÚL. The effects of photodynamic treatment with new methylene blue N on the Candida albicans proteome. PHOTOCHEMICAL & PHOTOBIOLOGICAL SCIENCES 2018; 15:1503-1513. [PMID: 27830217 DOI: 10.1039/c6pp00257a] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Candida albicans is a human pathogenic fungus mainly affecting immunocompromised patients. Resistance to the commonly used fungicides can lead to poor treatment of mucosal infections which, in turn, can result in life-threatening systemic candidiasis. In this scenario, antimicrobial photodynamic treatment (PDT) has emerged as an effective alternative to treat superficial and localized fungal infections. Microbial death in PDT is a consequence of the oxidation of many cellular biomolecules, including proteins. Here, we report a combination of two-dimensional electrophoresis and tandem mass spectrometry to study the protein damage resulting from treating C. albicans with PDT with new methylene blue N and red light. Two-dimensional gels of treated cells showed an increase in acidic spots in a fluence-dependent manner. Amino acid analysis revealed a decrease in the histidine content after PDT, which is one plausible explanation for the observed acidic shift. However, some protein spots remained unchanged. Protein identification by mass spectrometry revealed that both modified and unmodified proteins could be localized to the cytoplasm, ruling out subcellular location as the only explanation for damage selectivity. Therefore, we hypothesize that protein modification by PDT is a consequence of both photosensitizer binding affinity and the degree of exposure of the photooxidizable residues on the protein surface.
Collapse
Affiliation(s)
| | - Gabriela Braga Rodrigues
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP, Brazil.
| | | | - Clarice Izumi
- Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil.
| | - Ana Patrícia Yatsuda
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP, Brazil.
| | - Mark Wainwright
- School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, Liverpool, UK.
| | - José César Rosa
- Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil.
| | - Gilberto Úbida Leite Braga
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP, Brazil.
| |
Collapse
|
24
|
Bioinorganic antimicrobial strategies in the resistance era. COORDINATION CHEMISTRY REVIEWS 2017. [DOI: 10.1016/j.ccr.2017.05.005] [Citation(s) in RCA: 91] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
25
|
Duong PHH, Hong PY, Musteata V, Peinemann KV, Nunes SP. Thin Film Polyamide Membranes with Photoresponsive Antibacterial Activity. CHEMISTRYSELECT 2017. [DOI: 10.1002/slct.201701279] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Phuoc H. H. Duong
- King Abdullah University of Science and Technology (KAUST); Biological and Environmental Science and Engineering Division (BESE); Thuwal 23955-6900 Saudi Arabia
- King Abdullah University of Science and Technology (KAUST); Advanced Membranes and Porous Materials Center; Thuwal 23955-6900 Saudi Arabia
| | - Pei-Ying Hong
- King Abdullah University of Science and Technology (KAUST); Water Desalination and Reuse Center; Thuwal 23955-6900 Saudi Arabia
| | - Valentina Musteata
- King Abdullah University of Science and Technology (KAUST); Biological and Environmental Science and Engineering Division (BESE); Thuwal 23955-6900 Saudi Arabia
| | - Klaus Viktor Peinemann
- King Abdullah University of Science and Technology (KAUST); Advanced Membranes and Porous Materials Center; Thuwal 23955-6900 Saudi Arabia
| | - Suzana P. Nunes
- King Abdullah University of Science and Technology (KAUST); Biological and Environmental Science and Engineering Division (BESE); Thuwal 23955-6900 Saudi Arabia
| |
Collapse
|
26
|
Abana CM, Brannon JR, Ebbott RA, Dunigan TL, Guckes KR, Fuseini H, Powers J, Rogers BR, Hadjifrangiskou M. Characterization of blue light irradiation effects on pathogenic and nonpathogenic Escherichia coli. MICROBIOLOGYOPEN 2017; 6. [PMID: 28332311 PMCID: PMC5552948 DOI: 10.1002/mbo3.466] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/24/2016] [Revised: 01/27/2017] [Accepted: 02/08/2017] [Indexed: 01/09/2023]
Abstract
Blue light irradiation (BLI) is an FDA-approved method for treating certain types of infections, like acne, and is becoming increasingly attractive as an antimicrobial strategy as the prevalence of antibiotic-resistant "superbugs" rises. However, no study has delineated the effectiveness of BLI throughout different bacterial growth phases, especially in more BLI-tolerant organisms such as Escherichia coli. While the vast majority of E. coli strains are nonpathogenic, several E. coli pathotypes exist that cause infection within and outside the gastrointestinal tract. Here, we compared the response of E. coli strains from five phylogenetic groups to BLI with a 455 nm wavelength (BLI455 ), using colony-forming unit and ATP measurement assays. Our results revealed that BLI455 is not bactericidal, but can retard E. coli growth in a manner that is dependent on culture age and strain background. This observation is critical, given that bacteria on and within mammalian hosts are found in different phases of growth.
Collapse
Affiliation(s)
- Courtney M Abana
- Department of Chemical & Biomolecular Engineering, Vanderbilt University, Nashville, TN, USA
| | - John R Brannon
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Rebecca A Ebbott
- Department of Biological Sciences, Vanderbilt University, Nashville, TN, USA
| | - Taryn L Dunigan
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, USA
| | - Kirsten R Guckes
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Hubaida Fuseini
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Jennifer Powers
- Vanderbilt Dermatology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Bridget R Rogers
- Department of Chemical & Biomolecular Engineering, Vanderbilt University, Nashville, TN, USA
| | - Maria Hadjifrangiskou
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA.,Department of Urologic Surgery, Vanderbilt University Medical Center, Nashville, TN, USA
| |
Collapse
|
27
|
Dąbrowski JM, Pucelik B, Regiel-Futyra A, Brindell M, Mazuryk O, Kyzioł A, Stochel G, Macyk W, Arnaut LG. Engineering of relevant photodynamic processes through structural modifications of metallotetrapyrrolic photosensitizers. COORDINATION CHEMISTRY REVIEWS 2016. [DOI: 10.1016/j.ccr.2016.06.007] [Citation(s) in RCA: 123] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
28
|
Félix C, Duarte AS, Vitorino R, Guerreiro ACL, Domingues P, Correia ACM, Alves A, Esteves AC. Temperature Modulates the Secretome of the Phytopathogenic Fungus Lasiodiplodia theobromae. FRONTIERS IN PLANT SCIENCE 2016; 7:1096. [PMID: 27536303 PMCID: PMC4971015 DOI: 10.3389/fpls.2016.01096] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2016] [Accepted: 07/11/2016] [Indexed: 05/18/2023]
|
29
|
Kossakowska-Zwierucho M, Kaźmierkiewicz R, Bielawski KP, Nakonieczna J. Factors Determining Staphylococcus aureus Susceptibility to Photoantimicrobial Chemotherapy: RsbU Activity, Staphyloxanthin Level, and Membrane Fluidity. FRONTIERS IN MICROBIOLOGY 2016; 7:1141. [PMID: 27486456 PMCID: PMC4949386 DOI: 10.3389/fmicb.2016.01141] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/13/2016] [Accepted: 07/07/2016] [Indexed: 12/22/2022]
Abstract
Photoantimicrobial chemotherapy (PACT) constitutes a particular type of stress condition, in which bacterial cells induce a pleiotropic and as yet unexplored effect. In light of this, the key master regulators are of putative significance to the overall phototoxic outcome. In Staphylococcus aureus, the alternative sigma factor σB controls the expression of genes involved in the response to environmental stress. We show that aberration of any sigB operon genes in S. aureus USA300 isogenic mutants causes a pronounced sensitization (>5 log10 reduction in CFU drop) to PACT with selected photosensitizers, namely protoporphyrin diarginate, zinc phthalocyanine and rose bengal. This effect is partly due to aberration-coupled staphyloxanthin synthesis inhibition. We identified frequent mutations in RsbU, a σB activator, in PACT-vulnerable clinical isolates of S. aureus, resulting in σB activity impairment. Locations of significant changes in protein structure (IS256 insertion, early STOP codon occurrence, substitutions A230T and A276D) were shown in a theoretical model of S. aureus RsbU. As a phenotypic hallmark of PACT-vulnerable S. aureus strains, we observed an increased fluidity of bacterial cell membrane, which is a result of staphyloxanthin content and other yet unidentified factors. Our research indicates σB as a promising target of adjunctive antimicrobial therapy and suggests that enhanced cell membrane fluidity may be an adjuvant strategy in PACT.
Collapse
Affiliation(s)
- Monika Kossakowska-Zwierucho
- Laboratory of Molecular Diagnostics, Department of Biotechnology, Intercollegiate Faculty of Biotechnology, University of Gdansk and Medical University of Gdansk Gdansk, Poland
| | - Rajmund Kaźmierkiewicz
- Laboratory of Biomolecular Systems Simulation, Intercollegiate Faculty of Biotechnology, University of Gdansk and Medical University of Gdansk Gdansk, Poland
| | - Krzysztof P Bielawski
- Laboratory of Molecular Diagnostics, Department of Biotechnology, Intercollegiate Faculty of Biotechnology, University of Gdansk and Medical University of Gdansk Gdansk, Poland
| | - Joanna Nakonieczna
- Laboratory of Molecular Diagnostics, Department of Biotechnology, Intercollegiate Faculty of Biotechnology, University of Gdansk and Medical University of Gdansk Gdansk, Poland
| |
Collapse
|
30
|
Modulation of virulence in Acinetobacter baumannii cells surviving photodynamic treatment with toluidine blue. PHOTODIAGNOSIS AND PHOTODYNAMIC THERAPY 2016; 15:202-12. [PMID: 27444886 DOI: 10.1016/j.pdpdt.2016.07.007] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2016] [Revised: 07/09/2016] [Accepted: 07/17/2016] [Indexed: 01/11/2023]
Abstract
INTRODUCTION Widespread resistance to antimicrobial agents has led to a dearth of therapeutic choices in treating Acinetobacter baumannii infections, leading to new strategies for treatment being needed. We evaluated the effects of photodynamic therapy (PDT) as an alternative antimicrobial modality on the virulence features of cell-surviving PDT. MATERIALS AND METHODS To determine the sublethal PDT (sPDT), a colistin-resistant, extensively drug-resistant A. baumannii (CR-XDR-AB) clinical isolate and A. baumannii and ATCC 19606 strains, photosensitized with toluidine blue O (TBO), were irradiated with light emitting diodes, following bacterial viability measurements. The biofilm formation ability, outer membrane (OM) integrity, and antimicrobial susceptibility profiles were assessed for cell-surviving PDT. The effects of sPDT on the expression of virulent genes were evaluated by real-time quantitative reverse transcription PCR (qRT-PCR). RESULTS sPDT resulted in the reduction of the biofilm formation capacity, and its metabolic activity in strains. The OM permeability and efflux pump inhibition of the sPDT-treated CR-XDR-AB cells were increased; however, there was no significant change in OM integrity in ATCC 19606 strain after sPDT. sPDT reduced the minimum inhibitory concentrations of the most tested antimicrobials by ≥2-fold in CR-XDR-AB. lpsB, blsA, and dnaK were upregulated after the strains were treated with sPDT; however, a reduction in the expression of csuE, epsA, and abaI was observed in the treated strains after sPDT. CONCLUSION The susceptibility of CR-XDR-AB to a range of antibiotics was enhanced following sPDT. The virulence of strains is reduced in cells surviving PDT with TBO, and this may have potential implications of PDT for the treatment of A. baumannii infections.
Collapse
|
31
|
Overall biochemical changes in bacteria photosensitized with cationic porphyrins monitored by infrared spectroscopy. FUTURE MEDICINAL CHEMISTRY 2016; 8:613-28. [PMID: 27073984 DOI: 10.4155/fmc-2015-0008] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
BACKGROUND Photodynamic inactivation of micro-organisms is a promising nonantibiotic multitarget approach to treat localized and superficial infections through oxidative stress. Herein, the changes occurring on major cellular components of Escherichia coli and Staphylococcus warneri, induced by photosensitization with cationic porphyrins (Tri-Py(+)-Me-PF and Tetra-Py(+)-Me) and white light, were monitored by infrared spectroscopy. RESULTS In E. coli, most of the changes occurred on proteins and lipids, suggesting a key effect on lipopolysaccharides in the first irradiation times. In S. warneri, proteins were the major molecular targets of oxidative damage but phospholipids and polysaccharides were also affected. CONCLUSION Infrared spectroscopy is a very interesting tool to monitor biochemical changes induced by photosensitization in bacteria and also to infer on its mechanism of action.
Collapse
|
32
|
Bartolomeu M, Rocha S, Cunha Â, Neves MGPMS, Faustino MAF, Almeida A. Effect of Photodynamic Therapy on the Virulence Factors of Staphylococcus aureus. FRONTIERS IN MICROBIOLOGY 2016; 7:267. [PMID: 27014198 PMCID: PMC4780358 DOI: 10.3389/fmicb.2016.00267] [Citation(s) in RCA: 73] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/19/2015] [Accepted: 02/18/2016] [Indexed: 11/17/2022]
Abstract
Staphylococcus aureus is a Gram-positive bacterium that is present in the human microbiota. Nevertheless, these bacteria can be pathogenic to the humans. Due to the increasing occurrence of antibiotic-resistant S. aureus strains, new approaches to control this pathogen are necessary. The antimicrobial photodynamic inactivation (PDI) process is based in the combined use of light, oxygen, and an intermediary agent (a photosensitizer). These three components interact to generate cytotoxic reactive oxygen species that irreversibly damage vital constituents of the microbial cells and ultimately lead to cell death. Although PDI is being shown to be a promising alternative to the antibiotic approach for the inactivation of pathogenic microorganisms, information on effects of photosensitization on particular virulence factors is strikingly scarce. The objective of this work was to evaluate the effect of PDI on virulence factors of S. aureus and to assess the potential development of resistance of this bacterium as well as the recovery of the expression of the virulence factors after successive PDI cycles. For this, the photosensitizer 5,10,15,20-tetrakis(1-methylpyridinium-4-yl)porphyrin tetra-iodide (Tetra-Py+-Me) and six strains of S. aureus [one reference strain, one strain with one enterotoxin, two strains with three enterotoxins and two methicillin resistant strains (MRSA) – one with five enterotoxins and the other without enterotoxins] were used. The effect of photosensitization on catalase activity, beta hemolysis, lipases, thermonuclease, enterotoxins, coagulase production, and resistance/susceptibility to methicillin was tested. To assess the development of resistance after successive cycles of treatment, three strains of S. aureus (ATCC 6538, 2065 MA, and SA 3 MRSA) were used. The surviving colonies of a first cycle of PDI were collected from the solid medium and subjected to further nine consecutive cycles of PDI. The results indicate that the expression of some external virulence factors is affected by PDI and enterotoxin producing strains were more susceptible to PDI than non-toxigenic strains. The surviving bacteria did not develop resistance. PDI, contrarily to traditional antibiotics, inhibited the expression of virulence factors, efficiently inactivating either highly virulent strains and low virulent S. aureus strains, inactivating also antibiotic susceptible and resistant strains, without development of photoresistance after at least 10 consecutive cycles of treatment, and so this therapy may become a strong promising alternative to antibiotics to control pathogenic microorganisms.
Collapse
Affiliation(s)
- Maria Bartolomeu
- Departamento de Biologia and Centro de Estudos do Ambiente e do Mar, University of Aveiro Aveiro, Portugal
| | - Sónia Rocha
- Departamento de Biologia and Centro de Estudos do Ambiente e do Mar, University of Aveiro Aveiro, Portugal
| | - Ângela Cunha
- Departamento de Biologia and Centro de Estudos do Ambiente e do Mar, University of Aveiro Aveiro, Portugal
| | - M G P M S Neves
- Departamento de Química and Unidade de Investigação em Química Orgânica, Produtos Naturais e Agroalimentares, University of Aveiro Aveiro, Portugal
| | - Maria A F Faustino
- Departamento de Química and Unidade de Investigação em Química Orgânica, Produtos Naturais e Agroalimentares, University of Aveiro Aveiro, Portugal
| | - Adelaide Almeida
- Departamento de Biologia and Centro de Estudos do Ambiente e do Mar, University of Aveiro Aveiro, Portugal
| |
Collapse
|
33
|
Moura NMM, Ramos CIV, Linhares I, Santos SM, Faustino MAF, Almeida A, Cavaleiro JAS, Amado FML, Lodeiro C, Neves MGPMS. Synthesis, characterization and biological evaluation of cationic porphyrin–terpyridine derivatives. RSC ADVANCES 2016. [DOI: 10.1039/c6ra25373c] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A new series of cationic porphyrin–terpyridine derivatives was prepared. These new compounds are able to generate 1O2 and show high efficiency in the photoinactivation of bioluminescent Gram-negative E. coli.
Collapse
Affiliation(s)
- Nuno M. M. Moura
- Organic Chemistry Laboratory
- QOPNA
- Department of Chemistry
- University of Aveiro
- 3810-193 Aveiro
| | - Catarina I. V. Ramos
- Mass Spectrometry Laboratory
- QOPNA
- Department of Chemistry
- University of Aveiro
- 3810-193 Aveiro
| | - Inês Linhares
- Department of Biology
- CESAM
- University of Aveiro
- 3810-193 Aveiro
- Portugal
| | - Sérgio M. Santos
- CICECO
- Department of Chemistry
- University of Aveiro
- 3810-193 Aveiro
- Portugal
| | - M. Amparo F. Faustino
- Organic Chemistry Laboratory
- QOPNA
- Department of Chemistry
- University of Aveiro
- 3810-193 Aveiro
| | - Adelaide Almeida
- Department of Biology
- CESAM
- University of Aveiro
- 3810-193 Aveiro
- Portugal
| | - José A. S. Cavaleiro
- Organic Chemistry Laboratory
- QOPNA
- Department of Chemistry
- University of Aveiro
- 3810-193 Aveiro
| | - Francisco M. L. Amado
- Mass Spectrometry Laboratory
- QOPNA
- Department of Chemistry
- University of Aveiro
- 3810-193 Aveiro
| | - Carlos Lodeiro
- BIOSCOPE Research Team
- UCIBIO
- REQUIMTE
- Departamento de Química
- Faculdade de Ciências e Tecnologia
| | | |
Collapse
|
34
|
Photodynamic inactivation of bacteria: finding the effective targets. FUTURE MEDICINAL CHEMISTRY 2015; 7:1221-4. [DOI: 10.4155/fmc.15.59] [Citation(s) in RCA: 83] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|