1
|
Van Guyse JFR, Abbasi S, Toh K, Nagorna Z, Li J, Dirisala A, Quader S, Uchida S, Kataoka K. Facile Generation of Heterotelechelic Poly(2-Oxazoline)s Towards Accelerated Exploration of Poly(2-Oxazoline)-Based Nanomedicine. Angew Chem Int Ed Engl 2024; 63:e202404972. [PMID: 38651732 DOI: 10.1002/anie.202404972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 04/19/2024] [Accepted: 04/23/2024] [Indexed: 04/25/2024]
Abstract
Controlling the end-groups of biocompatible polymers is crucial for enabling polymer-based therapeutics and nanomedicine. Typically, end-group diversification is a challenging and time-consuming endeavor, especially for polymers prepared via ionic polymerization mechanisms with limited functional group tolerance. In this study, we present a facile end-group diversification approach for poly(2-oxazoline)s (POx), enabling quick and reliable production of heterotelechelic polymers to facilitate POxylation. The approach relies on the careful tuning of reaction parameters to establish differential reactivity of a pentafluorobenzyl initiator fragment and the living oxazolinium chain-end, allowing the selective introduction of N-, S-, O-nucleophiles via the termination of the polymerization, and a consecutive nucleophilic para-fluoro substitution. The value of this approach for the accelerated development of nanomedicine is demonstrated through the synthesis of well-defined lipid-polymer conjugates and POx-polypeptide block-copolymers, which are well-suited for drug and gene delivery. Furthermore, we investigated the application of a lipid-POx conjugate for the formulation and delivery of mRNA-loaded lipid nanoparticles for immunization against the SARS-COV-2 virus, underscoring the value of POx as a biocompatible polymer platform.
Collapse
Affiliation(s)
- Joachim F R Van Guyse
- Innovation Center of NanoMedicine, Kawasaki Institute of Industrial Promotion, 3-25-14, Tonomachi, Kawasaki-ku, 210-0821, Kawasaki, Japan
- Present Adresses: S. A., Center for Nanomedicine at the Wilmer Eye Institute, Johns Hopkins University School of Medicine, 21231, Baltimore, MD, USA
- Leiden Academic Centre for Drug Research (LACDR), Leiden University, Einsteinweg 55, 2333 CC, Leiden, The Netherlands
| | - Saed Abbasi
- Innovation Center of NanoMedicine, Kawasaki Institute of Industrial Promotion, 3-25-14, Tonomachi, Kawasaki-ku, 210-0821, Kawasaki, Japan
- Present Adresses: S. A., Center for Nanomedicine at the Wilmer Eye Institute, Johns Hopkins University School of Medicine, 21231, Baltimore, MD, USA
| | - Kazuko Toh
- Innovation Center of NanoMedicine, Kawasaki Institute of Industrial Promotion, 3-25-14, Tonomachi, Kawasaki-ku, 210-0821, Kawasaki, Japan
- Present Adresses: S. A., Center for Nanomedicine at the Wilmer Eye Institute, Johns Hopkins University School of Medicine, 21231, Baltimore, MD, USA
| | - Zlata Nagorna
- Leiden Academic Centre for Drug Research (LACDR), Leiden University, Einsteinweg 55, 2333 CC, Leiden, The Netherlands
| | - Junjie Li
- Innovation Center of NanoMedicine, Kawasaki Institute of Industrial Promotion, 3-25-14, Tonomachi, Kawasaki-ku, 210-0821, Kawasaki, Japan
- Present Adresses: S. A., Center for Nanomedicine at the Wilmer Eye Institute, Johns Hopkins University School of Medicine, 21231, Baltimore, MD, USA
- Institute for Materials Chemistry and Engineering, Kyushu University, 744 Motooka, Nishi-ku, 819-0395, Fukuoka, Japan
| | - Anjaneyulu Dirisala
- Innovation Center of NanoMedicine, Kawasaki Institute of Industrial Promotion, 3-25-14, Tonomachi, Kawasaki-ku, 210-0821, Kawasaki, Japan
- Present Adresses: S. A., Center for Nanomedicine at the Wilmer Eye Institute, Johns Hopkins University School of Medicine, 21231, Baltimore, MD, USA
| | - Sabina Quader
- Innovation Center of NanoMedicine, Kawasaki Institute of Industrial Promotion, 3-25-14, Tonomachi, Kawasaki-ku, 210-0821, Kawasaki, Japan
- Present Adresses: S. A., Center for Nanomedicine at the Wilmer Eye Institute, Johns Hopkins University School of Medicine, 21231, Baltimore, MD, USA
| | - Satoshi Uchida
- Innovation Center of NanoMedicine, Kawasaki Institute of Industrial Promotion, 3-25-14, Tonomachi, Kawasaki-ku, 210-0821, Kawasaki, Japan
- Present Adresses: S. A., Center for Nanomedicine at the Wilmer Eye Institute, Johns Hopkins University School of Medicine, 21231, Baltimore, MD, USA
- Department of Medical, Chemistry, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, 606-0823, Kyoto, Japan
- Department of Advanced Nanomedical Engineering, Medical Research Institute, Tokyo Medical and Dental University (TMDU), 113-8510, Tokyo, Japan
| | - Kazunori Kataoka
- Innovation Center of NanoMedicine, Kawasaki Institute of Industrial Promotion, 3-25-14, Tonomachi, Kawasaki-ku, 210-0821, Kawasaki, Japan
- Present Adresses: S. A., Center for Nanomedicine at the Wilmer Eye Institute, Johns Hopkins University School of Medicine, 21231, Baltimore, MD, USA
| |
Collapse
|
2
|
Engel N, Hoffmann T, Behrendt F, Liebing P, Weber C, Gottschaldt M, Schubert US. Cryogels Based on Poly(2-oxazoline)s through Development of Bi- and Trifunctional Cross-Linkers Incorporating End Groups with Adjustable Stability. Macromolecules 2024; 57:2915-2927. [PMID: 38560346 PMCID: PMC10977347 DOI: 10.1021/acs.macromol.3c02030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 02/19/2024] [Accepted: 02/22/2024] [Indexed: 04/04/2024]
Abstract
1,4-Bis(iodomethyl)benzene and 1,3,5-tris(iodomethyl)benzene were used as initiators for the cationic ring-opening polymerization (CROP) of 2-ethyl-2-oxazoline (EtOx) and its copolymerization with tert-butyl (3-(4,5-dihydrooxazol-2-yl)propyl)carbamate (BocOx) or methyl 3-(4,5-dihydrooxazol-2-yl)propanoate (MestOx). Kinetic studies confirmed the applicability of these initiators. Termination with suitable nucleophiles resulted in two- and three-armed cross-linkers featuring acrylate, methacrylate, piperazine-acrylamide, and piperazine-methacrylamide as polymerizable ω-end groups. Matrix-assisted laser desorption/ionization mass spectrometry and nuclear magnetic resonance (NMR) spectroscopy confirmed the successful attachment of the respective ω-end groups at all initiation sites for every prepared cross-linkers. Except for acrylate, each ω-end group remained stable during deprotection of BocOx containing cross-linkers. The cryogels were prepared using EtOx-based cross-linkers, as confirmed by solid-state NMR spectroscopy, scanning electron microscopy, and thermogravimetric analysis. Stability tests revealed a complete dissolution of the acrylate-containing gels at pH = 14, whereas the piperazine-acrylamide-based cryogels featured excellent hydrolytic stability.
Collapse
Affiliation(s)
- Nora Engel
- Laboratory
of Organic Chemistry and Macromolecular Chemistry (IOMC), Friedrich Schiller University at Jena, Humboldtstraße 10, 07743 Jena, Germany
- Jena
Center for Soft Matter (JCSM), Friedrich
Schiller University Jena, Philosophenweg 7, 07743 Jena, Germany
| | - Tim Hoffmann
- Laboratory
of Organic Chemistry and Macromolecular Chemistry (IOMC), Friedrich Schiller University at Jena, Humboldtstraße 10, 07743 Jena, Germany
- Jena
Center for Soft Matter (JCSM), Friedrich
Schiller University Jena, Philosophenweg 7, 07743 Jena, Germany
| | - Florian Behrendt
- Laboratory
of Organic Chemistry and Macromolecular Chemistry (IOMC), Friedrich Schiller University at Jena, Humboldtstraße 10, 07743 Jena, Germany
- Jena
Center for Soft Matter (JCSM), Friedrich
Schiller University Jena, Philosophenweg 7, 07743 Jena, Germany
| | - Phil Liebing
- Institute
of Inorganic and Analytical Chemistry (IAAC), Friedrich Schiller University at Jena, Humboldtstraße 8, 07743 Jena, Germany
| | - Christine Weber
- Laboratory
of Organic Chemistry and Macromolecular Chemistry (IOMC), Friedrich Schiller University at Jena, Humboldtstraße 10, 07743 Jena, Germany
- Jena
Center for Soft Matter (JCSM), Friedrich
Schiller University Jena, Philosophenweg 7, 07743 Jena, Germany
| | - Michael Gottschaldt
- Laboratory
of Organic Chemistry and Macromolecular Chemistry (IOMC), Friedrich Schiller University at Jena, Humboldtstraße 10, 07743 Jena, Germany
- Jena
Center for Soft Matter (JCSM), Friedrich
Schiller University Jena, Philosophenweg 7, 07743 Jena, Germany
| | - Ulrich S. Schubert
- Laboratory
of Organic Chemistry and Macromolecular Chemistry (IOMC), Friedrich Schiller University at Jena, Humboldtstraße 10, 07743 Jena, Germany
- Jena
Center for Soft Matter (JCSM), Friedrich
Schiller University Jena, Philosophenweg 7, 07743 Jena, Germany
| |
Collapse
|
3
|
Sedlacek O, Egghe T, Khashayar P, Purino M, Lopes P, Vanfleteren J, De Geyter N, Hoogenboom R. Multifunctional Poly(2-ethyl-2-oxazoline) Copolymers Containing Dithiolane and Pentafluorophenyl Esters as Effective Reactive Linkers for Gold Surface Coatings. Bioconjug Chem 2023; 34:2311-2318. [PMID: 38055023 DOI: 10.1021/acs.bioconjchem.3c00444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2023]
Abstract
Surface functionalization with biological macromolecules is an important task for the development of sensor materials, whereby the interaction with other biological materials should be suppressed. In this work, we developed a novel multifunctional poly(2-ethyl-2-oxazoline)-dithiolane conjugate as a versatile linker for gold surface immobilization of amine-containing biomolecules, containing poly(2-ethyl-2-oxazoline) as antifouling polymer, dithiolane for surface immobilization, and activated esters for protein conjugation. First, a well-defined carboxylic acid containing copoly(2-ethyl-2-oxazoline) was synthesized by cationic ring-opening copolymerization of 2-ethyl-2-oxazoline with a methyl ester-containing 2-oxazoline monomer, followed by postpolymerization modifications. The side-chain carboxylic groups were then converted to amine-reactive pentafluorophenyl (PFP) ester groups. Part of the PFP groups was used for the attachment of the dithiolane moiety, which can efficiently bind to gold surfaces. The final copolymer contained 1.4 mol% of dithiolane groups and 4.5 mol% of PFP groups. The copolymer structure was confirmed by several analytical techniques, including NMR spectroscopy and size-exclusion chromatography. The kinetics of the PFP ester aminolysis and hydrolysis demonstrated significantly faster amidation compared to hydrolysis, which is essential for subsequent protein conjugation. Successful coating of gold surfaces with the polymer was confirmed by spectroscopic ellipsometry, showing a polymer brush thickness of 4.77 nm. Subsequent modification of the coated surfaces was achieved using bovine serum albumin as a model protein. This study introduces a novel reactive polymer linker for gold surface functionalization and offers a versatile polymer platform for various applications including biosensing and surface functionalization.
Collapse
Affiliation(s)
- Ondrej Sedlacek
- Department of Organic and Macromolecular Chemistry, Supramolecular Chemistry Group, Faculty of Sciences, Ghent University, Krijgslaan 281 S4, Ghent 9000, Belgium
- Department of Physical and Macromolecular Chemistry, Faculty of Science, Charles University, Prague 2 128 40, Czech Republic
| | - Tim Egghe
- Research Unit Plasma Technology (RUPT), Department of Applied Physics, Faculty of Engineering and Architecture, Ghent University, Sint-Pietersnieuwstraat 41 B4, Ghent 9000, Belgium
| | - Patricia Khashayar
- Centre for Microsystems Technology (CMST), IMEC and Ghent University, Technologiepark 216, Zwijnaarde, Ghent 9052, Belgium
| | - Martin Purino
- Department of Organic and Macromolecular Chemistry, Supramolecular Chemistry Group, Faculty of Sciences, Ghent University, Krijgslaan 281 S4, Ghent 9000, Belgium
| | - Paula Lopes
- Centre for Microsystems Technology (CMST), IMEC and Ghent University, Technologiepark 216, Zwijnaarde, Ghent 9052, Belgium
| | - Jan Vanfleteren
- Centre for Microsystems Technology (CMST), IMEC and Ghent University, Technologiepark 216, Zwijnaarde, Ghent 9052, Belgium
| | - Nathalie De Geyter
- Research Unit Plasma Technology (RUPT), Department of Applied Physics, Faculty of Engineering and Architecture, Ghent University, Sint-Pietersnieuwstraat 41 B4, Ghent 9000, Belgium
| | - Richard Hoogenboom
- Department of Organic and Macromolecular Chemistry, Supramolecular Chemistry Group, Faculty of Sciences, Ghent University, Krijgslaan 281 S4, Ghent 9000, Belgium
| |
Collapse
|
4
|
Vergaelen M, Monnery BD, Jerca VV, Hoogenboom R. Detailed Understanding of Solvent Effects for the Cationic Ring-Opening Polymerization of 2-Ethyl-2-oxazoline. Macromolecules 2023. [DOI: 10.1021/acs.macromol.2c01930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
Affiliation(s)
- Maarten Vergaelen
- Supramolecular Chemistry Group, Centre of Macromolecular Chemistry (CMaC), Department of Organic and Macromolecular Chemistry, Faculty of Sciences, Ghent University, Krijgslaan 281 S4, 9000 Ghent, Belgium
| | - Bryn D. Monnery
- Supramolecular Chemistry Group, Centre of Macromolecular Chemistry (CMaC), Department of Organic and Macromolecular Chemistry, Faculty of Sciences, Ghent University, Krijgslaan 281 S4, 9000 Ghent, Belgium
- Targeted Drug Delivery with Nanomedicine Group, University Medical Center Groningen, Antonius Deusinglaan 1, 9713 AW Groningen, Netherlands
| | - Valentin Victor Jerca
- Smart Organic Materials Group, “Costin D. Nenitzescu” Institute of Organic and Supramolecular Chemistry, 202B Spl. Independentei CP 35-108, Bucharest 060023, Romania
| | - Richard Hoogenboom
- Supramolecular Chemistry Group, Centre of Macromolecular Chemistry (CMaC), Department of Organic and Macromolecular Chemistry, Faculty of Sciences, Ghent University, Krijgslaan 281 S4, 9000 Ghent, Belgium
| |
Collapse
|
5
|
Polyoxazoline: A review article from polymerization to smart behaviors and biomedical applications. Eur Polym J 2022. [DOI: 10.1016/j.eurpolymj.2022.111484] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
6
|
Rengifo J, Zschoche S, Voit B, Carlos Rueda J. Synthesis and characterization of new interpenetrated hydrogels from N-isopropylacrylamide, 2-oxazoline macromonomer and acrylamide. Eur Polym J 2022. [DOI: 10.1016/j.eurpolymj.2022.111456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
|
7
|
Švec P, Petrov OV, Lang J, Štěpnička P, Groborz O, Dunlop D, Blahut J, Kolouchová K, Loukotová L, Sedláček O, Heizer T, Tošner Z, Šlouf M, Beneš H, Hoogenboom R, Hrubý M. Fluorinated Ferrocene Moieties as a Platform for Redox-Responsive Polymer 19F MRI Theranostics. Macromolecules 2021. [DOI: 10.1021/acs.macromol.1c01723] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Pavel Švec
- Institute of Macromolecular Chemistry, CAS, Heyrovského nám. 2, Prague 6 162 06, Czech Republic
| | - Oleg V. Petrov
- Department of Low Temperature Physics, Faculty of Mathematics and Physics, Charles University, V Holešovičkách 2, Prague 8 180 00, Czech Republic
| | - Jan Lang
- Department of Low Temperature Physics, Faculty of Mathematics and Physics, Charles University, V Holešovičkách 2, Prague 8 180 00, Czech Republic
| | | | - Ondřej Groborz
- Institute of Macromolecular Chemistry, CAS, Heyrovského nám. 2, Prague 6 162 06, Czech Republic
- Institute of Organic Chemistry and Biochemistry, CAS, Flemingovo nám. 2, Prague 6 160 00, Czech Republic
| | - David Dunlop
- Institute of Organic Chemistry and Biochemistry, CAS, Flemingovo nám. 2, Prague 6 160 00, Czech Republic
- J. Heyrovský Institute of Physical Chemistry, CAS, Dolejškova 2155/3, Prague 8 182 23, Czech Republic
| | | | - Kristýna Kolouchová
- Institute of Macromolecular Chemistry, CAS, Heyrovského nám. 2, Prague 6 162 06, Czech Republic
| | - Lenka Loukotová
- Institute of Macromolecular Chemistry, CAS, Heyrovského nám. 2, Prague 6 162 06, Czech Republic
- Institute of Organic Chemistry and Biochemistry, CAS, Flemingovo nám. 2, Prague 6 160 00, Czech Republic
| | - Ondřej Sedláček
- Supramolecular Chemistry Group, Centre of Macromolecular Chemistry (CMaC), Department of Organic and Macromolecular Chemistry, Ghent University, Krijgslaan 281-S4, Ghent B-9000, Belgium
| | | | | | - Miroslav Šlouf
- Institute of Macromolecular Chemistry, CAS, Heyrovského nám. 2, Prague 6 162 06, Czech Republic
| | - Hynek Beneš
- Institute of Macromolecular Chemistry, CAS, Heyrovského nám. 2, Prague 6 162 06, Czech Republic
| | - Richard Hoogenboom
- Supramolecular Chemistry Group, Centre of Macromolecular Chemistry (CMaC), Department of Organic and Macromolecular Chemistry, Ghent University, Krijgslaan 281-S4, Ghent B-9000, Belgium
| | - Martin Hrubý
- Institute of Macromolecular Chemistry, CAS, Heyrovského nám. 2, Prague 6 162 06, Czech Republic
| |
Collapse
|
8
|
Park JR, Verderosa AD, Totsika M, Hoogenboom R, Dargaville TR. Thermoresponsive Polymer-Antibiotic Conjugates Based on Gradient Copolymers of 2-Oxazoline and 2-Oxazine. Biomacromolecules 2021; 22:5185-5194. [PMID: 34726387 DOI: 10.1021/acs.biomac.1c01133] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
A polymer-antibiotic conjugate with thermoresponsive properties near body temperature is presented. The backbone polymer is a copolymer of 2-n-propyl-2-oxazine (PropOzi) and methoxycarbonylethyl-2-oxazoline (C2MestOx) which is conjugated with the broad-spectrum antibiotic, cefazolin, via modification of the methyl ester group of C2MestOx. The resulting polymer-antibiotic conjugate has a cloud point temperature near body temperature, meaning that it can form a homogenous solution if cooled, but when injected into a skin-mimic at 37 °C, it forms a drug depot precipitate. Cleavage of the ester linker leads to quantitative release of the pristine cefazolin (with some antibiotic degradation observed) and redissolution of the polymer. When Escherichia coli were treated with polymer-antibiotic conjugate total clearance is observed within 12 h. The power of this approach is the potential for localized antibiotic delivery, for example, at a specific tissue site or into infected phagocytic cells.
Collapse
Affiliation(s)
- Jong-Ryul Park
- Centre for Materials Science, School of Chemistry and Physics, Queensland University of Technology, Brisbane, Queensland 4000, Australia
| | - Anthony D Verderosa
- Centre for Immunology and Infection Control, School of Biomedical Sciences, Queensland University of Technology, Brisbane, Queensland 4006, Australia
| | - Makrina Totsika
- Centre for Immunology and Infection Control, School of Biomedical Sciences, Queensland University of Technology, Brisbane, Queensland 4006, Australia
| | - Richard Hoogenboom
- Supramolecular Chemistry Group, Centre of Macromolecular Chemistry (CMaC), Department of Organic and Macromolecular Chemistry, Ghent University, Krijgslaan 281 S4, Ghent B-9000, Belgium
| | - Tim R Dargaville
- Centre for Materials Science, School of Chemistry and Physics, Queensland University of Technology, Brisbane, Queensland 4000, Australia
| |
Collapse
|
9
|
Kaberov LI, Kaberova Z, Murmiliuk A, Trousil J, Sedláček O, Konefal R, Zhigunov A, Pavlova E, Vít M, Jirák D, Hoogenboom R, Filippov SK. Fluorine-Containing Block and Gradient Copoly(2-oxazoline)s Based on 2-(3,3,3-Trifluoropropyl)-2-oxazoline: A Quest for the Optimal Self-Assembled Structure for 19F Imaging. Biomacromolecules 2021; 22:2963-2975. [PMID: 34180669 DOI: 10.1021/acs.biomac.1c00367] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The use of fluorinated contrast agents in magnetic resonance imaging (MRI) facilitates improved image quality due to the negligible amount of endogenous fluorine atoms in the body. In this work, we present a comprehensive study of the influence of the amphiphilic polymer structure and composition on its applicability as contrast agents in 19F MRI. Three series of novel fluorine-containing poly(2-oxazoline) copolymers and terpolymers, hydrophilic-fluorophilic, hydrophilic-lipophilic-fluorophilic, and hydrophilic-thermoresponsive-fluorophilic, with block and gradient distributions of the fluorinated units, were synthesized. It was discovered that the CF3 in the 2-(3,3,3-trifluoropropyl)-2-oxazoline (CF3EtOx) group activated the cationic chain end, leading to faster copolymerization kinetics, whereby spontaneous monomer gradients were formed with accelerated incorporation of 2-methyl-2-oxazoline or 2-n-propyl-2-oxazoline with a gradual change to the less-nucleophilic CF3EtOx monomer. The obtained amphiphilic copolymers and terpolymers form spherical or wormlike micelles in water, which was confirmed using transmission electron microscopy (TEM), while small-angle X-ray scattering (SAXS) revealed the core-shell or core-double-shell morphologies of these nanoparticles. The core and shell sizes obey the scaling laws for starlike micelles predicted by the scaling theory. Biocompatibility studies confirm that all copolymers obtained are noncytotoxic and, at the same time, exhibit high sensitivity during in vitro 19F MRI studies. The gradient copolymers provide the best 19F MRI signal-to-noise ratio in comparison with the analogue block copolymer structures, making them most promising as 19F MRI contrast agents.
Collapse
Affiliation(s)
- Leonid I Kaberov
- Institute of Macromolecular Chemistry, Czech Academy of Sciences, Heyrovského nám. 2, 162 06 Prague, Czech Republic
| | - Zhansaya Kaberova
- Institute of Macromolecular Chemistry, Czech Academy of Sciences, Heyrovského nám. 2, 162 06 Prague, Czech Republic
| | - Anastasiia Murmiliuk
- Department of Physical and Macromolecular Chemistry, Faculty of Science, Charles University, Hlavova 8, 128 40 Prague, Czech Republic
| | - Jiří Trousil
- Institute of Macromolecular Chemistry, Czech Academy of Sciences, Heyrovského nám. 2, 162 06 Prague, Czech Republic
| | - Ondřej Sedláček
- Department of Physical and Macromolecular Chemistry, Faculty of Science, Charles University, Hlavova 8, 128 40 Prague, Czech Republic.,Supramolecular Chemistry Group, Centre of Macromolecular Chemistry (CMaC), Department of Organic and Macromolecular Chemistry, Ghent University, Krijgslaan 281 S4, B-9000 Ghent, Belgium
| | - Rafal Konefal
- Institute of Macromolecular Chemistry, Czech Academy of Sciences, Heyrovského nám. 2, 162 06 Prague, Czech Republic
| | - Alexander Zhigunov
- Institute of Macromolecular Chemistry, Czech Academy of Sciences, Heyrovského nám. 2, 162 06 Prague, Czech Republic
| | - Ewa Pavlova
- Institute of Macromolecular Chemistry, Czech Academy of Sciences, Heyrovského nám. 2, 162 06 Prague, Czech Republic
| | - Martin Vít
- Faculty of Mechatronics Informatics and Interdisciplinary Studies, Technical University of Liberec, Studentská 1402/2, 461 17 Liberec, Czech Republic
| | - Daniel Jirák
- Institute for Clinical and Experimental Medicine, Vídeňská 9, 140 21 Prague, Czech Republic.,Institute of Biophysics and Informatics, First Faculty of Medicine, Charles University in Prague, Salmovská 1, 120 00 Prague, Czech Republic
| | - Richard Hoogenboom
- Supramolecular Chemistry Group, Centre of Macromolecular Chemistry (CMaC), Department of Organic and Macromolecular Chemistry, Ghent University, Krijgslaan 281 S4, B-9000 Ghent, Belgium
| | - Sergey K Filippov
- Pharmaceutical Sciences Laboratory, Faculty of Science and Engineering, Åbo Akademi University, 20520 Turku, Finland.,Department of Chemistry and Chemical Technology, Al-Farabi Kazakh National University, 050040 Almaty, Kazakhstan
| |
Collapse
|
10
|
Dargaville TR, Harkin DG, Park JR, Cavalcanti A, Bolle ECL, Savi FM, Farrugia BL, Monnery BD, Bernhard Y, Van Guyse JFR, Podevyn A, Hoogenboom R. Poly(2-allylamidopropyl-2-oxazoline)-Based Hydrogels: From Accelerated Gelation Kinetics to In Vivo Compatibility in a Murine Subdermal Implant Model. Biomacromolecules 2021; 22:1590-1599. [PMID: 33764748 DOI: 10.1021/acs.biomac.1c00046] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A rapid photo-curing system based on poly(2-ethyl-2-oxazoline-co-2-allylamidopropyl-2-oxazoline) and its in vivo compatibility are presented. The base polymer was synthesized from the copolymerization of 2-ethyl-2-oxazoline (EtOx) and the methyl ester containing 2-methoxycarboxypropyl-2-oxazoline (C3MestOx) followed by amidation with allylamine to yield a highly water-soluble macromer. We showed that spherical hydrogels can be obtained by a simple water-in-oil gelation method using thiol-ene coupling and investigated the in vivo biocompatibility of these hydrogel spheres in a 28-day murine subdermal model. For comparison, hydrogel spheres prepared from poly(ethylene glycol) were also implanted. Both materials displayed mild, yet typical foreign body responses with little signs of fibrosis. This is the first report on the foreign body response of a poly(2-oxazoline) hydrogel, which paves the way for future investigations into how this highly tailorable class of materials can be used for implantable hydrogel devices.
Collapse
Affiliation(s)
- Tim R Dargaville
- Centre for Materials Science, Queensland University of Technology, 2 George Street, Brisbane, Queensland 4000, Australia.,School of Chemistry and Physics, Queensland University of Technology, 2 George Street, Brisbane, Queensland 4000, Australia.,Institute of Health and Biomedical Innovation, Science and Engineering Faculty, Queensland University of Technology, Brisbane, Queensland 4001, Australia
| | - Damien G Harkin
- Institute of Health and Biomedical Innovation, Science and Engineering Faculty, Queensland University of Technology, Brisbane, Queensland 4001, Australia.,School of Biomedical Sciences, Queensland University of Technology, 2 George Street, Brisbane, Queensland, 4000, Australia
| | - Jong-Ryul Park
- Centre for Materials Science, Queensland University of Technology, 2 George Street, Brisbane, Queensland 4000, Australia.,School of Chemistry and Physics, Queensland University of Technology, 2 George Street, Brisbane, Queensland 4000, Australia.,Institute of Health and Biomedical Innovation, Science and Engineering Faculty, Queensland University of Technology, Brisbane, Queensland 4001, Australia
| | - Amanda Cavalcanti
- Centre for Materials Science, Queensland University of Technology, 2 George Street, Brisbane, Queensland 4000, Australia.,School of Chemistry and Physics, Queensland University of Technology, 2 George Street, Brisbane, Queensland 4000, Australia.,Institute of Health and Biomedical Innovation, Science and Engineering Faculty, Queensland University of Technology, Brisbane, Queensland 4001, Australia
| | - Eleonore C L Bolle
- Centre for Materials Science, Queensland University of Technology, 2 George Street, Brisbane, Queensland 4000, Australia.,School of Chemistry and Physics, Queensland University of Technology, 2 George Street, Brisbane, Queensland 4000, Australia.,Institute of Health and Biomedical Innovation, Science and Engineering Faculty, Queensland University of Technology, Brisbane, Queensland 4001, Australia
| | - Flavia Medeiros Savi
- Institute of Health and Biomedical Innovation, Science and Engineering Faculty, Queensland University of Technology, Brisbane, Queensland 4001, Australia
| | - Brooke L Farrugia
- Department of Biomedical Engineering, The University of Melbourne, Melbourne, Victoria 3010, Australia
| | - Bryn D Monnery
- Supramolecular Chemistry Group, Centre of Macromolecular Chemistry (CMaC), Department of Organic and Macromolecular Chemistry, Ghent University, Krijgslaan 281 S4, B-9000 Ghent, Belgium
| | - Yann Bernhard
- Supramolecular Chemistry Group, Centre of Macromolecular Chemistry (CMaC), Department of Organic and Macromolecular Chemistry, Ghent University, Krijgslaan 281 S4, B-9000 Ghent, Belgium
| | - Joachim F R Van Guyse
- Supramolecular Chemistry Group, Centre of Macromolecular Chemistry (CMaC), Department of Organic and Macromolecular Chemistry, Ghent University, Krijgslaan 281 S4, B-9000 Ghent, Belgium
| | - Annelore Podevyn
- Supramolecular Chemistry Group, Centre of Macromolecular Chemistry (CMaC), Department of Organic and Macromolecular Chemistry, Ghent University, Krijgslaan 281 S4, B-9000 Ghent, Belgium
| | - Richard Hoogenboom
- Supramolecular Chemistry Group, Centre of Macromolecular Chemistry (CMaC), Department of Organic and Macromolecular Chemistry, Ghent University, Krijgslaan 281 S4, B-9000 Ghent, Belgium
| |
Collapse
|
11
|
Zahoranová A, Luxenhofer R. Poly(2-oxazoline)- and Poly(2-oxazine)-Based Self-Assemblies, Polyplexes, and Drug Nanoformulations-An Update. Adv Healthc Mater 2021; 10:e2001382. [PMID: 33448122 PMCID: PMC11468752 DOI: 10.1002/adhm.202001382] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 10/03/2020] [Indexed: 12/30/2022]
Abstract
For many decades, poly(2-oxazoline)s and poly(2-oxazine)s, two closely related families of polymers, have led the life of a rather obscure research topic with only a few research groups world-wide working with them. This has changed in the last five to ten years, presumably triggered significantly by very promising clinical trials of the first poly(2-oxazoline)-based drug conjugate. The huge chemical and structural toolbox poly(2-oxazoline)s and poly(2-oxazine)s has been extended very significantly in the last few years, but their potential still remains largely untapped. Here, specifically, the developments in macromolecular self-assemblies and non-covalent drug delivery systems such as polyplexes and drug nanoformulations based on poly(2-oxazoline)s and poly(2-oxazine)s are reviewed. This highly dynamic field benefits particularly from the extensive synthetic toolbox poly(2-oxazoline)s and poly(2-oxazine)s offer and also may have the largest potential for a further development. It is expected that the research dynamics will remain high in the next few years, particularly as more about the safety and therapeutic potential of poly(2-oxazoline)s and poly(2-oxazine)s is learned.
Collapse
Affiliation(s)
- Anna Zahoranová
- Institute of Applied Synthetic ChemistryVienna University of TechnologyGetreidemarkt 9/163MCVienna1060Austria
| | - Robert Luxenhofer
- Functional Polymer MaterialsChair for Advanced Materials SynthesisInstitute for Functional Materials and BiofabricationDepartment of Chemistry and PharmacyJulius‐Maximilians‐Universität WürzburgRöntgenring 11Würzburg97070Germany
- Soft Matter ChemistryDepartment of ChemistryHelsinki UniversityHelsinki00014Finland
| |
Collapse
|
12
|
Gil Alvaradejo G, Glassner M, Kumar R, Trouillet V, Welle A, Wang Y, de la Rosa VR, Sekula-Neuner S, Hirtz M, Hoogenboom R, Delaittre G. Thioacetate-Based Initiators for the Synthesis of Thiol-End-Functionalized Poly(2-oxazoline)s. Macromol Rapid Commun 2021; 41:e2000320. [PMID: 33463837 DOI: 10.1002/marc.202000320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2020] [Revised: 07/14/2020] [Indexed: 11/07/2022]
Abstract
New functional initiators for the cationic ring-opening polymerization of 2-alkyl-2-oxazolines are described to introduce a thiol moiety at the α terminus. Both tosylate and nosylate initiators carrying a thioacetate group are obtained in multigram scale, from commercial reagents in two steps, including a phototriggered thiol-ene radical addition. The nosylate derivative gives access to a satisfying control over the cationic ring-opening polymerization of 2-ethyl-2-oxazoline, with dispersity values lower than 1.1 during the entire course of the polymerization, until full conversion. Cleavage of the thioacetate end group is rapidly achieved using triazabicyclodecene, thereby leading to a mercapto terminus. The latter gives access to a new subgeneration of α-functional poly(2-oxazoline)s (butyl ester, N-hydroxysuccinimidyl ester, furan) by Michael addition with commercial (meth)acrylates. The amenability of the mercapto-poly(2-ethyl-2-oxazoline) for covalent surface patterning onto acrylated surfaces is demonstrated in a microchannel cantilever spotting (µCS) experiment, characterized by X-ray photoelectron spectroscopy (XPS) and time-of-flight secondary-ion mass spectrometry (ToF-SIMS).
Collapse
Affiliation(s)
- Gabriela Gil Alvaradejo
- Institute of Biological and Chemical Systems (IBCS), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, Eggenstein-Leopoldshafen, 76344, Germany
| | - Mathias Glassner
- Supramolecular Chemistry Group, Centre of Macromolecular Chemistry (CMaC), Department of Organic and Macromolecular Chemistry, Ghent University, Krijgslaan 281-S4, Ghent, 9000, Belgium
| | - Ravi Kumar
- Institute of Nanotechnology (INT), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, Eggenstein-Leopoldshafen, 76344, Germany.,Karlsruhe Institute of Technology (KIT), Karlsruhe Nano Micro Facility, Hermann-von Helmholtz-Platz 1, Eggenstein-Leopoldshafen, 76344, Germany
| | - Vanessa Trouillet
- Institute for Applied Materials (IAM), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, Eggenstein-Leopoldshafen, 76344, Germany.,Karlsruhe Institute of Technology (KIT), Karlsruhe Nano Micro Facility, Hermann-von Helmholtz-Platz 1, Eggenstein-Leopoldshafen, 76344, Germany
| | - Alexander Welle
- Karlsruhe Institute of Technology (KIT), Institute of Functional Interfaces, Hermann-von Helmholtz-Platz 1, Eggenstein-Leopoldshafen, 76344, Germany.,Karlsruhe Institute of Technology (KIT), Karlsruhe Nano Micro Facility, Hermann-von Helmholtz-Platz 1, Eggenstein-Leopoldshafen, 76344, Germany
| | - Yangxin Wang
- Institute of Biological and Chemical Systems (IBCS), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, Eggenstein-Leopoldshafen, 76344, Germany
| | - Victor R de la Rosa
- Supramolecular Chemistry Group, Centre of Macromolecular Chemistry (CMaC), Department of Organic and Macromolecular Chemistry, Ghent University, Krijgslaan 281-S4, Ghent, 9000, Belgium
| | - Sylwia Sekula-Neuner
- n.able GmbH, Hermann-von Helmholtz-Platz 1, Eggenstein-Leopoldshafen, 76344, Germany.,Karlsruhe Institute of Technology (KIT), Karlsruhe Nano Micro Facility, Hermann-von Helmholtz-Platz 1, Eggenstein-Leopoldshafen, 76344, Germany
| | - Michael Hirtz
- Institute of Nanotechnology (INT), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, Eggenstein-Leopoldshafen, 76344, Germany.,Karlsruhe Institute of Technology (KIT), Karlsruhe Nano Micro Facility, Hermann-von Helmholtz-Platz 1, Eggenstein-Leopoldshafen, 76344, Germany
| | - Richard Hoogenboom
- Supramolecular Chemistry Group, Centre of Macromolecular Chemistry (CMaC), Department of Organic and Macromolecular Chemistry, Ghent University, Krijgslaan 281-S4, Ghent, 9000, Belgium
| | - Guillaume Delaittre
- Institute of Biological and Chemical Systems (IBCS), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, Eggenstein-Leopoldshafen, 76344, Germany.,Organic Functional Molecules, Organic Chemistry, University of Wuppertal, Gaußstrasse 20, Wuppertal, 42119, Germany
| |
Collapse
|
13
|
Trachsel L, Ramakrishna SN, Romio M, Spencer ND, Benetti EM. Topology and Molecular Architecture of Polyelectrolytes Determine Their pH-Responsiveness When Assembled on Surfaces. ACS Macro Lett 2021; 10:90-97. [PMID: 35548981 DOI: 10.1021/acsmacrolett.0c00750] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Polymer composition and topology of surface-grafted polyacids determine the amplitude of their pH-induced swelling transition. The intrinsic steric constraints characterizing cyclic poly(2-carboxypropyl-2-oxazoline) (c-PCPOXA) and poly(2-carboxyethyl-2-oxazoline) (c-PCEOXA) forming brushes on Au surfaces induce an enhancement in repulsive interactions between charged polymer segments upon deprotonation, leading to an amplified expansion and a significant increment in swelling with respect to their linear analogues of similar molar mass. On the other hand, it is the composition of polyacid grafts that governs their hydration in both undissociated and ionized forms, determining the degree of swelling during their pH-induced transition.
Collapse
Affiliation(s)
- Lucca Trachsel
- Tissue Engineering + Biofabrication Laboratory, Department of Health Sciences and Technology, ETH Zürich, 8093 Zürich, Switzerland
| | - Shivaprakash N. Ramakrishna
- Laboratory for Soft Materials and Interfaces, Department of Materials, ETH Zürich, Vladimir-Prelog-Weg 5, 8093 Zürich, Switzerland
| | - Matteo Romio
- Laboratory for Surface Science and Technology, Department of Materials, ETH Zürich, Vladimir-Prelog-Weg 5, 8093 Zürich, Switzerland
- Biointerfaces, Swiss Federal Laboratories for Materials Science and Technology (EMPA), Lerchenfeldstrasse 5, CH-9014, St. Gallen, Switzerland
| | - Nicholas D. Spencer
- Laboratory for Surface Science and Technology, Department of Materials, ETH Zürich, Vladimir-Prelog-Weg 5, 8093 Zürich, Switzerland
| | - Edmondo M. Benetti
- Laboratory for Surface Science and Technology, Department of Materials, ETH Zürich, Vladimir-Prelog-Weg 5, 8093 Zürich, Switzerland
- Biointerfaces, Swiss Federal Laboratories for Materials Science and Technology (EMPA), Lerchenfeldstrasse 5, CH-9014, St. Gallen, Switzerland
| |
Collapse
|
14
|
Trachsel L, Romio M, Zenobi-Wong M, Benetti EM. Hydrogels Generated from Cyclic Poly(2-Oxazoline)s Display Unique Swelling and Mechanical Properties. Macromol Rapid Commun 2020; 42:e2000658. [PMID: 33326133 DOI: 10.1002/marc.202000658] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 11/20/2020] [Indexed: 12/14/2022]
Abstract
Cyclic macromolecules do not feature chain ends and are characterized by a higher effective intramolecular repulsion between polymer segments, leading to a higher excluded-volume effect and greater hydration with respect to their linear counterparts. As a result of these unique properties, hydrogels composed of cross-linked cyclic polymers feature enhanced mechanical strength while simultaneously incorporating more solvent with respect to networks formed from their linear analogues with identical molar mass and chemical composition. The translation of topology effects by cyclic polymers into the properties of polymer networks provides hydrogels that ideally do not include defects, such as dangling chain ends, and display unprecedented physicochemical characteristics.
Collapse
Affiliation(s)
- Lucca Trachsel
- Tissue Engineering + Biofabrication Laboratory, Department of Health Sciences and Technology, ETH Zürich, Zürich, 8093, Switzerland
| | - Matteo Romio
- Laboratory for Surface Science and Technology, Department of Materials, ETH Zürich, Vladimir-Prelog-Weg 5, Zürich, 8093, Switzerland.,Biointerfaces, Swiss Federal Laboratories for Materials Science and Technology (Empa), Lerchenfeldstrasse 5, CH-9014 St., Gallen, Switzerland
| | - Marcy Zenobi-Wong
- Tissue Engineering + Biofabrication Laboratory, Department of Health Sciences and Technology, ETH Zürich, Zürich, 8093, Switzerland
| | - Edmondo M Benetti
- Laboratory for Surface Science and Technology, Department of Materials, ETH Zürich, Vladimir-Prelog-Weg 5, Zürich, 8093, Switzerland.,Biointerfaces, Swiss Federal Laboratories for Materials Science and Technology (Empa), Lerchenfeldstrasse 5, CH-9014 St., Gallen, Switzerland
| |
Collapse
|
15
|
Santillán F, Rueda JC. Removal of Methylene Blue by Hydrogels based on N, N-Dimethylacrylamide and 2-Oxazoline macromonomer. JOURNAL OF POLYMER RESEARCH 2020. [DOI: 10.1007/s10965-020-02239-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
16
|
Trachsel L, Romio M, Grob B, Zenobi-Wong M, Spencer ND, Ramakrishna SN, Benetti EM. Functional Nanoassemblies of Cyclic Polymers Show Amplified Responsiveness and Enhanced Protein-Binding Ability. ACS NANO 2020; 14:10054-10067. [PMID: 32628438 DOI: 10.1021/acsnano.0c03239] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The physicochemical properties of cyclic polymer adsorbates are significantly influenced by the steric and conformational constraints introduced during their cyclization. These translate into a marked difference in interfacial properties between cyclic polymers and their linear counterparts when they are grafted onto surfaces yielding nanoassemblies or polymer brushes. This difference is particularly clear in the case of cyclic polymer brushes that are designed to chemically interact with the surrounding environment, for instance, by associating with biological components present in the medium, or, alternatively, through a response to a chemical stimulus by a significant change in their properties. The intrinsic architecture characterizing cyclic poly(2-oxazoline)-based polyacid brushes leads to a broad variation in swelling and nanomechanical properties in response to pH change, in comparison with their linear analogues of identical composition and molecular weight. In addition, cyclic glycopolymer brushes derived from polyacids reveal an enhanced exposure of galactose units at the surface, due to their expanded topology, and thus display an increased lectin-binding ability with respect to their linear counterparts. This combination of amplified responsiveness and augmented protein-binding capacity renders cyclic brushes invaluable building blocks for the design of "smart" materials and functional biointerfaces.
Collapse
Affiliation(s)
- Lucca Trachsel
- Tissue Engineering + Biofabrication Laboratory, Department of Health Sciences and Technology, ETH Zürich, 8093 Zürich, Switzerland
| | - Matteo Romio
- Biointerfaces, Swiss Federal Laboratories for Materials Science and Technology (Empa), Lerchenfeldstrasse 5, CH-9014 St. Gallen, Switzerland
- Laboratory for Surface Science and Technology, Department of Materials, ETH Zürich; Vladimir-Prelog-Weg 5, 8093 Zürich, Switzerland
| | - Benjamin Grob
- Laboratory for Surface Science and Technology, Department of Materials, ETH Zürich; Vladimir-Prelog-Weg 5, 8093 Zürich, Switzerland
| | - Marcy Zenobi-Wong
- Tissue Engineering + Biofabrication Laboratory, Department of Health Sciences and Technology, ETH Zürich, 8093 Zürich, Switzerland
| | - Nicholas D Spencer
- Laboratory for Surface Science and Technology, Department of Materials, ETH Zürich; Vladimir-Prelog-Weg 5, 8093 Zürich, Switzerland
| | - Shivaprakash N Ramakrishna
- Laboratory for Surface Science and Technology, Department of Materials, ETH Zürich; Vladimir-Prelog-Weg 5, 8093 Zürich, Switzerland
| | - Edmondo M Benetti
- Biointerfaces, Swiss Federal Laboratories for Materials Science and Technology (Empa), Lerchenfeldstrasse 5, CH-9014 St. Gallen, Switzerland
- Laboratory for Surface Science and Technology, Department of Materials, ETH Zürich; Vladimir-Prelog-Weg 5, 8093 Zürich, Switzerland
| |
Collapse
|
17
|
Wang F, Ren P, Bernaerts KV, Fu Y, Hu W, Zhou N, Zhang T. Thermoresponsive Poly(2-propyl-2-oxazoline) Surfaces of Glass for Nonenzymatic Cell Harvesting. ACS APPLIED BIO MATERIALS 2020; 3:5428-5437. [PMID: 35021716 DOI: 10.1021/acsabm.0c00650] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
As one of the nonenzymatic cell-harvesting technologies, a thermal-responsive surface based on poly(2-oxazoline)s has achieved initial success in supporting the adhesion and thermal-induced detachment of animal cells. However, because of the laborious preparation procedure, this technique was only limited to research purposes. In this work, through using poly(glycidyl methacrylate) (PGMA) as the anchor layer, poly(2-propyl-2-oxazoline)s (PPOx) were grafted onto glass wafers through a facile two-step coating and annealing procedure for nonenzymatic cell harvesting. In the first step, the piranha solution-activated glass wafers were immersed into the chloroform solution of PGMA and then annealed for a given period of time to immobilize PGMA onto the glass wafers through the bonding between epoxy groups and hydroxyl groups. In the second step, the PGMA-coated glass wafers were further immersed into the chloroform solution of carboxyl-functionalized PPOx. After annealing, PPOx were immobilized onto the PGMA layer through the bonding between carboxyl groups and the residual epoxy groups. Atomic force microscopy, X-ray photoelectron spectroscopy, and ellipsometry were used to characterize the modified glass wafers. The results of cytocompatibility evaluation showed that the PPOx-coated glass wafers were almost nontoxic and were able to support the adhesion and proliferation of L929 cells well. By lowering the temperature to 8 °C, L929 and Vero cells were successfully detached from the PPOx-coated glass wafers without any enzymatic treatment. Further cultivation has demonstrated that the cooling procedure had little effect on cell viability, and the cells still retained good viability after harvesting.
Collapse
Affiliation(s)
- Faming Wang
- State Key Laboratory of Bioelectronics, National Demonstration Center for Experimental Biomedical Engineering Education, School of Biological Sciences and Medical Engineering, Southeast University, Nanjing, 210096 Jiangsu, PR China
| | - Pengfei Ren
- State Key Laboratory of Bioelectronics, National Demonstration Center for Experimental Biomedical Engineering Education, School of Biological Sciences and Medical Engineering, Southeast University, Nanjing, 210096 Jiangsu, PR China
| | - Katrien V Bernaerts
- Aachen-Maastricht Institute for Biobased Materials (AMIBM), Faculty of Science and Engineering, Maastricht University, Geleen 6167 RD, The Netherlands
| | - Yifu Fu
- State Key Laboratory of Bioelectronics, National Demonstration Center for Experimental Biomedical Engineering Education, School of Biological Sciences and Medical Engineering, Southeast University, Nanjing, 210096 Jiangsu, PR China
| | - Wanjun Hu
- State Key Laboratory of Bioelectronics, National Demonstration Center for Experimental Biomedical Engineering Education, School of Biological Sciences and Medical Engineering, Southeast University, Nanjing, 210096 Jiangsu, PR China
| | - Naizhen Zhou
- State Key Laboratory of Bioelectronics, National Demonstration Center for Experimental Biomedical Engineering Education, School of Biological Sciences and Medical Engineering, Southeast University, Nanjing, 210096 Jiangsu, PR China
| | - Tianzhu Zhang
- State Key Laboratory of Bioelectronics, National Demonstration Center for Experimental Biomedical Engineering Education, School of Biological Sciences and Medical Engineering, Southeast University, Nanjing, 210096 Jiangsu, PR China
| |
Collapse
|
18
|
Bernhard Y, Sedlacek O, Van Guyse JFR, Bender J, Zhong Z, De Geest BG, Hoogenboom R. Poly(2-ethyl-2-oxazoline) Conjugates with Salicylic Acid via Degradable Modular Ester Linkages. Biomacromolecules 2020; 21:3207-3215. [PMID: 32639725 DOI: 10.1021/acs.biomac.0c00659] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Conjugation of drugs to polymers is a widely used approach to gain control over the release of therapeutics. In this contribution, salicylic acid, a multipurpose model drug, is conjugated to the biocompatible poly(2-ethyl-2-oxazoline) (PEtOx). The drug is attached to the side chains of a polymer carrier through a hydrolytically cleavable ester linker, via a sequential postpolymerization modification. The chemical modulation of this ester, i.e., by primary or secondary alcohols, is demonstrated to greatly influence the ester hydrolysis rate. This crucial parameter allows us to tune the in vitro kinetics of the sustained drug release for periods exceeding a month in phosphate-buffered saline (PBS). The synthetic accessibility of the cleavable linker, together with the modularity of the drug release rate offered by this approach, highlights the utility of this class of polymers in the field of long-lasting drug delivery systems for persistent and chronic disease treatment.
Collapse
Affiliation(s)
- Yann Bernhard
- Supramolecular Chemistry Group, Centre of Macromolecular Chemistry (CMaC), Department of Organic and Macromolecular Chemistry, Ghent University, Krijgslaan 281 S4, 9000 Ghent, Belgium
| | - Ondrej Sedlacek
- Supramolecular Chemistry Group, Centre of Macromolecular Chemistry (CMaC), Department of Organic and Macromolecular Chemistry, Ghent University, Krijgslaan 281 S4, 9000 Ghent, Belgium
| | - Joachim F R Van Guyse
- Supramolecular Chemistry Group, Centre of Macromolecular Chemistry (CMaC), Department of Organic and Macromolecular Chemistry, Ghent University, Krijgslaan 281 S4, 9000 Ghent, Belgium
| | - Johan Bender
- Bender Analytical Holding BV, Oude Holleweg 6, 6572 AB Berg en Dal, The Netherlands
| | - Zifu Zhong
- Department of Pharmaceutics, Ghent University, B-9000 Ghent, Belgium
| | - Bruno G De Geest
- Department of Pharmaceutics, Ghent University, B-9000 Ghent, Belgium
| | - Richard Hoogenboom
- Supramolecular Chemistry Group, Centre of Macromolecular Chemistry (CMaC), Department of Organic and Macromolecular Chemistry, Ghent University, Krijgslaan 281 S4, 9000 Ghent, Belgium
| |
Collapse
|
19
|
Rueda JC, Santillán F, Komber H, Voit B. Synthesis and Characterization of Stiff, Self-Crosslinked Thermoresponsive DMAA Hydrogels. Polymers (Basel) 2020; 12:E1401. [PMID: 32580475 PMCID: PMC7362251 DOI: 10.3390/polym12061401] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 06/17/2020] [Accepted: 06/19/2020] [Indexed: 11/16/2022] Open
Abstract
Stiff thermosensitive hydrogels (HG) were synthesized by self-crosslinking free radical polymerization of N,N-dimethylacrylamide (DMAA) and N-isopropylacrylamide (NIPAAm), adjusting the degree of swelling by carboxylate-containing sodium acrylate (NaAc) or a 2-oxazoline macromonomer (MM). The formation of hydrogels was possible due to the self-crosslinking property of DMAA when polymerized with peroxodisulfate initiator type. The MM was synthetized by the ring-opening cationic polymerization of 2-methyl-2-oxazoline (MeOxa) and methyl-3-(oxazol-2-yl)-propionate (EsterOxa), and contained a polymerizable styryl endgroup. After ester hydrolysis of EsterOxa units, a carboxylate-containing MM was obtained. The structure of the hydrogels was confirmed by 1H high-resolution (HR)-MAS NMR spectroscopy. Suitable conditions and compositions of the comonomers have been found, which allowed efficient self-crosslinking as well as a thermoresponsive swelling in water. Incorporation of both the polar comonomer and the macromonomer, in small amounts furthermore allowed the adjustment of the degree of swelling. However, the macromonomer was better suited to retain the thermoresponsive behavior of the poly (NIPAAm) due to a phase separation of the tangling polyoxazoline side chains. Thermogravimetric analysis determined that the hydrogels were stable up to ~ 350 °C, and dynamic mechanical analysis characterized a viscoelastic behavior of the hydrogels, properties that are required, for example, for possible use as an actuator material.
Collapse
Affiliation(s)
- Juan Carlos Rueda
- Polymer Laboratory, Physics Section, Research Department (DGI), Pontifical Catholic University of Peru (PUCP), 15088 San Miguel, Peru;
| | - Fátima Santillán
- Polymer Laboratory, Physics Section, Research Department (DGI), Pontifical Catholic University of Peru (PUCP), 15088 San Miguel, Peru;
| | - Hartmut Komber
- Leibniz Institute of Polymer Research Dresden, Hohe Strasse 6, 01069 Dresden, Germany;
| | - Brigitte Voit
- Leibniz Institute of Polymer Research Dresden, Hohe Strasse 6, 01069 Dresden, Germany;
| |
Collapse
|
20
|
Van Den Broeck E, Verbraeken B, Dedecker K, Cnudde P, Vanduyfhuys L, Verstraelen T, Van Hecke K, Jerca VV, Catak S, Hoogenboom R, Van Speybroeck V. Cation−π Interactions Accelerate the Living Cationic Ring-Opening Polymerization of Unsaturated 2-Alkyl-2-oxazolines. Macromolecules 2020. [DOI: 10.1021/acs.macromol.0c00865] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Elias Van Den Broeck
- Center for Molecular Modeling, Ghent University, Technologiepark 46, 9052 Zwijnaarde, Belgium
| | - Bart Verbraeken
- Supramolecular Chemistry Group, Centre of Macromolecular Chemistry (CMaC), Department of Organic and Macromolecular Chemistry, Ghent University, Krijgslaan 281-S4, 9000 Gent, Belgium
| | - Karen Dedecker
- Center for Molecular Modeling, Ghent University, Technologiepark 46, 9052 Zwijnaarde, Belgium
| | - Pieter Cnudde
- Center for Molecular Modeling, Ghent University, Technologiepark 46, 9052 Zwijnaarde, Belgium
| | - Louis Vanduyfhuys
- Center for Molecular Modeling, Ghent University, Technologiepark 46, 9052 Zwijnaarde, Belgium
| | - Toon Verstraelen
- Center for Molecular Modeling, Ghent University, Technologiepark 46, 9052 Zwijnaarde, Belgium
| | - Kristof Van Hecke
- XStruct, Department of Chemistry, Ghent University, Krijgslaan 281-S3, B-9000 Ghent, Belgium
| | - Valentin Victor Jerca
- Supramolecular Chemistry Group, Centre of Macromolecular Chemistry (CMaC), Department of Organic and Macromolecular Chemistry, Ghent University, Krijgslaan 281-S4, 9000 Gent, Belgium
- Centre for Organic Chemistry “Costin D. Nenitzescu”, Romanian Academy, 202B Spl. Independentei CP 35-108, Bucharest 060023, Romania
| | - Saron Catak
- Center for Molecular Modeling, Ghent University, Technologiepark 46, 9052 Zwijnaarde, Belgium
- Department of Chemistry, Bogazici University, Bebek, 34342 Istanbul, Turkey
| | - Richard Hoogenboom
- Supramolecular Chemistry Group, Centre of Macromolecular Chemistry (CMaC), Department of Organic and Macromolecular Chemistry, Ghent University, Krijgslaan 281-S4, 9000 Gent, Belgium
| | | |
Collapse
|
21
|
Sťahel P, Mazánková V, Tomečková K, Matoušková P, Brablec A, Prokeš L, Jurmanová J, Buršíková V, Přibyl R, Lehocký M, Humpolíček P, Ozaltin K, Trunec D. Atmospheric Pressure Plasma Polymerized Oxazoline-Based Thin Films-Antibacterial Properties and Cytocompatibility Performance. Polymers (Basel) 2019; 11:E2069. [PMID: 31842276 PMCID: PMC6960831 DOI: 10.3390/polym11122069] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Revised: 12/02/2019] [Accepted: 12/06/2019] [Indexed: 02/06/2023] Open
Abstract
Polyoxazolines are a new promising class of polymers for biomedical applications. Antibiofouling polyoxazoline coatings can suppress bacterial colonization of medical devices, which can cause infections to patients. However, the creation of oxazoline-based films using conventional methods is difficult. This study presents a new way to produce plasma polymerized oxazoline-based films with antibiofouling properties and good biocompatibility. The films were created via plasma deposition from 2-methyl-2-oxazoline vapors in nitrogen atmospheric pressure dielectric barrier discharge. Diverse film properties were achieved by increasing the substrate temperature at the deposition. The physical and chemical properties of plasma polymerized polyoxazoline films were studied by SEM, EDX, FTIR, AFM, depth-sensing indentation technique, and surface energy measurement. After tuning of the deposition parameters, films with a capacity to resist bacterial biofilm formation were achieved. Deposited films also promote cell viability.
Collapse
Affiliation(s)
- Pavel Sťahel
- Department of Physical Electronics, Faculty of Science, Masaryk University, Kotlářská 2, 611 37 Brno, Czech Republic; (P.S.); (A.B.); (L.P.); (J.J.); (V.B.); (R.P.)
| | - Věra Mazánková
- Faculty of Chemistry, Institute of Physical and Applied Chemistry, Brno University of Technology, Purkyňova 118, 612 00 Brno, Czech Republic; (V.M.); (K.T.)
- Department of Mathematics and Physics, Faculty of Military Technology, University of Defence in Brno, Kounicova 65, 662 10 Brno, Czech Republic
| | - Klára Tomečková
- Faculty of Chemistry, Institute of Physical and Applied Chemistry, Brno University of Technology, Purkyňova 118, 612 00 Brno, Czech Republic; (V.M.); (K.T.)
| | - Petra Matoušková
- Faculty of Chemistry, Institute of Food Science and Biotechnology, Brno University of Technology, Purkyňova 118, 612 00 Brno, Czech Republic;
| | - Antonín Brablec
- Department of Physical Electronics, Faculty of Science, Masaryk University, Kotlářská 2, 611 37 Brno, Czech Republic; (P.S.); (A.B.); (L.P.); (J.J.); (V.B.); (R.P.)
| | - Lubomír Prokeš
- Department of Physical Electronics, Faculty of Science, Masaryk University, Kotlářská 2, 611 37 Brno, Czech Republic; (P.S.); (A.B.); (L.P.); (J.J.); (V.B.); (R.P.)
| | - Jana Jurmanová
- Department of Physical Electronics, Faculty of Science, Masaryk University, Kotlářská 2, 611 37 Brno, Czech Republic; (P.S.); (A.B.); (L.P.); (J.J.); (V.B.); (R.P.)
| | - Vilma Buršíková
- Department of Physical Electronics, Faculty of Science, Masaryk University, Kotlářská 2, 611 37 Brno, Czech Republic; (P.S.); (A.B.); (L.P.); (J.J.); (V.B.); (R.P.)
| | - Roman Přibyl
- Department of Physical Electronics, Faculty of Science, Masaryk University, Kotlářská 2, 611 37 Brno, Czech Republic; (P.S.); (A.B.); (L.P.); (J.J.); (V.B.); (R.P.)
| | - Marián Lehocký
- Centre of Polymer Systems, Tomas Bata University in Zlín, Trida Tomase Bati 5678, 760 01 Zlín, Czech Republic; (M.L.); (P.H.); (K.O.)
| | - Petr Humpolíček
- Centre of Polymer Systems, Tomas Bata University in Zlín, Trida Tomase Bati 5678, 760 01 Zlín, Czech Republic; (M.L.); (P.H.); (K.O.)
| | - Kadir Ozaltin
- Centre of Polymer Systems, Tomas Bata University in Zlín, Trida Tomase Bati 5678, 760 01 Zlín, Czech Republic; (M.L.); (P.H.); (K.O.)
| | - David Trunec
- Department of Physical Electronics, Faculty of Science, Masaryk University, Kotlářská 2, 611 37 Brno, Czech Republic; (P.S.); (A.B.); (L.P.); (J.J.); (V.B.); (R.P.)
| |
Collapse
|
22
|
Trachsel L, Johnbosco C, Lang T, Benetti EM, Zenobi-Wong M. Double-Network Hydrogels Including Enzymatically Crosslinked Poly-(2-alkyl-2-oxazoline)s for 3D Bioprinting of Cartilage-Engineering Constructs. Biomacromolecules 2019; 20:4502-4511. [DOI: 10.1021/acs.biomac.9b01266] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Lucca Trachsel
- Tissue Engineering + Biofabrication Laboratory, Department of Health Sciences and Technology, ETH Zürich, CH-8093 Zürich, Switzerland
| | - Castro Johnbosco
- Tissue Engineering + Biofabrication Laboratory, Department of Health Sciences and Technology, ETH Zürich, CH-8093 Zürich, Switzerland
| | - Thamar Lang
- Tissue Engineering + Biofabrication Laboratory, Department of Health Sciences and Technology, ETH Zürich, CH-8093 Zürich, Switzerland
| | - Edmondo M. Benetti
- Laboratory for Surface Science and Technology, Department of Materials, ETH Zürich, CH-8093 Zürich, Switzerland
- Biointerfaces, Swiss Federal Laboratories for Materials Science and Technology (Empa), Lerchenfeldstrasse 5, CH-9014 St. Gallen, Switzerland
| | - Marcy Zenobi-Wong
- Tissue Engineering + Biofabrication Laboratory, Department of Health Sciences and Technology, ETH Zürich, CH-8093 Zürich, Switzerland
| |
Collapse
|
23
|
Van Steenberge PHM, Sedlacek O, Hernández-Ortiz JC, Verbraeken B, Reyniers MF, Hoogenboom R, D'hooge DR. Visualization and design of the functional group distribution during statistical copolymerization. Nat Commun 2019; 10:3641. [PMID: 31409782 PMCID: PMC6692376 DOI: 10.1038/s41467-019-11368-6] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Accepted: 07/11/2019] [Indexed: 11/09/2022] Open
Abstract
Even though functional copolymers with a low percentage of functional comonomer units (up to 20 mol%) are widely used, for instance for the development of polymer therapeutics and hydrogels, insights in the functional group distribution over the actual chains are lacking and the average composition is conventionally used to describe the functionalization degree. Here we report the visualization of the monomer distribution over the different polymer chains by a synergetic combination of experimental and theoretical analysis aiming at the construction of functionality-chain length distributions (FUNC-CLDs). A successful design of the chemical structure of the comonomer pair, the initial functional comonomer amount (13 mol%), and the temperature (100 °C) is performed to tune the FUNC-CLD of copoly(2-oxazoline)s toward high functionalization degree for both low (100) and high (400) target degrees of polymerization. The proposed research strategy is generic and extendable to a broad range of copolymerization chemistries, including reversible deactivation radical polymerization.
Collapse
Affiliation(s)
- Paul H M Van Steenberge
- Ghent University, Laboratory for Chemical Technology (LCT), Technologiepark 125, B-9052, Gent, Belgium
| | - Ondrej Sedlacek
- Ghent University, Supramolecular Chemistry Group, Centre of Macromolecular Chemistry (CMaC), Department of Organic and Macromolecular Chemistry, Krijgslaan 281-S4, 9000, Gent, Belgium
| | - Julio C Hernández-Ortiz
- Ghent University, Laboratory for Chemical Technology (LCT), Technologiepark 125, B-9052, Gent, Belgium
| | - Bart Verbraeken
- Ghent University, Supramolecular Chemistry Group, Centre of Macromolecular Chemistry (CMaC), Department of Organic and Macromolecular Chemistry, Krijgslaan 281-S4, 9000, Gent, Belgium
| | - Marie-Françoise Reyniers
- Ghent University, Laboratory for Chemical Technology (LCT), Technologiepark 125, B-9052, Gent, Belgium
| | - Richard Hoogenboom
- Ghent University, Supramolecular Chemistry Group, Centre of Macromolecular Chemistry (CMaC), Department of Organic and Macromolecular Chemistry, Krijgslaan 281-S4, 9000, Gent, Belgium.
| | - Dagmar R D'hooge
- Ghent University, Laboratory for Chemical Technology (LCT), Technologiepark 125, B-9052, Gent, Belgium. .,Ghent University, Centre for Textile Science and Engineering, Technologiepark 70a, B-9052, Gent, Belgium.
| |
Collapse
|
24
|
Sánchez-Fernández MJ, Immers MR, Félix Lanao RP, Yang F, Bender JCME, Mecinović J, Leeuwenburgh SCG, van Hest JCM. Alendronate-Functionalized Poly(2-oxazoline)s with Tunable Affinity for Calcium Cations. Biomacromolecules 2019; 20:2913-2921. [PMID: 31365234 PMCID: PMC6692821 DOI: 10.1021/acs.biomac.9b00104] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
![]()
A library of poly(2-oxazoline)s functionalized
with controllable
amounts of alendronate, hydroxyl, and carboxylic acid side groups
was successfully synthesized to create novel polymers with tunable
affinity for calcium cations. The affinity of alendronate-containing
polymers for calcium cations was quantified using isothermal titration
calorimetry. Thermodynamic measurements revealed that the Ca2+-binding affinity of these polymers increased linearly with the amount
of alendronate functionalization, up to values (KCa2+ = 2.4 × 105 M–1) that were about 120-fold higher than those for previously reported
polymers. The calcium-binding capacity of alendronate-functionalized
poly(2-oxazoline)s was exploited to form robust hydrogel networks
cross-linked using reversible physical bonds. Oscillatory rheology
showed that these hydrogels recovered more than 100% of their initial
storage modulus after severe network destruction. The versatile synthesis
of alendronate-functionalized polymers and their strong and tunable
affinity for calcium cations render these polymers promising candidates
for various biomedical applications.
Collapse
Affiliation(s)
- María J Sánchez-Fernández
- Department of Bio-Organic Chemistry, Institute for Molecules and Materials , Radboud University , 6525 AJ Nijmegen , the Netherlands.,Department of Regenerative Biomaterials , Radboudumc , 6525 EX Nijmegen , the Netherlands
| | - Mikey R Immers
- Department of Bio-Organic Chemistry, Institute for Molecules and Materials , Radboud University , 6525 AJ Nijmegen , the Netherlands
| | - Rosa P Félix Lanao
- Department of Bio-Organic Chemistry, Institute for Molecules and Materials , Radboud University , 6525 AJ Nijmegen , the Netherlands
| | - Fang Yang
- Department of Regenerative Biomaterials , Radboudumc , 6525 EX Nijmegen , the Netherlands
| | | | - Jasmin Mecinović
- Department of Bio-Organic Chemistry, Institute for Molecules and Materials , Radboud University , 6525 AJ Nijmegen , the Netherlands
| | | | - Jan C M van Hest
- Department of Bio-Organic Chemistry, Institute for Molecules and Materials , Radboud University , 6525 AJ Nijmegen , the Netherlands.,Department of Bio-Organic Chemistry, Institute for Complex Molecular Systems , Eindhoven University of Technology , 5600 MB Eindhoven , the Netherlands
| |
Collapse
|
25
|
Van Guyse JFR, Mees MA, Vergaelen M, Baert M, Verbraeken B, Martens PJ, Hoogenboom R. Amidation of methyl ester side chain bearing poly(2-oxazoline)s with tyramine: a quest for a selective and quantitative approach. Polym Chem 2019. [DOI: 10.1039/c9py00014c] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Three new amidation approaches are evaluated to incorporate tyramine on methyl ester functional poly(2-oxazolines).
Collapse
Affiliation(s)
- Joachim F. R. Van Guyse
- Supramolecular Chemistry Group
- Centre of Macromolecular Chemistry (CMaC)
- Department of Organic and Macromolecular Chemistry
- Ghent University Krijgslaan 281 S4
- 9000 Ghent
| | - Maarten A. Mees
- Supramolecular Chemistry Group
- Centre of Macromolecular Chemistry (CMaC)
- Department of Organic and Macromolecular Chemistry
- Ghent University Krijgslaan 281 S4
- 9000 Ghent
| | - Maarten Vergaelen
- Supramolecular Chemistry Group
- Centre of Macromolecular Chemistry (CMaC)
- Department of Organic and Macromolecular Chemistry
- Ghent University Krijgslaan 281 S4
- 9000 Ghent
| | - Mathijs Baert
- Supramolecular Chemistry Group
- Centre of Macromolecular Chemistry (CMaC)
- Department of Organic and Macromolecular Chemistry
- Ghent University Krijgslaan 281 S4
- 9000 Ghent
| | - Bart Verbraeken
- Supramolecular Chemistry Group
- Centre of Macromolecular Chemistry (CMaC)
- Department of Organic and Macromolecular Chemistry
- Ghent University Krijgslaan 281 S4
- 9000 Ghent
| | - Penny J. Martens
- Graduate School of Biomedical Engineering
- UNSW Sydney
- Sydney 2052
- Australia
| | - Richard Hoogenboom
- Supramolecular Chemistry Group
- Centre of Macromolecular Chemistry (CMaC)
- Department of Organic and Macromolecular Chemistry
- Ghent University Krijgslaan 281 S4
- 9000 Ghent
| |
Collapse
|
26
|
Dargaville TR, Park J, Hoogenboom R. Poly(2‐oxazoline) Hydrogels: State‐of‐the‐Art and Emerging Applications. Macromol Biosci 2018; 18:e1800070. [DOI: 10.1002/mabi.201800070] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2018] [Revised: 03/28/2018] [Indexed: 12/22/2022]
Affiliation(s)
- Tim R. Dargaville
- Institute of Health and Biomedical Innovation Science and Engineering Faculty Queensland University of Technology Queensland 4001 Australia
| | - Jong‐Ryul Park
- Institute of Health and Biomedical Innovation Science and Engineering Faculty Queensland University of Technology Queensland 4001 Australia
| | - Richard Hoogenboom
- Supramolecular Chemistry Group Centre of Macromolecular Chemistry (CMaC) Department of Organic and Macromolecular Chemistry Ghent University Krijgslaan 281 S4 B‐9000 Ghent Belgium
| |
Collapse
|
27
|
Hertz D, Leiske MN, Wloka T, Traeger A, Hartlieb M, Kessels MM, Schubert S, Qualmann B, Schubert US. Comparison of random and gradient amino functionalized poly(2-oxazoline)s: Can the transfection efficiency be tuned by the macromolecular structure? ACTA ACUST UNITED AC 2018. [DOI: 10.1002/pola.29000] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- David Hertz
- Institute of Biochemistry I, Jena University Hospital - Friedrich Schiller University Jena, Nonnenplan 2; Jena 07743 Germany
- Jena Center for Soft Matter (JCSM), Friedrich Schiller University Jena, Philosophenweg 7; Jena 07743 Germany
| | - Meike N. Leiske
- Jena Center for Soft Matter (JCSM), Friedrich Schiller University Jena, Philosophenweg 7; Jena 07743 Germany
- Laboratory of Organic and Macromolecular Chemistry (IOMC); Friedrich Schiller University Jena, Humboldtstraße 10; Jena 07743 Germany
| | - Thomas Wloka
- Jena Center for Soft Matter (JCSM), Friedrich Schiller University Jena, Philosophenweg 7; Jena 07743 Germany
- Laboratory of Organic and Macromolecular Chemistry (IOMC); Friedrich Schiller University Jena, Humboldtstraße 10; Jena 07743 Germany
| | - Anja Traeger
- Jena Center for Soft Matter (JCSM), Friedrich Schiller University Jena, Philosophenweg 7; Jena 07743 Germany
- Laboratory of Organic and Macromolecular Chemistry (IOMC); Friedrich Schiller University Jena, Humboldtstraße 10; Jena 07743 Germany
| | - Matthias Hartlieb
- Jena Center for Soft Matter (JCSM), Friedrich Schiller University Jena, Philosophenweg 7; Jena 07743 Germany
- Laboratory of Organic and Macromolecular Chemistry (IOMC); Friedrich Schiller University Jena, Humboldtstraße 10; Jena 07743 Germany
| | - Michael M. Kessels
- Institute of Biochemistry I, Jena University Hospital - Friedrich Schiller University Jena, Nonnenplan 2; Jena 07743 Germany
| | - Stephanie Schubert
- Jena Center for Soft Matter (JCSM), Friedrich Schiller University Jena, Philosophenweg 7; Jena 07743 Germany
- Institute of Pharmacy, Pharmaceutical Technology, Friedrich Schiller University Jena, Otto-Schott-Straße 41; Jena 07745 Germany
| | - Britta Qualmann
- Institute of Biochemistry I, Jena University Hospital - Friedrich Schiller University Jena, Nonnenplan 2; Jena 07743 Germany
- Jena Center for Soft Matter (JCSM), Friedrich Schiller University Jena, Philosophenweg 7; Jena 07743 Germany
| | - Ulrich S. Schubert
- Jena Center for Soft Matter (JCSM), Friedrich Schiller University Jena, Philosophenweg 7; Jena 07743 Germany
- Laboratory of Organic and Macromolecular Chemistry (IOMC); Friedrich Schiller University Jena, Humboldtstraße 10; Jena 07743 Germany
| |
Collapse
|
28
|
Trachsel L, Broguiere N, Rosenboom JG, Zenobi-Wong M, Benetti EM. Enzymatically crosslinked poly(2-alkyl-2-oxazoline) networks for 3D cell culture. J Mater Chem B 2018; 6:7568-7572. [DOI: 10.1039/c8tb02382d] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Cellularized poly(2-alkyl-2-oxazoline) hydrogels fabricated by sortase-mediated crosslinking feature tunable mechanical properties and enable extremely high cell viability.
Collapse
Affiliation(s)
- Lucca Trachsel
- Tissue Engineering + Biofabrication
- Department of Health Sciences and Technology
- ETH Zürich
- Zürich
- Switzerland
| | - Nicolas Broguiere
- Tissue Engineering + Biofabrication
- Department of Health Sciences and Technology
- ETH Zürich
- Zürich
- Switzerland
| | - Jan-Georg Rosenboom
- Institute of Chemical and Bioengineering
- Department of Chemistry and Applied Biosciences
- ETH Zürich
- Zürich
- Switzerland
| | - Marcy Zenobi-Wong
- Tissue Engineering + Biofabrication
- Department of Health Sciences and Technology
- ETH Zürich
- Zürich
- Switzerland
| | - Edmondo M. Benetti
- Polymer Surfaces Group
- Laboratory for Surface Science and Technology
- Department of Materials
- ETH Zürich
- Zürich
| |
Collapse
|
29
|
Gil Alvaradejo G, Glassner M, Hoogenboom R, Delaittre G. Maleimide end-functionalized poly(2-oxazoline)s by the functional initiator route: synthesis and (bio)conjugation. RSC Adv 2018; 8:9471-9479. [PMID: 35541867 PMCID: PMC9078655 DOI: 10.1039/c8ra00948a] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Accepted: 02/22/2018] [Indexed: 12/15/2022] Open
Abstract
The synthesis of poly(2-ethyl-2-oxazoline)s with a maleimide group at the α chain end was carried out from new sulfonate ester initiators bearing a furan-protected maleimide group. The conditions of the polymerization were optimized for 50 °C using conventional heating (in contrast to microwave irradiation) to counteract the thermal lability of the cycloadduct introduced to protect the maleimide double bond. At this temperature, a tosylate variant was found to be unable to initiate the polymerization after several days. The controlled polymerization of 2-ethyl-2-oxazoline with a nosylate derivative was, however, successful as shown by kinetic experiments monitored by gas chromatography (GC) and size-exclusion chromatography (SEC). Poly(2-ethyl-oxazoline)s of various molar masses (4500 < Mn < 12 000 g mol−1) with narrow dispersity (Đ < 1.2) were obtained. The stability of the protected maleimide functionality during the polymerization, its deprotection, and the reactivity of the deprotected end group by coupling with a model thiol molecule were proven by 1H NMR spectroscopy and electrospray ionization mass spectrometry (ESI-MS). Finally, the conjugation of maleimide-functionalized poly(2-oxazoline) to a model protein (bovine serum albumin) was demonstrated by gel electrophoresis and MALDI-ToF mass spectrometry. A new route for the synthesis of polyoxazolines with a maleimide end group is reported using a functional initiator.![]()
Collapse
Affiliation(s)
- Gabriela Gil Alvaradejo
- Institute of Toxicology and Genetics (ITG)
- Karlsruhe Institute of Technology (KIT)
- Eggenstein-Leopoldshafen
- Germany
- Macromolecular Architectures
| | - Mathias Glassner
- Supramolecular Chemistry Group
- Department of Organic and Macromolecular Chemistry
- Ghent University
- 9000 Ghent
- Belgium
| | - Richard Hoogenboom
- Supramolecular Chemistry Group
- Department of Organic and Macromolecular Chemistry
- Ghent University
- 9000 Ghent
- Belgium
| | - Guillaume Delaittre
- Institute of Toxicology and Genetics (ITG)
- Karlsruhe Institute of Technology (KIT)
- Eggenstein-Leopoldshafen
- Germany
- Macromolecular Architectures
| |
Collapse
|
30
|
Romio M, Morgese G, Trachsel L, Babity S, Paradisi C, Brambilla D, Benetti EM. Poly(2-oxazoline)-Pterostilbene Block Copolymer Nanoparticles for Dual-Anticancer Drug Delivery. Biomacromolecules 2017; 19:103-111. [PMID: 29216713 DOI: 10.1021/acs.biomac.7b01279] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Functional block copolymers based on poly(2-oxazoline)s are versatile building blocks for the fabrication of dual-drug delivery nanoparticles (NPs) for anticancer chemotherapy. Core-shell NPs are fabricated from diblock copolymers featuring a long and hydrophilic poly(2-methyl-2-oxazoline) (PMOXA) block coupled to a relatively short and functionalizable poly(2-methylsuccinate-2-oxazoline) (PMestOXA) segment. The PMOXA block stabilizes the NP dispersions, whereas the PMestOXA segment is used to conjugate pterostilbene, a natural bioactive phenolic compound that is used as lipophilic model-drug and constitutes the hydrophobic core of the designed NPs. Subsequent loading of the NPs with clofazimine (CFZ), an inhibitor of the multidrug resistance pumps typically expressed in a large variety of cancer cells, provides an additional function to their formulation. Optimization of the copolymer composition allows the design of polymer scaffolds showing low toxicity and capable of assembling into highly stable NPs dispersions at physiologically relevant pH. In addition, the incorporation of CFZ increases the stability of the NPs and stimulates their internalization by RAW 264.7 cells.
Collapse
Affiliation(s)
- Matteo Romio
- Department of Chemical Sciences, University of Padova , Via F. Marzolo 1, 35131 Padova, Italy
| | | | | | - Samuel Babity
- Faculty of Pharmacy, University of Montreal , 2940 Chemin de Polytechnique, H3T1J4 Montreal, Quebec, Canada
| | | | - Davide Brambilla
- Faculty of Pharmacy, University of Montreal , 2940 Chemin de Polytechnique, H3T1J4 Montreal, Quebec, Canada
| | | |
Collapse
|
31
|
Divandari M, Morgese G, Trachsel L, Romio M, Dehghani ES, Rosenboom JG, Paradisi C, Zenobi-Wong M, Ramakrishna SN, Benetti EM. Topology Effects on the Structural and Physicochemical Properties of Polymer Brushes. Macromolecules 2017. [DOI: 10.1021/acs.macromol.7b01720] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
| | - Giulia Morgese
- Cartilage
Engineering + Regeneration Laboratory, Department of Health Sciences
and Technology, ETH Zürich, Otto-Stern-Weg 7, 8093 Zürich, Switzerland
| | - Lucca Trachsel
- Cartilage
Engineering + Regeneration Laboratory, Department of Health Sciences
and Technology, ETH Zürich, Otto-Stern-Weg 7, 8093 Zürich, Switzerland
| | - Matteo Romio
- Department
of Chemical Sciences, University of Padova, via Marzolo 1, 35030 Padova, Italy
| | | | | | - Cristina Paradisi
- Department
of Chemical Sciences, University of Padova, via Marzolo 1, 35030 Padova, Italy
| | - Marcy Zenobi-Wong
- Cartilage
Engineering + Regeneration Laboratory, Department of Health Sciences
and Technology, ETH Zürich, Otto-Stern-Weg 7, 8093 Zürich, Switzerland
| | | | | |
Collapse
|
32
|
Glassner M, Vergaelen M, Hoogenboom R. Poly(2-oxazoline)s: A comprehensive overview of polymer structures and their physical properties. POLYM INT 2017. [DOI: 10.1002/pi.5457] [Citation(s) in RCA: 151] [Impact Index Per Article: 21.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Mathias Glassner
- Supramolecular Chemistry Group, Department of Organic and Macromolecular Chemistry; Ghent University; Krijgslaan Belgium
| | - Maarten Vergaelen
- Supramolecular Chemistry Group, Department of Organic and Macromolecular Chemistry; Ghent University; Krijgslaan Belgium
| | - Richard Hoogenboom
- Supramolecular Chemistry Group, Department of Organic and Macromolecular Chemistry; Ghent University; Krijgslaan Belgium
| |
Collapse
|
33
|
Sedlacek O, Monnery BD, Mattova J, Kucka J, Panek J, Janouskova O, Hocherl A, Verbraeken B, Vergaelen M, Zadinova M, Hoogenboom R, Hruby M. Poly(2-ethyl-2-oxazoline) conjugates with doxorubicin for cancer therapy: In vitro and in vivo evaluation and direct comparison to poly[N-(2-hydroxypropyl)methacrylamide] analogues. Biomaterials 2017; 146:1-12. [PMID: 28892751 DOI: 10.1016/j.biomaterials.2017.09.003] [Citation(s) in RCA: 67] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2017] [Revised: 08/21/2017] [Accepted: 09/02/2017] [Indexed: 02/08/2023]
Abstract
We designed and synthesized a new delivery system for the anticancer drug doxorubicin based on a biocompatible hydrophilic poly(2-ethyl-2-oxazoline) (PEtOx) carrier with linear architecture and narrow molar mass distribution. The drug is connected to the polymer backbone via an acid-sensitive hydrazone linker, which allows its triggered release in the tumor. The in vitro studies demonstrate successful cellular uptake of conjugates followed by release of the cytostatic cargo. In vivo experiments in EL4 lymphoma bearing mice revealed prolonged blood circulation, increased tumor accumulation and enhanced antitumor efficacy of the PEtOx conjugate having higher molecular weight (40 kDa) compared to the lower molecular weight (20 kDa) polymer. Finally, the in vitro and in vivo anti-cancer properties of the prepared PEtOx conjugates were critically compared with those of the analogous system based on the well-established PHPMA carrier. Despite the relatively slower intracellular uptake of PEtOx conjugates, resulting also in their lower cytotoxicity, there are no substantial differences in in vivo biodistribution and anti-cancer efficacy of both classes of polymer-Dox conjugates. Considering the synthetic advantages of poly(2-alkyl-2-oxazoline)s, the presented study demonstrates their potential as a versatile alternative to well-known PEO- or PHPMA-based materials for construction of drug delivery systems.
Collapse
Affiliation(s)
- Ondrej Sedlacek
- Institute of Macromolecular Chemistry, v.v.i., Academy of Sciences of the Czech Republic, Heyrovsky Sq. 2, 162 06 Prague 6, Czech Republic.
| | - Bryn D Monnery
- Supramolecular Chemistry Group, Department of Organic and Macromolecular Chemistry, Ghent University, Krijgslaan 281 S4, B-9000 Ghent, Belgium
| | - Jana Mattova
- Institute of Biophysics and Informatics, First Faculty of Medicine, Charles University in Prague, Salmovska 1, 120 00 Prague 2, Czech Republic
| | - Jan Kucka
- Institute of Macromolecular Chemistry, v.v.i., Academy of Sciences of the Czech Republic, Heyrovsky Sq. 2, 162 06 Prague 6, Czech Republic
| | - Jiri Panek
- Institute of Macromolecular Chemistry, v.v.i., Academy of Sciences of the Czech Republic, Heyrovsky Sq. 2, 162 06 Prague 6, Czech Republic
| | - Olga Janouskova
- Institute of Macromolecular Chemistry, v.v.i., Academy of Sciences of the Czech Republic, Heyrovsky Sq. 2, 162 06 Prague 6, Czech Republic
| | - Anita Hocherl
- Institute of Macromolecular Chemistry, v.v.i., Academy of Sciences of the Czech Republic, Heyrovsky Sq. 2, 162 06 Prague 6, Czech Republic
| | - Bart Verbraeken
- Supramolecular Chemistry Group, Department of Organic and Macromolecular Chemistry, Ghent University, Krijgslaan 281 S4, B-9000 Ghent, Belgium
| | - Maarten Vergaelen
- Supramolecular Chemistry Group, Department of Organic and Macromolecular Chemistry, Ghent University, Krijgslaan 281 S4, B-9000 Ghent, Belgium
| | - Marie Zadinova
- Institute of Biophysics and Informatics, First Faculty of Medicine, Charles University in Prague, Salmovska 1, 120 00 Prague 2, Czech Republic
| | - Richard Hoogenboom
- Supramolecular Chemistry Group, Department of Organic and Macromolecular Chemistry, Ghent University, Krijgslaan 281 S4, B-9000 Ghent, Belgium.
| | - Martin Hruby
- Institute of Macromolecular Chemistry, v.v.i., Academy of Sciences of the Czech Republic, Heyrovsky Sq. 2, 162 06 Prague 6, Czech Republic.
| |
Collapse
|
34
|
Boerman MA, Roozen E, Sánchez-Fernández MJ, Keereweer AR, Félix Lanao RP, Bender JCME, Hoogenboom R, Leeuwenburgh SC, Jansen JA, Van Goor H, Van Hest JCM. Next Generation Hemostatic Materials Based on NHS-Ester Functionalized Poly(2-oxazoline)s. Biomacromolecules 2017; 18:2529-2538. [PMID: 28699748 PMCID: PMC5558194 DOI: 10.1021/acs.biomac.7b00683] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
![]()
In order to prevent hemorrhage during
surgical procedures, a wide
range of hemostatic agents have been developed. However, their efficacy
is variable; hemostatic devices that use bioactive components to accelerate
coagulation are dependent on natural sources, which limits reproducibility.
Hybrid devices in which chain-end reactive poly(ethylene glycol) is
employed as active component sometimes suffer from irregular cross-linking
and dissolution of the polar PEG when blood flow is substantial. Herein,
we describe a synthetic, nonbioactive hemostatic product by coating N-hydroxysuccinimide ester (NHS)-functional poly(2-oxazoline)s
(POx-NHS) onto gelatin patches, which acts by formation of covalent
cross-links between polymer, host blood proteins, gelatin and tissue
to seal the wound site and prevent hemorrhage during surgery. We studied
different process parameters (including polymer, carrier, and coating
technique) in direct comparison with clinical products (Hemopatch
and Tachosil) to obtain deeper understanding of this class of hemostatic
products. In this work, we successfully prove the hemostatic efficacy
of POx-NHS as polymer powders and coated patches both in vitro and
in vivo against Hemopatch and Tachosil, demonstrating that POx-NHS
are excellent candidate polymers for the development of next generation
hemostatic patches.
Collapse
Affiliation(s)
- Marcel A Boerman
- Institute for Molecules and Materials (IMM), Radboud University Nijmegen , Heyendaalseweg 135, 6525 AJ Nijmegen, The Netherlands.,Department of Biomaterials, Radboudumc , Philip v. Leydenlaan 25, 6525 EX Nijmegen, The Netherlands.,GATT-Technologies BV, Toernooiveld 1, 6525 ED Nijmegen, The Netherlands
| | - Edwin Roozen
- Department of Surgery, Radboudumc , Geert Grooteplein 10, 6525 GA Nijmegen, The Netherlands
| | - María José Sánchez-Fernández
- Department of Biomaterials, Radboudumc , Philip v. Leydenlaan 25, 6525 EX Nijmegen, The Netherlands.,GATT-Technologies BV, Toernooiveld 1, 6525 ED Nijmegen, The Netherlands
| | | | - Rosa P Félix Lanao
- Institute for Molecules and Materials (IMM), Radboud University Nijmegen , Heyendaalseweg 135, 6525 AJ Nijmegen, The Netherlands.,GATT-Technologies BV, Toernooiveld 1, 6525 ED Nijmegen, The Netherlands
| | | | - Richard Hoogenboom
- Supramolecular Chemistry Group, Department of Organic and Macromolecular Chemistry, Ghent University , Krijgslaan 281 S4, 9000 Ghent, Belgium
| | - Sander C Leeuwenburgh
- Department of Biomaterials, Radboudumc , Philip v. Leydenlaan 25, 6525 EX Nijmegen, The Netherlands
| | - John A Jansen
- Department of Biomaterials, Radboudumc , Philip v. Leydenlaan 25, 6525 EX Nijmegen, The Netherlands
| | - Harry Van Goor
- Department of Surgery, Radboudumc , Geert Grooteplein 10, 6525 GA Nijmegen, The Netherlands
| | - Jan C M Van Hest
- Institute for Molecules and Materials (IMM), Radboud University Nijmegen , Heyendaalseweg 135, 6525 AJ Nijmegen, The Netherlands
| |
Collapse
|
35
|
Effect of ligand structure in the trimethylene carbonate polymerization by cationic zirconocene catalysts: A “naked model” DFT study. J Organomet Chem 2017. [DOI: 10.1016/j.jorganchem.2017.04.023] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
36
|
Kempe K. Chain and Step Growth Polymerizations of Cyclic Imino Ethers: From Poly(2‐oxazoline)s to Poly(ester amide)s. MACROMOL CHEM PHYS 2017. [DOI: 10.1002/macp.201700021] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Kristian Kempe
- ARC Centre of Excellence in Convergent Bio‐Nano Science & Technology Monash Institute of Pharmaceutical Sciences Monash University Parkville VIC 3052 Australia
| |
Collapse
|
37
|
|
38
|
Stubbe B, Li Y, Vergaelen M, Van Vlierberghe S, Dubruel P, De Clerck K, Hoogenboom R. Aqueous electrospinning of poly(2-ethyl-2-oxazoline): Mapping the parameter space. Eur Polym J 2017. [DOI: 10.1016/j.eurpolymj.2016.09.014] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
39
|
Glassner M, Palmieri L, Monnery BD, Verbrugghen T, Deleye S, Stroobants S, Staelens S, wyffels L, Hoogenboom R. The Label Matters: μPET Imaging of the Biodistribution of Low Molar Mass 89Zr and 18F-Labeled Poly(2-ethyl-2-oxazoline). Biomacromolecules 2016; 18:96-102. [DOI: 10.1021/acs.biomac.6b01392] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Mathias Glassner
- Supramolecular
Chemistry Group, Department of Organic and Macromolecular Chemistry, Ghent University, Krijgslaan 281-S4, 9000 Ghent, Belgium
| | - Luca Palmieri
- Antwerp University Hospital, Department of Nuclear
Medicine, Wilrijkstraat
10, B-2650 Edegem, Belgium
- Molecular
Imaging Center Antwerp, University of Antwerp, Campus Drie Eiken, Universiteitsplein
1, B-2610 Wilrijk, Belgium
| | - Bryn D. Monnery
- Supramolecular
Chemistry Group, Department of Organic and Macromolecular Chemistry, Ghent University, Krijgslaan 281-S4, 9000 Ghent, Belgium
| | - Thomas Verbrugghen
- Antwerp University Hospital, Department of Nuclear
Medicine, Wilrijkstraat
10, B-2650 Edegem, Belgium
| | - Steven Deleye
- Antwerp University Hospital, Department of Nuclear
Medicine, Wilrijkstraat
10, B-2650 Edegem, Belgium
| | - Sigrid Stroobants
- Antwerp University Hospital, Department of Nuclear
Medicine, Wilrijkstraat
10, B-2650 Edegem, Belgium
- Molecular
Imaging Center Antwerp, University of Antwerp, Campus Drie Eiken, Universiteitsplein
1, B-2610 Wilrijk, Belgium
| | - Steven Staelens
- Molecular
Imaging Center Antwerp, University of Antwerp, Campus Drie Eiken, Universiteitsplein
1, B-2610 Wilrijk, Belgium
| | - Leonie wyffels
- Antwerp University Hospital, Department of Nuclear
Medicine, Wilrijkstraat
10, B-2650 Edegem, Belgium
- Molecular
Imaging Center Antwerp, University of Antwerp, Campus Drie Eiken, Universiteitsplein
1, B-2610 Wilrijk, Belgium
| | - Richard Hoogenboom
- Supramolecular
Chemistry Group, Department of Organic and Macromolecular Chemistry, Ghent University, Krijgslaan 281-S4, 9000 Ghent, Belgium
| |
Collapse
|
40
|
Richard Hoogenboom. Angew Chem Int Ed Engl 2016. [DOI: 10.1002/ange.201603607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
41
|
Richard Hoogenboom. Angew Chem Int Ed Engl 2016. [DOI: 10.1002/anie.201603607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
42
|
Cavallaro AA, Macgregor-Ramiasa MN, Vasilev K. Antibiofouling Properties of Plasma-Deposited Oxazoline-Based Thin Films. ACS APPLIED MATERIALS & INTERFACES 2016; 8:6354-62. [PMID: 26901823 DOI: 10.1021/acsami.6b00330] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Infections caused by the bacterial colonization of medical devices are a substantial problem to patients and healthcare. Biopassive polyoxazoline coatings are attracting attention in the biomedical field as one of the potential solutions to this problem. Here, we present an original and swift way to produce plasma-deposited oxazoline-based films for antifouling applications. The films developed via the plasma deposition of 2-methyl-2-oxazoline and 2-ethyl-2-oxazoline have tunable thickness and surface properties. Diverse film chemistries were achieved by tuning and optimizing the deposition conditions. Human-derived fibroblasts were used to confirm the biocompatibility of oxazoline derived coatings. The capacity of the coatings to resist biofilm attachment was studied as a function of deposition power and mode (i.e., continuous wave or pulsed) and precursor flow rates for both 2-methyl-2-oxazoline and 2-ethyl-2-oxazoline. After careful tuning of the deposition parameters films having the capacity to resist biofilm formation by more than 90% were achieved. The substrate-independent and customizable properties of the new generation of plasma deposited oxazoline thin films developed in this work make them attractive candidates for the coating of medical devices and other applications where bacteria surface colonization and biofilm formation is an issue.
Collapse
Affiliation(s)
- Alex A Cavallaro
- Future Industries Institute, University of South Australia , Mawson Lakes 5095, South Australia Australia
| | | | - Krasimir Vasilev
- School of Engineering, University of South Australia , Mawson Lakes 5095, South Australia Australia
| |
Collapse
|
43
|
Boerman MA, Van der Laan HL, Bender JCME, Hoogenboom R, Jansen JA, Leeuwenburgh SC, Van Hest JCM. Synthesis of pH- and thermoresponsive poly(2-n
-propyl-2-oxazoline) based copolymers. ACTA ACUST UNITED AC 2016. [DOI: 10.1002/pola.28011] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Marcel A. Boerman
- Radboud University Nijmegen, Institute for Molecules and Materials (IMM); Heyendaalseweg 135, 6525 AJ Nijmegen The Netherlands
- Radboudumc; Department of Biomaterials; 6500 HB Nijmegen The Netherlands
- Bender Analytical Holding B.V; Parksesteeg 8, 6611 KH Overasselt The Netherlands
| | - Harry L. Van der Laan
- Radboud University Nijmegen, Institute for Molecules and Materials (IMM); Heyendaalseweg 135, 6525 AJ Nijmegen The Netherlands
| | | | - Richard Hoogenboom
- Supramolecular Chemistry Group, Department of Organic and Macromolecular Chemistry, Ghent University; Krijgslaan 281 S4, 9000 Ghent Belgium
| | - John A. Jansen
- Radboudumc; Department of Biomaterials; 6500 HB Nijmegen The Netherlands
| | | | - Jan C. M. Van Hest
- Radboud University Nijmegen, Institute for Molecules and Materials (IMM); Heyendaalseweg 135, 6525 AJ Nijmegen The Netherlands
| |
Collapse
|
44
|
Vancoillie G, Brooks WLA, Mees MA, Sumerlin BS, Hoogenboom R. Synthesis of novel boronic acid-decorated poly(2-oxazoline)s showing triple-stimuli responsive behavior. Polym Chem 2016. [DOI: 10.1039/c6py01437b] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The synthesis of novel boronic-acid decorated poly(2-oxazoline)s showing a glucose- and pH dependent thermal transition is reported.
Collapse
Affiliation(s)
- Gertjan Vancoillie
- Supramolecular Chemistry group
- Department of Organic and Macromolecular Chemistry
- 9000 Ghent
- Belgium
- George & Josephine Butler Polymer Research Laboratory
| | - William L. A. Brooks
- George & Josephine Butler Polymer Research Laboratory
- Center for Macromolecular Science & Engineering
- Department of Chemistry
- University of Florida
- Gainesville
| | - Maarten A. Mees
- Supramolecular Chemistry group
- Department of Organic and Macromolecular Chemistry
- 9000 Ghent
- Belgium
| | - Brent S. Sumerlin
- George & Josephine Butler Polymer Research Laboratory
- Center for Macromolecular Science & Engineering
- Department of Chemistry
- University of Florida
- Gainesville
| | - Richard Hoogenboom
- Supramolecular Chemistry group
- Department of Organic and Macromolecular Chemistry
- 9000 Ghent
- Belgium
| |
Collapse
|
45
|
Chen CH, Niko Y, Konishi GI. Amphiphilic gels of solvatochromic fluorescent poly(2-oxazoline)s containing D–π–A pyrenes. RSC Adv 2016. [DOI: 10.1039/c6ra06251b] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
We report amphiphilic, fluorescent, solvatochromic poly(2-methyl-2-oxazoline) (POZO-py) and poly(2-ethyl-2-oxazoline) (PEtOZO-py), which contain D–π–A pyrene dye units in their side chains.
Collapse
Affiliation(s)
- Chia-Hsiu Chen
- Department of Organic and Polymeric Materials
- Tokyo Institute of Technology
- Tokyo 152-8552
- Japan
| | - Yosuke Niko
- Department of Organic and Polymeric Materials
- Tokyo Institute of Technology
- Tokyo 152-8552
- Japan
| | - Gen-ichi Konishi
- Department of Organic and Polymeric Materials
- Tokyo Institute of Technology
- Tokyo 152-8552
- Japan
- PRESTO
| |
Collapse
|
46
|
Luef KP, Hoogenboom R, Schubert US, Wiesbrock F. Microwave-assisted cationic ring-opening polymerization of 2-oxazolines. ADVANCES IN POLYMER SCIENCE = FORTSCHRITTE DER HOCHPOLYMEREN-FORSCHUNG 2015; 274:183-208. [PMID: 28239203 PMCID: PMC5321602 DOI: 10.1007/12_2015_340] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Unlike any other polymer class, the (co-)poly(2-oxazoline)s have tremendously benefited from the introduction of microwave reactors into chemical laboratories. This review focuses on the research activities in the area of (co-)poly(2-oxazoline)s prepared by microwave-assisted syntheses and, correspondingly, summarizes the current-state-of the-art of the microwave-assisted synthesis of 2-oxazoline monomers and the microwave-assisted ring-opening (co-)polymerization of 2-oxazolines as well as prominent examples of post-polymerization modification of (co-)poly(2-oxazoline)s. Special attention is attributed to the kinetic analysis of the microwave-assisted polymerization of 2-oxazolines and the discussion of non-thermal microwave effects.
Collapse
Affiliation(s)
- Klaus P. Luef
- Polymer Competence Center Leoben GmbH, Roseggerstrasse 12, 8700 Leoben, Austria
- Graz University of Technology, Institute for Chemistry and Technology of Materials, NAWI Graz, Stremayrgasse 9, 8010 Graz, Austria
| | - Richard Hoogenboom
- Supramolecular Chemistry Group, Department of Organic and Macromolecular Chemistry, Ghent University, Krijgslaan 281 S4, 9000 Ghent, Belgium
| | - Ulrich S. Schubert
- Laboratory for Organic and Macromolecular Chemistry (IOMC), Friedrich Schiller University Jena, Humboldtstrasse 10, 07743 Jena, Germany
- Jena Center for Soft Matter (JCSM), Friedrich Schiller University Jena, Philosophenweg 7, 07743 Jena, Germany
| | - Frank Wiesbrock
- Polymer Competence Center Leoben GmbH, Roseggerstrasse 12, 8700 Leoben, Austria
| |
Collapse
|
47
|
Van Steenberge PHM, Verbraeken B, Reyniers MF, Hoogenboom R, D’hooge DR. Model-Based Visualization and Understanding of Monomer Sequence Formation in Gradient Copoly(2-oxazoline)s On the basis of 2-Methyl-2-oxazoline and 2-Phenyl-2-oxazoline. Macromolecules 2015. [DOI: 10.1021/acs.macromol.5b01642] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Paul H. M. Van Steenberge
- Laboratory
for Chemical Technology (LCT), Ghent University, Technologiepark 914, B-9052 Zwijnaarde (Gent), Belgium
| | - Bart Verbraeken
- Supramolecular
Chemistry Group, Department of Organic and Macromolecular Chemistry, Ghent University, Krijgslaan 281-S4, 9000 Ghent, Belgium
| | - Marie-Françoise Reyniers
- Laboratory
for Chemical Technology (LCT), Ghent University, Technologiepark 914, B-9052 Zwijnaarde (Gent), Belgium
| | - Richard Hoogenboom
- Supramolecular
Chemistry Group, Department of Organic and Macromolecular Chemistry, Ghent University, Krijgslaan 281-S4, 9000 Ghent, Belgium
| | - Dagmar R. D’hooge
- Laboratory
for Chemical Technology (LCT), Ghent University, Technologiepark 914, B-9052 Zwijnaarde (Gent), Belgium
- Department
of Textiles, Ghent University, Technologiepark 907, B-9052 Zwijnaarde (Gent), Belgium
| |
Collapse
|
48
|
|
49
|
Rueda JC, Asmad M, Ruiz V, Komber H, Zschoche S, Voit B. Synthesis and characterization of new bi-sensitive copoly(2-oxazolines). Des Monomers Polym 2015. [DOI: 10.1080/15685551.2015.1078109] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
Affiliation(s)
- Juan Carlos Rueda
- Polymer Laboratory, Physics Section, Science Department, DGI, Pontifical Catholic University of Peru (PUCP), Box 1761, Lima, Peru
| | - Miguel Asmad
- Polymer Laboratory, Physics Section, Science Department, DGI, Pontifical Catholic University of Peru (PUCP), Box 1761, Lima, Peru
| | - Valeria Ruiz
- Polymer Laboratory, Physics Section, Science Department, DGI, Pontifical Catholic University of Peru (PUCP), Box 1761, Lima, Peru
| | - Hartmut Komber
- Leibniz Institute of Polymer Research Dresden, Hohe Strasse 6, Dresden 01069, Germany
| | - Stefan Zschoche
- Leibniz Institute of Polymer Research Dresden, Hohe Strasse 6, Dresden 01069, Germany
| | - Brigitte Voit
- Leibniz Institute of Polymer Research Dresden, Hohe Strasse 6, Dresden 01069, Germany
- TU Dresden, Center of Excellence cfaed, Dresden 01062, Germany
| |
Collapse
|
50
|
Vergaelen M, Verbraeken B, Monnery BD, Hoogenboom R. Sulfolane as Common Rate Accelerating Solvent for the Cationic Ring-Opening Polymerization of 2-Oxazolines. ACS Macro Lett 2015; 4:825-828. [PMID: 35596503 DOI: 10.1021/acsmacrolett.5b00392] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The search for alternative solvents for the cationic ring-opening polymerization (CROP) of 2-methyl-2-oxazoline (MeOx) is driven by the poor solubility of P(MeOx) in polymerization solvents such as acetonitrile (CH3CN) and chlorobenzene as well as in MeOx itself. In this study, solvent screening has revealed that especially sulfolane is a good solvent for PMeOx. Unexpectedly, an increased propagation rate constant (kp) was found for the CROP of MeOx in sulfolane. Further extended kinetic studies at different temperatures (60-180 °C), revealed that the acceleration is due to an increase in frequency factor, while the activation energy (Ea) of the reaction is hardly affected. In order to explore the versatility of sulfolane as polymerization solvent for the CROP of 2-oxazolines in general, also the polymerization kinetics of other 2-oxazoline monomers, such as 2-ethyl-2-oxazoline (EtOx) and 2-phenyl-2-oxazoline (PhOx), have been studied, revealing a common acceleration of the CROP of 2-oxazoline monomers in sulfolane. This also enabled more controlled synthesis of PMeOx-block-PPhOx block copolymers that otherwise suffers from solvent incompatibility.
Collapse
Affiliation(s)
- Maarten Vergaelen
- Supramolecular Chemistry Group, Department of Organic and Macromolecular Chemistry, Ghent University, Krijgslaan 281, S4, Ghent, Belgium
| | - Bart Verbraeken
- Supramolecular Chemistry Group, Department of Organic and Macromolecular Chemistry, Ghent University, Krijgslaan 281, S4, Ghent, Belgium
| | - Bryn D. Monnery
- Supramolecular Chemistry Group, Department of Organic and Macromolecular Chemistry, Ghent University, Krijgslaan 281, S4, Ghent, Belgium
| | - Richard Hoogenboom
- Supramolecular Chemistry Group, Department of Organic and Macromolecular Chemistry, Ghent University, Krijgslaan 281, S4, Ghent, Belgium
| |
Collapse
|