1
|
Ota S, Soto MA, Patrick BO, Kamal S, Lelj F, MacLachlan MJ. π-Extended ligands with dual-binding behavior: hindered rotation unlocks unexpected reactivity in cyclometalated Pt complexes. Chem Sci 2024; 15:d4sc04799k. [PMID: 39282641 PMCID: PMC11388036 DOI: 10.1039/d4sc04799k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Accepted: 08/22/2024] [Indexed: 09/19/2024] Open
Abstract
Cyclometalated platinum complexes play a crucial role in catalysis, bioimaging, and optoelectronics. Phenylpyridines are widespread cyclometalating ligands that generate stable and highly emissive Pt complexes. While it is common practice to modify these ligands to fine-tune their photophysical properties, the incorporation of polycyclic aromatic hydrocarbons into the ligand's structure has been largely overlooked. This report describes the cyclometalation of naphthalenyl- and anthracenylpyridine ligands, which has resulted in ten new luminescent PtII and PtIV complexes. These species are enabled by a dual-binding behavior discovered in our polyaromatic-containing ligands. The introduction of naphthalenyl and anthracenyl groups unlocks dual binding modes, with the Pt center bonding to either of two distant carbon atoms within the ligand. These complexes exhibit both symmetric structures with two 5-membered metallacycles and asymmetric structures with 5- and 6-membered metallacycles. This work presents a strategy for the regioselective synthesis of Pt complexes with bespoke structures and photophysical properties. Our findings offer new opportunities in platinum chemistry and beyond, with potential implications for materials and technologies.
Collapse
Affiliation(s)
- Seiya Ota
- Department of Chemistry University of British Columbia 2036 Main Mall Vancouver V6T 1Z1 Canada
| | - Miguel A Soto
- Department of Chemistry University of British Columbia 2036 Main Mall Vancouver V6T 1Z1 Canada
| | - Brian O Patrick
- Department of Chemistry University of British Columbia 2036 Main Mall Vancouver V6T 1Z1 Canada
| | - Saeid Kamal
- Department of Chemistry University of British Columbia 2036 Main Mall Vancouver V6T 1Z1 Canada
| | - Francesco Lelj
- La.M.I.and LaSCAMM INSTM Sezione Basilicata, Dipartiento di Scienze, Università della Basilicata via dell'Ateneo Lucano 10 Potenza 85100 Italy
| | - Mark J MacLachlan
- Department of Chemistry University of British Columbia 2036 Main Mall Vancouver V6T 1Z1 Canada
- Stewart Blusson Quantum Matter Institute University of British Columbia 2355 East Mall Vancouver BC V6T 1Z4 Canada
- WPI Nano Life Science Institute Kanazawa University Kanazawa 920-1192 Japan
| |
Collapse
|
2
|
Lee LCC, Lo KKW. Shining New Light on Biological Systems: Luminescent Transition Metal Complexes for Bioimaging and Biosensing Applications. Chem Rev 2024; 124:8825-9014. [PMID: 39052606 PMCID: PMC11328004 DOI: 10.1021/acs.chemrev.3c00629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/27/2024]
Abstract
Luminescence imaging is a powerful and versatile technique for investigating cell physiology and pathology in living systems, making significant contributions to life science research and clinical diagnosis. In recent years, luminescent transition metal complexes have gained significant attention for diagnostic and therapeutic applications due to their unique photophysical and photochemical properties. In this Review, we provide a comprehensive overview of the recent development of luminescent transition metal complexes for bioimaging and biosensing applications, with a focus on transition metal centers with a d6, d8, and d10 electronic configuration. We elucidate the structure-property relationships of luminescent transition metal complexes, exploring how their structural characteristics can be manipulated to control their biological behavior such as cellular uptake, localization, biocompatibility, pharmacokinetics, and biodistribution. Furthermore, we introduce the various design strategies that leverage the interesting photophysical properties of luminescent transition metal complexes for a wide variety of biological applications, including autofluorescence-free imaging, multimodal imaging, organelle imaging, biological sensing, microenvironment monitoring, bioorthogonal labeling, bacterial imaging, and cell viability assessment. Finally, we provide insights into the challenges and perspectives of luminescent transition metal complexes for bioimaging and biosensing applications, as well as their use in disease diagnosis and treatment evaluation.
Collapse
Affiliation(s)
- Lawrence Cho-Cheung Lee
- Department of Chemistry, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, P. R. China
- Laboratory for Synthetic Chemistry and Chemical Biology Limited, Units 1503-1511, 15/F, Building 17W, Hong Kong Science Park, New Territories, Hong Kong, P. R. China
| | - Kenneth Kam-Wing Lo
- Department of Chemistry, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, P. R. China
- State Key Laboratory of Terahertz and Millimeter Waves, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, P. R. China
| |
Collapse
|
3
|
Romo-Islas G, Gil-Moles M, Saxena A, Frontera A, Gimeno MC, Rodríguez L. Effect of substituents on the 1O 2 production and biological activity of (N^N^N)Pt(py) complexes. Dalton Trans 2024; 53:2475-2486. [PMID: 38174938 DOI: 10.1039/d3dt04050j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
Twelve (N^N^N)platinum pyridyl complexes, (N^N^N)Pt(pyF), were synthesised and investigated for their singlet oxygen generation and potential biological activities. They exhibited 1IL and 1MLCT absorption transitions at approximately 325 and 360 nm, identified through TD-DFT calculations. Luminescence was observed only in the L1-derived compounds in solution, with a dual emission with the main contribution of phosphorescence under deaerated conditions. Room temperature phosphorescence was detected in all solid-state cases. Electron-withdrawing substituents at specific positions (R1 and X) and the number of fluorine atoms in R2 were found to enhance the photosensitizing capabilities of these compounds. Biological assessments, including cytotoxicity and photocytotoxicity, were conducted to evaluate their potential as chemotherapeutic agents and photosensitizers. Complexes with chloro substitution in the N^N^N tridentate ligand of the central pyridine ring exhibited promising chemotherapeutic properties. Ancillary pyridine ring substitution became significant under irradiation conditions, with fluoromethylated substituents enhancing cytotoxicity. Complex 2-CF3 was the most efficient singlet oxygen producer and a highly effective photosensitizer. CHF2-substituted complexes also showed improved photosensitizing activity. DNA binding studies indicated moderate interactions with DNA, offering insights into potential biological applications.
Collapse
Affiliation(s)
- Guillermo Romo-Islas
- Departament de Química Inorgànica i Orgànica, Secció de Química Inorgànica, Universitat de Barcelona, Martí i Franquès 1-11, 08028 Barcelona, Spain.
- Institut de Nanociència i Nanotecnologia (IN2UB), Universitat de Barcelona, 08028 Barcelona, Spain
| | - María Gil-Moles
- Instituto de Síntesis Química y Catálisis Homogénea (ISQCH), CSIC-Universidad de Zaragoza, Pedro Cerbuna 12, 50009 Zaragoza, Spain.
- Departamento de Química, Centro de Investigación de Síntesis Química (CISQ), Universidad de la Rioja. Complejo Científico-Tecnológico, 26004, Logroño, Spain
| | - Arnav Saxena
- Departament de Química Inorgànica i Orgànica, Secció de Química Inorgànica, Universitat de Barcelona, Martí i Franquès 1-11, 08028 Barcelona, Spain.
| | - Antonio Frontera
- Departament de Química, Universitat de les Illes Balears, 07122 Palma de Mallorca, Spain
| | - M Concepción Gimeno
- Instituto de Síntesis Química y Catálisis Homogénea (ISQCH), CSIC-Universidad de Zaragoza, Pedro Cerbuna 12, 50009 Zaragoza, Spain.
| | - Laura Rodríguez
- Departament de Química Inorgànica i Orgànica, Secció de Química Inorgànica, Universitat de Barcelona, Martí i Franquès 1-11, 08028 Barcelona, Spain.
- Institut de Nanociència i Nanotecnologia (IN2UB), Universitat de Barcelona, 08028 Barcelona, Spain
| |
Collapse
|
4
|
Romo-Islas G, Burguera S, Frontera A, Rodríguez L. Investigating the Impact of Packing and Environmental Factors on the Luminescence of Pt(N^N^N) Chromophores. Inorg Chem 2024; 63:2821-2832. [PMID: 38259118 PMCID: PMC10848268 DOI: 10.1021/acs.inorgchem.3c04562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Revised: 12/28/2023] [Accepted: 01/04/2024] [Indexed: 01/24/2024]
Abstract
Four Pt(II)(N^N^N) compounds featuring DMSO coordination at the fourth position were synthesized. Ligands varied in terms of pyridyl central ring (hydrogen/chlorine substituent) and lateral rings (triazoles with CF3 substitution or tetrazoles). Coordination to pyridine yielded tetra-nitrogen coordinated Pt(II) complexes or Pt-functionalized polymers using commercial 4-pyridyl polyvinyl (PV) or dimethylaminopyridine. Luminescence behaviors exhibited remarkable environmental dependence. While some of the molecular compounds (tetrazole derivatives) in solid state displayed quenched luminescence, all the polymers exhibited 3MMLCT emission around 600 nm. Conversely, monomer emission was evident on poly(methyl methacrylate) or polystyrene matrices. DFT calculations were used to analyze the aggregation of the complexes both at the molecular level and coordinated to the PV polymer and their influence on the HOMO-LUMO gaps.
Collapse
Affiliation(s)
- Guillermo Romo-Islas
- Departament
de Química Inorgànica i Orgànica, Secció
de Química Inorgànica., Institut
de Nanociència i Nanotecnologia (IN2UB). Universitat de Barcelona, Martí i Franquès 1-11, Barcelona E-08028, Spain
| | - Sergi Burguera
- Departament
de Química, Universitat de les Illes
Balears, Palma
de Mallorca 07122, Spain
| | - Antonio Frontera
- Departament
de Química, Universitat de les Illes
Balears, Palma
de Mallorca 07122, Spain
| | - Laura Rodríguez
- Departament
de Química Inorgànica i Orgànica, Secció
de Química Inorgànica., Institut
de Nanociència i Nanotecnologia (IN2UB). Universitat de Barcelona, Martí i Franquès 1-11, Barcelona E-08028, Spain
| |
Collapse
|
5
|
Nguyen Van Ha, Dat DT, Huy NH. Oxygenation Induced Electronic Structure Changes in Anionic Platinum(II) Complex Bearing 2-Phenylpyridine and Benzene-1,2-dithiolate Ligands: Theoretical Study. RUSS J INORG CHEM+ 2022. [DOI: 10.1134/s0036023622601544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
6
|
Matern J, Maisuls I, Strassert CA, Fernández G. Luminescence and Length Control in Nonchelated d 8 -Metallosupramolecular Polymers through Metal-Metal Interactions. Angew Chem Int Ed Engl 2022; 61:e202208436. [PMID: 35749048 PMCID: PMC9545304 DOI: 10.1002/anie.202208436] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Indexed: 11/15/2022]
Abstract
Supramolecular polymers (SPs) of d8 transition metal complexes have received considerable attention by virtue of their rich photophysical properties arising from metal-metal interactions. However, thus far, the molecular design is restricted to complexes with chelating ligands due to their advantageous preorganization and strong ligand fields. Herein, we demonstrate unique pathway-controllable metal-metal-interactions and remarkable 3 MMLCT luminescence in SPs of a non-chelated PtII complex. Under kinetic control, self-complementary bisamide H-bonding motifs induce a rapid self-assembly into non-emissive H-type aggregates (1A). However, under thermodynamic conditions, a more efficient ligand coplanarization leads to superiorly stabilized SP 1B with extended Pt⋅⋅⋅Pt interactions and remarkably long 3 MMLCT luminescence (τ77 K =0.26 ms). The metal-metal interactions could be subsequently exploited to control the length of the emissive SPs using the seeded-growth approach.
Collapse
Affiliation(s)
- Jonas Matern
- Organisch-Chemisches InstitutWestfälische Wilhelms-Universität MünsterCorrensstraße 3648149MünsterGermany
| | - Iván Maisuls
- CiMICSoNInstitut für Anorganische und Analytische ChemieWestfälische Wilhelms-Universität MünsterCorrensstraße 28/3048149MünsterGermany
- CeNTechWestfälische Wilhelms-Universität MünsterHeisenbergstraße 1148149MünsterGermany
| | - Cristian A. Strassert
- CiMICSoNInstitut für Anorganische und Analytische ChemieWestfälische Wilhelms-Universität MünsterCorrensstraße 28/3048149MünsterGermany
- CeNTechWestfälische Wilhelms-Universität MünsterHeisenbergstraße 1148149MünsterGermany
| | - Gustavo Fernández
- Organisch-Chemisches InstitutWestfälische Wilhelms-Universität MünsterCorrensstraße 3648149MünsterGermany
| |
Collapse
|
7
|
Gutierrez Suburu ME, Maisuls I, Kösters J, Strassert CA. Room-temperature luminescence from Pd(II) and Pt(II) complexes: from mechanochromic crystals to flexible polymer matrices. Dalton Trans 2022; 51:13342-13350. [PMID: 35983882 DOI: 10.1039/d2dt01693a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A series of Pd(II) (PdLOMe, PdLOHex) and Pt(II) (PtLOMe, PtLOHex) complexes bearing tetradentate ligands as dianionic luminophores were synthesized. Hence, the cyclometallating chelators were alternatively decorated with two n-hexyloxy (LOHex) or two methoxy (LOMe) moieties to promote crystallization and processability. The new compounds were unambiguously characterized by means of multiple NMR spectroscopies and mass spectrometry as well as by single crystal X-ray diffractometric analysis (PtLOMe and PdLOMe). Steady state and time-resolved photoluminescence spectroscopic studies were carried out in crystalline phases, in fluid solutions at room temperature, in frozen glassy matrices at 77 K and in a flexible polymeric matrix (PMMA). PtLOMe presents an intriguing mechanochromism resulting from the responsive metal-metal interactions involving adjacent monomeric units. Incorporation of the Pd(II) complexes into the polymeric matrix boosts their photophysical properties by stiffening of the coordination environment while reducing non-radiative deactivation pathways mediated by dissociative metal-centred states, which also become thermally inaccessible at 77 K.
Collapse
Affiliation(s)
- Matias E Gutierrez Suburu
- Institut für Anorganische und Analytische Chemie, Westfälische Wilhelms-Universität Münster, Corrensstraße 28/30, D-48149 Münster, Germany. .,CeNTech, SoN, CiMIC, Westfälische Wilhelms-Universität Münster, Heisenbergstraße 11, D-48149 Munster, Germany
| | - Iván Maisuls
- Institut für Anorganische und Analytische Chemie, Westfälische Wilhelms-Universität Münster, Corrensstraße 28/30, D-48149 Münster, Germany. .,CeNTech, SoN, CiMIC, Westfälische Wilhelms-Universität Münster, Heisenbergstraße 11, D-48149 Munster, Germany
| | - Jutta Kösters
- Institut für Anorganische und Analytische Chemie, Westfälische Wilhelms-Universität Münster, Corrensstraße 28/30, D-48149 Münster, Germany.
| | - Cristian A Strassert
- Institut für Anorganische und Analytische Chemie, Westfälische Wilhelms-Universität Münster, Corrensstraße 28/30, D-48149 Münster, Germany. .,CeNTech, SoN, CiMIC, Westfälische Wilhelms-Universität Münster, Heisenbergstraße 11, D-48149 Munster, Germany
| |
Collapse
|
8
|
Matern J, Maisuls I, Strassert CA, Fernandez G. Luminescence and Length Control in Nonchelated d8‐Metallosupramolecular Polymers through Metal‐Metal Interactions. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202208436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Jonas Matern
- WWU Münster: Westfalische Wilhelms-Universitat Munster Organisch-Chemisches Institut GERMANY
| | - Ivan Maisuls
- WWU Münster: Westfalische Wilhelms-Universitat Munster CeNTech GERMANY
| | | | - Gustavo Fernandez
- WWU Münster Organisch-Chemisches Institut Correnstraße, 4ß 48149 Münster GERMANY
| |
Collapse
|
9
|
Zhou X, Mytiliniou M, Hilgendorf J, Zeng Y, Papadopoulou P, Shao Y, Dominguez MP, Zhang L, Hesselberth MBS, Bos E, Siegler MA, Buda F, Brouwer AM, Kros A, Koning RI, Heinrich D, Bonnet S. Intracellular Dynamic Assembly of Deep-Red Emitting Supramolecular Nanostructures Based on the Pt…Pt Metallophilic Interaction. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2008613. [PMID: 34338371 PMCID: PMC11469088 DOI: 10.1002/adma.202008613] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 06/27/2021] [Indexed: 06/13/2023]
Abstract
Many drug delivery systems end up in the lysosome because they are built from covalent or kinetically inert supramolecular bonds. To reach other organelles, nanoparticles hence need to either be made from a kinetically labile interaction that allows re-assembly of the nanoparticles inside the cell following endocytic uptake, or, be taken up by a mechanism that short-circuits the classical endocytosis pathway. In this work, the intracellular fate of nanorods that self-assemble via the Pt…Pt interaction of cyclometalated platinum(II) compounds, is studied. These deep-red emissive nanostructures (638 nm excitation, ≈700 nm emission) are stabilized by proteins in cell medium. Once in contact with cancer cells, they cross the cell membrane via dynamin- and clathrin-dependent endocytosis. However, time-dependent confocal colocalization and cellular electron microscopy demonstrate that they directly move to mitochondria without passing by the lysosomes. Altogether, this study suggests that Pt…Pt interaction is strong enough to generate emissive, aggregated nanoparticles inside cells, but labile enough to allow these nanostructures to reach the mitochondria without being trapped in the lysosomes. These findings open new venues to the development of bioimaging nanoplatforms based on the Pt…Pt interaction.
Collapse
Affiliation(s)
- Xue‐Quan Zhou
- Leiden Institute of ChemistryUniversiteit LeidenEinsteinweg 55Leiden2333 CCNetherlands
| | - Maria Mytiliniou
- Leiden Institute of PhysicsHuygens‐Kamerlingh Onnes LaboratoryUniversiteit LeidenLeiden2300 RAThe Netherlands
| | - Jonathan Hilgendorf
- Leiden Institute of ChemistryUniversiteit LeidenEinsteinweg 55Leiden2333 CCNetherlands
| | - Ye Zeng
- Leiden Institute of ChemistryUniversiteit LeidenEinsteinweg 55Leiden2333 CCNetherlands
| | | | - Yang Shao
- Leiden Institute of ChemistryUniversiteit LeidenEinsteinweg 55Leiden2333 CCNetherlands
| | - Maximilian Paradiz Dominguez
- Molecular Photonics GroupVan't Hoff Institute for Molecular Sciences (HIMS)Universiteit van AmsterdamScience Park 904Amsterdam1098 XHNetherlands
| | - Liyan Zhang
- Leiden Institute of ChemistryUniversiteit LeidenEinsteinweg 55Leiden2333 CCNetherlands
| | - Marcel B. S. Hesselberth
- Leiden Institute of PhysicsHuygens‐Kamerlingh Onnes LaboratoryUniversiteit LeidenLeiden2300 RAThe Netherlands
| | - Erik Bos
- Department of Cell and Chemical BiologyLeiden University Medical CenterEinthovenweg 20Leiden2333 ZCThe Netherlands
| | | | - Francesco Buda
- Leiden Institute of ChemistryUniversiteit LeidenEinsteinweg 55Leiden2333 CCNetherlands
| | - Albert M. Brouwer
- Molecular Photonics GroupVan't Hoff Institute for Molecular Sciences (HIMS)Universiteit van AmsterdamScience Park 904Amsterdam1098 XHNetherlands
- Materials DepartmentAdvanced Research Center for NanolithographyScience Park 106Amsterdam1098 XGThe Netherlands
| | - Alexander Kros
- Leiden Institute of ChemistryUniversiteit LeidenEinsteinweg 55Leiden2333 CCNetherlands
| | - Roman I. Koning
- Department of Cell and Chemical BiologyLeiden University Medical CenterEinthovenweg 20Leiden2333 ZCThe Netherlands
| | - Doris Heinrich
- Leiden Institute of PhysicsHuygens‐Kamerlingh Onnes LaboratoryUniversiteit LeidenLeiden2300 RAThe Netherlands
- Institute for Bioprocessing and Analytical Measurement TechniquesRosenhof37308Heilbad HeiligenstadtGermany
- Faculty for Mathematics and Natural SciencesIlmenau University of Technology98693IlmenauGermany
- Frauenhofer Attract 3DNanoCellFraunhofer Institute for Silicate Research ISC97082WürzburgGermany
| | - Sylvestre Bonnet
- Leiden Institute of ChemistryUniversiteit LeidenEinsteinweg 55Leiden2333 CCNetherlands
| |
Collapse
|
10
|
Maisuls I, Singh J, Salto IP, Steiner ST, Kirse TM, Niemann S, Strassert CA, Faust A. Conjugated Pt(II) Complexes as Luminescence-Switch-On Reporters Addressing the Microenvironment of Bacterial Biofilms. Inorg Chem 2021; 60:11058-11069. [PMID: 34255500 DOI: 10.1021/acs.inorgchem.1c00860] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
In this work, the synthesis, structural and photophysical characterization of six phosphorescent H2O-soluble Pt(II) complexes are reported while addressing their emission maxima, photoluminescence quantum yields (ΦL), lifetimes (τ), aggregation tendency, and microenvironment sensitivity as a function of the substitution pattern on the main tridentate luminophore. Different ancillary ligands, namely, a trisulfonated phosphane and maltohexaose-conjugated pyridines (with or without amide bridges), were introduced and evaluated for the realization of switch-on-photoluminescent labels reporting on the microenvironment sensed in biofilms of Gram+ and Gram- models, namely, Staphylococcus aureus and Escherichia coli. With the aid of confocal luminescence micro(spectro)scopy, we observed that selected complexes specifically interact with the biofilms while leaving planktonic cells unlabeled. By using photoluminescence lifetime imaging microscopy, excited-state lifetimes within S. aureus biofilms were measured. The photoluminescence intensities were drastically boosted, and the excited state lifetimes were significantly prolonged upon binding to the viscous biofilm matrix, mainly due to the suppression of radiationless deactivation pathways upon shielding from physical quenching processes, such as interactions with solvent molecules and 3O2. The best performances were attained for non-aggregating complexes with maltohexaose targeting units and without amide bridges. Notably, in the absence of the maltodextrin, a hydrophobic adamantyl moiety suffices to attain a sizeable labeling capacity. Moreover, photoluminescence studies showed that selected complexes can also effectively interact with E. coli biofilms, where the bacterial cells are able to partially uptake the maltodextrin-based agents. In summary, the herein introduced concepts enable the development of specific biofilm reporters providing spatial resolution as well as lifetime- and spectrum-based readouts. Considering that most theragnostic agents reported so far mainly address metabolically active bacteria at the surface of biofilms but without reaching cells deeply immersed in the matrix, a new platform with a clear structure-property correlation is provided for the early detection of such bacterial arrays.
Collapse
Affiliation(s)
- Iván Maisuls
- Institut für Anorganische und Analytische Chemie, CiMiC, SoN and CeNTech, Wesfälische Wilhelms-Universität Münster, Heisenbergstr. 11, 48149 Münster, Germany
| | - Jasveer Singh
- Institut für Anorganische und Analytische Chemie, CiMiC, SoN and CeNTech, Wesfälische Wilhelms-Universität Münster, Heisenbergstr. 11, 48149 Münster, Germany
| | - Ileana P Salto
- Institute of Medical Microbiology, University Hospital Münster, Domagkstr. 10, 48149 Münster, Germany
| | - Simon T Steiner
- European Institute for Molecular Imaging, University of Münster, Münster, Waldeyerstr. 15, 48159 Münster, Germany
| | - Thomas M Kirse
- Institut für Anorganische und Analytische Chemie, CiMiC, SoN and CeNTech, Wesfälische Wilhelms-Universität Münster, Heisenbergstr. 11, 48149 Münster, Germany
| | - Silke Niemann
- Institute of Medical Microbiology, University Hospital Münster, Domagkstr. 10, 48149 Münster, Germany.,Interdisciplinary Center of Clinical Research (IZKF), University Hospital Münster, 48149 Münster, Germany
| | - Cristian A Strassert
- Institut für Anorganische und Analytische Chemie, CiMiC, SoN and CeNTech, Wesfälische Wilhelms-Universität Münster, Heisenbergstr. 11, 48149 Münster, Germany
| | - Andreas Faust
- European Institute for Molecular Imaging, University of Münster, Münster, Waldeyerstr. 15, 48159 Münster, Germany.,Interdisciplinary Center of Clinical Research (IZKF), University Hospital Münster, 48149 Münster, Germany
| |
Collapse
|
11
|
Maisuls I, Wang C, Gutierrez Suburu ME, Wilde S, Daniliuc CG, Brünink D, Doltsinis NL, Ostendorp S, Wilde G, Kösters J, Resch-Genger U, Strassert CA. Ligand-controlled and nanoconfinement-boosted luminescence employing Pt(ii) and Pd(ii) complexes: from color-tunable aggregation-enhanced dual emitters towards self-referenced oxygen reporters. Chem Sci 2021; 12:3270-3281. [PMID: 34164096 PMCID: PMC8179353 DOI: 10.1039/d0sc06126c] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Accepted: 01/06/2021] [Indexed: 12/22/2022] Open
Abstract
In this work, we describe the synthesis, structural and photophysical characterization of four novel Pd(ii) and Pt(ii) complexes bearing tetradentate luminophoric ligands with high photoluminescence quantum yields (Φ L) and long excited state lifetimes (τ) at room temperature, where the results were interpreted by means of DFT calculations. Incorporation of fluorine atoms into the tetradentate ligand favors aggregation and thereby, a shortened average distance between the metal centers, which provides accessibility to metal-metal-to-ligand charge-transfer (3MMLCT) excimers acting as red-shifted energy traps if compared with the monomeric entities. This supramolecular approach provides an elegant way to enable room-temperature phosphorescence from Pd(ii) complexes, which are otherwise quenched by a thermal population of dissociative states due to a lower ligand field splitting. Encapsulation of these complexes in 100 nm-sized aminated polystyrene nanoparticles enables concentration-controlled aggregation-enhanced dual emission. This phenomenon facilitates the tunability of the absorption and emission colors while providing a rigidified environment supporting an enhanced Φ L up to about 80% and extended τ exceeding 100 μs. Additionally, these nanoarrays constitute rare examples for self-referenced oxygen reporters, since the phosphorescence of the aggregates is insensitive to external influences, whereas the monomeric species drop in luminescence lifetime and intensity with increasing triplet molecular dioxygen concentrations (diffusion-controlled quenching).
Collapse
Affiliation(s)
- Iván Maisuls
- Institut für Anorganische und Analytische Chemie, Westfälische Wilhelms-Universität Münster Corrensstraße 28/30 D-48149 Münster Germany
- CeNTech, CiMIC, SoN, Westfälische Wilhelms-Universität Münster Heisenbergstraße 11 D-48149 Münster Germany
| | - Cui Wang
- Division Biophotonics, Federal Institute for Materials Research and Testing (BAM) Richard-Willstaetter-Straße 11 12489 Berlin Germany
- Institute of Chemistry and Biochemistry, Freie Universität Berlin Arnimallee 22 14195 Berlin Germany
| | - Matias E Gutierrez Suburu
- Institut für Anorganische und Analytische Chemie, Westfälische Wilhelms-Universität Münster Corrensstraße 28/30 D-48149 Münster Germany
- CeNTech, CiMIC, SoN, Westfälische Wilhelms-Universität Münster Heisenbergstraße 11 D-48149 Münster Germany
| | - Sebastian Wilde
- Institut für Anorganische und Analytische Chemie, Westfälische Wilhelms-Universität Münster Corrensstraße 28/30 D-48149 Münster Germany
- CeNTech, CiMIC, SoN, Westfälische Wilhelms-Universität Münster Heisenbergstraße 11 D-48149 Münster Germany
| | - Constantin-Gabriel Daniliuc
- Organisch-Chemisches Institut, Westfälische Wilhelms-Universität Münster Corrensstraße 40 D-48149 Münster Germany
| | - Dana Brünink
- Institut für Festkörpertheorie, Center for Multiscale Theory and Computation, Westfälische Wilhelms-Universität Münster Wilhelm-Klemm-Straße 10 D-48149 Münster Germany
| | - Nikos L Doltsinis
- Institut für Festkörpertheorie, Center for Multiscale Theory and Computation, Westfälische Wilhelms-Universität Münster Wilhelm-Klemm-Straße 10 D-48149 Münster Germany
| | - Stefan Ostendorp
- Institut für Materialphysik, CeNTech, Westfälische Wilhelms-Universität Münster Wilhelm-Klemm-Straße 10 D-48149 Münster Germany
| | - Gerhard Wilde
- Institut für Materialphysik, CeNTech, Westfälische Wilhelms-Universität Münster Wilhelm-Klemm-Straße 10 D-48149 Münster Germany
| | - Jutta Kösters
- CeNTech, CiMIC, SoN, Westfälische Wilhelms-Universität Münster Heisenbergstraße 11 D-48149 Münster Germany
| | - Ute Resch-Genger
- Division Biophotonics, Federal Institute for Materials Research and Testing (BAM) Richard-Willstaetter-Straße 11 12489 Berlin Germany
| | - Cristian A Strassert
- Institut für Anorganische und Analytische Chemie, Westfälische Wilhelms-Universität Münster Corrensstraße 28/30 D-48149 Münster Germany
- CeNTech, CiMIC, SoN, Westfälische Wilhelms-Universität Münster Heisenbergstraße 11 D-48149 Münster Germany
| |
Collapse
|
12
|
Yang T, He Y, Cheng Y, Gao X, Wu Y, Yuan W, Tao Y. Cyclometalated Ir(III) complexes as potential electron acceptors for organic solar cells. Dalton Trans 2021; 50:9871-9880. [PMID: 34195721 DOI: 10.1039/d1dt01136g] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Cyclometalated iridium(iii) complexes have been investigated as promising electron donor (D) materials in organic solar cells (OSCs) due to their unique octahedral configuration for optimized morphology and their significantly long lifetimes potentially for enhanced exciton dissociation. However, the application as electron acceptor (A) materials has never been reported. In order to fill this blank, herein, two cyclometalated heteroleptic Ir complexes, TRIr and 2TRIr, based on electron donating-accepting type organic ligands with different π-conjugation lengths are reported as electron acceptor materials in comparison with their corresponding main organic ligands. The two Ir complexes exhibit suitable HOMO/LUMO energy levels of -5.55/-3.47 eV and -5.44/-3.48 eV, which are ∼0.1 eV higher in the HOMO and ∼0.15 eV deeper in the LUMO than the TR and 2TR ligands, respectively. 2TRIr with extended ligand π-conjugation displays a poor triplet feature, while TRIr demonstrates obvious metal-to-ligand charge transfer (MLCT) transition absorption, with a triplet component photoluminescence (PL) lifetime of 85 ns in neat films. When blended with PBDB-T in bulk heterojunction (BHJ) OSCs, the power conversion efficiencies (PCEs) are 2-3 times higher than their relevant ligands, with values of 1.20% and 1.62% for TRIr and 2TRIr, and 0.58% and 0.47% for the TR and 2TR ligand-based devices, respectively. TRIr and 2TRIr based active layer blends exhibit poorer hole and electron mobilities, whereas compared with their relatively linear planar ligands, both of the two octahedral Ir complexes exhibit an optimized surface morphology for less bimolecular recombination and more efficient exciton dissociation, thus contributing to improved photovoltaic performance.
Collapse
Affiliation(s)
- Tianjian Yang
- Key Lab for Flexible Electronics and Institute of Advanced Materials, Jiangsu National Synergistic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University, 30 South Puzhu Road, Nanjing 211816, People's Republic of China.
| | - Yinming He
- Key Lab for Flexible Electronics and Institute of Advanced Materials, Jiangsu National Synergistic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University, 30 South Puzhu Road, Nanjing 211816, People's Republic of China.
| | - Yang Cheng
- Key Lab for Flexible Electronics and Institute of Advanced Materials, Jiangsu National Synergistic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University, 30 South Puzhu Road, Nanjing 211816, People's Republic of China.
| | - Xuyu Gao
- Key Lab for Flexible Electronics and Institute of Advanced Materials, Jiangsu National Synergistic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University, 30 South Puzhu Road, Nanjing 211816, People's Republic of China.
| | - Yijing Wu
- Key Lab for Flexible Electronics and Institute of Advanced Materials, Jiangsu National Synergistic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University, 30 South Puzhu Road, Nanjing 211816, People's Republic of China.
| | - Wenbo Yuan
- Key Lab for Flexible Electronics and Institute of Advanced Materials, Jiangsu National Synergistic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University, 30 South Puzhu Road, Nanjing 211816, People's Republic of China.
| | - Youtian Tao
- Key Lab for Flexible Electronics and Institute of Advanced Materials, Jiangsu National Synergistic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University, 30 South Puzhu Road, Nanjing 211816, People's Republic of China.
| |
Collapse
|
13
|
Obydennov DL, Simbirtseva AE, Piksin SE, Sosnovskikh VY. 2,6-Dicyano-4-pyrone as a Novel and Multifarious Building Block for the Synthesis of 2,6-Bis(hetaryl)-4-pyrones and 2,6-Bis(hetaryl)-4-pyridinols. ACS OMEGA 2020; 5:33406-33420. [PMID: 33403303 PMCID: PMC7774280 DOI: 10.1021/acsomega.0c05357] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Accepted: 12/02/2020] [Indexed: 05/08/2023]
Abstract
In this work, a three-stage and easily scalable synthesis of 2,6-dicyano-4-pyrone (overall yield of 45%) as a new convenient building block has been developed from diethyl acetonedioxalate. It was shown that the transformation with hydroxylamine and [3 + 2]-cycloaddition, in contrast to the reactions with hydrazines, selectively proceed through the attack at the cyano groups without the pyrone ring-opening to give symmetrical and unsymmetrical pyrone-bearing heterocyclic triads containing 1,2,4- and 1,3,4-oxadiazoles as well as tetrazole moieties. The reaction of 2,6-bis(hetaryl)-4-pyrones with ammonia afforded 2,6-bis(hetaryl)pyridines in 63-87% yields. The 4-pyridone/4-pyridinol tautomerism of 2,6-bis(hetaryl)pyridinols and the influence of the nature of adjacent azolyl moieties on this equilibrium have been discussed.
Collapse
|
14
|
Lochenie C, Insuasty A, Battisti T, Pesce L, Gardin A, Perego C, Dentinger M, Wang D, Pavan GM, Aliprandi A, De Cola L. Solvent-driven chirality for luminescent self-assembled structures: experiments and theory. NANOSCALE 2020; 12:21359-21367. [PMID: 33075118 PMCID: PMC8251519 DOI: 10.1039/d0nr04524a] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2020] [Accepted: 10/12/2020] [Indexed: 05/03/2023]
Abstract
We describe, for a single platinum complex bearing a dipeptide moiety, a solvent-driven interconversion from twisted to straight micrometric assembled structures with different chirality. The photophysical and morphological properties of the aggregates have been investigated as well as the role of the media and concentration. A real-time visualization of the solvent-driven interconversion processes has been achieved by confocal microscopy. Finally, atomistic and coarse-grained simulations, providing results consistent with the experimental observations, allow to obtain a molecular-level insight into the interesting solvent-responsive behavior of this system.
Collapse
Affiliation(s)
- Charles Lochenie
- Laboratoire de Chimie et des Biomatériaux Supramoléculaires, Institut de Science et d'Ingénierie Supramoléculaires (UMR 7006), Université de Strasbourg & CNRS, 8, allée Gaspard Monge, 67000 Strasbourg, France.
| | - Alberto Insuasty
- Laboratoire de Chimie et des Biomatériaux Supramoléculaires, Institut de Science et d'Ingénierie Supramoléculaires (UMR 7006), Université de Strasbourg & CNRS, 8, allée Gaspard Monge, 67000 Strasbourg, France.
| | - Tommaso Battisti
- Laboratoire de Chimie et des Biomatériaux Supramoléculaires, Institut de Science et d'Ingénierie Supramoléculaires (UMR 7006), Université de Strasbourg & CNRS, 8, allée Gaspard Monge, 67000 Strasbourg, France.
| | - Luca Pesce
- Department of Innovative Technologies, University of Applied Sciences and Arts of Southern Switzerland, CH-6928 Manno, Switzerland
| | - Andrea Gardin
- Department of Applied Science and Technology, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Torino, Italy.
| | - Claudio Perego
- Department of Innovative Technologies, University of Applied Sciences and Arts of Southern Switzerland, CH-6928 Manno, Switzerland
| | - Mike Dentinger
- Laboratoire de Chimie et des Biomatériaux Supramoléculaires, Institut de Science et d'Ingénierie Supramoléculaires (UMR 7006), Université de Strasbourg & CNRS, 8, allée Gaspard Monge, 67000 Strasbourg, France.
| | - Di Wang
- Karlsruhe Nano Micro Facility (KNMF), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldschaffen, Germany
| | - Giovanni M Pavan
- Department of Innovative Technologies, University of Applied Sciences and Arts of Southern Switzerland, CH-6928 Manno, Switzerland and Department of Applied Science and Technology, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Torino, Italy.
| | - Alessandro Aliprandi
- Laboratoire de Chimie et des Biomatériaux Supramoléculaires, Institut de Science et d'Ingénierie Supramoléculaires (UMR 7006), Université de Strasbourg & CNRS, 8, allée Gaspard Monge, 67000 Strasbourg, France.
| | - Luisa De Cola
- Laboratoire de Chimie et des Biomatériaux Supramoléculaires, Institut de Science et d'Ingénierie Supramoléculaires (UMR 7006), Université de Strasbourg & CNRS, 8, allée Gaspard Monge, 67000 Strasbourg, France. and Institut für Nanotechnologie (INT), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldschaffen, Germany
| |
Collapse
|
15
|
Solomatina AI, Slobodina AD, Ryabova EV, Bolshakova OI, Chelushkin PS, Sarantseva SV, Tunik SP. Blood-Brain Barrier Penetrating Luminescent Conjugates Based on Cyclometalated Platinum(II) Complexes. Bioconjug Chem 2020; 31:2628-2637. [DOI: 10.1021/acs.bioconjchem.0c00542] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
| | - Aleksandra D. Slobodina
- Petersburg Nuclear Physics Institute named by B.P. Konstantinov of National Research Centre ≪Kurchatov Institute≫, Gatchina 188300, Russia
| | - Elena V. Ryabova
- Petersburg Nuclear Physics Institute named by B.P. Konstantinov of National Research Centre ≪Kurchatov Institute≫, Gatchina 188300, Russia
| | - Olga I. Bolshakova
- Petersburg Nuclear Physics Institute named by B.P. Konstantinov of National Research Centre ≪Kurchatov Institute≫, Gatchina 188300, Russia
| | - Pavel S. Chelushkin
- Institute of Chemistry, St. Petersburg State University, St. Petersburg 198504, Russia
| | - Svetlana V. Sarantseva
- Petersburg Nuclear Physics Institute named by B.P. Konstantinov of National Research Centre ≪Kurchatov Institute≫, Gatchina 188300, Russia
| | - Sergey P. Tunik
- Institute of Chemistry, St. Petersburg State University, St. Petersburg 198504, Russia
| |
Collapse
|
16
|
Chakraborty S, Aliprandi A, De Cola L. Multinuclear Pt II Complexes: Why Three is Better Than Two to Enhance Photophysical Properties. Chemistry 2020; 26:11007-11012. [PMID: 32329122 PMCID: PMC7496982 DOI: 10.1002/chem.202001510] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2020] [Indexed: 01/31/2023]
Abstract
The self-assembly of platinum complexes is a well-documented process that leads to interesting changes of the photophysical and electrochemical behavior as well as to a change in reactivity of the complexes. However, it is still not clear how many metal units must interact in order to achieve the desired properties of a large assembly. This work aimed to clarify the role of the number of interacting PtII units leading to an enhancement of the spectroscopic properties and how to address inter- versus intramolecular processes. Therefore, a series of neutral multinuclear PtII complexes were synthesized and characterized, and their photophysical properties at different concentration were studied. Going from the monomer to dimers, the growth of a new emission band and the enhancement of the emission properties were observed. Upon increasing the platinum units up to three, the monomeric blue emission could not be detected anymore and a concentration independent bright-yellow/orange emission, due to the establishment of intramolecular metallophilic interactions, was observed.
Collapse
Affiliation(s)
- Sourav Chakraborty
- Institut de Science et d'Ingénierie SupramoléculairesCNRS, UMR 7006, Université de Strasbourg8 rue Gaspard Monge67000StrasbourgFrance
| | - Alessandro Aliprandi
- Institut de Science et d'Ingénierie SupramoléculairesCNRS, UMR 7006, Université de Strasbourg8 rue Gaspard Monge67000StrasbourgFrance
| | - Luisa De Cola
- Institut de Science et d'Ingénierie SupramoléculairesCNRS, UMR 7006, Université de Strasbourg8 rue Gaspard Monge67000StrasbourgFrance
- Institute for Nanotechnology (INT)Karlsruhe Institute of TechnologyHermann-von-Helmholtz-Platz 176344Eggenstein-LeopoldshafenGermany
| |
Collapse
|
17
|
Thomas B, Yan KC, Hu XL, Donnier-Maréchal M, Chen GR, He XP, Vidal S. Fluorescent glycoconjugates and their applications. Chem Soc Rev 2020; 49:593-641. [DOI: 10.1039/c8cs00118a] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Fluorescent glycoconjugates are discussed for their applications in biology in vitro, in cell assays and in animal models. Advantages and limitations are presented for each design using a fluorescent core conjugated with glycosides, or vice versa.
Collapse
Affiliation(s)
- Baptiste Thomas
- Institut de Chimie et Biochimie Moléculaires et Supramoléculaires
- Laboratoire de Chimie Organique 2-Glycochimie
- UMR 5246
- CNRS and Université Claude Bernard Lyon 1
- Université de Lyon
| | - Kai-Cheng Yan
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering
- Feringa Nobel Prize Scientist Joint Research Center
- School of Chemistry and Molecular Engineering
- East China University of Science and Technology
- Shanghai 200237
| | - Xi-Le Hu
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering
- Feringa Nobel Prize Scientist Joint Research Center
- School of Chemistry and Molecular Engineering
- East China University of Science and Technology
- Shanghai 200237
| | - Marion Donnier-Maréchal
- Institut de Chimie et Biochimie Moléculaires et Supramoléculaires
- Laboratoire de Chimie Organique 2-Glycochimie
- UMR 5246
- CNRS and Université Claude Bernard Lyon 1
- Université de Lyon
| | - Guo-Rong Chen
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering
- Feringa Nobel Prize Scientist Joint Research Center
- School of Chemistry and Molecular Engineering
- East China University of Science and Technology
- Shanghai 200237
| | - Xiao-Peng He
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering
- Feringa Nobel Prize Scientist Joint Research Center
- School of Chemistry and Molecular Engineering
- East China University of Science and Technology
- Shanghai 200237
| | - Sébastien Vidal
- Institut de Chimie et Biochimie Moléculaires et Supramoléculaires
- Laboratoire de Chimie Organique 2-Glycochimie
- UMR 5246
- CNRS and Université Claude Bernard Lyon 1
- Université de Lyon
| |
Collapse
|
18
|
Monroe JC, Turnbull MM. Unusual coordination behavior by a hydroxypyridine/pyridone ligand: Synthesis and structure of [(2-bromo-4-hydroxypyridine)2(2-bromo-1(H)-4-pyridone)2copper(II)] perchlorate • 2(2-bromo-4-hydroxypyridine) • 2(2-bromo-1(H)-4-pyridone). J COORD CHEM 2019. [DOI: 10.1080/00958972.2019.1691172] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Affiliation(s)
- Jeffrey C. Monroe
- Carlson School of Chemistry and Biochemistry, Clark University, Worcester, MA, USA
| | - Mark M. Turnbull
- Carlson School of Chemistry and Biochemistry, Clark University, Worcester, MA, USA
| |
Collapse
|
19
|
Law ASY, Lee LCC, Yeung MCL, Lo KKW, Yam VWW. Amyloid Protein-Induced Supramolecular Self-Assembly of Water-Soluble Platinum(II) Complexes: A Luminescence Assay for Amyloid Fibrillation Detection and Inhibitor Screening. J Am Chem Soc 2019; 141:18570-18577. [PMID: 31709796 DOI: 10.1021/jacs.9b09515] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Amyloid fibrillation has been acknowledged as a hallmark of a number of neurodegenerative ailments such as Alzheimer's disease. Accordingly, efficient detection of amyloid fibrillation will allow for great advances in the field of biomedical applications as well as in achieving early medical diagnosis. In this work, a luminescence assay for the sensitive and specific detection of amyloid fibrillation was developed by using platinum(II) complexes as sensing platforms. Supramolecular self-assembly of platinum(II) complexes was induced upon addition of amyloid, leading to alterations in the spectroscopic and luminescence properties of the complexes. As compared to fluorescent dyes, luminescent platinum(II) complexes exhibit attractive large Stokes shifts, phosphorescence lifetimes in the microsecond to submicrosecond regime, and low-energy red emission after aggregation, which are advantageous to biological imaging. At the same time, the platinum(II) complex adopted herein was found to have high photostability, high selectivity and specificity, and low cytotoxicity. The proposed design is the very first approach to detect amyloid fibrillation through the supramolecular self-assembly of luminescent platinum(II) complexes.
Collapse
Affiliation(s)
- Angela Sin-Yee Law
- Institute of Molecular Functional Materials (Areas of Excellence Scheme, University Grants Committee (Hong Kong)) and Department of Chemistry , The University of Hong Kong , Pokfulam Road , Hong Kong , People's Republic of China
| | - Lawrence Cho-Cheung Lee
- Department of Chemistry , City University of Hong Kong , Tat Chee Avenue , Kowloon , Hong Kong , People's Republic of China
| | - Margaret Ching-Lam Yeung
- Institute of Molecular Functional Materials (Areas of Excellence Scheme, University Grants Committee (Hong Kong)) and Department of Chemistry , The University of Hong Kong , Pokfulam Road , Hong Kong , People's Republic of China
| | - Kenneth Kam-Wing Lo
- Department of Chemistry , City University of Hong Kong , Tat Chee Avenue , Kowloon , Hong Kong , People's Republic of China
| | - Vivian Wing-Wah Yam
- Institute of Molecular Functional Materials (Areas of Excellence Scheme, University Grants Committee (Hong Kong)) and Department of Chemistry , The University of Hong Kong , Pokfulam Road , Hong Kong , People's Republic of China
| |
Collapse
|
20
|
Evstigneev MP, Lantushenko AO, Yakovleva YA, Suleymanova AF, Eltsov OS, Kozhevnikov VN. Tuning the Aggregation of N
^
N
^
C Pt(II) Complexes by Varying the Aliphatic Side Chain and Auxiliary Halide Ligand:
1
H and
195
Pt NMR Investigation. Eur J Inorg Chem 2019. [DOI: 10.1002/ejic.201900821] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Maxim P. Evstigneev
- Department of Physics Sevastopol State University 299053 Sevastopol Russian Federation
- Belgorod State University 85 Pobedy str. 308015 Belgorod Russian Federation
| | | | - Yulia A. Yakovleva
- Department of Technology for Organic Synthesis Chemical Technology Institute Ural Federal University 620002 Yekaterinburg Russian Federation
| | - Alfiya F. Suleymanova
- Department of Technology for Organic Synthesis Chemical Technology Institute Ural Federal University 620002 Yekaterinburg Russian Federation
| | - Oleg S. Eltsov
- Department of Technology for Organic Synthesis Chemical Technology Institute Ural Federal University 620002 Yekaterinburg Russian Federation
| | - Valery N. Kozhevnikov
- Department of Applied Sciences Northumbria University NE1 8ST Newcastle‐Upon‐Tyne UK
| |
Collapse
|
21
|
Ranieri AM, Caporale C, Fiorini V, Hubbard A, Rigby P, Stagni S, Watkin E, Ogden MI, Hackett MJ, Massi M. Complementary Approaches to Imaging Subcellular Lipid Architectures in Live Bacteria Using Phosphorescent Iridium Complexes and Raman Spectroscopy. Chemistry 2019; 25:10566-10570. [DOI: 10.1002/chem.201902023] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Revised: 06/11/2019] [Indexed: 01/23/2023]
Affiliation(s)
- Anna Maria Ranieri
- Curtin Institute for Functional Molecules and Interfaces, and School of Molecular and Life SciencesCurtin University Bentley 6102 WA Australia
| | - Chiara Caporale
- Curtin Institute for Functional Molecules and Interfaces, and School of Molecular and Life SciencesCurtin University Bentley 6102 WA Australia
| | - Valentina Fiorini
- Department of Industrial Chemistry “Toso Montanari”University of Bologna, viale del Risorgimento4 40136 Bologna Italy
| | - Alysia Hubbard
- Centre for Microscopy, Characterisation and AnalysisThe University of Western Australia Perth 6009 WA Australia
| | - Paul Rigby
- Centre for Microscopy, Characterisation and AnalysisThe University of Western Australia Perth 6009 WA Australia
| | - Stefano Stagni
- Department of Industrial Chemistry “Toso Montanari”University of Bologna, viale del Risorgimento4 40136 Bologna Italy
| | - Elizabeth Watkin
- School of Pharmacy and Biomedical Sciences, Curtin Health Innovation Research InstituteCurtin University Kent Street Bentley 6102 Australia
| | - Mark I. Ogden
- Curtin Institute for Functional Molecules and Interfaces, and School of Molecular and Life SciencesCurtin University Bentley 6102 WA Australia
| | - Mark J. Hackett
- Curtin Institute for Functional Molecules and Interfaces, and School of Molecular and Life SciencesCurtin University Bentley 6102 WA Australia
| | - Massimiliano Massi
- Curtin Institute for Functional Molecules and Interfaces, and School of Molecular and Life SciencesCurtin University Bentley 6102 WA Australia
| |
Collapse
|
22
|
Aliprandi A, Capaldo L, Bobica C, Silvestrini S, De Cola L. Effects of the Molecular Design on the Supramolecular Organization of Luminescent Pt(II) Complexes. Isr J Chem 2019. [DOI: 10.1002/ijch.201900047] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Alessandro Aliprandi
- Laboratoire de Chimie et des Biomatériaux Supramoléculaires Institut de Science et d'Ingénierie Supramoléculaires (UMR 7006)Université de Strasbourg & CNRS 8 allée Gaspard Monge 67000 Strasbourg France
| | - Luca Capaldo
- Laboratoire de Chimie et des Biomatériaux Supramoléculaires Institut de Science et d'Ingénierie Supramoléculaires (UMR 7006)Université de Strasbourg & CNRS 8 allée Gaspard Monge 67000 Strasbourg France
| | - Carla Bobica
- Laboratoire de Chimie et des Biomatériaux Supramoléculaires Institut de Science et d'Ingénierie Supramoléculaires (UMR 7006)Université de Strasbourg & CNRS 8 allée Gaspard Monge 67000 Strasbourg France
| | - Simone Silvestrini
- Laboratoire de Chimie et des Biomatériaux Supramoléculaires Institut de Science et d'Ingénierie Supramoléculaires (UMR 7006)Université de Strasbourg & CNRS 8 allée Gaspard Monge 67000 Strasbourg France
| | - Luisa De Cola
- Laboratoire de Chimie et des Biomatériaux Supramoléculaires Institut de Science et d'Ingénierie Supramoléculaires (UMR 7006)Université de Strasbourg & CNRS 8 allée Gaspard Monge 67000 Strasbourg France
- Institut für Nanotechnologie (INT)Karlsruhe Institute of Technology (KIT) Hermann-von-Helmholtz-Platz 1 76344 Eggenstein-Leopoldschaffen Germany
| |
Collapse
|
23
|
Ranieri AM, Burt LK, Stagni S, Zacchini S, Skelton BW, Ogden MI, Bissember AC, Massi M. Anionic Cyclometalated Platinum(II) Tetrazolato Complexes as Viable Photoredox Catalysts. Organometallics 2019. [DOI: 10.1021/acs.organomet.8b00913] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Anna Maria Ranieri
- Curtin Institute for Functional Molecules and Interfaces, and School of Molecular and Life Sciences, Curtin University, Bentley 6102 WA, Australia
| | - Liam K. Burt
- School of Natural Sciences − Chemistry, University of Tasmania, Hobart, Tas. 7001, Australia
| | - Stefano Stagni
- Department of Industrial Chemistry “Toso Montanari”, University of Bologna, viale del Risorgimento 4, 40136 Bologna, Italy
| | - Stefano Zacchini
- Department of Industrial Chemistry “Toso Montanari”, University of Bologna, viale del Risorgimento 4, 40136 Bologna, Italy
| | - Brian W. Skelton
- School of Molecular Sciences, The University of Western Australia, Perth 6009 WA, Australia
| | - Mark I. Ogden
- Curtin Institute for Functional Molecules and Interfaces, and School of Molecular and Life Sciences, Curtin University, Bentley 6102 WA, Australia
| | - Alex C. Bissember
- School of Natural Sciences − Chemistry, University of Tasmania, Hobart, Tas. 7001, Australia
| | - Massimiliano Massi
- Curtin Institute for Functional Molecules and Interfaces, and School of Molecular and Life Sciences, Curtin University, Bentley 6102 WA, Australia
| |
Collapse
|
24
|
Cebrián C, Mauro M. Recent advances in phosphorescent platinum complexes for organic light-emitting diodes. Beilstein J Org Chem 2018; 14:1459-1481. [PMID: 30013674 PMCID: PMC6037003 DOI: 10.3762/bjoc.14.124] [Citation(s) in RCA: 81] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2018] [Accepted: 05/23/2018] [Indexed: 01/30/2023] Open
Abstract
Phosphorescent organometallic compounds based on heavy transition metal complexes (TMCs) are an appealing research topic of enormous current interest. Amongst all different fields in which they found valuable application, development of emitting materials based on TMCs have become crucial for electroluminescent devices such as phosphorescent organic light-emitting diodes (PhOLEDs) and light-emitting electrochemical cells (LEECs). This interest is driven by the fact that luminescent TMCs with long-lived excited state lifetimes are able to efficiently harvest both singlet and triplet electro-generated excitons, thus opening the possibility to achieve theoretically 100% internal quantum efficiency in such devices. In the recent past, various classes of compounds have been reported, possessing a beautiful structural variety that allowed to nicely obtain efficient photo- and electroluminescence with high colour purity in the red, green and blue (RGB) portions of the visible spectrum. In addition, achievement of efficient emission beyond such range towards ultraviolet (UV) and near infrared (NIR) regions was also challenged. By employing TMCs as triplet emitters in OLEDs, remarkably high device performances were demonstrated, with square planar platinum(II) complexes bearing π-conjugated chromophoric ligands playing a key role in such respect. In this contribution, the most recent and promising trends in the field of phosphorescent platinum complexes will be reviewed and discussed. In particular, the importance of proper molecular design that underpins the successful achievement of improved photophysical features and enhanced device performances will be highlighted. Special emphasis will be devoted to those recent systems that have been employed as triplet emitters in efficient PhOLEDs.
Collapse
Affiliation(s)
| | - Matteo Mauro
- Université de Strasbourg, CNRS - Institut de Physique et Chimie des Matériaux de Strasbourg (IPCMS), UMR 7504, 23 rue du Loess, F-67000 Strasbourg, France
| |
Collapse
|
25
|
You C, Xia F, Zhao Y, Zhang Y, Sheng Y, Wu Y, Hang XC, Chen F, Ma H, Shen K, Sun Z, Ueba T, Kera S, Zhang C, Zhang H, Chen ZK, Huang W. Probing Triplet Excited States and Managing Blue Light Emission of Neutral Tetradentate Platinum(II) Complexes. J Phys Chem Lett 2018; 9:2285-2292. [PMID: 29664638 DOI: 10.1021/acs.jpclett.8b00797] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
The structural and photophysical properties of tetradentate Pt(ppzOppz), Pt(ppzOpopy), Pt(ppzOczpy), and Pt(czpyOczpy) have been experimentally and theoretically explored. Single-crystal diffraction measurements provided accurate structural information. Electrochemical and photophysical characterizations revealed internal electronic energy levels in ground and excited states. (Time-dependent) Density functional theory calculation revealed electron distributions in transition processes of S0 → S1 and S1 → T1 → S0. Electronic transition study indicated that Pt(ppzOppz) demonstrated mixed MLCT/LC states and Pt(czpyOczpy) showed MLCT-dominated states in S1 and T1. Both Pt(ppzOpopy) and Pt(ppzOczpy) presented strong delocalized spin transition (DST) during intersystem crossing. Upon frame modification of Pt(ppzOczpy), we found that their S1 and T1 can be independently manipulated. These blue emitters showed a tunable and narrow emission band (the narrowest fwhm was 19 nm) with luminescence efficiency as high as 86%. The findings of the DST transition mode in the neutral Pt(II) complexes provide guidance for rational design of novel phosphorescent materials.
Collapse
Affiliation(s)
- Cong You
- Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM) , Nanjing Tech University (NanjingTech) , 30 South Puzhu Road , Nanjing 211800 , China
| | - Fang Xia
- Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM) , Nanjing Tech University (NanjingTech) , 30 South Puzhu Road , Nanjing 211800 , China
| | - Yue Zhao
- Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM) , Nanjing Tech University (NanjingTech) , 30 South Puzhu Road , Nanjing 211800 , China
| | - Yin Zhang
- Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM) , Nanjing Tech University (NanjingTech) , 30 South Puzhu Road , Nanjing 211800 , China
| | - Yongjian Sheng
- Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM) , Nanjing Tech University (NanjingTech) , 30 South Puzhu Road , Nanjing 211800 , China
| | - Yipei Wu
- Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM) , Nanjing Tech University (NanjingTech) , 30 South Puzhu Road , Nanjing 211800 , China
| | - Xiao-Chun Hang
- Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM) , Nanjing Tech University (NanjingTech) , 30 South Puzhu Road , Nanjing 211800 , China
| | - Fei Chen
- Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM) , Nanjing Tech University (NanjingTech) , 30 South Puzhu Road , Nanjing 211800 , China
| | - Huili Ma
- Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM) , Nanjing Tech University (NanjingTech) , 30 South Puzhu Road , Nanjing 211800 , China
| | - Kang Shen
- Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM) , Nanjing Tech University (NanjingTech) , 30 South Puzhu Road , Nanjing 211800 , China
| | - Zhengyi Sun
- Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM) , Nanjing Tech University (NanjingTech) , 30 South Puzhu Road , Nanjing 211800 , China
| | - Takahiro Ueba
- Department of Photo-Molecular Science , Institute for Molecular Science , Okazaki , Aichi 444-8585 , Japan
| | - Satoshi Kera
- Department of Photo-Molecular Science , Institute for Molecular Science , Okazaki , Aichi 444-8585 , Japan
| | - Cong Zhang
- Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM) , Nanjing Tech University (NanjingTech) , 30 South Puzhu Road , Nanjing 211800 , China
| | - Honghai Zhang
- Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM) , Nanjing Tech University (NanjingTech) , 30 South Puzhu Road , Nanjing 211800 , China
| | - Zhi-Kuan Chen
- Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM) , Nanjing Tech University (NanjingTech) , 30 South Puzhu Road , Nanjing 211800 , China
| | - Wei Huang
- Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM) , Nanjing Tech University (NanjingTech) , 30 South Puzhu Road , Nanjing 211800 , China
- Shaanxi Institute of Flexible Electronics (SIFE) , Northwestern Polytechnical University (NPU) , 127 West Youyi Road , Xi'an 710072 , China
| |
Collapse
|
26
|
Sinn S, Yang L, Biedermann F, Wang D, Kübel C, Cornelissen JJLM, De Cola L. Templated Formation of Luminescent Virus-like Particles by Tailor-Made Pt(II) Amphiphiles. J Am Chem Soc 2018; 140:2355-2362. [PMID: 29357236 PMCID: PMC5817621 DOI: 10.1021/jacs.7b12447] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
![]()
Virus-like particles
(VLPs) have been created from luminescent
Pt(II) complex amphiphiles, able to form supramolecular structures
in water solutions, that can be encapsulated or act as templates of
cowpea chlorotic mottle virus capsid proteins. By virtue of a bottom-up
molecular design, icosahedral and nonicosahedral (rod-like) VLPs have
been constructed through diverse pathways, and a relationship between
the molecular structure of the complexes and the shape and size of
the VLPs has been observed. A deep insight into the mechanism for
the templated formation of the differently shaped VLPs was achieved,
by electron microscopy measurements (TEM and STEM) and bulk analysis
(FPLC, DLS, photophysical investigations). Interestingly, the obtained
VLPs can be visualized by their intense emission at room temperature,
generated by the self-assembly of the Pt(II) complexes. The encapsulation
of the luminescent species is further verified by their higher emission
quantum yields inside the VLPs, which is due to the confinement effect
of the protein cage. These hybrid materials demonstrate the potential
of tailor-made supramolecular systems able to control the assembly
of biological building blocks.
Collapse
Affiliation(s)
- Stephan Sinn
- Institut de Science et d'Ingénierie Supramoléculaires (ISIS), Université de Strasbourg & CNRS , 8 Rue Gaspard Monge, 67000 Strasbourg, France
| | - Liulin Yang
- Laboratory for Biomolecular Nanotechnology, MESA+ Institute, University of Twente , P.O. Box 207, 7500 AE Enschede, The Netherlands
| | | | | | | | - Jeroen J L M Cornelissen
- Laboratory for Biomolecular Nanotechnology, MESA+ Institute, University of Twente , P.O. Box 207, 7500 AE Enschede, The Netherlands
| | - Luisa De Cola
- Institut de Science et d'Ingénierie Supramoléculaires (ISIS), Université de Strasbourg & CNRS , 8 Rue Gaspard Monge, 67000 Strasbourg, France
| |
Collapse
|
27
|
Deaton JC, Chakraborty A, Czerwieniec R, Yersin H, Castellano FN. Temperature dependence of photophysical properties of a dinuclear C^N-cyclometalated Pt(ii) complex with an intimate Pt–Pt contact. Zero-field splitting and sub-state decay rates of the lowest triplet. Phys Chem Chem Phys 2018; 20:25096-25104. [DOI: 10.1039/c8cp05213a] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
A dinuclear Pt(ii) complexes exhibits an unusually large zero field splitting in its metal–metal-to-ligand charge transfer triplet excited state.
Collapse
Affiliation(s)
- Joseph C. Deaton
- Department of Chemistry
- North Carolina State University
- Raleigh
- USA
| | | | - Rafal Czerwieniec
- Institut für Physikalische Chemie
- Universität Regensburg
- D-93040 Regensburg
- Germany
| | - Hartmut Yersin
- Institut für Physikalische Chemie
- Universität Regensburg
- D-93040 Regensburg
- Germany
| | | |
Collapse
|
28
|
Hansen EC, Li C, Yang S, Pedro D, Weix DJ. Coupling of Challenging Heteroaryl Halides with Alkyl Halides via Nickel-Catalyzed Cross-Electrophile Coupling. J Org Chem 2017; 82:7085-7092. [PMID: 28682073 PMCID: PMC5539790 DOI: 10.1021/acs.joc.7b01334] [Citation(s) in RCA: 74] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
![]()
Despite
their importance, the synthesis of alkylated heterocycles
from the cross-coupling of Lewis basic nitrogen heteroaryl halides
with alkyl halides remains a challenge. We report here a general solution
to this challenge enabled by a new collection of ligands based around
2-pyridyl-N-cyanocarboxamidine and 2-pyridylcarboxamidine
cores. Both primary and secondary alkyl halides can be coupled with
2-, 3-, and 4-pyridyl halides as well as other more complex heterocycles
in generally good yields (41 examples, 69% ave yield).
Collapse
Affiliation(s)
- Eric C Hansen
- Chemical Research and Development Pfizer Worldwide Research and Development , Eastern Point Road, Groton, Connecticut 06340, United States
| | - Changfeng Li
- Asymchem Life Science (Tianjin) Co., Ltd., 71 Seventh Avenue, TEDA, Tianjin 300457, China
| | - Sihang Yang
- Asymchem Life Science (Tianjin) Co., Ltd., 71 Seventh Avenue, TEDA, Tianjin 300457, China
| | - Dylan Pedro
- Chemical Research and Development Pfizer Worldwide Research and Development , Eastern Point Road, Groton, Connecticut 06340, United States
| | - Daniel J Weix
- Department of Chemistry, University of Rochester , Rochester, New York 14627-0216, United States
| |
Collapse
|
29
|
Ionescu A, Ricciardi L. Water-induced red luminescence in ionic square-planar cyclometalated platinum(II) complexes. Inorganica Chim Acta 2017. [DOI: 10.1016/j.ica.2016.07.040] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
30
|
Sinn S, Biedermann F, De Cola L. Platinum Complex Assemblies as Luminescent Probes and Tags for Drugs and Toxins in Water. Chemistry 2017; 23:1965-1971. [DOI: 10.1002/chem.201605169] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2016] [Indexed: 01/06/2023]
Affiliation(s)
- Stephan Sinn
- Institut de Science et d'Ingénierie Supramoléculaires (ISIS); Université de Strasbourg & CNRS; 8 Rue Gaspard Monge 67000 Strasbourg France
| | - Frank Biedermann
- Institute for Nanotechnology (INT); Karlsruhe Institute of Technology; Hermann-von-Helmholtz-Platz 1 76344 Eggenstein-Leopoldshafen Germany
| | - Luisa De Cola
- Institut de Science et d'Ingénierie Supramoléculaires (ISIS); Université de Strasbourg & CNRS; 8 Rue Gaspard Monge 67000 Strasbourg France
- Institute for Nanotechnology (INT); Karlsruhe Institute of Technology; Hermann-von-Helmholtz-Platz 1 76344 Eggenstein-Leopoldshafen Germany
| |
Collapse
|
31
|
Aliprandi A, Croisetu CM, Mauro M, Cola LD. Chiral Amplification by Self-Assembly of Neutral Luminescent Platinum(II) Complexes. Chemistry 2017; 23:5957-5961. [DOI: 10.1002/chem.201605103] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2016] [Indexed: 12/24/2022]
Affiliation(s)
- Alessandro Aliprandi
- Laboratoire de Chimie et des Biomatériaux Supramoléculaires; Institut de Science et d'Ingénierie Supramoleculaire (I.S.I.S.); Université de Strasbourg & CNRS UMR 7006; 8 alleé Gaspard Monge 67083 Strasbourg France
| | - Christelle M. Croisetu
- Laboratoire de Chimie et des Biomatériaux Supramoléculaires; Institut de Science et d'Ingénierie Supramoleculaire (I.S.I.S.); Université de Strasbourg & CNRS UMR 7006; 8 alleé Gaspard Monge 67083 Strasbourg France
| | - Matteo Mauro
- Laboratoire de Chimie et des Biomatériaux Supramoléculaires; Institut de Science et d'Ingénierie Supramoleculaire (I.S.I.S.); Université de Strasbourg & CNRS UMR 7006; 8 alleé Gaspard Monge 67083 Strasbourg France
| | - Luisa De Cola
- Laboratoire de Chimie et des Biomatériaux Supramoléculaires; Institut de Science et d'Ingénierie Supramoleculaire (I.S.I.S.); Université de Strasbourg & CNRS UMR 7006; 8 alleé Gaspard Monge 67083 Strasbourg France
| |
Collapse
|
32
|
Palmioli A, Aliprandi A, Septiadi D, Mauro M, Bernardi A, De Cola L, Panigati M. Glyco-functionalized dinuclear rhenium(i) complexes for cell imaging. Org Biomol Chem 2017; 15:1686-1699. [DOI: 10.1039/c6ob02559e] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
New luminescent glycosilated rhenium complexes were synthesized and evaluated as dyes for optical imaging.
Collapse
Affiliation(s)
| | | | - Dedy Septiadi
- ISIS & icFRC
- Université de Strasbourg & CNRS
- 67000 Strasbourg
- France
| | - Matteo Mauro
- ISIS & icFRC
- Université de Strasbourg & CNRS
- 67000 Strasbourg
- France
| | - Anna Bernardi
- Department of Chemistry
- Università degli Studi di Milano
- 20133 Milano
- Italy
| | - Luisa De Cola
- ISIS & icFRC
- Université de Strasbourg & CNRS
- 67000 Strasbourg
- France
| | - Monica Panigati
- Department of Chemistry
- Università degli Studi di Milano
- 20133 Milano
- Italy
- Milan Unit of INSTM
| |
Collapse
|
33
|
Stegemann L, Sanning J, Daniliuc CG, Strassert CA. Influence of the monodentate ancillary ligand on the photophysical properties of Pt(II) complexes bearing a symmetric dianionic tridentate luminophore. ACTA ACUST UNITED AC 2016. [DOI: 10.1515/znb-2016-0142] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
Herein we present a study of the influence of the ancillary ligand on the photophysical properties of Pt(II) complexes with a symmetric tridentate luminophore. Starting from a previously used bulky triphenylphosphane (PPh3) as the monodentate ancillary ligand, progressively smaller ancillary ligands were introduced, namely a PPh2Me and a PPhMe2 and finally compared with a planar 4-amylpyridine. We observed that the emission wavelength of the monomer was not influenced by the monodentate ligand, and that excimer formation only occurs for the fully planar complex. Surprisingly, intermolecular deactivation pathways can be largely suppressed even with the smallest phosphane. This knowledge is important for the design and realization of triplet emitters for optoelectronic devices.
Collapse
Affiliation(s)
- Linda Stegemann
- Physikalisches Institut and Center for Nanotechnology, Westfälische Wilhelms-Universität Münster, Heisenbergstraße 11, D-48149 Münster, Germany
| | - Jan Sanning
- Physikalisches Institut and Center for Nanotechnology, Westfälische Wilhelms-Universität Münster, Heisenbergstraße 11, D-48149 Münster, Germany
| | - Constantin G. Daniliuc
- Organisch-Chemisches Institut, Westfälische Wilhelms-Universität Münster, Corrensstraße 40, D-48149 Münster, Germany
| | - Cristian A. Strassert
- Physikalisches Institut and Center for Nanotechnology, Westfälische Wilhelms-Universität Münster, Heisenbergstraße 11, D-48149 Münster, Germany
| |
Collapse
|
34
|
Lu CW, Wang Y, Chi Y. Metal Complexes with Azolate-Functionalized Multidentate Ligands: Tactical Designs and Optoelectronic Applications. Chemistry 2016; 22:17892-17908. [DOI: 10.1002/chem.201601216] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2016] [Indexed: 11/11/2022]
Affiliation(s)
- Chin-Wei Lu
- Department of Chemistry and Low Carbon Energy Research Center; National Tsing Hua University; Hsinchu 30013 Taiwan
| | - Yang Wang
- Department of Chemistry and Low Carbon Energy Research Center; National Tsing Hua University; Hsinchu 30013 Taiwan
| | - Yun Chi
- Department of Chemistry and Low Carbon Energy Research Center; National Tsing Hua University; Hsinchu 30013 Taiwan
| |
Collapse
|
35
|
Latouche C, Skouteris D, Palazzetti F, Barone V. TD-DFT Benchmark on Inorganic Pt(II) and Ir(III) Complexes. J Chem Theory Comput 2016; 11:3281-9. [PMID: 26575764 DOI: 10.1021/acs.jctc.5b00257] [Citation(s) in RCA: 88] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
We report in the present paper a comprehensive investigation of representative Pt(II) and Ir(III) complexes with special reference to their one-photon absorption spectra employing methods rooted in density functional theory and its time dependent extension. We have compared nine different functionals ranging from generalized gradient approximation (GGA) to global or range-separated hybrids, and two different basis sets, including pseudopotentials for 4 iridium and 7 platinum complexes. It turns out that hybrid functionals with the same exchange part give comparable results irrespective of the specific correlation functional (i.e., B3LYP is very close to B3PW91 and PBE0 is very close to MPW1PW91). More recent functionals, such as CAM-B3LYP and M06-2X, overestimate excitation energies, whereas local functionals (BP86 -GGA-, M06-L -Meta GGA-) strongly underestimate transition energies with respect to experimental results. As expected, basis set effects are weak, and the use of a triple-ζ polarized (def2-TZVP) basis set does not significantly improve the computed excitation energies with respect to a classical double-ζ basis set (LANL2DZ) augmented by polarization functions, but it significantly raises the computational effort.
Collapse
Affiliation(s)
- Camille Latouche
- Scuola Normale Superiore , Piazza dei Cavalieri 7, 56126 Pisa, Italy
| | | | | | - Vincenzo Barone
- Scuola Normale Superiore , Piazza dei Cavalieri 7, 56126 Pisa, Italy
| |
Collapse
|
36
|
Chung CYS, Li SPY, Lo KKW, Yam VWW. Synthesis and Electrochemical, Photophysical, and Self-Assembly Studies on Water-Soluble pH-Responsive Alkynylplatinum(II) Terpyridine Complexes. Inorg Chem 2016; 55:4650-63. [DOI: 10.1021/acs.inorgchem.6b00513] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Affiliation(s)
- Clive Yik-Sham Chung
- Institute of Molecular
Functional Materials [Areas of Excellence Scheme, University Grants
Committee (Hong Kong)] and Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong, P. R. China
| | - Steve Po-Yam Li
- Department of Biology and Chemistry, City University of Hong Kong, Tat Chee Avenue, Kowloon,
Hong Kong, P. R. China
| | - Kenneth Kam-Wing Lo
- Department of Biology and Chemistry, City University of Hong Kong, Tat Chee Avenue, Kowloon,
Hong Kong, P. R. China
| | - Vivian Wing-Wah Yam
- Institute of Molecular
Functional Materials [Areas of Excellence Scheme, University Grants
Committee (Hong Kong)] and Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong, P. R. China
| |
Collapse
|
37
|
Li K, Ming Tong GS, Wan Q, Cheng G, Tong WY, Ang WH, Kwong WL, Che CM. Highly phosphorescent platinum(ii) emitters: photophysics, materials and biological applications. Chem Sci 2016; 7:1653-1673. [PMID: 30155012 PMCID: PMC6090519 DOI: 10.1039/c5sc03766b] [Citation(s) in RCA: 331] [Impact Index Per Article: 41.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2015] [Accepted: 11/27/2015] [Indexed: 01/06/2023] Open
Abstract
In recent years a blossoming interest in the synthesis, photophysics and application of phosphorescent Pt(ii) complexes, particularly on their uses in bioimaging, photocatalysis and phosphorescent organic light-emitting diodes (OLEDs), has been witnessed. The superior performance of phosphorescent Pt(ii) complexes in these applications is linked to their diverse spectroscopic and photophysical properties, which can be systematically modulated by appropriate choices of auxiliary ligands. Meanwhile, an important criterion for the practical application of phosphorescent metal complexes is their stability which is crucial for biological utilization and industrial OLED applications. Taking both the luminescence properties and stability into consideration, chelating ligands having rigid scaffolds and with strong σ-donor atoms are advantageous for the construction of highly robust phosphorescent Pt(ii) complexes. The square-planar coordination geometry endows Pt(ii) complexes with the intriguing spectroscopic and photophysical properties associated with their intermolecular interactions in both the ground and excited states. In this article, we discuss the design and synthesis of phosphorescent Pt(ii) complexes with elaboration on the effects of ligands on the structure and luminescence properties. Based on their photophysical and emission properties, we intend to shed light on the great promise of highly robust phosphorescent Pt(ii) emitters in an array of applications from molecular materials to biosensors.
Collapse
Affiliation(s)
- Kai Li
- State Key Laboratory of Synthetic Chemistry , Institute of Molecular Functional Materials , HKU-CAS Joint Laboratory on New Materials and Department of Chemistry , The University of Hong Kong , Pokfulam Road , Hong Kong , China .
- HKU Shenzhen Institute of Research and Innovation , Shenzhen 518053 , China
| | - Glenna So Ming Tong
- State Key Laboratory of Synthetic Chemistry , Institute of Molecular Functional Materials , HKU-CAS Joint Laboratory on New Materials and Department of Chemistry , The University of Hong Kong , Pokfulam Road , Hong Kong , China .
| | - Qingyun Wan
- State Key Laboratory of Synthetic Chemistry , Institute of Molecular Functional Materials , HKU-CAS Joint Laboratory on New Materials and Department of Chemistry , The University of Hong Kong , Pokfulam Road , Hong Kong , China .
| | - Gang Cheng
- State Key Laboratory of Synthetic Chemistry , Institute of Molecular Functional Materials , HKU-CAS Joint Laboratory on New Materials and Department of Chemistry , The University of Hong Kong , Pokfulam Road , Hong Kong , China .
- HKU Shenzhen Institute of Research and Innovation , Shenzhen 518053 , China
| | - Wai-Yip Tong
- State Key Laboratory of Synthetic Chemistry , Institute of Molecular Functional Materials , HKU-CAS Joint Laboratory on New Materials and Department of Chemistry , The University of Hong Kong , Pokfulam Road , Hong Kong , China .
| | - Wai-Hung Ang
- State Key Laboratory of Synthetic Chemistry , Institute of Molecular Functional Materials , HKU-CAS Joint Laboratory on New Materials and Department of Chemistry , The University of Hong Kong , Pokfulam Road , Hong Kong , China .
| | - Wai-Lun Kwong
- State Key Laboratory of Synthetic Chemistry , Institute of Molecular Functional Materials , HKU-CAS Joint Laboratory on New Materials and Department of Chemistry , The University of Hong Kong , Pokfulam Road , Hong Kong , China .
| | - Chi-Ming Che
- State Key Laboratory of Synthetic Chemistry , Institute of Molecular Functional Materials , HKU-CAS Joint Laboratory on New Materials and Department of Chemistry , The University of Hong Kong , Pokfulam Road , Hong Kong , China .
- HKU Shenzhen Institute of Research and Innovation , Shenzhen 518053 , China
| |
Collapse
|
38
|
Colombo A, Fiorini F, Septiadi D, Dragonetti C, Nisic F, Valore A, Roberto D, Mauro M, De Cola L. Neutral N^C^N terdentate luminescent Pt(II) complexes: their synthesis, photophysical properties, and bio-imaging applications. Dalton Trans 2016; 44:8478-87. [PMID: 25572839 DOI: 10.1039/c4dt03165b] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
An emerging field regarding N^C^N terdentate Pt(II) complexes is their application as luminescent labels for bio-imaging. In fact, phosphorescent Pt complexes possess many advantages such as a wide emission color tunability, a better stability towards photo- and chemical degradation, a very large Stokes shift, and long-lived luminescent excited states with lifetimes typically two to three orders of magnitude longer than those of classic organic fluorophores. Here, we describe the synthesis and photophysical characterization of three new neutral N^C^N terdentate cyclometallated Pt complexes as long-lived bio-imaging probes. The novel molecular probes bear hydrophilic (oligo-)ethyleneglycol chains of various lengths to increase their water solubility and bio-compatibility and to impart amphiphilic nature to the molecules. The complexes are characterized by a high cell permeability and a low cytotoxicity, with an internalization kinetics that depends on both the length of the ethyleneglycol chain and the ancillary ligand.
Collapse
Affiliation(s)
- Alessia Colombo
- Dipartimento di Chimica dell'Università degli Studi di Milano, UdR-INSTM, via Golgi 19, I-20133 Milano, Italy.
| | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Galstyan A, Naziruddin AR, Cebrián C, Iordache A, Daniliuc CG, De Cola L, Strassert CA. Correlating the Structural and Photophysical Features of Pincer Luminophores and Monodentate Ancillary Ligands in PtIIPhosphors. Eur J Inorg Chem 2015. [DOI: 10.1002/ejic.201500949] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
40
|
Liu R, Dandu N, McCleese C, Li Y, Lu T, Li H, Yost D, Wang C, Kilina S, Burda C, Sun W. Influence of a Naphthaldiimide Substituent at the Diimine Ligand on the Photophysics and Reverse Saturable Absorption of Pt
II
Diimine Complexes and Cationic Ir
III
Complexes. Eur J Inorg Chem 2015. [DOI: 10.1002/ejic.201500882] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Rui Liu
- Department of Chemistry and Biochemistry, North Dakota State University, Fargo, North Dakota 58108‐6050, USA, http://https://www.ndsu.edu/chemistry/people/faculty/sun.html
- Department of Applied Chemistry, College of Sciences, Nanjing Tech University, Nanjing 211816, P.R. China
| | - Naveen Dandu
- Department of Chemistry and Biochemistry, North Dakota State University, Fargo, North Dakota 58108‐6050, USA, http://https://www.ndsu.edu/chemistry/people/faculty/sun.html
| | - Christopher McCleese
- Department of Chemistry, Case Western Reserve University, Cleveland, Ohio 44106, USA
| | - Yuhao Li
- Department of Chemistry and Biochemistry, North Dakota State University, Fargo, North Dakota 58108‐6050, USA, http://https://www.ndsu.edu/chemistry/people/faculty/sun.html
| | - Taotao Lu
- Department of Chemistry and Biochemistry, North Dakota State University, Fargo, North Dakota 58108‐6050, USA, http://https://www.ndsu.edu/chemistry/people/faculty/sun.html
| | - Hui Li
- Department of Chemistry and Biochemistry, North Dakota State University, Fargo, North Dakota 58108‐6050, USA, http://https://www.ndsu.edu/chemistry/people/faculty/sun.html
| | - Dillon Yost
- Department of Chemistry and Biochemistry, North Dakota State University, Fargo, North Dakota 58108‐6050, USA, http://https://www.ndsu.edu/chemistry/people/faculty/sun.html
| | - Chengzhe Wang
- Department of Chemistry and Biochemistry, North Dakota State University, Fargo, North Dakota 58108‐6050, USA, http://https://www.ndsu.edu/chemistry/people/faculty/sun.html
| | - Svetlana Kilina
- Department of Chemistry and Biochemistry, North Dakota State University, Fargo, North Dakota 58108‐6050, USA, http://https://www.ndsu.edu/chemistry/people/faculty/sun.html
| | - Clemens Burda
- Department of Chemistry, Case Western Reserve University, Cleveland, Ohio 44106, USA
| | - Wenfang Sun
- Department of Chemistry and Biochemistry, North Dakota State University, Fargo, North Dakota 58108‐6050, USA, http://https://www.ndsu.edu/chemistry/people/faculty/sun.html
| |
Collapse
|
41
|
Aliprandi A, Genovese D, Mauro M, De Cola L. Recent Advances in Phosphorescent Pt(II) Complexes Featuring Metallophilic Interactions: Properties and Applications. CHEM LETT 2015. [DOI: 10.1246/cl.150592] [Citation(s) in RCA: 150] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Alessandro Aliprandi
- Laboratoire de Chimie et des Biomatériaux Supramoléculaires, ISIS and icFRC, Université de Strasbourg and CNRS
| | - Damiano Genovese
- Karlsruher Institut für Technologie (KIT) Institut für Nanotechnologie
| | - Matteo Mauro
- Laboratoire de Chimie et des Biomatériaux Supramoléculaires, ISIS and icFRC, Université de Strasbourg and CNRS
- University of Strasbourg Institute for Advanced Study (USIAS)
| | - Luisa De Cola
- Laboratoire de Chimie et des Biomatériaux Supramoléculaires, ISIS and icFRC, Université de Strasbourg and CNRS
- Karlsruher Institut für Technologie (KIT) Institut für Nanotechnologie
| |
Collapse
|
42
|
Yam VWW, Au VKM, Leung SYL. Light-Emitting Self-Assembled Materials Based on d8 and d10 Transition Metal Complexes. Chem Rev 2015; 115:7589-728. [DOI: 10.1021/acs.chemrev.5b00074] [Citation(s) in RCA: 1065] [Impact Index Per Article: 118.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Vivian Wing-Wah Yam
- Institute of Molecular Functional
Materials (Areas of Excellence Scheme, University Grants Committee
(Hong Kong)) and Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong, P. R. China
| | - Vonika Ka-Man Au
- Institute of Molecular Functional
Materials (Areas of Excellence Scheme, University Grants Committee
(Hong Kong)) and Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong, P. R. China
| | - Sammual Yu-Lut Leung
- Institute of Molecular Functional
Materials (Areas of Excellence Scheme, University Grants Committee
(Hong Kong)) and Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong, P. R. China
| |
Collapse
|
43
|
Tsai JLL, Zou T, Liu J, Chen T, Chan AOY, Yang C, Lok CN, Che CM. Luminescent platinum(ii) complexes with self-assembly and anti-cancer properties: hydrogel, pH dependent emission color and sustained-release properties under physiological conditions. Chem Sci 2015; 6:3823-3830. [PMID: 29218152 PMCID: PMC5707448 DOI: 10.1039/c4sc03635b] [Citation(s) in RCA: 78] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2014] [Accepted: 04/13/2015] [Indexed: 12/28/2022] Open
Abstract
Luminescent platinum(ii) complexes show anti-cancer and pH-dependent self-assembly and sustained-release properties under physiological conditions.
Supramolecular interactions are of paramount importance in biology and chemistry, and can be used to develop new vehicles for drug delivery. Recently, there is a surge of interest on self-assembled functional supramolecular structures driven by intermolecular metal–metal interactions in cellular conditions. Herein we report a series of luminescent Pt(ii) complexes [Pt(C^N^Npyr)(C
Created by potrace 1.16, written by Peter Selinger 2001-2019
]]>
NR)]+ [HC^N^Npyr = 2-phenyl-6-(1H-pyrazol-3-yl)-pyridine)] containing pincer type ligands having pyrazole moieties. These Pt(ii) complexes exert potent cytotoxicity to a panel of cancer cell lines including primary bladder cancer cells and display strong phosphorescence that is highly sensitive to the local environment. The self-assembly of these complexes is significantly affected by pH of the solution medium. Based on TEM, SEM, ESI-MS, absorption and emission spectroscopy, and fluorescence microscopy together with cell based assays, [Pt(C^N^Npyr)(C
Created by potrace 1.16, written by Peter Selinger 2001-2019
]]>
NR)]+ complexes were observed to self-assemble into orange phosphorescent polymeric aggregates driven by intermolecular Pt(ii)–Pt(ii) and ligand–ligand interactions in a low-pH physiological medium. Importantly, the intracellular assembly and dis-assembly of [Pt(C^N^Npyr)(C
Created by potrace 1.16, written by Peter Selinger 2001-2019
]]>
NR)]+ are accompanied by change of emission color from orange to green. These [Pt(C^N^Npyr)(C
Created by potrace 1.16, written by Peter Selinger 2001-2019
]]>
NR)]+ complexes accumulated in the lysosomes of cancer cells, increased the lysosomal membrane permeability and induced cell death. One of these platinum(ii) complexes formed hydrogels which displayed pH-responsive and sustained release properties, leading to low-pH-stimulated and time-dependent cytotoxicity towards cancer cells. These hydrogels can function as vehicles to deliver anti-cancer agent cargo, such as the bioactive natural products studied in this work.
Collapse
Affiliation(s)
- Johnson Lui-Lui Tsai
- State Key Laboratory of Synthetic Chemistry , Institute of Molecular Functional Materials , Chemical Biology Centre and Department of Chemistry , The University of Hong Kong , Pokfulam Road , Hong Kong , China .
| | - Taotao Zou
- State Key Laboratory of Synthetic Chemistry , Institute of Molecular Functional Materials , Chemical Biology Centre and Department of Chemistry , The University of Hong Kong , Pokfulam Road , Hong Kong , China . .,HKU Shenzhen Institute of Research and Innovation , Shenzhen 518053 , China
| | - Jia Liu
- State Key Laboratory of Synthetic Chemistry , Institute of Molecular Functional Materials , Chemical Biology Centre and Department of Chemistry , The University of Hong Kong , Pokfulam Road , Hong Kong , China .
| | - Tianfeng Chen
- Department of Chemistry , Jinan University , Guangzhou 510632 , China
| | - Anna On-Yee Chan
- State Key Laboratory of Synthetic Chemistry , Institute of Molecular Functional Materials , Chemical Biology Centre and Department of Chemistry , The University of Hong Kong , Pokfulam Road , Hong Kong , China .
| | - Chen Yang
- State Key Laboratory of Synthetic Chemistry , Institute of Molecular Functional Materials , Chemical Biology Centre and Department of Chemistry , The University of Hong Kong , Pokfulam Road , Hong Kong , China . .,HKU Shenzhen Institute of Research and Innovation , Shenzhen 518053 , China
| | - Chun-Nam Lok
- State Key Laboratory of Synthetic Chemistry , Institute of Molecular Functional Materials , Chemical Biology Centre and Department of Chemistry , The University of Hong Kong , Pokfulam Road , Hong Kong , China .
| | - Chi-Ming Che
- State Key Laboratory of Synthetic Chemistry , Institute of Molecular Functional Materials , Chemical Biology Centre and Department of Chemistry , The University of Hong Kong , Pokfulam Road , Hong Kong , China . .,HKU Shenzhen Institute of Research and Innovation , Shenzhen 518053 , China
| |
Collapse
|
44
|
Allampally NK, Daniliuc CG, Strassert CA, De Cola L. Tuning the Structural and Photophysical Properties of Cationic Pt(II) Complexes Bearing Neutral Bis(triazolyl)pyridine Ligands. Inorg Chem 2015; 54:1588-96. [DOI: 10.1021/ic5025636] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Naveen Kumar Allampally
- NRW Graduate School of Chemistry, ‡Center for Nanotechnology
(CeNTech) and Physikalisches Institut, and §Organisch-Chemisches Institut, Westfälische Wilhelms-Universität Münster, 48149 Münster, Germany
| | - Constantin-Gabriel Daniliuc
- NRW Graduate School of Chemistry, ‡Center for Nanotechnology
(CeNTech) and Physikalisches Institut, and §Organisch-Chemisches Institut, Westfälische Wilhelms-Universität Münster, 48149 Münster, Germany
| | - Cristian A. Strassert
- NRW Graduate School of Chemistry, ‡Center for Nanotechnology
(CeNTech) and Physikalisches Institut, and §Organisch-Chemisches Institut, Westfälische Wilhelms-Universität Münster, 48149 Münster, Germany
| | - Luisa De Cola
- NRW Graduate School of Chemistry, ‡Center for Nanotechnology
(CeNTech) and Physikalisches Institut, and §Organisch-Chemisches Institut, Westfälische Wilhelms-Universität Münster, 48149 Münster, Germany
| |
Collapse
|
45
|
Shi E, Gao Z, Yuan M, Wang X, Wang F. Self-assembly of benzothiadiazole-functionalized dinuclear platinum acetylide bolaamphiphiles for bio-imaging application. Polym Chem 2015. [DOI: 10.1039/c5py00239g] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Benzothiadiazole-functionalized dinuclear platinum(ii) acetylide bolaamphiphiles have been demonstrated to form nanoparticles in protic solvents, serving as novel fluorescent labels for bio-imaging applications with good biocompatibility and sufficient stability.
Collapse
Affiliation(s)
- Entai Shi
- Key Laboratory of Soft Matter Chemistry
- Chinese Academy of Sciences
- Department of Polymer Science and Engineering
- University of Science and Technology of China
- Hefei
| | - Zhao Gao
- Key Laboratory of Soft Matter Chemistry
- Chinese Academy of Sciences
- Department of Polymer Science and Engineering
- University of Science and Technology of China
- Hefei
| | - Ming Yuan
- Key Laboratory of Soft Matter Chemistry
- Chinese Academy of Sciences
- Department of Polymer Science and Engineering
- University of Science and Technology of China
- Hefei
| | - Xiaoyu Wang
- Qiushi Academy for Advanced Studies
- Zhejiang University
- Hangzhou
- P. R. China
| | - Feng Wang
- Key Laboratory of Soft Matter Chemistry
- Chinese Academy of Sciences
- Department of Polymer Science and Engineering
- University of Science and Technology of China
- Hefei
| |
Collapse
|
46
|
Manikandamathavan VM, Duraipandy N, Kiran MS, Vaidyanathan VG, Nair BU. A new platinum(ii) complex for bioimaging applications. RSC Adv 2015. [DOI: 10.1039/c5ra00002e] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
A new Pt(ii) complex bearing terpyridine derivative exhibit specificity towards nuclear DNA. The staining ability has been explored in cell imaging as well as in gel electrophoresis an alternative to highly mutagenic ethidium bromide.
Collapse
Affiliation(s)
| | - Natarajan Duraipandy
- Biomaterials Laboratory
- CSIR-Central Leather Research Institute
- Chennai 600020
- India
- Academy of Scientific and Innovative Research (AcSIR)
| | - Manikantan S. Kiran
- Biomaterials Laboratory
- CSIR-Central Leather Research Institute
- Chennai 600020
- India
- Academy of Scientific and Innovative Research (AcSIR)
| | - Vaidyanathan G. Vaidyanathan
- Biophysics Laboratory
- CSIR-Central Leather Research Institute
- Chennai 600020
- India
- Academy of Scientific and Innovative Research (AcSIR)
| | | |
Collapse
|
47
|
Muñoz-Rodríguez R, Buñuel E, Fuentes N, Williams JAG, Cárdenas DJ. A heterotrimetallic Ir(iii), Au(iii) and Pt(ii) complex incorporating cyclometallating bi- and tridentate ligands: simultaneous emission from different luminescent metal centres leads to broad-band light emission. Dalton Trans 2015; 44:8394-405. [DOI: 10.1039/c4dt02761b] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Di- and tri-nuclear metal complexes incorporating Au(iii), Ir(iii) and Pt(ii) units linked via a 1,3,5-triethynylbenzene core.
Collapse
Affiliation(s)
- Rebeca Muñoz-Rodríguez
- Department of Organic Chemistry
- Facultad de Ciencias
- Universidad Autónoma de Madrid
- 28049-Madrid
- Spain
| | - Elena Buñuel
- Department of Organic Chemistry
- Facultad de Ciencias
- Universidad Autónoma de Madrid
- 28049-Madrid
- Spain
| | - Noelia Fuentes
- Department of Organic Chemistry
- Facultad de Ciencias
- Universidad Autónoma de Madrid
- 28049-Madrid
- Spain
| | | | - Diego J. Cárdenas
- Department of Organic Chemistry
- Facultad de Ciencias
- Universidad Autónoma de Madrid
- 28049-Madrid
- Spain
| |
Collapse
|
48
|
Soldati R, Aliprandi A, Mauro M, De Cola L, Giacomini D. β-Lactam Bioconjugates Bearing Luminescent Platinum(II) Tags: Synthesis and Photophysical Characterization. European J Org Chem 2014. [DOI: 10.1002/ejoc.201402740] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|