1
|
Benchoula K, Serpell CJ, Mediani A, Albogami A, Misnan NM, Ismail NH, Parhar IS, Ogawa S, Hwa WE. 1H NMR metabolomics insights into comparative diabesity in male and female zebrafish and the antidiabetic activity of DL-limonene. Sci Rep 2024; 14:3823. [PMID: 38360784 PMCID: PMC10869695 DOI: 10.1038/s41598-023-45608-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Accepted: 10/21/2023] [Indexed: 02/17/2024] Open
Abstract
Zebrafish have been utilized for many years as a model animal for pharmacological studies on diabetes and obesity. High-fat diet (HFD), streptozotocin and alloxan injection, and glucose immersion have all been used to induce diabetes and obesity in zebrafish. Currently, studies commonly used both male and female zebrafish, which may influence the outcomes since male and female zebrafish are biologically different. This study was designed to investigate the difference between the metabolites of male and female diabetic zebrafish, using limonene - a natural product which has shown several promising results in vitro and in vivo in treating diabetes and obesity-and provide new insights into how endogenous metabolites change following limonene treatment. Using HFD-fed male and female zebrafish, we were able to develop an animal model of T2D and identify several endogenous metabolites that might be used as diagnostic biomarkers for diabetes. The endogenous metabolites in males and females were different, even though both genders had high blood glucose levels and a high BMI. Treatment with limonene prevented high blood glucose levels and improved in diabesity zebrafish by limonene, through reversal of the metabolic changes caused by HFD in both genders. In addition, limonene was able to reverse the elevated expression of AKT during HFD.
Collapse
Affiliation(s)
- Khaled Benchoula
- School of Medicine, Faculty of Health and Medical Sciences, Taylor's University, 1, Jalan Taylors, 47500, Subang Jaya, Selangor, Malaysia
| | | | - Ahmed Mediani
- Institute of Systems Biology (INBIOSIS), Universiti Kebangsaan Malaysia, 43600, UKM Bangi, Selangor, Malaysia
| | - Abdulaziz Albogami
- Biology Department, Faculty of Science, Al-Baha University, 65779-7738, Alaqiq, Saudi Arabia
| | - Norazlan Mohmad Misnan
- Institute for Medical Research Malaysia, No.1, Jalan Setia Murni U13/52, Seksyen U13, Setia Alam, 40170, Shah Alam, Selangor Darul Ehsan, Malaysia
| | - Nor Hadiani Ismail
- Atta-ur-Rahman Institute for Natural Products Discovery, UiTM Puncak Alam Campus, 42300, Puncak Alam, Selangor, Malaysia
| | - Ishwar S Parhar
- Monash University (Malaysia) BRIMS, Jeffrey Cheah School of Medicine and Health Sciences, Jalan Lagoon Selatan, Bandar Sunway, 47500, Subang Jaya, Selangor, Malaysia
| | - Satoshi Ogawa
- Monash University (Malaysia) BRIMS, Jeffrey Cheah School of Medicine and Health Sciences, Jalan Lagoon Selatan, Bandar Sunway, 47500, Subang Jaya, Selangor, Malaysia
| | - Wong Eng Hwa
- School of Medicine, Faculty of Health and Medical Sciences, Taylor's University, 1, Jalan Taylors, 47500, Subang Jaya, Selangor, Malaysia.
| |
Collapse
|
2
|
Zhang Q, Cheng J, Jiang X, Tang J, Zhu C, Chen H, Laghi L. Metabolomic Characteristics of Cecum Contents in High-Fat-Diet-Induced Obese Mice Intervened with Different Fibers. Foods 2023; 12:foods12071403. [PMID: 37048225 PMCID: PMC10093315 DOI: 10.3390/foods12071403] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 03/18/2023] [Accepted: 03/24/2023] [Indexed: 03/29/2023] Open
Abstract
The aim of this study was to demonstrate the effect of single or mixed fibers (arabinoxylan, β-glucan, xyloglucan, and inulin) on the metabolome of cecum content in mice with obesity caused by a high-fat diet. Twenty-eight six-week-old male mice were divided randomly into seven groups (n = 4/group), including a normal-diet group (CON), a high-fat-diet group (HFD), and groups with the same high-fat diet but supplemented with arabinoxylan (HFAX), arabinoxylan + β-glucan (HFAβ), arabinoxylan + xyloglucan (HFAG), xyloglucan (HFXG), and xyloglucan + inulin (HFXI). A total of 66 molecules were identified and quantified in cecum content by proton nuclear magnetic resonance (1 H-NMR). The metabolomic profiles combined with statistical analysis revealed compounds distinguishing the control group from those supplemented with fibers. In detail, a high-fat diet could significantly elevate the concentrations of acetone and methionine (p < 0.05) while decreasing the levels of methanol, arabinose, acetate, and 3-hydroxyphenylacetate (p < 0.05) in the cecum contents of mice. Compared to HFD, the supplementation caused higher levels of fumarate and hypoxanthine (p < 0.05) and lower levels of phenylacetate, acetate, fucose, formate, proline, betaine, and trimethylamine N-oxide (TMAO) (p < 0.05). An enrichment analysis highlighted that the pathways mainly altered were amino sugar metabolism, aspartate metabolism, and arginine and proline metabolism. In conclusion, non-starch polysaccharide (NSP) supplementation could change the metabolomic profiles of cecum contents in obese mice as a result of a high-fat diet. Moreover, mixed NSPs exhibited more beneficial effects than singular form on gut metabolism.
Collapse
Affiliation(s)
- Qian Zhang
- College of Food Science and Technology, Southwest Minzu University, Chengdu 610041, China
| | - Jinhua Cheng
- College of Food Science, Sichuan Agricultural University, Ya’an 625014, China
| | - Xiaole Jiang
- College of Chemistry and Environment, Southwest Minzu University, Chengdu 610041, China
| | - Junni Tang
- College of Food Science and Technology, Southwest Minzu University, Chengdu 610041, China
| | - Chenglin Zhu
- College of Food Science and Technology, Southwest Minzu University, Chengdu 610041, China
- Correspondence: (C.Z.); (H.C.); Tel.: +86-028-85928478 (C.Z.); +86-0835-2882212 (H.C.)
| | - Hong Chen
- College of Food Science, Sichuan Agricultural University, Ya’an 625014, China
- Correspondence: (C.Z.); (H.C.); Tel.: +86-028-85928478 (C.Z.); +86-0835-2882212 (H.C.)
| | - Luca Laghi
- Department of Agricultural and Food Sciences, University of Bologna, 47521 Cesena, Italy
| |
Collapse
|
3
|
Metabonomic Responses of Grazing Yak to Different Concentrate Supplementations in Cold Season. Animals (Basel) 2020; 10:ani10091595. [PMID: 32911680 PMCID: PMC7552243 DOI: 10.3390/ani10091595] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 08/30/2020] [Accepted: 09/03/2020] [Indexed: 12/27/2022] Open
Abstract
Supplementation plays an important role in reversing the weight loss of grazing yaks during cold season. However, little is known about the effect of supplementation on the serum metabolites of grazing yaks. The objective of this study was to explore the effects of supplementary feeding on average daily gain (ADG) and serum metabolites with nuclear magnetic resonance (NMR)-based metabolomics method in growing yaks during cold season on the Qinghai-Tibetan plateau. Twenty 1.5-year-old female yaks (91.38 ± 10.43 kg LW) were evenly divided into three treatment groups and a control group (CON) (n = 5 per group). All the yaks were released to graze during daytime, whereas the yaks in the treatment groups were supplemented with highland barley (HLB), rapeseed meal (RSM), and highland barley plus rapeseed meal (HLB + RSM) at night. The whole experiment lasted for 120 days. Results indicated that the ADG of growing yak heifers was increased by concentrate supplementations, and ADG under HLB and HLB + RSM group was 37.5% higher (p < 0.05) than that with RSM supplementation. Supplementary feeding increased the plasma concentrations of total protein (TP), albumin (ALB), and blood urea nitrogen (BUN) of those in the CON group, and concentrations of BUN were higher in the RSM group than in the HLB and HLB + RSM group. Compared with the CON group, serum levels of glutamine, glycine, β-glucose were lower and that of choline was higher in the HLB group; serum levels of lactate were lower and that of choline, glutamate were higher in the HLB + RSM group. Compared with the HLB + RSM group, serum levels of glycerophosphoryl choline (GPC) and lactate were higher, and those of choline, glutamine, glutamate, leucine, N-acetyaspartate, α-glucose, and β-glucose were lower in the HLB group; serum levels of citrate, GPC and lactate were higher, and those of 3-Hydroxybutyrate, betaine, choline, glutamate, glutamine, N-acetylglycoprotein, N-acetyaspartate, α-glucose, and β-glucose were lower in the RSM group. It could be concluded that concentrate supplementations significantly improved the growth performance of growing yaks and supplementation with HBL or HLB plus RSM was better than RSM during the cold season. Supplementation with HBL or HLB plus RSM affected the serum metabolites of grazing yaks, and both treatments promoted lipid synthesis. Supplementation of yaks with HBL plus RSM could improve energy-supply efficiency, protein and lipid deposition compared with HLB and RSM.
Collapse
|
4
|
Wang W, Liu X, Wu J, Kang X, Xie Q, Sheng J, Xu W, Liu D, Zheng W. Plasma metabolite profiling reveals potential biomarkers of giant cell tumor of bone by using NMR-based metabolic profiles: A cross-sectional study. Medicine (Baltimore) 2019; 98:e17445. [PMID: 31577769 PMCID: PMC6783185 DOI: 10.1097/md.0000000000017445] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
Giant cell tumor (GCT) of bone is a locally aggressive bone tumor, which accounts for 4% to 5% of all primary bone tumors. At present, the early diagnosis and postoperative recurrence monitoring are still more difficult due to the lack of effective biomarkers in GCT. As an effective tool, metabolomics has played an essential role in the biomarkers research of many tumors. However, there has been no related study of the metabolomics of GCT up to now. The purpose of this study was to identify several key metabolites as potential biomarkers for GCT by using nuclear magnetic resonance (NMR)-based metabolic profiles.Patients with GCT in our hospital were recruited in this study and their plasma was collected as the research sample, and plasma collected from healthy subjects was considered as the control. NMR was then utilized to detect all samples. Furthermore, based on correlation coefficients, variable importance for the projection values and P values of metabolites obtained from multidimensional statistical analysis, the most critical metabolites were selected as potential biomarkers of GCT. Finally, relevant metabolic pathways involved in these potential biomarkers were determined by database retrieval, based on which the metabolic pathways were plotted.Finally, 28 GCT patients and 26 healthy volunteers agreed to participate in the study. In the multidimensional statistical analysis, all results showed that there was obvious difference between the GCT group and the control group. Ultimately, 18 metabolites with significant differences met the selection condition, which were identified as potential biomarkers. Through Kyoto Encyclopedia of Genes and Genomes (KEGG) and Human Metabolome Database (HMD) database searching and literature review, these metabolites were found to be mainly correlated with glucose metabolism, fat metabolism, amino acid metabolism, and intestinal microbial metabolism. These metabolic disorders might, in turn, reflect important pathological processes such as proliferation and migration of tumor cells and immune escape in GCT.Our work showed that these potential biomarkers identified appeared to have early diagnostic and relapse monitoring values for GCT, which deserve to be further investigated. In addition, it also suggested that metabolomics profiling approach is a promising screening tool for the diagnosis and relapse monitoring of GCT patients.
Collapse
Affiliation(s)
| | | | - Juan Wu
- Department of Pharmacy, General Hospital of Western Theater Command, Chengdu city, Sichuan Province, People's Republic of China
| | | | | | | | - Wei Xu
- Department of Orthopedics
| | - Da Liu
- Department of Orthopedics
| | | |
Collapse
|
5
|
Metabolomics coupled with similarity analysis advances the elucidation of the cold/hot properties of traditional Chinese medicines. Chin J Nat Med 2018; 15:631-640. [PMID: 28939026 DOI: 10.1016/s1875-5364(17)30091-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2016] [Indexed: 12/23/2022]
Abstract
It recently becomes an important and urgent mission for modern scientific research to identify and explain the theory of traditional Chinese medicine (TCM), which has been utilized in China for more than four millennia. Since few works have been contributed to understanding the TCM theory, the mechanism of actions of drugs with cold/hot properties remains unclear. In the present study, six kinds of typical herbs with cold or hot properties were orally administered into mice, and serum and liver samples were analyzed using an untargeted nuclear magnetic resonance (NMR) based metabolomics approach coupled with similarity analysis. This approach was performed to identify and quantify changes in metabolic pathways to elucidate drug actions on the treated mice. Our results showed that those drugs with same property exerted similar effects on the metabolic alterations in mouse serum and liver samples, while drugs with different property showed different effects. The effects of herbal medicines with cold/hot properties were exerted by regulating the pathways linked to glycometabolism, lipid metabolism, amino acids metabolism and other metabolic pathways. The results elucidated the differences and similarities of drugs with cold/hot properties, providing useful information on the explanation of medicinal properties of these TCMs.
Collapse
|
6
|
Vismeh R, Haddad D, Moore J, Nielson C, Bals B, Campbell T, Julian A, Teymouri F, Jones AD, Bringi V. Exposure Assessment of Acetamide in Milk, Beef, and Coffee Using Xanthydrol Derivatization and Gas Chromatography/Mass Spectrometry. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2018; 66:298-305. [PMID: 29186951 PMCID: PMC5765534 DOI: 10.1021/acs.jafc.7b02229] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2017] [Revised: 11/29/2017] [Accepted: 11/30/2017] [Indexed: 05/22/2023]
Abstract
Acetamide has been classified as a possible human carcinogen, but uncertainties exist about its levels in foods. This report presents evidence that thermal decomposition of N-acetylated sugars and amino acids in heated gas chromatograph injectors contributes to artifactual acetamide in milk and beef. An alternative gas chromatography/mass spectrometry protocol based on derivatization of acetamide with 9-xanthydrol was optimized and shown to be free of artifactual acetamide formation. The protocol was validated using a surrogate analyte approach based on d3-acetamide and applied to analyze 23 pasteurized whole milk, 44 raw sirloin beef, and raw milk samples from 14 different cows, and yielded levels about 10-fold lower than those obtained by direct injection without derivatization. The xanthydrol derivatization procedure detected acetamide in every food sample tested at 390 ± 60 ppb in milk, 400 ± 80 ppb in beef, and 39 000 ± 9000 ppb in roasted coffee beans.
Collapse
Affiliation(s)
- Ramin Vismeh
- Michigan
Biotechnology Institute, Lansing, Michigan 48910, United States
| | - Diane Haddad
- Michigan
Biotechnology Institute, Lansing, Michigan 48910, United States
| | - Janette Moore
- Michigan
Biotechnology Institute, Lansing, Michigan 48910, United States
| | - Chandra Nielson
- Michigan
Biotechnology Institute, Lansing, Michigan 48910, United States
| | - Bryan Bals
- Michigan
Biotechnology Institute, Lansing, Michigan 48910, United States
| | - Tim Campbell
- Michigan
Biotechnology Institute, Lansing, Michigan 48910, United States
| | - Allen Julian
- Michigan
Biotechnology Institute, Lansing, Michigan 48910, United States
| | - Farzaneh Teymouri
- Michigan
Biotechnology Institute, Lansing, Michigan 48910, United States
| | - A. Daniel Jones
- Department
of Biochemistry and Molecular Biology, Michigan
State University, East Lansing, Michigan 48824, United States
- Department
of Chemistry, Michigan State University, East Lansing, Michigan 48824, United States
- E-mail: ; Phone: +1-517-432-7126; Fax: +1-517-353-9334
| | - Venkataraman Bringi
- Department
of Chemical Engineering and Materials Science, Michigan State University, East
Lansing, Michigan 48824, United States
| |
Collapse
|
7
|
Keshteli AH, van den Brand FF, Madsen KL, Mandal R, Valcheva R, Kroeker KI, Han B, Bell RC, Cole J, Hoevers T, Wishart DS, Fedorak RN, Dieleman LA. Dietary and metabolomic determinants of relapse in ulcerative colitis patients: A pilot prospective cohort study. World J Gastroenterol 2017; 23:3890-3899. [PMID: 28638229 PMCID: PMC5467075 DOI: 10.3748/wjg.v23.i21.3890] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/10/2017] [Revised: 04/05/2017] [Accepted: 05/04/2017] [Indexed: 02/07/2023] Open
Abstract
AIM To identify demographic, clinical, metabolomic, and lifestyle related predictors of relapse in adult ulcerative colitis (UC) patients.
METHODS In this prospective pilot study, UC patients in clinical remission were recruited and followed-up at 12 mo to assess a clinical relapse, or not. At baseline information on demographic and clinical parameters was collected. Serum and urine samples were collected for analysis of metabolomic assays using a combined direct infusion/liquid chromatography tandem mass spectrometry and nuclear magnetic resolution spectroscopy. Stool samples were also collected to measure fecal calprotectin (FCP). Dietary assessment was performed using a validated self-administered food frequency questionnaire.
RESULTS Twenty patients were included (mean age: 42.7 ± 14.8 years, females: 55%). Seven patients (35%) experienced a clinical relapse during the follow-up period. While 6 patients (66.7%) with normal body weight developed a clinical relapse, 1 UC patient (9.1%) who was overweight/obese relapsed during the follow-up (P = 0.02). At baseline, poultry intake was significantly higher in patients who were still in remission during follow-up (0.9 oz vs 0.2 oz, P = 0.002). Five patients (71.4%) with FCP > 150 μg/g and 2 patients (15.4%) with normal FCP (≤ 150 μg/g) at baseline relapsed during the follow-up (P = 0.02). Interestingly, baseline urinary and serum metabolomic profiling of UC patients with or without clinical relapse within 12 mo showed a significant difference. The most important metabolites that were responsible for this discrimination were trans-aconitate, cystine and acetamide in urine, and 3-hydroxybutyrate, acetoacetate and acetone in serum.
CONCLUSION A combination of baseline dietary intake, fecal calprotectin, and metabolomic factors are associated with risk of UC clinical relapse within 12 mo.
Collapse
|
8
|
Yang Y, Yan B, Cheng X, Ding Y, Tian X, Shi Y, Le G. Metabolomic studies on the systemic responses of mice with oxidative stress induced by short-term oxidized tyrosine administration. RSC Adv 2017. [DOI: 10.1039/c7ra02665j] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Oxidized tyrosine (O-Tyr) has attracted more interest in recent years because many researchers have discovered that it and its product (dityrosine) are associated with pathological conditions, especially various age-related disorders in biological systems.
Collapse
Affiliation(s)
- Yuhui Yang
- The Laboratory of Food Nutrition and Functional Factors
- School of Food Science and Technology
- Jiangnan University
- Wuxi 214122
- China
| | - Biao Yan
- The Laboratory of Food Nutrition and Functional Factors
- School of Food Science and Technology
- Jiangnan University
- Wuxi 214122
- China
| | - Xiangrong Cheng
- The Laboratory of Food Nutrition and Functional Factors
- School of Food Science and Technology
- Jiangnan University
- Wuxi 214122
- China
| | - Yinyi Ding
- The Laboratory of Food Nutrition and Functional Factors
- School of Food Science and Technology
- Jiangnan University
- Wuxi 214122
- China
| | - Xu Tian
- The Laboratory of Food Nutrition and Functional Factors
- School of Food Science and Technology
- Jiangnan University
- Wuxi 214122
- China
| | - Yonghui Shi
- The Laboratory of Food Nutrition and Functional Factors
- School of Food Science and Technology
- Jiangnan University
- Wuxi 214122
- China
| | - Guowei Le
- The Laboratory of Food Nutrition and Functional Factors
- School of Food Science and Technology
- Jiangnan University
- Wuxi 214122
- China
| |
Collapse
|
9
|
Fang T, Wu X, Cao W, Jia G, Zhao H, Chen X, Wu C, Tang J, Wang J, Liu G. Effects of dietary fiber on the antioxidant capacity, immune status, and antioxidant-relative signaling molecular gene expression in rat organs. RSC Adv 2017. [DOI: 10.1039/c7ra02464a] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
This study was conducted to evaluate the effects of different fibers, such as dietary pea, sweet potato, and wheat bran fibers, on the antioxidant capacity, immune status, and antioxidant-related signaling molecules of rat organs.
Collapse
|
10
|
Abu Bakar Sajak A, Mediani A, Maulidiani, Ismail A, Abas F. Metabolite Variation in Lean and Obese Streptozotocin (STZ)-Induced Diabetic Rats via 1H NMR-Based Metabolomics Approach. Appl Biochem Biotechnol 2016; 182:653-668. [PMID: 27995574 DOI: 10.1007/s12010-016-2352-9] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2016] [Accepted: 11/28/2016] [Indexed: 12/25/2022]
Abstract
Diabetes mellitus (DM) is considered as a complex metabolic disease because it affects the metabolism of glucose and other metabolites. Although many diabetes studies have been conducted in animal models throughout the years, the pathogenesis of this disease, especially between lean diabetes (ND + STZ) and obese diabetes (OB + STZ), is still not fully understood. In this study, the urine from ND + STZ, OB + STZ, lean/control (ND), and OB + STZ rats were collected and compared by using 1H NMR metabolomics. The results from multivariate data analysis (MVDA) showed that the diabetic groups (ND + STZ and OB + STZ) have similarities and dissimilarities for a certain level of metabolites. Differences between ND + STZ and OB + STZ were particularly noticeable in the synthesis of ketone bodies, branched-chain amino acid (BCAA), and sensitivity towards the oral T2DM diabetes drug metformin. This finding suggests that the ND + STZ group was more similar to the T1DM model and OB + STZ to the T2DM model. In addition, we also managed to identify several pathways and metabolism aspects shared by obese (OB) and OB + STZ. The results from this study are useful in developing drug target-based research as they can increase understanding regarding the cause and effect of DM.
Collapse
Affiliation(s)
- Azliana Abu Bakar Sajak
- Laboratory of Natural Products, Institute of Bioscience, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia
| | - Ahmed Mediani
- Department of Food Science, Faculty of Food Science and Technology, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia
| | - Maulidiani
- Laboratory of Natural Products, Institute of Bioscience, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia
| | - Amin Ismail
- Department of Nutrition and Dietetics, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia
| | - Faridah Abas
- Laboratory of Natural Products, Institute of Bioscience, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia. .,Department of Food Science, Faculty of Food Science and Technology, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia.
| |
Collapse
|
11
|
Wang W, Yang GJ, Zhang J, Chen C, Jia ZY, Li J, Xu WD. Plasma, urine and ligament tissue metabolite profiling reveals potential biomarkers of ankylosing spondylitis using NMR-based metabolic profiles. Arthritis Res Ther 2016; 18:244. [PMID: 27770826 PMCID: PMC5075188 DOI: 10.1186/s13075-016-1139-2] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2016] [Accepted: 09/27/2016] [Indexed: 12/31/2022] Open
Abstract
Background Ankylosing spondylitis (AS) is an autoimmune rheumatic disease mostly affecting the axial skeleton. Currently, anti-tumour necrosis factor α (anti-TNF-α) represents an effective treatment for AS that may delay the progression of the disease and alleviate the symptoms if the diagnosis can be made early. Unfortunately, effective diagnostic biomarkers for AS are still lacking; therefore, most patients with AS do not receive timely and effective treatment. The intent of this study was to determine several key metabolites as potential biomarkers of AS using metabolomic methods to facilitate the early diagnosis of AS. Methods First, we collected samples of plasma, urine, and ligament tissue around the hip joint from AS and control groups. The samples were examined by nuclear magnetic resonance spectrometry, and multivariate data analysis was performed to find metabolites that differed between the groups. Subsequently, according to the correlation coefficients, variable importance for the projection (VIP) and P values of the metabolites obtained in the multivariate data analysis, the most crucial metabolites were selected as potential biomarkers of AS. Finally, metabolic pathways involving the potential biomarkers were determined using the Kyoto Encyclopedia of Genes and Genomes (KEGG) database, and the metabolic pathway map was drawn. Results Forty-four patients with AS agreed to provide plasma and urine samples, and 30 provided ligament tissue samples. An equal number of volunteers were recruited for the control group. Multidimensional statistical analysis suggested significant differences between the patients with AS and control subjects, and the models exhibited good discrimination and predictive ability. A total of 20 different metabolites ultimately met the requirements for potential biomarkers. According to KEGG analysis, these marker metabolites were primarily related to fat metabolism, intestinal microbial metabolism, glucose metabolism and choline metabolism pathways, and they were also probably associated with immune regulation. Conclusions Our work demonstrates that the potential biomarkers that were identified appeared to have diagnostic value for AS and deserve to be further investigated. In addition, this work also suggests that the metabolomic profiling approach is a promising screening tool for the diagnosis of patients with AS.
Collapse
Affiliation(s)
- Wei Wang
- Department of Orthopedics, Chengdu Military General Hospital, Chengdu city, People's Republic of China
| | - Gen-Jin Yang
- School of Pharmacy, Second Military Medical University, Shanghai city, People's Republic of China
| | - Ju Zhang
- Department of Rheumatology, Changhai Hospital, Shanghai city, People's Republic of China
| | - Chen Chen
- Physical Examination Center, Changhai Hospital, Shanghai city, People's Republic of China
| | - Zhen-Yu Jia
- Department of Orthopedics, Changhai Hospital, Shanghai city, People's Republic of China
| | - Jia Li
- Department of Orthopedics, Changhai Hospital, Shanghai city, People's Republic of China
| | - Wei-Dong Xu
- Department of Orthopedics, Changhai Hospital, Shanghai city, People's Republic of China.
| |
Collapse
|
12
|
Abu Bakar Sajak A, Abas F, Ismail A, Khatib A. Effect of Different Drying Treatments and Solvent Ratios on Phytochemical Constituents of Ipomoea aquatica and Correlation with α-Glucosidase Inhibitory Activity. INTERNATIONAL JOURNAL OF FOOD PROPERTIES 2016. [DOI: 10.1080/10942912.2016.1141295] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Azliana Abu Bakar Sajak
- Laboratory of Natural Products, Institute of Bioscience, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| | - Faridah Abas
- Laboratory of Natural Products, Institute of Bioscience, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
- Department of Food Science, Faculty of Food Science and Technology, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| | - Amin Ismail
- Department of Nutrition and Dietetics, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| | - Alfi Khatib
- Department of Pharmacy, Faculty of Medicine and Health Sciences, International Islamic University, Bandar Indera Mahkota, Kuantan, Pahang
| |
Collapse
|
13
|
Quan-Jun Y, Jun B, Li-Li W, Yong-Long H, Bin L, Qi Y, Yan L, Cheng G, Gen-Jin Y. NMR-based metabolomics reveals distinct pathways mediated by curcumin in cachexia mice bearing CT26 tumor. RSC Adv 2015. [DOI: 10.1039/c4ra14128h] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Cachexia is common in cancer patients, with profound metabolic abnormalities in response to malignant growth of cancer and progressive catabolism of host.
Collapse
Affiliation(s)
- Yang Quan-Jun
- Department of Pharmacy
- Shanghai Jiao Tong University Affiliated Sixth People's Hospital
- Shanghai 200233
- P. R. China
- School of Pharmacy
| | - Bian Jun
- Department of Pharmacy
- Shanghai
- P. R. China
| | - Wan Li-Li
- Department of Pharmacy
- Shanghai Jiao Tong University Affiliated Sixth People's Hospital
- Shanghai 200233
- P. R. China
| | - Han Yong-Long
- Department of Pharmacy
- Shanghai Jiao Tong University Affiliated Sixth People's Hospital
- Shanghai 200233
- P. R. China
| | - Li Bin
- Department of Pharmacy
- Shanghai Jiao Tong University Affiliated Sixth People's Hospital
- Shanghai 200233
- P. R. China
| | - Yu Qi
- Department of Pharmacy
- Shanghai Jiao Tong University Affiliated Sixth People's Hospital
- Shanghai 200233
- P. R. China
| | - Li Yan
- Department of Pharmacy
- Shanghai Jiao Tong University Affiliated Sixth People's Hospital
- Shanghai 200233
- P. R. China
| | - Guo Cheng
- Department of Pharmacy
- Shanghai Jiao Tong University Affiliated Sixth People's Hospital
- Shanghai 200233
- P. R. China
- School of Pharmacy
| | - Yang Gen-Jin
- School of Pharmacy
- Second Military Medical University
- Shanghai 200433
- P. R. China
| |
Collapse
|
14
|
An L, Shi Q, Feng F. Metabolomics approach to identify therapeutically potential biomarkers of the Zhi-Zi-Da-Huang decoction effect on the hepatoprotective mechanism. RSC Adv 2015. [DOI: 10.1039/c5ra16563f] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
A NMR-based metabolomics approach was applied to find potential plasma and liver biomarkers responsible for the hepatoprotective effects of Zhi-Zi-Da-Huang decoction (ZZDHD).
Collapse
Affiliation(s)
- Li An
- Department of Pharmaceutical Analysis
- China Pharmaceutical University
- Nanjing 210009
- China
| | - Qingshui Shi
- Jiangsu Institute for Food and Drug Control
- Nanjing 210008
- China
| | - Fang Feng
- Department of Pharmaceutical Analysis
- China Pharmaceutical University
- Nanjing 210009
- China
- Key Laboratory of Drug Quality Control and Pharmacovigilance
| |
Collapse
|
15
|
Lin M, Xie Z, Zhou Y, Li Y, Ren J, Peng XX, Yao M, Yang Z, Liao Q. Dynamic metabonomic and microbiological response of rats to lincomycin exposure: an integrated microbiology and metabonomics analysis. RSC Adv 2015. [DOI: 10.1039/c5ra10626e] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
We investigated the changes of gut microbiome, host metabolism and their relationships of lincomycin exposure by microbiological and metabolomics profiling.
Collapse
Affiliation(s)
- Manna Lin
- School of Chinese Materia Medica
- Guangzhou University of Chinese Medicine
- Guangzhou
- P. R. China
- School of Pharmaceutical Sciences
| | - Zhiyong Xie
- School of Pharmaceutical Sciences
- Sun Yat-sen University
- Guangzhou
- P. R. China
| | - Yuting Zhou
- School of Pharmaceutical Sciences
- Sun Yat-sen University
- Guangzhou
- P. R. China
| | - Yemeng Li
- School of Pharmaceutical Sciences
- Sun Yat-sen University
- Guangzhou
- P. R. China
| | - Jian Ren
- School of Life Sciences
- Sun Yat-sen University
- Guangzhou
- P. R. China
| | - Xuan-xian Peng
- School of Life Sciences
- Sun Yat-sen University
- Guangzhou
- P. R. China
| | - Meicun Yao
- School of Pharmaceutical Sciences
- Sun Yat-sen University
- Guangzhou
- P. R. China
| | - Zhongzhou Yang
- School of Pharmaceutical Sciences
- Sun Yat-sen University
- Guangzhou
- P. R. China
| | - Qiongfeng Liao
- School of Chinese Materia Medica
- Guangzhou University of Chinese Medicine
- Guangzhou
- P. R. China
| |
Collapse
|
16
|
Liu G, Xiao L, Fang T, Cai Y, Jia G, Zhao H, Wang J, Chen X, Wu C. Pea fiber and wheat bran fiber show distinct metabolic profiles in rats as investigated by a 1H NMR-based metabolomic approach. PLoS One 2014; 9:e115561. [PMID: 25541729 PMCID: PMC4277351 DOI: 10.1371/journal.pone.0115561] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2014] [Accepted: 11/25/2014] [Indexed: 01/01/2023] Open
Abstract
This study aimed to examine the effect of pea fiber (PF) and wheat bran fiber (WF) supplementation in rat metabolism. Rats were assigned randomly to one of three dietary groups and were given a basal diet containing 15% PF, 15% WF, or no supplemental fiber. Urine and plasma samples were analyzed by NMR-based metabolomics. PF significantly increased the plasma levels of 3-hydroxybutyrate, and myo-inositol as well as the urine levels of alanine, hydroxyphenylacetate, phenylacetyglycine, and α-ketoglutarate. However, PF significantly decreased the plasma levels of isoleucine, leucine, lactate, and pyruvate as well as the urine levels of allantoin, bile acids, and trigonelline. WF significantly increased the plasma levels of acetone, isobutyrate, lactate, myo-inositol, and lipids as well as the urine levels of alanine, lactate, dimethylglycine, N-methylniconamide, and α-ketoglutarate. However, WF significantly decreased the plasma levels of amino acids, and glucose as well as the urine levels of acetate, allantoin, citrate, creatine, hippurate, hydroxyphenylacetate, and trigonelline. Results suggest that PF and WF exposure can promote antioxidant activity and can exhibit common systemic metabolic changes, including lipid metabolism, energy metabolism, glycogenolysis and glycolysis metabolism, protein biosynthesis, and gut microbiota metabolism. PF can also decrease bile acid metabolism. These findings indicate that different fiber diet may cause differences in the biofluid profile in rats.
Collapse
Affiliation(s)
- Guangmang Liu
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Chengdu, 611130, Sichuan, China
| | - Liang Xiao
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Chengdu, 611130, Sichuan, China
| | - Tingting Fang
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Chengdu, 611130, Sichuan, China
| | - Yimin Cai
- Japan International Research Center for Agricultural Sciences, 1-1 sukuba, Ohwashi, TIbaragi, 305-8686, Japan
| | - Gang Jia
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Chengdu, 611130, Sichuan, China
| | - Hua Zhao
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Chengdu, 611130, Sichuan, China
| | - Jing Wang
- Maize Research Institute, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Xiaoling Chen
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Chengdu, 611130, Sichuan, China
| | - Caimei Wu
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Chengdu, 611130, Sichuan, China
| |
Collapse
|
17
|
Liu G, Fang T, Yan T, Jia G, Zhao H, Chen X, Wu C, Wang J. Systemic responses of weaned rats to spermine against oxidative stress revealed by a metabolomic strategy. RSC Adv 2014. [DOI: 10.1039/c4ra09975c] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|