1
|
Azum N, Y. M. Alfaifi S, Abdul Rub M, Asiri AM. Effects of ionic liquid on micellar aggregate formed by pluronic (F-127) and non-ionic surfactant (TX-100) in aqueous solution. J Mol Liq 2023. [DOI: 10.1016/j.molliq.2023.121617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2023]
|
2
|
Abrar Siddiquee M, Saraswat J, Ud Din Parray M, Singh P, Bargujar S, Patel R. Spectroscopic and DFT study of imidazolium based ionic liquids with broad spectrum antibacterial drug levofloxacin. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2023; 285:121803. [PMID: 36095856 DOI: 10.1016/j.saa.2022.121803] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Revised: 08/14/2022] [Accepted: 08/27/2022] [Indexed: 06/15/2023]
Abstract
Herein, we have shown the interaction of levofloxacin (LVF) with two imidazolium based ionic liquids (ILs), 1-butly-3-methylimidazolium chloride ([Bmim][Cl]) and 1-decyl-3-methylimidazolium chloride ([Dmim][Cl]) by utilising spectroscopic techniques along with computational approach. Both [Bmim][Cl] and [Dmim][Cl] quenched the fluorescence emission of LVF suggesting complex formation between ILs and the drug. The steady-state and time-resolve fluorescence studies revealed that the quenching of fluorescence emission of LVF in the presence of [Bmim][Cl] and [Dmim][Cl], which signified the non-fluorescent complex formation between LVF and ILs. The complex formation between LVF and ILs were also validated by the UV-visible spectroscopy method. The cyclic voltammetry (CV) results further suggest the strong interaction between LVF and ILs. The estimated binding constant (Kb) and free energy change (ΔG) parameters shows the substantial binding of LVF with both the ILs and spontaneous in nature. The value suggested that LVF have stronger binding with [Dmim][Cl] than [Bmim][Cl]. Further, in order to support the results classical density functional theory (DFT) model was performed. The DFT calculations were utilized to explore the 3D structure and the molecular orbitals (HOMO and LUMO) of ILs, LVF and their complexes using Gaussian 09 software. The aggregate size (Dh) and zeta potential of ILs and IL-drug complexes were determined by dynamic light scattering (DLS) and zeta potential in aqueous medium.
Collapse
Affiliation(s)
- Md Abrar Siddiquee
- Biophysical Chemistry Laboratory, Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi 110025, India
| | - Juhi Saraswat
- Biophysical Chemistry Laboratory, Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi 110025, India
| | - Mehraj Ud Din Parray
- Biophysical Chemistry Laboratory, Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi 110025, India
| | - Prashant Singh
- Department of Chemistry, ARSD College, Delhi University, New Delhi 110021, India
| | - Savita Bargujar
- Department of Chemistry, Ramjas College, Delhi University, New Delhi 110007, India
| | - Rajan Patel
- Biophysical Chemistry Laboratory, Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi 110025, India.
| |
Collapse
|
3
|
Abdul Rub M, Khan F, Azum N, Marwani HM, Asiri AM, Alamry KA. Effect on micellization behavior of promethazine hydrochloride and dimethyldodecylethylammonium bromide mixture in distinctive media: A multi-technique study. J Mol Liq 2023. [DOI: 10.1016/j.molliq.2023.121357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
|
4
|
Molecule(s) of Interest: I. Ionic Liquids-Gateway to Newer Nanotechnology Applications: Advanced Nanobiotechnical Uses', Current Status, Emerging Trends, Challenges, and Prospects. Int J Mol Sci 2022; 23:ijms232214346. [PMID: 36430823 PMCID: PMC9696100 DOI: 10.3390/ijms232214346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 11/12/2022] [Accepted: 11/13/2022] [Indexed: 11/22/2022] Open
Abstract
Ionic liquids are a potent class of organic compounds exhibiting unique physico-chemical properties and structural compositions that are different from the classical dipolar organic liquids. These molecules have found diverse applications in different chemical, biochemical, biophysical fields, and a number of industrial usages. The ionic liquids-based products and procedural applications are being developed for a number of newer industrial purposes, and academic uses in nanotechnology related procedures, processes, and products, especially in nanobiotechnology and nanomedicine. The current article overviews their uses in different fields, including applications, functions, and as parts of products and processes at primary and advanced levels. The application and product examples, and prospects in various fields of nanotechnology, domains of nanosystem syntheses, nano-scale product development, the process of membrane filtering, biofilm formation, and bio-separations are prominently discussed. The applications in carbon nanotubes; quantum dots; and drug, gene, and other payload delivery vehicle developments in the nanobiotechnology field are also covered. The broader scopes of applications of ionic liquids, future developmental possibilities in chemistry and different bio-aspects, promises in the newer genres of nanobiotechnology products, certain bioprocesses controls, and toxicity, together with emerging trends, challenges, and prospects are also elaborated.
Collapse
|
5
|
Dib N, Silber JJ, Correa NM, Falcone RD. Amphiphilic Ionic Liquids Capable to Formulate Organized Systems in an Aqueous Solution, Designed by a Combination of Traditional Surfactants and Commercial Drugs. Pharm Res 2022; 39:2379-2390. [PMID: 35854078 DOI: 10.1007/s11095-022-03342-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Accepted: 07/11/2022] [Indexed: 10/17/2022]
Abstract
The present review describes the state of the art in the conversion of pharmaceutically active ingredients (API) in amphiphilic Ionic Liquids (ILs) as alternative drug delivery systems. In particular, we focus our attention on the compounds generated by ionic exchange and without original counterions which generate different systems in comparison with the simple mixtures. In water, these new amphiphiles show similar or even better properties as surfactants in comparison with their precursors. Cations such as 1-alkyl-3-methyl-imidazolium and anions such as dioctyl sulfosuccinate or sodium dodecyl sulfate appear as the amphiphilic components most studied. In conclusion, this work shows interesting information on several promissory compounds and they appear as an interesting challenge to extend the application of ILs in the medical field.
Collapse
Affiliation(s)
- Nahir Dib
- Departamento de Química, Universidad Nacional de Rio Cuarto, Agencia Postal 3, C.P. X5804BYA, Ruta Nacional 36, km 601, Rio Cuarto, Córdoba, Argentina
- Instituto de Desarrollo Agroindustrial y de la Salud (IDAS), Universidad Nacional de Río Cuarto, Agencia Postal 3, C.P. X5804BYA, Ruta Nacional 36, km 601, Río Cuarto, Córdoba, Argentina
| | - Juana J Silber
- Departamento de Química, Universidad Nacional de Rio Cuarto, Agencia Postal 3, C.P. X5804BYA, Ruta Nacional 36, km 601, Rio Cuarto, Córdoba, Argentina
- Instituto de Desarrollo Agroindustrial y de la Salud (IDAS), Universidad Nacional de Río Cuarto, Agencia Postal 3, C.P. X5804BYA, Ruta Nacional 36, km 601, Río Cuarto, Córdoba, Argentina
| | - N Mariano Correa
- Departamento de Química, Universidad Nacional de Rio Cuarto, Agencia Postal 3, C.P. X5804BYA, Ruta Nacional 36, km 601, Rio Cuarto, Córdoba, Argentina
- Instituto de Desarrollo Agroindustrial y de la Salud (IDAS), Universidad Nacional de Río Cuarto, Agencia Postal 3, C.P. X5804BYA, Ruta Nacional 36, km 601, Río Cuarto, Córdoba, Argentina
| | - R Dario Falcone
- Departamento de Química, Universidad Nacional de Rio Cuarto, Agencia Postal 3, C.P. X5804BYA, Ruta Nacional 36, km 601, Rio Cuarto, Córdoba, Argentina.
- Instituto de Desarrollo Agroindustrial y de la Salud (IDAS), Universidad Nacional de Río Cuarto, Agencia Postal 3, C.P. X5804BYA, Ruta Nacional 36, km 601, Río Cuarto, Córdoba, Argentina.
| |
Collapse
|
6
|
Ibuprofen molecular aggregation by direct back-face transmission steady-state fluorescence. Photochem Photobiol Sci 2022; 21:1637-1645. [PMID: 35665917 PMCID: PMC9166242 DOI: 10.1007/s43630-022-00247-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Accepted: 05/12/2022] [Indexed: 11/10/2022]
Abstract
Direct back-face transmission steady-state fluorescence was successfully applied to the study of aggregation of ibuprofen and ibuprofenate anion in solution taking advantage of its own fluorescence. The analysis of the experimental data involves the use of the differential reabsorption model to account for re-absorption phenomenon and the closed association model to describe aggregation. The fluorescence quantum yield of ibuprofenate increases when it aggregates in the presence of sodium, but it markedly decreases when 1-butyl-3-methylimidazolium is used as counterion. The proposed methodology allows the accurate determination of the critical aggregation concentrations and the mean aggregation numbers. Results were supported by complementary techniques such as time-resolved fluorescence, 1H-NMR and small-angle neutron and X-ray scattering. The developed technique constitutes a promising strategy to characterize the aggregation of poorly fluorescent surfactants that aggregates at high concentrations and hence at high absorbance values, conditions in which the most common right-angle configuration for fluorescence acquisition is troublesome due to re-absorption.
Collapse
|
7
|
|
8
|
Ramou E, Rebordão G, Palma SICJ, Roque ACA. Stable and Oriented Liquid Crystal Droplets Stabilized by Imidazolium Ionic Liquids. Molecules 2021; 26:molecules26196044. [PMID: 34641588 PMCID: PMC8512111 DOI: 10.3390/molecules26196044] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 09/30/2021] [Accepted: 10/02/2021] [Indexed: 11/29/2022] Open
Abstract
Liquid crystals represent a fascinating intermediate state of matter, with dynamic yet organized molecular features and untapped opportunities in sensing. Several works report the use of liquid crystal droplets formed by microfluidics and stabilized by surfactants such as sodium dodecyl sulfate (SDS). In this work, we explore, for the first time, the potential of surface-active ionic liquids of the imidazolium family as surfactants to generate in high yield, stable and oriented liquid crystal droplets. Our results show that [C12MIM][Cl], in particular, yields stable, uniform and monodisperse droplets (diameter 74 ± 6 µm; PDI = 8%) with the liquid crystal in a radial configuration, even when compared with the standard SDS surfactant. These findings reveal an additional application for ionic liquids in the field of soft matter.
Collapse
Affiliation(s)
- Efthymia Ramou
- Associate Laboratory i4HB—Institute for Health and Bioeconomy, School of Science and Technology, NOVA University Lisbon, 2829-516 Caparica, Portugal; (E.R.); (G.R.); (S.I.C.J.P.)
- UCIBIO—Applied Molecular Biosciences Unit, Department of Chemistry, School of Science and Technology, NOVA University Lisbon, 2829-516 Caparica, Portugal
| | - Guilherme Rebordão
- Associate Laboratory i4HB—Institute for Health and Bioeconomy, School of Science and Technology, NOVA University Lisbon, 2829-516 Caparica, Portugal; (E.R.); (G.R.); (S.I.C.J.P.)
- UCIBIO—Applied Molecular Biosciences Unit, Department of Chemistry, School of Science and Technology, NOVA University Lisbon, 2829-516 Caparica, Portugal
| | - Susana I. C. J. Palma
- Associate Laboratory i4HB—Institute for Health and Bioeconomy, School of Science and Technology, NOVA University Lisbon, 2829-516 Caparica, Portugal; (E.R.); (G.R.); (S.I.C.J.P.)
- UCIBIO—Applied Molecular Biosciences Unit, Department of Chemistry, School of Science and Technology, NOVA University Lisbon, 2829-516 Caparica, Portugal
| | - Ana C. A. Roque
- Associate Laboratory i4HB—Institute for Health and Bioeconomy, School of Science and Technology, NOVA University Lisbon, 2829-516 Caparica, Portugal; (E.R.); (G.R.); (S.I.C.J.P.)
- UCIBIO—Applied Molecular Biosciences Unit, Department of Chemistry, School of Science and Technology, NOVA University Lisbon, 2829-516 Caparica, Portugal
- Correspondence:
| |
Collapse
|
9
|
Ghaed-Sharaf T, Ghatee MH. Synergistic aggregation of the ibuprofenate anion and a a double-strand imidazolium cation into vesicles for drug delivery: a simulation study. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.115874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
10
|
Kumar H, Sharma P. Investigations on the micellization behavior and thermodynamic characteristics of synthesized surface active ionic liquids [C14mim] [Br] and [C15mim] [Br] in the presence of oral antidiabetic drug metformin hydrochloride. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2020.114851] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
11
|
Biocompatible supramolecular systems based on novel cationic imidazolium- and urethane-containing amphiphiles: Self-assembly and antimicrobial properties. J Mol Liq 2020. [DOI: 10.1016/j.molliq.2020.114094] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
12
|
Pedro SN, R. Freire CS, Silvestre AJD, Freire MG. The Role of Ionic Liquids in the Pharmaceutical Field: An Overview of Relevant Applications. Int J Mol Sci 2020; 21:E8298. [PMID: 33167474 PMCID: PMC7663996 DOI: 10.3390/ijms21218298] [Citation(s) in RCA: 83] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 10/31/2020] [Accepted: 11/02/2020] [Indexed: 01/12/2023] Open
Abstract
Solubility, bioavailability, permeation, polymorphism, and stability concerns associated to solid-state pharmaceuticals demand for effective solutions. To overcome some of these drawbacks, ionic liquids (ILs) have been investigated as solvents, reagents, and anti-solvents in the synthesis and crystallization of active pharmaceutical ingredients (APIs), as solvents, co-solvents and emulsifiers in drug formulations, as pharmaceuticals (API-ILs) aiming liquid therapeutics, and in the development and/or improvement of drug-delivery-based systems. The present review focuses on the use of ILs in the pharmaceutical field, covering their multiple applications from pharmaceutical synthesis to drug delivery. The most relevant research conducted up to date is presented and discussed, together with a critical analysis of the most significant IL-based strategies in order to improve the performance of therapeutics and drug delivery systems.
Collapse
Affiliation(s)
| | | | | | - Mara G. Freire
- Department of Chemistry, CICECO-Aveiro Institute of Materials, University of Aveiro, 3810-193 Aveiro, Portugal; (S.N.P.); (C.S.R.F.); (A.J.D.S.)
| |
Collapse
|
13
|
Azum N, Rub MA, Azim Y, Asiri AM. Micellar and spectroscopic studies of amphiphilic drug with nonionic surfactant in the presence of ionic liquids. J Mol Liq 2020. [DOI: 10.1016/j.molliq.2020.113732] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
14
|
Li G, Srivastava A, Liu C, Qiao W. Interaction of doxorubicin hydrochloride in the presence of, mixed aggregate of ibuprofen sodium and cationic lipid. J Mol Liq 2020. [DOI: 10.1016/j.molliq.2020.113451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
15
|
Interaction of an Acid Functionalized Magnetic Ionic Liquid with Gemini Surfactants. J SOLUTION CHEM 2020. [DOI: 10.1007/s10953-020-00990-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
16
|
Zakharova LY, Pashirova TN, Doktorovova S, Fernandes AR, Sanchez-Lopez E, Silva AM, Souto SB, Souto EB. Cationic Surfactants: Self-Assembly, Structure-Activity Correlation and Their Biological Applications. Int J Mol Sci 2019; 20:E5534. [PMID: 31698783 PMCID: PMC6888607 DOI: 10.3390/ijms20225534] [Citation(s) in RCA: 70] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Revised: 10/31/2019] [Accepted: 11/04/2019] [Indexed: 02/07/2023] Open
Abstract
The development of biotechnological protocols based on cationic surfactants is a modern trend focusing on the fabrication of antimicrobial and bioimaging agents, supramolecular catalysts, stabilizers of nanoparticles, and especially drug and gene nanocarriers. The main emphasis given to the design of novel ecologically friendly and biocompatible cationic surfactants makes it possible to avoid the drawbacks of nanoformulations preventing their entry to clinical trials. To solve the problem of toxicity various ways are proposed, including the use of mixed composition with nontoxic nonionic surfactants and/or hydrotropic agents, design of amphiphilic compounds bearing natural or cleavable fragments. Essential advantages of cationic surfactants are the structural diversity of their head groups allowing of chemical modification and introduction of desirable moiety to answer the green chemistry criteria. The latter can be exemplified by the design of novel families of ecological friendly cleavable surfactants, with improved biodegradability, amphiphiles with natural fragments, and geminis with low aggregation threshold. Importantly, the development of amphiphilic nanocarriers for drug delivery allows understanding the correlation between the chemical structure of surfactants, their aggregation behavior, and their functional activity. This review focuses on several aspects related to the synthesis of innovative cationic surfactants and their broad biological applications including antimicrobial activity, solubilization of hydrophobic drugs, complexation with DNA, and catalytic effect toward important biochemical reaction.
Collapse
Affiliation(s)
- Lucia Ya. Zakharova
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center, Russian Academy of Sciences, 8, ul. Arbuzov, Kazan 420088, Russia; (L.Y.Z.); (T.N.P.)
- Department of Organic Chemistry, Kazan State Technological University, ul. Karla Marksa 68, Kazan 420015, Russia
| | - Tatiana N. Pashirova
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center, Russian Academy of Sciences, 8, ul. Arbuzov, Kazan 420088, Russia; (L.Y.Z.); (T.N.P.)
| | - Slavomira Doktorovova
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Coimbra (FFUC), Pólo das Ciências da Saúde, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal; (S.D.); (A.R.F.); (E.S.-L.)
| | - Ana R. Fernandes
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Coimbra (FFUC), Pólo das Ciências da Saúde, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal; (S.D.); (A.R.F.); (E.S.-L.)
| | - Elena Sanchez-Lopez
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Coimbra (FFUC), Pólo das Ciências da Saúde, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal; (S.D.); (A.R.F.); (E.S.-L.)
- Department of Pharmacy, Pharmaceutical Technology and Physical Chemistry, Faculty of Pharmacy, University of Barcelona, 08028 Barcelona, Spain
- Institute of Nanoscience and Nanotechnology (IN2UB), University of Barcelona, 08028 Barcelona, Spain
- Networking Research Centre of Neurodegenerative Disease (CIBERNED), Instituto de Salud Juan Carlos III, 28702 Madrid, Spain
| | - Amélia M. Silva
- Department of Biology and Environment, School of Life and Environmental Sciences, University of Trás-os-Montes and Alto Douro, 5000-801 Vila Real, Portugal;
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences, University of Trás-os-Montes and Alto Douro, 5000-801 Vila Real, Portugal
| | - Selma B. Souto
- Department of Endocrinology of S. João Hospital, Alameda Prof. Hernâni Monteiro, 4200–319 Porto, Portugal;
| | - Eliana B. Souto
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Coimbra (FFUC), Pólo das Ciências da Saúde, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal; (S.D.); (A.R.F.); (E.S.-L.)
- CEB-Centre of Biological Engineering, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal
| |
Collapse
|
17
|
Ozan M, Göktürk S. Effect of ionic liquids as active pharmaceutical ingredients on the micellar binding of an amphiphilic drug trifluopromazine hydrochloride. J DISPER SCI TECHNOL 2019. [DOI: 10.1080/01932691.2019.1674154] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Murat Ozan
- Faculty of Pharmacy, Department of Basic Pharmaceutical Sciences, General Chemistry Division, Marmara University , Istanbul , Turkey
| | - Sinem Göktürk
- Faculty of Pharmacy, Department of Basic Pharmaceutical Sciences, General Chemistry Division, Marmara University , Istanbul , Turkey
| |
Collapse
|
18
|
Pal A, Yadav A. Mixed micellization of a trisubstituted surface active ionic liquid 1-dodecyl-2,3-dimethylimidazolium chloride [C12bmim][Cl] with an amphiphilic drug amitriptyline hydrochloride AMT: A detailed insights from conductance and surface tension measurements. J Mol Liq 2019. [DOI: 10.1016/j.molliq.2019.01.107] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
19
|
Pal A, Yadav A. Mixed micellization of an amphiphilic drug amitriptyline hydrochloride and surface active ionic liquids: Interfacial and micellization studies. Chem Phys Lett 2018. [DOI: 10.1016/j.cplett.2018.07.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
20
|
Interactions Between Surface Active Ionic Liquid and Procaine Hydrochloride Drug in Aqueous Solution. J SOLUTION CHEM 2018. [DOI: 10.1007/s10953-018-0778-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
21
|
Pal A, Yadav A. Investigations of drug binding ability of a trisubstituted surface active ionic liquid 1-dodecyl-2,3-dimethylimidazolium chloride [C12bmim][Cl]. J Mol Liq 2018. [DOI: 10.1016/j.molliq.2017.12.058] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
22
|
Bustelo M, Pinazo A, Manresa M, Mitjans M, Vinardell M, Pérez L. Monocatenary histidine-based surfactants: Role of the alkyl chain length in antimicrobial activity and their selectivity over red blood cells. Colloids Surf A Physicochem Eng Asp 2017. [DOI: 10.1016/j.colsurfa.2017.04.017] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
23
|
Vashishat R, Chabba S, Aswal VK, Mahajan RK. Probing molecular interactions of tetracaine with surface active ionic liquid and subsequent formation of vesicle in aqueous medium. J Mol Liq 2017. [DOI: 10.1016/j.molliq.2017.08.062] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
24
|
Sharma R, Kamal A, Abdinejad M, Mahajan RK, Kraatz HB. Advances in the synthesis, molecular architectures and potential applications of gemini surfactants. Adv Colloid Interface Sci 2017; 248:35-68. [PMID: 28800974 DOI: 10.1016/j.cis.2017.07.032] [Citation(s) in RCA: 105] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2017] [Revised: 07/26/2017] [Accepted: 07/27/2017] [Indexed: 10/19/2022]
Abstract
Gemini surfactants have been the subject of intensive scrutiny by virtue of their unique combination of physical and chemical properties and being used in ordinary household objects to multifarious industrial processes. In this review, we summarize the recent developments of gemini surfactants, highlighting the classification of gemini surfactants based on the variation in headgroup polarity, flexibility/rigidity of spacer, hydrophobic alkyl chain and counterion along with potential applications of gemini surfactants, depicting the truly remarkable journey of gemini surfactants that has just come of age. We have focused on those objectives which will act as suitable candidates to take the field forward. The preceding information will permit us to estimate the effect of structural variation on the aggregation behavior of gemini surfactants for nanoscience and biological applications like antimicrobial, anti-fungal agent, better gene and drug delivery agent with low cytotoxicity and biodegradability, which makes them more advantageous for a number of technological processes and hence reduces the impact of these gemini surfactants on the environment.
Collapse
|
25
|
Samarkina DA, Gabdrakhmanov DR, Lukashenko SS, Khamatgalimov AR, Kovalenko VI, Zakharova LY. Cationic amphiphiles bearing imidazole fragment: From aggregation properties to potential in biotechnologies. Colloids Surf A Physicochem Eng Asp 2017. [DOI: 10.1016/j.colsurfa.2017.07.018] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
26
|
Singh O, Singla P, Kaur R, Mahajan RK. Tailoring the interfacial and bulk behavior of ionic-liquids with non surface active drug diclofenac sodium. Colloids Surf A Physicochem Eng Asp 2017. [DOI: 10.1016/j.colsurfa.2017.04.012] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
27
|
Egorova KS, Gordeev EG, Ananikov VP. Biological Activity of Ionic Liquids and Their Application in Pharmaceutics and Medicine. Chem Rev 2017; 117:7132-7189. [PMID: 28125212 DOI: 10.1021/acs.chemrev.6b00562] [Citation(s) in RCA: 911] [Impact Index Per Article: 130.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Ionic liquids are remarkable chemical compounds, which find applications in many areas of modern science. Because of their highly tunable nature and exceptional properties, ionic liquids have become essential players in the fields of synthesis and catalysis, extraction, electrochemistry, analytics, biotechnology, etc. Apart from physical and chemical features of ionic liquids, their high biological activity has been attracting significant attention from biochemists, ecologists, and medical scientists. This Review is dedicated to biological activities of ionic liquids, with a special emphasis on their potential employment in pharmaceutics and medicine. The accumulated data on the biological activity of ionic liquids, including their antimicrobial and cytotoxic properties, are discussed in view of possible applications in drug synthesis and drug delivery systems. Dedicated attention is given to a novel active pharmaceutical ingredient-ionic liquid (API-IL) concept, which suggests using traditional drugs in the form of ionic liquid species. The main aim of this Review is to attract a broad audience of chemical, biological, and medical scientists to study advantages of ionic liquid pharmaceutics. Overall, the discussed data highlight the importance of the research direction defined as "Ioliomics", studies of ions in liquids in modern chemistry, biology, and medicine.
Collapse
Affiliation(s)
- Ksenia S Egorova
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences , Leninsky prospect 47, Moscow 119991, Russia
| | - Evgeniy G Gordeev
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences , Leninsky prospect 47, Moscow 119991, Russia
| | - Valentine P Ananikov
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences , Leninsky prospect 47, Moscow 119991, Russia.,Department of Chemistry, Saint Petersburg State University , Stary Petergof 198504, Russia
| |
Collapse
|
28
|
Novak S, Morasi Piperčić S, Makarić S, Primožič I, Ćurlin M, Štefanić Z, Domazet Jurašin D. Interplay of Noncovalent Interactions in Ionic Liquid/Sodium Bis(2-ethylhexyl) Sulfosuccinate Mixtures: From Lamellar to Bicontinuous Cubic Liquid Crystalline Phase. J Phys Chem B 2016; 120:12557-12567. [PMID: 27973815 DOI: 10.1021/acs.jpcb.6b10515] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Phase transitions in mixtures of imidazolium based ionic liquid ([C12mim]Br) and anionic double tail surfactant, sodium bis(2-ethylhexyl) sulfosuccinate (AOT), were studied using a multitechnique approach. The system was primarily chosen for its expected ability to form a variety of lamellar and nonlamellar liquid crystalline phases which can transform into each other via different mechanisms. Depending on the bulk composition and total surfactant concentration, mixed micelles, coacervates, and lamellar and inverse bicontinuous cubic liquid crystalline phase were observed. Along with electrostatic attractions and geometric packing constraints, additional noncovalent interactions (hydrogen bonding, π-π stacking) enhanced attractive interactions and stabilized low curvature aggregates. At stoichiometric conditions, coexistence of coacervates and vesicles was found at lower, while bicontinuous cubic phase and vesicles were present at higher total surfactant concentrations. The phase transitions from a dispersed lamellar to inverse cubic bicontinuous phase occur as a consequence of charge shielding and closer packing of oppositely charged headgroups followed by a change in bilayer curvature. Transition is continuous with both phases coexisting over a relatively broad range of concentrations and very likely involves a sponge-like phase as a structural intermediate. To the best of our knowledge, this type of phase transition has not been observed before in surface active ionic liquid/surfactant mixtures.
Collapse
Affiliation(s)
- Sanja Novak
- Department of Chemistry, Faculty of Science, University of Zagreb , Horvatovac 102a, 10 000 Zagreb, Croatia.,Institute of Complex Systems, Forschungszentrum Jülich , Leo-Brandt Strasse, 52425 Jülich, Germany
| | - Sara Morasi Piperčić
- Department of Chemistry, Faculty of Science, University of Zagreb , Horvatovac 102a, 10 000 Zagreb, Croatia
| | - Sandro Makarić
- Department of Chemistry, Faculty of Science, University of Zagreb , Horvatovac 102a, 10 000 Zagreb, Croatia
| | - Ines Primožič
- Department of Chemistry, Faculty of Science, University of Zagreb , Horvatovac 102a, 10 000 Zagreb, Croatia
| | - Marija Ćurlin
- Department of Histology and Embryology, University of Zagreb School of Medicine , Šalata 3, 10 000 Zagreb, Croatia
| | - Zoran Štefanić
- Division of Physical Chemistry, Ruđer Bošković Institute , Bijenička cesta 54, 10 000 Zagreb, Croatia
| | - Darija Domazet Jurašin
- Division of Physical Chemistry, Ruđer Bošković Institute , Bijenička cesta 54, 10 000 Zagreb, Croatia
| |
Collapse
|
29
|
Roy A, Banerjee P, Dutta R, Kundu S, Sarkar N. Probing the Interaction between a DNA Nucleotide (Adenosine-5'-Monophosphate Disodium) and Surface Active Ionic Liquids by Rotational Relaxation Measurement and Fluorescence Correlation Spectroscopy. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2016; 32:10946-10956. [PMID: 27690468 DOI: 10.1021/acs.langmuir.6b02794] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
This article demonstrates the interaction of a deoxyribonucleic acid (DNA) nucleotide, adenosine-5'-monophosphate disodium (AMP) with a cationic surface active ionic liquid (SAIL) 1-dodecyl-3-methylimidazoium chloride (C12mimCl), and an anionic SAIL, 1-butyl-3-methylimidazolium n-octylsulfate ([C4mim][C8SO4]). Dynamic light scattering (DLS) measurements and 1H NMR (nuclear magnetic resonance) studies indicate that substantial interaction is taking place among the DNA nucleotide (AMP) and the SAILs. Moreover, cryogenic transmission electron microscopy (cryo-TEM) suggests that SAILs containing micellar assemblies are transformed into larger micellar assemblies in the presence of DNA nucleotides. Additionally, the rotational motion of two oppositely charged molecules, rhodamine 6G perchlorate (R6G) and fluorescein sodium salt (Fl-Na), have been monitored in these aggregates. The rotational motion of R6G and Fl-Na differs significantly between SAILs micelles and SAILs-AMP containing larger micellar aggregates. The effect of negatively charged DNA nucleotide (AMP) addition into the cationic and anionic SAILs is more prominent for the cationic charged molecule R6G than that of anionic probe Fl-Na due to the favorable electrostatic interaction between the AMP and cationic R6G. Moreover, the influence of the anionic DNA nucleotide on the cationic and anionic SAIL micelles is monitored through the variation of the lateral diffusion motion of oppositely charged probe molecules (R6G and Fl-Na) inside these aggregates. This variation in diffusion coefficient values also suggests that the interaction pattern of these oppositely charged probes are different within the SAILs-nucleotide containing aggregates. Therefore, both rotational and translational diffusion measurements confirm that the DNA nucleotide (AMP) renders more rigid microenvironment within the micellar solution of SAILs.
Collapse
Affiliation(s)
- Arpita Roy
- Department of Chemistry, Indian Institute of Technology , Kharagpur 721302, WB India
| | - Pavel Banerjee
- Department of Chemistry, Indian Institute of Technology , Kharagpur 721302, WB India
| | - Rupam Dutta
- Department of Chemistry, Indian Institute of Technology , Kharagpur 721302, WB India
| | - Sangita Kundu
- Department of Chemistry, Indian Institute of Technology , Kharagpur 721302, WB India
| | - Nilmoni Sarkar
- Department of Chemistry, Indian Institute of Technology , Kharagpur 721302, WB India
| |
Collapse
|
30
|
|
31
|
Kundu K, Das A, Bardhan S, Chakraborty G, Ghosh D, Kar B, Saha SK, Senapati S, Mitra RK, Paul BK. The mixing behaviour of anionic and nonionic surfactant blends in aqueous environment correlates in fatty acid ester medium. Colloids Surf A Physicochem Eng Asp 2016. [DOI: 10.1016/j.colsurfa.2016.05.078] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
32
|
Singh O, Kaur R, Aswal VK, Mahajan RK. Composition and Concentration Gradient Induced Structural Transition from Micelles to Vesicles in the Mixed System of Ionic Liquid-Diclofenac Sodium. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2016; 32:6638-6647. [PMID: 27267864 DOI: 10.1021/acs.langmuir.6b01175] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Catanionic surfactant-hydrotrope mixtures have proven to be a striking alternative to tune microstructures over a wide range of compositions and also to minimize precipitation that is normally observed in catanionic mixtures at an equimolar ratio. These mixtures are supposed to be of great relevance in biological systems when a hydrotrope is a "drug". Keeping this in view, here we report composition- and dilution-induced structural changes in a catanionic mixture comprising ionic liquids (ILs), such as 1-dodecyl-3-methylimidazolium bromide (C12mimBr)/1-tetradecyl-3-methylimidazolium bromide (C14mimBr), and a drug, diclofenac sodium (DFNa), in aqueous solution. The structural changes are probed by small-angle neutron scattering (SANS), dynamic light scattering (DLS), and zeta-potential measurements. SANS data and size distribution curves clearly depict the formation of low curvature structures on going from the cation-rich to anion-rich composition up to a 0.7 mole fraction of DFNa (XDFNa). The amphiphilic nature of DFNa is supposed to alter the surface charge density, which is provoked by its incorporation into resulting aggregates, as confirmed by modified zeta-potential values. The modification of the average packing parameter resulting from the IL and DFNa complexation equilibrium seems to play a vital role in bringing out structural transitions of mixed aggregates. We also focused our attention to study the effect of dilution in concentrations ranging from 100 to 25 mM. At XDFNa = 0.0 and 0.1, the size of prolate ellipsoids decreases on dilution, mimicking classic behavior, but an opposite trend is observed at other XDFNa values. Dilution-induced transformation to larger aggregates is thought to be driven by the release of DFNa molecules from the mixed micelles on account of the critical micelle concentration (cmc) (solubility) mismatch between the two components. The role of other interactions such as cation-π and π-π in stabilizing the mixed aggregates in addition to hydrophobic interactions is probed by (1)H NMR.
Collapse
Affiliation(s)
- Onkar Singh
- Department of Chemistry, UGC-Centre for Advanced Studies-II, Guru Nanak Dev University , Amritsar 143005, India
| | - Rajwinder Kaur
- Department of Chemistry, UGC-Centre for Advanced Studies-II, Guru Nanak Dev University , Amritsar 143005, India
| | - Vinod Kumar Aswal
- Solid State Physics Division, Bhabha Atomic Research Centre , Mumbai 400085, India
| | - Rakesh Kumar Mahajan
- Department of Chemistry, UGC-Centre for Advanced Studies-II, Guru Nanak Dev University , Amritsar 143005, India
| |
Collapse
|
33
|
Vashishat R, Chabba S, Mahajan RK. Effect of surfactant head group on micellization and morphological transitions in drug-Surfactant catanionic mixture: A multi-technique approach. Colloids Surf A Physicochem Eng Asp 2016. [DOI: 10.1016/j.colsurfa.2016.03.058] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
34
|
Bhadani A, Misono T, Singh S, Sakai K, Sakai H, Abe M. Structural diversity, physicochemical properties and application of imidazolium surfactants: Recent advances. Adv Colloid Interface Sci 2016; 231:36-58. [PMID: 27063924 DOI: 10.1016/j.cis.2016.03.005] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2015] [Revised: 01/19/2016] [Accepted: 03/21/2016] [Indexed: 10/22/2022]
Abstract
The current review covers recent advances on development and investigation of cationic surfactants containing imidazolium headgroup, which are being extensively investigated for their self-aggregation properties and are currently being utilized in various conventional and non-conventional application areas. These surfactants are being used as: soft template for synthesis of mesoporous/microporous materials, drug and gene delivery agent, stabilizing agent for nanoparticles, dispersants for single/multi walled carbon nanotubes, antimicrobial and antifungal agent, viscosity modifiers, preparing nanocomposite materials, stabilizing microemulsions, corrosion inhibitors and catalyst for organic reactions. Recently several structural derivatives of these surfactants have been developed having many interesting physicochemical properties and they have demonstrated enormous potential in the area of nanotechnology, material science and biomedical science.
Collapse
|
35
|
Kaur R, Sanan R, Mahajan RK. Probing interactions of neurotransmitters with twin tailed anionic surfactant: A detailed physicochemical study. J Colloid Interface Sci 2016; 469:38-46. [PMID: 26866888 DOI: 10.1016/j.jcis.2016.02.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2015] [Revised: 01/30/2016] [Accepted: 02/02/2016] [Indexed: 11/24/2022]
Abstract
Keeping in view the role of neurotransmitters (NTs) in central nervous system diseases and in controlling various physiological processes, present study is aimed to study the binding of neurotransmitters (NTs) such as norepinephrine hydrochloride (NE) and serotonin hydrochloride (5-HT) with twin tailed surfactant sodium bis(2-ethylhexyl)sulfosuccinate (AOT). Spectroscopic and electrochemical measurements combined with microcalorimetric measurements were used to characterize the interactions between AOT and NTs. Meteoric modifications to emission profile and absorption spectra of NTs upon addition of AOT are indicative of the binding of NTs with AOT. Distinct interactional states such as formation of ion-pairs, induced and regular micelles with adsorbed NTs molecules have been observed in different concentration regimes of AOT. The formation of ion-pairs from oppositely charged NTs and AOT is confirmed by the reduced absorbance, quenched fluorescence intensity and decrease in peak current (ipa) as well as shifts in peak potential (Epa) values. The stoichiometry and formation of the NTs-AOT complexes has been judged and the extent of interactions is quantitatively discussed in terms of binding constant (K) and free energy of binding (ΔG°). The enthalpy (ΔH°mic) and free energy of micellization (ΔG°mic) for AOT in presence and absence of NTs are determined from the enthalpy curves.
Collapse
Affiliation(s)
- Rajwinder Kaur
- Department of Chemistry, Guru Nanak Dev University, Amritsar 143005, India
| | - Reshu Sanan
- P.G. Department of Chemistry, Khalsa College, Amritsar 143001, India
| | | |
Collapse
|
36
|
Bardhan S, Kundu K, Kar B, Chakraborty G, Ghosh D, Sarkar D, Das S, Senapati S, Saha SK, Paul BK. Synergistic interactions of surfactant blends in aqueous medium are reciprocated in non-polar medium with improved efficacy as a nanoreactor. RSC Adv 2016. [DOI: 10.1039/c6ra06776j] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Efficient soft chemical nanoreactors: a design strategy to improve the performance of a model C–C cross coupling (Heck) reaction under nanoscopic confinement of surfactant blends.
Collapse
Affiliation(s)
- Soumik Bardhan
- Department of Chemistry
- University of North Bengal
- Darjeeling-734 013
- India
| | - Kaushik Kundu
- Surface and Colloid Science Laboratory
- Geological Studies Unit
- Indian Statistical Institute
- Kolkata-700 108
- India
| | - Barnali Kar
- Department of Chemistry
- University of North Bengal
- Darjeeling-734 013
- India
| | - Gulmi Chakraborty
- Department of Chemistry
- University of North Bengal
- Darjeeling-734 013
- India
| | - Dibbendu Ghosh
- Department of Biotechnology
- Bhupat and Jyoti Mehta School of Biosciences
- Indian Institute of Technology Madras
- Chennai 600036
- India
| | - Debayan Sarkar
- Department of Chemistry
- National Institute of Technology
- Rourkela
- India
| | - Sajal Das
- Department of Chemistry
- University of North Bengal
- Darjeeling-734 013
- India
| | - Sanjib Senapati
- Department of Biotechnology
- Bhupat and Jyoti Mehta School of Biosciences
- Indian Institute of Technology Madras
- Chennai 600036
- India
| | - Swapan K. Saha
- Department of Chemistry
- University of North Bengal
- Darjeeling-734 013
- India
| | - Bidyut K. Paul
- Surface and Colloid Science Laboratory
- Geological Studies Unit
- Indian Statistical Institute
- Kolkata-700 108
- India
| |
Collapse
|