1
|
Bej R, Dey P, Ghosh S. Disulfide chemistry in responsive aggregation of amphiphilic systems. SOFT MATTER 2020; 16:11-26. [PMID: 31776542 DOI: 10.1039/c9sm01960j] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The dynamic nature of the disulfide bond has enhanced the potential for disulfide based amphiphiles in the emerging biomedical field. Disulfide containing amphiphiles have extensively been used for constructing wide ranging soft nanostructures as potential candidates for delivery of drugs, proteins and genes owing to their degradable nature in the presence of intracellular glutathione (present in a many fold excess compared to the extracellular milieu). This degradable nature of amphiphiles is not only useful to deliver therapeutics but it also eliminates the toxicity issues associated with the carrier after delivery of such therapeutics. Therefore, these bioreducible and biocompatible nano-aggregates inspired researchers to use them as vehicles for therapeutic delivery and as a result the literature of disulfide containing amphiphiles has been intensified. This review article highlights the structural diversity in disulfide containing amphiphilic small molecule and polymeric systems, structural effects on their aqueous aggregation, redox-responsive disassembly and biological applications. Furthermore, the use of disulfide chemistry towards the design of cell penetrating polymers has also been discussed. Finally a brief perspective on some future opportunities of these systems is provided.
Collapse
Affiliation(s)
- Raju Bej
- School of Applied and Interdisciplinary Sciences, Indian Association for the Cultivation of Science, 2A and 2B Raja S. C. Mullick Road, Kolkata, 700032, India.
| | - Pradip Dey
- School of Applied and Interdisciplinary Sciences, Indian Association for the Cultivation of Science, 2A and 2B Raja S. C. Mullick Road, Kolkata, 700032, India.
| | - Suhrit Ghosh
- School of Applied and Interdisciplinary Sciences, Indian Association for the Cultivation of Science, 2A and 2B Raja S. C. Mullick Road, Kolkata, 700032, India.
| |
Collapse
|
2
|
El Jundi A, Buwalda S, Bethry A, Hunger S, Coudane J, Bakkour Y, Nottelet B. Double-Hydrophilic Block Copolymers Based on Functional Poly(ε-caprolactone)s for pH-Dependent Controlled Drug Delivery. Biomacromolecules 2019; 21:397-407. [DOI: 10.1021/acs.biomac.9b01006] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Affiliation(s)
- Ayman El Jundi
- IBMM, Univ Montpellier, CNRS, ENSCM, Montpellier 34093 CEDEX 5, France
- Laboratory of Applied Chemistry (LAC), Faculty of Science III, Lebanese University, P.O. Box 826, Tripoli, Lebanon
| | - Sytze Buwalda
- IBMM, Univ Montpellier, CNRS, ENSCM, Montpellier 34093 CEDEX 5, France
| | - Audrey Bethry
- IBMM, Univ Montpellier, CNRS, ENSCM, Montpellier 34093 CEDEX 5, France
| | - Sylvie Hunger
- IBMM, Univ Montpellier, CNRS, ENSCM, Montpellier 34093 CEDEX 5, France
| | - Jean Coudane
- IBMM, Univ Montpellier, CNRS, ENSCM, Montpellier 34093 CEDEX 5, France
| | - Youssef Bakkour
- Laboratory of Applied Chemistry (LAC), Faculty of Science III, Lebanese University, P.O. Box 826, Tripoli, Lebanon
| | - Benjamin Nottelet
- IBMM, Univ Montpellier, CNRS, ENSCM, Montpellier 34093 CEDEX 5, France
| |
Collapse
|
3
|
Facile Preparation of Reduction-Responsive Micelles Based on Biodegradable Amphiphilic Polyurethane with Disulfide Bonds in the Backbone. Polymers (Basel) 2019; 11:polym11020262. [PMID: 30960245 PMCID: PMC6419063 DOI: 10.3390/polym11020262] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Revised: 01/30/2019] [Accepted: 01/30/2019] [Indexed: 02/06/2023] Open
Abstract
In this paper, we synthesized a biodegradable amphiphilic polymer of polyurethane-polyethylene glycol with disulfide bonds in the main chain (PEG-PU(SS)-PEG). DLS and SEM showed that the polymer could self-assemble into micelles in aqueous solution and could be used to load the hydrophobic anticancer drug DOX. Intriguingly, drug release in vitro indicated that DOX-loaded PEG-PU(SS)-PEG micelles had good stability under the extracellular physiological environment, but the disulfide bonds broke rapidly and DOX was released quickly under the intracellular reducing conditions. CCK-8 assays showed that DOX-loaded PEG-PU(SS)-PEG micelles had a high in vitro antitumor activity in C6 cells, whereas blank PEG-PU(SS)-PEG micelles were nontoxic to C6 cells. It was also found that there was strong and persistent accumulation of DOX-loaded PEG-PU(SS)-PEG as compared with PEG-PU-PEG both by the cell internalization tests and the flow cytometry measurements. Hence, PEG-PU(SS)-PEG micelles will have a potential use for clinical treatment of cancer in the future.
Collapse
|
4
|
Preparation and controlled drug release ability of the poly[N-isopropylacryamide-co-allyl poly(ethylene glycol)]-b-poly(γ-benzyl-l-glutamate) polymeric micelles. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 98:910-917. [PMID: 30813098 DOI: 10.1016/j.msec.2019.01.056] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2018] [Revised: 11/29/2018] [Accepted: 01/12/2019] [Indexed: 02/06/2023]
Abstract
The polymeric micelles were prepared through a copolymerization of allyl polyethylene glycol (APEG) and N-isopropylacrylamide in the presence of 2-aminoethanethiol (AET), followed by a ring opening polymerization of γ-benzyl-l-glutamate N-carboxyanhydride (BLG-NCA). Doxorubicin (DOX) as a model drug was covalently conjugated into the core of micelles via hydrazone bonds. The drug loading capacity could reach up to 15% with drug encapsulation efficiency of 80%. The pH/thermo sensitivities were observed in the process of in vitro drug release. The DOX-loaded micelles exhibited accelerated drug release behaviors in an acidic condition, and enhanced therapeutic efficacy was observed. Furthermore, the cytotoxicity of micelles against Hela and 3T3 cells was evaluated before and after drug loading. The DOX-loaded micelles showed strong cytotoxic activity to the cancer cells. But the blank micelles showed non-cytotoxicity. Therefore, the thermo/pH dual-responsive polymeric micelles have a promising future applied as a controlled drug delivery system for anticancer drugs.
Collapse
|
5
|
Skoulas D, Christakopoulos P, Stavroulaki D, Santorinaios K, Athanasiou V, Iatrou H. Micelles Formed by Polypeptide Containing Polymers Synthesized Via N-Carboxy Anhydrides and Their Application for Cancer Treatment. Polymers (Basel) 2017; 9:E208. [PMID: 30970886 PMCID: PMC6432035 DOI: 10.3390/polym9060208] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2017] [Revised: 05/26/2017] [Accepted: 05/30/2017] [Indexed: 12/13/2022] Open
Abstract
The development of multifunctional polymeric materials for biological applications is mainly guided by the goal of achieving the encapsulation of pharmaceutical compounds through a self-assembly process to form nanoconstructs that control the biodistribution of the active compounds, and therefore minimize systemic side effects. Micelles are formed from amphiphilic polymers in a selective solvent. In biological applications, micelles are formed in water, and their cores are loaded with hydrophobic pharmaceutics, where they are solubilized and are usually delivered through the blood compartment. Even though a large number of polymeric materials that form nanocarrier delivery systems has been investigated, a surprisingly small subset of these technologies has demonstrated potentially curative preclinical results, and fewer have progressed towards commercialization. One of the most promising classes of polymeric materials for drug delivery applications is polypeptides, which combine the properties of the conventional polymers with the 3D structure of natural proteins, i.e., α-helices and β-sheets. In this article, the synthetic pathways followed to develop well-defined polymeric micelles based on polypeptides prepared through ring-opening polymerization (ROP) of N-carboxy anhydrides are reviewed. Among these works, we focus on studies performed on micellar delivery systems to treat cancer. The review is limited to systems presented from 2000⁻2017.
Collapse
Affiliation(s)
- Dimitrios Skoulas
- Department of Chemistry, University of Athens, Panepistimiopolis, Zografou, Athens 15771, Greece.
| | | | - Dimitra Stavroulaki
- Department of Chemistry, University of Athens, Panepistimiopolis, Zografou, Athens 15771, Greece.
| | | | - Varvara Athanasiou
- Department of Chemistry, University of Athens, Panepistimiopolis, Zografou, Athens 15771, Greece.
| | - Hermis Iatrou
- Department of Chemistry, University of Athens, Panepistimiopolis, Zografou, Athens 15771, Greece.
| |
Collapse
|
6
|
Bui QT, Jeon YS, Kim J, Kim JH. Stabilized polymeric nanoparticle from amphiphilic mPEG-b-polyaspartamides containing ‘click’ functional groups. INT J POLYM MATER PO 2017. [DOI: 10.1080/00914037.2016.1263957] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Affiliation(s)
- Quang Tri Bui
- School of Chemical Engineering, Sungkyunkwan University, Suwon, South Korea
| | - Young Sil Jeon
- School of Chemical Engineering, Sungkyunkwan University, Suwon, South Korea
| | - Jaeyun Kim
- School of Chemical Engineering, Sungkyunkwan University, Suwon, South Korea
| | - Ji-Heung Kim
- School of Chemical Engineering, Sungkyunkwan University, Suwon, South Korea
| |
Collapse
|
7
|
Ng KE, Amin MCIM, Katas H, Amjad MW, Butt AM, Kesharwani P, Iyer AK. pH-Responsive Triblock Copolymeric Micelles Decorated with a Cell-Penetrating Peptide Provide Efficient Doxorubicin Delivery. NANOSCALE RESEARCH LETTERS 2016; 11:539. [PMID: 27921280 PMCID: PMC5138181 DOI: 10.1186/s11671-016-1755-4] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2016] [Accepted: 11/25/2016] [Indexed: 05/10/2023]
Abstract
This study developed novel triblock pH-responsive polymeric micelles (PMs) using cholic acid-polyethyleneimine-poly-L-arginine (CA-PEI-pArg) copolymers. PEI provided pH sensitivity, while the hydrophilic cell-penetrating pArg peptide promoted cellular PM internalization. The copolymers self-assembled into PMs in aqueous solution at above the critical micelle concentration (2.98 × 10-7 M) and encapsulated doxorubicin in the core region, with a 34.2% (w/w) entrapment efficiency. PMs showed pH-dependent swelling, increasing in size by almost sevenfold from pH 7.4 to 5.0. Doxorubicin release was pH-dependent, with about 65% released at pH 5.0, and 32% at pH 7.4. Cellular uptake, assessed by confocal microscopy and flow cytometry, was enhanced by using doxorubicin-loaded CA-PEI-pArg PMs, as compared to free doxorubicin and DOX-loaded CA-PEI PMs. Moreover, 24-h incubation of these PMs with a human breast cancer cell line produced greater cytotoxicity than free doxorubicin. These results indicate that pH-responsive CA-PEI-pArg micelles could provide a versatile delivery system for targeted cancer therapy using hydrophobic drugs. Graphical of CA-PEI-pArg polymeric micelles as a pH-responsive drug delivery system.
Collapse
Affiliation(s)
- Khen Eng Ng
- Centre for Drug Delivery Research, Faculty of Pharmacy, Universiti Kebangsaan Malaysia, Jalan Raja Muda Abdul Aziz, Kuala Lumpur, 50300, Malaysia
| | - Mohd Cairul Iqbal Mohd Amin
- Centre for Drug Delivery Research, Faculty of Pharmacy, Universiti Kebangsaan Malaysia, Jalan Raja Muda Abdul Aziz, Kuala Lumpur, 50300, Malaysia.
| | - Haliza Katas
- Centre for Drug Delivery Research, Faculty of Pharmacy, Universiti Kebangsaan Malaysia, Jalan Raja Muda Abdul Aziz, Kuala Lumpur, 50300, Malaysia
| | - Muhammad Wahab Amjad
- Centre for Drug Delivery Research, Faculty of Pharmacy, Universiti Kebangsaan Malaysia, Jalan Raja Muda Abdul Aziz, Kuala Lumpur, 50300, Malaysia
| | - Adeel Masood Butt
- Centre for Drug Delivery Research, Faculty of Pharmacy, Universiti Kebangsaan Malaysia, Jalan Raja Muda Abdul Aziz, Kuala Lumpur, 50300, Malaysia
| | - Prashant Kesharwani
- Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, 259 Mack Avenue, Detroit, MI, 48201, USA
| | - Arun K Iyer
- Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, 259 Mack Avenue, Detroit, MI, 48201, USA
| |
Collapse
|
8
|
Ma S, Zhou J, Zhang Y, He Y, Jiang Q, Yue D, Xu X, Gu Z. Highly Stable Fluorinated Nanocarriers with iRGD for Overcoming the Stability Dilemma and Enhancing Tumor Penetration in an Orthotopic Breast Cancer. ACS APPLIED MATERIALS & INTERFACES 2016; 8:28468-28479. [PMID: 27712073 DOI: 10.1021/acsami.6b09633] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
The stability dilemma and limited tumor penetration of nanocarriers in cancer chemotherapy remain two predominant challenges for their successful clinical translation. Herein, the pH-sensitive fluorocarbon-functionalized nanocarriers (SFNs) with a tumor-homing and penetrating peptide iRGD are reported to overcome the stability dilemma and enhance tumor accumulation and penetration in an orthotopic breast cancer. The highly stable SFNs with a low critical association concentration provide a safe and spacious harbor for hydrophobic drugs. Furthermore, the stimulus-responsive evaluation and in vitro drug release study show that the SFNs can balance intracellular dissociation for drug release and extracellular stability in the blood circulation. Additionally, the tumor penetration capacity has been dramatically enhanced in 3D multicellular spheroids, effectively affecting cells far from the periphery. This can be ascribed to the coadministration of iRGD having tumor-penetrating ability and fluorocarbon chains having good cell membrane permeability. The combination of SFNs and iRGD is a viable approach to assist drugs' effective accumulation in primary and metastasized tumor sites, significantly inhibiting the breast tumor growth and curbing lung and liver metastases in an orthotopic-tumor-bearing mouse model. Taken together, this pH-sensitive fluorinated nanosystem having excellent stability and tumor accumulation and penetration properties paves the way to combat cancer.
Collapse
Affiliation(s)
- Shengnan Ma
- National Engineering Research Center for Biomaterials, Sichuan University , 29 Wangjiang Road, Chengdu 610065, PR China
| | - Jie Zhou
- National Engineering Research Center for Biomaterials, Sichuan University , 29 Wangjiang Road, Chengdu 610065, PR China
| | - Yuxin Zhang
- National Engineering Research Center for Biomaterials, Sichuan University , 29 Wangjiang Road, Chengdu 610065, PR China
| | - Yiyan He
- National Engineering Research Center for Biomaterials, Sichuan University , 29 Wangjiang Road, Chengdu 610065, PR China
| | - Qian Jiang
- National Engineering Research Center for Biomaterials, Sichuan University , 29 Wangjiang Road, Chengdu 610065, PR China
| | - Dong Yue
- National Engineering Research Center for Biomaterials, Sichuan University , 29 Wangjiang Road, Chengdu 610065, PR China
| | - Xianghui Xu
- National Engineering Research Center for Biomaterials, Sichuan University , 29 Wangjiang Road, Chengdu 610065, PR China
| | - Zhongwei Gu
- National Engineering Research Center for Biomaterials, Sichuan University , 29 Wangjiang Road, Chengdu 610065, PR China
- College of Materials Science and Engineering, Nanjing Tech University , 30 South Puzhu Road, Nanjing 211816, PR China
| |
Collapse
|
9
|
Alvarez-Rivera F, Fernández-Villanueva D, Concheiro A, Alvarez-Lorenzo C. α-Lipoic Acid in Soluplus ® Polymeric Nanomicelles for Ocular Treatment of Diabetes-Associated Corneal Diseases. J Pharm Sci 2016; 105:2855-2863. [DOI: 10.1016/j.xphs.2016.03.006] [Citation(s) in RCA: 76] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2016] [Revised: 03/04/2016] [Accepted: 03/07/2016] [Indexed: 12/16/2022]
|
10
|
Guo X, Wang L, Wei X, Zhou S. Polymer-based drug delivery systems for cancer treatment. ACTA ACUST UNITED AC 2016. [DOI: 10.1002/pola.28252] [Citation(s) in RCA: 71] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Xing Guo
- Key Laboratory of Advanced Technologies of Materials, Ministry of Education; School of Materials Science and Engineering, Southwest Jiaotong University; Chengdu 610031 China
| | - Lin Wang
- Key Laboratory of Advanced Technologies of Materials, Ministry of Education; School of Materials Science and Engineering, Southwest Jiaotong University; Chengdu 610031 China
| | - Xiao Wei
- Key Laboratory of Advanced Technologies of Materials, Ministry of Education; School of Materials Science and Engineering, Southwest Jiaotong University; Chengdu 610031 China
| | - Shaobing Zhou
- Key Laboratory of Advanced Technologies of Materials, Ministry of Education; School of Materials Science and Engineering, Southwest Jiaotong University; Chengdu 610031 China
| |
Collapse
|
11
|
Kamaly N, Yameen B, Wu J, Farokhzad OC. Degradable Controlled-Release Polymers and Polymeric Nanoparticles: Mechanisms of Controlling Drug Release. Chem Rev 2016; 116:2602-63. [PMID: 26854975 PMCID: PMC5509216 DOI: 10.1021/acs.chemrev.5b00346] [Citation(s) in RCA: 1600] [Impact Index Per Article: 200.0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Nazila Kamaly
- Laboratory of Nanomedicine and Biomaterials, Department of Anesthesiology, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts 02115, United States
| | - Basit Yameen
- Laboratory of Nanomedicine and Biomaterials, Department of Anesthesiology, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts 02115, United States
| | - Jun Wu
- Laboratory of Nanomedicine and Biomaterials, Department of Anesthesiology, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts 02115, United States
| | - Omid C. Farokhzad
- Laboratory of Nanomedicine and Biomaterials, Department of Anesthesiology, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts 02115, United States
- King Abdulaziz University, Jeddah 21589, Saudi Arabia
| |
Collapse
|
12
|
Yi XQ, Zhang Q, Zhao D, Xu JQ, Zhong ZL, Zhuo RX, Li F. Preparation of pH and redox dual-sensitive core crosslinked micelles for overcoming drug resistance of DOX. Polym Chem 2016. [DOI: 10.1039/c5py01783a] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
When incubating the pH and redox dual-sensitive CCL/SS micelles with MCF-7/ADR cells, they could sufficiently overcome drug resistance to deliver DOX into MCF-7/ADR cells, leading to the apoptosis of tumor cells.
Collapse
Affiliation(s)
- Xiao-Qing Yi
- Key Laboratory of Biomedical Polymers of Ministry of Education & Department of Chemistry
- Wuhan University
- Wuhan 430072
- P. R. China
| | - Quan Zhang
- Key Laboratory of Biomedical Polymers of Ministry of Education & Department of Chemistry
- Wuhan University
- Wuhan 430072
- P. R. China
| | - Dan Zhao
- Key Laboratory of Biomedical Polymers of Ministry of Education & Department of Chemistry
- Wuhan University
- Wuhan 430072
- P. R. China
| | - Jia-Qi Xu
- Key Laboratory of Biomedical Polymers of Ministry of Education & Department of Chemistry
- Wuhan University
- Wuhan 430072
- P. R. China
| | - Zhen-Lin Zhong
- Key Laboratory of Biomedical Polymers of Ministry of Education & Department of Chemistry
- Wuhan University
- Wuhan 430072
- P. R. China
| | - Ren-Xi Zhuo
- Key Laboratory of Biomedical Polymers of Ministry of Education & Department of Chemistry
- Wuhan University
- Wuhan 430072
- P. R. China
| | - Feng Li
- Key Laboratory of Biomedical Polymers of Ministry of Education & Department of Chemistry
- Wuhan University
- Wuhan 430072
- P. R. China
| |
Collapse
|
13
|
Till U, Gibot L, Vicendo P, Rols MP, Gaucher M, Violleau F, Mingotaud AF. Crosslinked polymeric self-assemblies as an efficient strategy for photodynamic therapy on a 3D cell culture. RSC Adv 2016. [DOI: 10.1039/c6ra09013c] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Polymeric crosslinked self-assemblies based on poly(ethyleneoxide-b-ε-caprolactone) have been synthesized. They are shown to be more efficient vectors for photodynamic therapy compared to uncrosslinked systems.
Collapse
Affiliation(s)
- Ugo Till
- Université de Toulouse
- Institut National Polytechnique de Toulouse – Ecole d'Ingénieurs de Purpan
- Département Sciences Agronomiques et Agroalimentaires
- F-31076 Toulouse Cedex 03
- France
| | - Laure Gibot
- Institut de Pharmacologie et de Biologie Structurale
- Université de Toulouse
- CNRS
- UPS
- France
| | - Patricia Vicendo
- Laboratoire des IMRCP
- Université de Toulouse
- CNRS UMR 5623
- Université Paul Sabatier
- Toulouse Cedex 9
| | - Marie-Pierre Rols
- Institut de Pharmacologie et de Biologie Structurale
- Université de Toulouse
- CNRS
- UPS
- France
| | - Mireille Gaucher
- Université de Toulouse
- Institut National Polytechnique de Toulouse – Ecole d'Ingénieurs de Purpan
- Département Sciences Agronomiques et Agroalimentaires
- F-31076 Toulouse Cedex 03
- France
| | - Frédéric Violleau
- Université de Toulouse
- Institut National Polytechnique de Toulouse – Ecole d'Ingénieurs de Purpan
- Laboratoire de Chimie Agro-Industrielle
- Toulouse
- France
| | - Anne-Françoise Mingotaud
- Laboratoire des IMRCP
- Université de Toulouse
- CNRS UMR 5623
- Université Paul Sabatier
- Toulouse Cedex 9
| |
Collapse
|
14
|
Godeau G, Darmanin T, Guittard F. Switchable and reversible superhydrophobic and oleophobic surfaces by redox response using covalent S–S bond. REACT FUNCT POLYM 2015. [DOI: 10.1016/j.reactfunctpolym.2015.08.013] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
15
|
Abbas A, Hussain MA, Amin M, Tahir MN, Jantan I, Hameed A, Bukhari SNA. Multiple cross-linked hydroxypropylcellulose–succinate–salicylate: prodrug design, characterization, stimuli responsive swelling–deswelling and sustained drug release. RSC Adv 2015. [DOI: 10.1039/c5ra03800f] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Multiple cross-linked hydroxypropylcellulose–succinate–salicylate.
Collapse
Affiliation(s)
- Azhar Abbas
- Department of Chemistry
- University of Sargodha
- Sargodha 40100
- Pakistan
| | | | - Muhammad Amin
- Department of Chemistry
- University of Sargodha
- Sargodha 40100
- Pakistan
| | - Muhammad Nawaz Tahir
- Institute of Inorganic and Analytical Chemistry
- Johannes Guttenberg University
- 55128 Mainz
- Germany
| | - Ibrahim Jantan
- Drug and Herbal Research Centre
- Faculty of Pharmacy
- Universiti Kebangsaan Malaysia
- 50300 Kuala Lumpur
- Malaysia
| | - Abdul Hameed
- H. E. J. Research Institute of Chemistry
- International Center for Chemical and Biological Sciences
- University of Karachi
- Karachi 75270
- Pakistan
| | - Syed Nasir Abbas Bukhari
- Drug and Herbal Research Centre
- Faculty of Pharmacy
- Universiti Kebangsaan Malaysia
- 50300 Kuala Lumpur
- Malaysia
| |
Collapse
|