1
|
Biswas R, Parmar VRS, Thambi AG, Bandyopadhyay R. Correlating microscopic viscoelasticity and structure of an aging colloidal gel using active microrheology and cryogenic scanning electron microscopy. SOFT MATTER 2023; 19:2407-2416. [PMID: 36928531 DOI: 10.1039/d2sm01457b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Optical tweezers (OTs) can detect pico-Newton range forces operating on a colloidal particle trapped in a medium and have been successfully utilized to investigate complex systems with internal structures. LAPONITE® clay particles in an aqueous medium self-assemble to form microscopic networks over time as electrostatic interactions between the particles gradually evolve in a physical aging process. We investigate the forced movements of an optically trapped micron-sized colloidal probe particle, suspended in an aging LAPONITE® suspension, as the underlying LAPONITE® microstructures gradually develop. Our OT-based oscillatory active microrheology experiments allow us to investigate the mechanical responses of the evolving microstructures in aging aqueous clay suspensions of concentrations ranging from 2.5% w/v to 3.0% w/v and at several aging times between 90 and 150 minutes. We repeat such oscillatory measurements for a range of colloidal probe particle diameters and investigate the effect of probe size on the microrheology of the aging suspensions. Using cryogenic field emission scanning electron microscopy (cryo-FESEM), we examine the average pore areas of the LAPONITE® suspension microstructures for various sample concentrations and aging times. By combining our OT and cryo-FESEM data, we report here for the first time to the best of our knowledge, an inverse correlation between the crossover modulus and the average pore diameter of the aging suspension microstructures for the different suspension concentrations and probe particle sizes studied here.
Collapse
Affiliation(s)
- Rajkumar Biswas
- Soft Condensed Matter Group, Raman Research Institute, C. V. Raman Avenue, Sadashivanagar, Bangalore 560 080, India.
| | - Vaibhav Raj Singh Parmar
- Soft Condensed Matter Group, Raman Research Institute, C. V. Raman Avenue, Sadashivanagar, Bangalore 560 080, India.
| | - Anson G Thambi
- Soft Condensed Matter Group, Raman Research Institute, C. V. Raman Avenue, Sadashivanagar, Bangalore 560 080, India.
| | - Ranjini Bandyopadhyay
- Soft Condensed Matter Group, Raman Research Institute, C. V. Raman Avenue, Sadashivanagar, Bangalore 560 080, India.
| |
Collapse
|
2
|
Misra C, Ranganathan VT, Bandyopadhyay R. Influence of medium structure on the physicochemical properties of aging colloidal dispersions investigated using the synthetic clay LAPONITE®. SOFT MATTER 2021; 17:9387-9398. [PMID: 34605527 DOI: 10.1039/d1sm00987g] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Physical aging in colloidal dispersions manifests as a reduction in kinetic freedom of the colloids. In aqueous dispersions of charged clay colloids, the role of interparticle electrostatic interactions in determining the aging dynamics has been evaluated extensively. Despite water being the dispersion medium, the influence of water structure on the physicochemical properties of aging clay dispersions has, however, not been considered before. In this work, we use LAPONITE®, a model hectorite clay mineral that acquires surface charges when dispersed in water, to study the relative contributions of dispersion medium structure and interparticle electrostatic interactions on the physicochemical properties of aging hectorite clay dispersions. The structure of the dispersion medium is modified either by incorporating dissociating/non-dissociating kosmotropic (structure-inducing) or chaotropic (structure-disrupting) molecules or by changing dispersion temperature. Photon correlation spectroscopy, rheological measurements and particle-scale imaging are employed to evaluate the physicochemical properties of the dispersions. Our experiments involving incorporation of external additives demonstrate a strong influence of dispersion medium structure on the dispersion properties when the interparticle electrostatic interactions are weak. We introduce a new temperature dependent measurement protocol, wherein the temperature of the medium is fixed before adding the clay particles, to manipulate the hydrogen bonds in the aqueous medium in the absence of external additives. Accelerated aging, observed upon raising the temperature regardless of the experimental thermal histories, is attributed to increased interparticle electrostatic interactions as in the room temperature experiments with ionic additives. Our study identifies that in the presence of weak interparticle electrostatic interactions, changes in the physicochemical properties of charged clay dispersions can be driven by manipulating hydrogen bond populations in aqueous medium.
Collapse
Affiliation(s)
- Chandeshwar Misra
- Soft Condensed Matter Group, Raman Research Institute, C. V. Raman Avenue, Sadashivanagar, Bangalore 560 080, India.
| | - Venketesh T Ranganathan
- Soft Condensed Matter Group, Raman Research Institute, C. V. Raman Avenue, Sadashivanagar, Bangalore 560 080, India.
| | - Ranjini Bandyopadhyay
- Soft Condensed Matter Group, Raman Research Institute, C. V. Raman Avenue, Sadashivanagar, Bangalore 560 080, India.
| |
Collapse
|
3
|
Chen Y, Rogers SA, Narayanan S, Harden JL, Leheny RL. Microscopic ergodicity breaking governs the emergence and evolution of elasticity in glass-forming nanoclay suspensions. Phys Rev E 2020; 102:042619. [PMID: 33212706 DOI: 10.1103/physreve.102.042619] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Accepted: 10/10/2020] [Indexed: 11/07/2022]
Abstract
We report a study combining x-ray photon correlation spectroscopy (XPCS) with in situ rheology to investigate the microscopic dynamics and mechanical properties of aqueous suspensions of the synthetic hectorite clay Laponite, which is composed of charged, nanometer-scale, disk-shaped particles. The suspensions, with particle concentrations ranging from 3.25 to 3.75 wt %, evolve over time from a fluid to a soft glass that displays aging behavior. The XPCS measurements characterize the localization of the particles during the formation and aging of the soft-glass state. The fraction of localized particles, f_{0}, increases rapidly during the early formation stage and grows more slowly during subsequent aging, while the characteristic localization length r_{loc} steadily decreases. Despite the strongly varying rates of aging at different concentrations, both f_{0} and r_{loc} scale with the elastic shear modulus G^{'} in a manner independent of concentration. During the later aging stage, the scaling between r_{loc} and G^{'} agrees quantitatively with a prediction of naive mode coupling theory. Breakdown of agreement with the theory during the early formation stage indicates the prevalence of dynamic heterogeneity, suggesting the soft solid forms through precursors of dynamically localized clusters.
Collapse
Affiliation(s)
- Yihao Chen
- Department of Physics and Astronomy, Johns Hopkins University, Baltimore, Maryland 21218, USA
| | - Simon A Rogers
- Department of Chemical and Biomolecular Engineering, University of Illinois Urbana-Champaign, Champaign, Illinois 61801, USA
| | - Suresh Narayanan
- X-Ray Science Division, Argonne National Laboratory, Argonne, Illinois 60439, USA
| | - James L Harden
- Department of Physics & CAMaR, University of Ottawa, Ottawa, Ontario, Canada K1N 6N5
| | - Robert L Leheny
- Department of Physics and Astronomy, Johns Hopkins University, Baltimore, Maryland 21218, USA
| |
Collapse
|
4
|
Nigro V, Ruzicka B, Ruta B, Zontone F, Bertoldo M, Buratti E, Angelini R. Relaxation Dynamics, Softness, and Fragility of Microgels with Interpenetrated Polymer Networks. Macromolecules 2020. [DOI: 10.1021/acs.macromol.9b01560] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Valentina Nigro
- Istituto dei Sistemi Complessi del Consiglio Nazionale delle Ricerche (ISC-CNR), sede Sapienza, Pz.le Aldo Moro 5, I-00185 Roma, Italy
- Dipartimento di Fisica, Sapienza Università di Roma, I-00185 Roma, Italy
| | - Barbara Ruzicka
- Istituto dei Sistemi Complessi del Consiglio Nazionale delle Ricerche (ISC-CNR), sede Sapienza, Pz.le Aldo Moro 5, I-00185 Roma, Italy
- Dipartimento di Fisica, Sapienza Università di Roma, I-00185 Roma, Italy
| | - Beatrice Ruta
- France Univ Lyon, Universitè Claude Bernard Lyon 1, CNRS, Institut Lumière Matière, 69100 Villeurbanne, France
- ESRF The European Synchrotron, CS40220, 38043 Grenoble Cedex 9, France
| | - Federico Zontone
- ESRF The European Synchrotron, CS40220, 38043 Grenoble Cedex 9, France
| | - Monica Bertoldo
- Istituto per la Sintesi Organica e la Fotoreattività del Consiglio Nazionale delle Ricerche (ISOF-CNR), via P. Gobetti
101, 40129 Bologna, Italy
| | - Elena Buratti
- Istituto dei Sistemi Complessi del Consiglio Nazionale delle Ricerche (ISC-CNR), sede Sapienza, Pz.le Aldo Moro 5, I-00185 Roma, Italy
| | - Roberta Angelini
- Istituto dei Sistemi Complessi del Consiglio Nazionale delle Ricerche (ISC-CNR), sede Sapienza, Pz.le Aldo Moro 5, I-00185 Roma, Italy
- Dipartimento di Fisica, Sapienza Università di Roma, I-00185 Roma, Italy
| |
Collapse
|
5
|
Suman K, Joshi YM. Microstructure and Soft Glassy Dynamics of an Aqueous Laponite Dispersion. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2018; 34:13079-13103. [PMID: 30180583 DOI: 10.1021/acs.langmuir.8b01830] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Synthetic hectorite clay Laponite RD/XLG is composed of disk-shaped nanoparticles that acquire dissimilar charges when suspended in an aqueous medium. Owing to their property to spontaneously self-assemble, Laponite is used as a rheology modifier in a variety of commercial water-based products. In particular, an aqueous dispersion of Laponite undergoes a liquid-to-solid transition at about 1 vol % concentration. The evolution of the physical properties as the dispersion transforms to the solid state is reminiscent of physical aging in molecular as well as colloidal glasses. The corresponding soft glassy dynamics of an aqueous Laponite dispersion, including the rheological behavior, has been extensively studied in the literature. In this feature article, we take an overview of recent advances in understanding soft glassy dynamics and various efforts taken to understand the peculiar rheological behavior. Furthermore, the continuously developing microstructure that is responsible for the eventual formation of a soft solid state that supports its own weight against gravity has also been a topic of intense debate and discussion. In particularly, extensive experimental and theoretical studies lead to two types of microstructures for this system: an attractive gel-like or a repulsive glass-like structure. We carefully examine and critically analyze the literature and propose a state (phase) diagram that suggests an aqueous Laponite dispersion to be present in an attractive gel state.
Collapse
Affiliation(s)
- Khushboo Suman
- Department of Chemical Engineering , Indian Institute of Technology Kanpur , India
| | - Yogesh M Joshi
- Department of Chemical Engineering , Indian Institute of Technology Kanpur , India
| |
Collapse
|
6
|
Gadige P, Bandyopadhyay R. Electric field induced gelation in aqueous nanoclay suspensions. SOFT MATTER 2018; 14:6974-6982. [PMID: 30043802 DOI: 10.1039/c8sm00533h] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Aqueous colloidal LAPONITE® clay suspensions transform spontaneously to a soft solid-like arrested state as its aging or waiting time increases. This article reports the rapid transformation of aqueous LAPONITE® suspensions into soft solids due to the application of a DC electric field. A substantial increase in the speed of solidification at higher electric field strengths is also observed. The electric field is applied across two parallel brass plates immersed in the LAPONITE® suspension. The subsequent solidification that takes place on the surface of the positive electrode is attributed to the dominant negative surface charges on the LAPONITE® particles and the associated electrokinetic phenomena. With increasing electric field strength, a dramatic increase is recorded in the elastic moduli of the samples. These electric field induced LAPONITE® soft solids demonstrate all the typical rheological characteristics of soft glassy materials. They also exhibit a two-step shear melting process similar to that observed in attractive soft glasses. The microstructures of the samples, studied using cryo-scanning electron microscopy (SEM), are seen to consist of percolated network gel-like structures, with the connectivity of the gel network increasing with increasing electric field strengths. In comparison with salt induced gels, the electric field induced gels studied here are mechanically stronger and more stable over longer periods of time.
Collapse
Affiliation(s)
- Paramesh Gadige
- Soft Condensed Matter Group, Raman Research Institute, C. V. Raman Avenue, Sadashivanagar, Bangalore 560 080, India.
| | | |
Collapse
|
7
|
Sheikhi A, Afewerki S, Oklu R, Gaharwar AK, Khademhosseini A. Effect of ionic strength on shear-thinning nanoclay-polymer composite hydrogels. Biomater Sci 2018; 6:2073-2083. [PMID: 29944151 PMCID: PMC6085890 DOI: 10.1039/c8bm00469b] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Nanoclay-polymer shear-thinning composites are designed for a broad range of biomedical applications, including tissue engineering, drug delivery, and additive biomanufacturing. Despite the advances in clay-polymer injectable nanocomposites, colloidal properties of layered silicates are not fully considered in evaluating the in vitro performance of shear-thinning biomaterials (STBs). Here, as a model system, we investigate the effect of ions on the rheological properties and injectability of nanoclay-gelatin hydrogels to understand their behavior when prepared in physiological media. In particular, we study the effect of sodium chloride (NaCl) and calcium chloride (CaCl2), common salts in phosphate buffered saline (PBS) and cell culture media (e.g., Dulbecco's Modified Eagle's Medium, DMEM), on the structural organization of nanoclay (LAPONITE® XLG-XR, a hydrous lithium magnesium sodium silicate)-polymer composites, responsible for the shear-thinning properties and injectability of STBs. We show that the formation of nanoclay-polymer aggregates due to the ion-induced shrinkage of the diffuse double layer and eventually the liquid-solid phase separation decrease the resistance of STB against elastic deformation, decreasing the yield stress. Accordingly, the stress corresponding to the onset of structural breakdown (yield zone) is regulated by the ion type and concentration. These results are independent of the STB composition and can directly be translated into the physiological conditions. The exfoliated nanoclay undergoes visually undetectable aggregation upon mixing with gelatin in physiological media, resulting in heterogeneous hydrogels that phase separate under stress. This work provides fundamental insights into nanoclay-polymer interactions in physiological environments, paving the way for designing clay-based injectable biomaterials.
Collapse
Affiliation(s)
- Amir Sheikhi
- Biomaterials Innovation Research Center, Division of Biomedical Engineering, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Cambridge, MA 02139, USA
- Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Department of Bioengineering, University of California - Los Angeles, 410 Westwood Plaza, Los Angeles, CA 90095, USA
- Center for Minimally Invasive Therapeutics (C-MIT), California NanoSystems Institute (CNSI), University of California - Los Angeles, 570 Westwood Plaza, Los Angeles, CA 90095, USA
| | - Samson Afewerki
- Biomaterials Innovation Research Center, Division of Biomedical Engineering, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Cambridge, MA 02139, USA
- Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Rahmi Oklu
- Division of Vascular & Interventional Radiology, Mayo Clinic, Scottsdale, Arizona 85259, USA
| | - Akhilesh K. Gaharwar
- Department of Biomedical Engineering, Texas A&M University, College Station, TX 77843, USA
- Department of Materials Science and Engineering, Texas A&M University, College Station, TX 77843, USA
- Center for Remote Health Technologies and Systems, Texas A&M University, College Station, TX 77843, USA
| | - Ali Khademhosseini
- Biomaterials Innovation Research Center, Division of Biomedical Engineering, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Cambridge, MA 02139, USA
- Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Department of Bioengineering, University of California - Los Angeles, 410 Westwood Plaza, Los Angeles, CA 90095, USA
- Center for Minimally Invasive Therapeutics (C-MIT), California NanoSystems Institute (CNSI), University of California - Los Angeles, 570 Westwood Plaza, Los Angeles, CA 90095, USA
- Department of Radiology, David Geffen School of Medicine, University of California - Los Angeles, 10833 Le Conte Ave, Los Angeles, CA 90095, USA
- Department of Chemical and Biomolecular Engineering, University of California - Los Angeles, 5531 Boelter Hall, Los Angeles, CA 90095, USA
- Department of Bioindustrial Technologies, College of Animal Bioscience and Technology, Konkuk University, Seoul, 143-701, Republic of Korea
- Center of Nanotechnology, Department of physics, King Abdulaziz University, Jeddah, 21569, Saudi Arabia
| |
Collapse
|
8
|
Higler R, Krausser J, van der Gucht J, Zaccone A, Sprakel J. Linking slow dynamics and microscopic connectivity in dense suspensions of charged colloids. SOFT MATTER 2018; 14:780-788. [PMID: 29302676 DOI: 10.1039/c7sm01781b] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
The quest to unravel the nature of the glass transition, where the viscosity of a liquid increases by many orders of magnitude, while its static structure remains largely unaffected, remains unresolved. While various structural and dynamical precursors to vitrification have been identified, a predictive and quantitative description of how subtle changes at the microscopic scale give rise to the steep growth in macroscopic viscosity is missing. It was recently proposed that the presence of long-lived bonded structures within the liquid may provide the long-sought connection between local structure and global dynamics. Here we directly observe and quantify the connectivity dynamics in liquids of charged colloids en route to vitrification using three-dimensional confocal microscopy. We determine the dynamic structure from the real-space van Hove correlation function and from the particle trajectories, providing upper and lower bounds on connectivity dynamics. Based on these data, we extend Dyre's model for the glass transition to account for particle-level structural dynamics; this results in a microscopic expression for the slowing down of relaxations in the liquid that is in quantitative agreement with our experiments. These results indicate how vitrification may be understood as a dynamical connectivity transition with features that are strongly reminiscent of rigidity percolation scenarios.
Collapse
Affiliation(s)
- Ruben Higler
- Physical Chemistry and Soft Matter, Wageningen University & Research, Stippeneng 4, Wageningen, The Netherlands.
| | | | | | | | | |
Collapse
|
9
|
Niu R, Heidt S, Sreij R, Dekker RI, Hofmann M, Palberg T. Formation of a transient amorphous solid in low density aqueous charged sphere suspensions. Sci Rep 2017; 7:17044. [PMID: 29213089 PMCID: PMC5719089 DOI: 10.1038/s41598-017-17106-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Accepted: 11/22/2017] [Indexed: 11/09/2022] Open
Abstract
Colloidal glasses formed from hard spheres, nearly hard spheres, ellipsoids and platelets or their attractive variants, have been studied in great detail. Complementing and constraining theoretical approaches and simulations, the many different types of model systems have significantly advanced our understanding of the glass transition in general. Despite their early prediction, however, no experimental charged sphere glasses have been found at low density, where the competing process of crystallization prevails. We here report the formation of a transient amorphous solid formed from charged polymer spheres suspended in thoroughly deionized water at volume fractions of 0.0002-0.01. From optical experiments, we observe the presence of short-range order and an enhanced shear rigidity as compared to the stable polycrystalline solid of body centred cubic structure. On a density dependent time scale of hours to days, the amorphous solid transforms into this stable structure. We further present preliminary dynamic light scattering data showing the evolution of a second slow relaxation process possibly pointing to a dynamic heterogeneity known from other colloidal glasses and gels. We compare our findings to the predicted phase behaviour of charged sphere suspensions and discuss possible mechanisms for the formation of this peculiar type of colloidal glass.
Collapse
Affiliation(s)
- Ran Niu
- Institute of Physics, Johannes Gutenberg University, D-55099, Mainz, Germany.
| | - Sabrina Heidt
- Institute of Physics, Johannes Gutenberg University, D-55099, Mainz, Germany
- Graduate School Materials Science in Mainz, Staudinger Weg 9, D-55128, Mainz, Germany
| | - Ramsia Sreij
- Department of Chemistry Physical and Biophysical Chemistry (PC III), Bielefeld University, D-33615, Bielefeld, Germany
| | - Riande I Dekker
- Debye Institute for Nanomaterials Science, Utrecht University, NL-3584 CC, Utrecht, The Netherlands
| | - Maximilian Hofmann
- Institute of Physics, Johannes Gutenberg University, D-55099, Mainz, Germany
| | - Thomas Palberg
- Institute of Physics, Johannes Gutenberg University, D-55099, Mainz, Germany
| |
Collapse
|
10
|
Gadige P, Saha D, Behera SK, Bandyopadhyay R. Study of dynamical heterogeneities in colloidal nanoclay suspensions approaching dynamical arrest. Sci Rep 2017; 7:8017. [PMID: 28808265 PMCID: PMC5556041 DOI: 10.1038/s41598-017-08495-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2017] [Accepted: 07/14/2017] [Indexed: 11/08/2022] Open
Abstract
The dynamics of aqueous Laponite clay suspensions slow down with increasing sample waiting time (t w ). This behavior, and the material fragility that results, closely resemble the dynamical slowdown in fragile supercooled liquids with decreasing temperature, and are typically ascribed to the increasing sizes of distinct dynamical heterogeneities in the sample. In this article, we characterize the dynamical heterogeneities in Laponite suspensions by invoking the three-point dynamic susceptibility formalism. The average time-dependent two-point intensity autocorrelation and its sensitivity to t w are probed in dynamic light scattering experiments. Distributions of relaxation time scales, deduced from the Kohlrausch-Williams-Watts equation, are seen to widen with increasing t w . The calculated three-point dynamic susceptibility of Laponite suspensions exhibits a peak, with the peak height increasing with evolving t w at fixed volume fraction or with increasing volume fraction at fixed t w , thereby signifying the slowdown of the sample dynamics. The number of dynamically correlated particles, calculated from the peak-height, is seen to initially increase rapidly with increasing t w , before eventually slowing down close to the non-ergodic transition point. This observation is in agreement with published reports on supercooled liquids and hard sphere colloidal suspensions and offers a unique insight into the colloidal glass transition of Laponite suspensions.
Collapse
Affiliation(s)
- Paramesh Gadige
- Soft Condensed Matter Group, Raman Research Institute, C. V. Raman Avenue, Sadashivanagar, Bangalore, 560 080, India
| | - Debasish Saha
- Soft Condensed Matter Group, Raman Research Institute, C. V. Raman Avenue, Sadashivanagar, Bangalore, 560 080, India
| | - Sanjay Kumar Behera
- Soft Condensed Matter Group, Raman Research Institute, C. V. Raman Avenue, Sadashivanagar, Bangalore, 560 080, India
| | - Ranjini Bandyopadhyay
- Soft Condensed Matter Group, Raman Research Institute, C. V. Raman Avenue, Sadashivanagar, Bangalore, 560 080, India.
| |
Collapse
|
11
|
Thrithamara Ranganathan V, Bandyopadhyay R. Effects of aging on the yielding behaviour of acid and salt induced Laponite gels. Colloids Surf A Physicochem Eng Asp 2017. [DOI: 10.1016/j.colsurfa.2017.03.006] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
12
|
Marques FADM, Angelini R, Ruocco G, Ruzicka B. Isotopic Effect on the Gel and Glass Formation of a Charged Colloidal Clay: Laponite. J Phys Chem B 2017; 121:4576-4582. [PMID: 28376301 DOI: 10.1021/acs.jpcb.6b12596] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The time evolution of both dynamic and static structure factors of a charged colloidal clay, Laponite, dispersed in both H2O and D2O solvents has been investigated through multiangle dynamic light scattering (DLS) and small-angle X-ray scattering (SAXS) as a function of weight concentration. The aging phenomenology and the formation of arrested states, both gel and glass, are preserved in D2O, while the dynamics is slowed down with respect to water. These findings are important to understand the role played by the solvent in the interparticle interactions and for techniques such as neutron scattering and nuclear magnetic resonance that allow for the extension of the accessible scattering vectors and time scales.
Collapse
Affiliation(s)
| | - Roberta Angelini
- ISC-CNR, Sede Sapienza , I-00185 Roma, Italy.,Dipartimento di Fisica, Sapienza Università di Roma , I-00185 Roma, Italy
| | - Giancarlo Ruocco
- Dipartimento di Fisica, Sapienza Università di Roma , I-00185 Roma, Italy.,Center for Life Nano Science, IIT@Sapienza, Istituto Italiano di Tecnologia , Viale Regina Elena 291, 00161 Roma, Italy
| | - Barbara Ruzicka
- ISC-CNR, Sede Sapienza , I-00185 Roma, Italy.,Dipartimento di Fisica, Sapienza Università di Roma , I-00185 Roma, Italy
| |
Collapse
|
13
|
Jedrzejowska A, Wojnarowska Z, Adrjanowicz K, Ngai KL, Paluch M. Toward a better understanding of dielectric responses of van der Waals liquids: The role of chemical structures. J Chem Phys 2017. [DOI: 10.1063/1.4977736] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Agnieszka Jedrzejowska
- Institute of Physics, University of Silesia, Uniwersytecka 4, 40-007 Katowice, Poland
- Silesian Center for Education and Interdisciplinary Research, 75 Pulku Piechoty 1, 41-500 Chorzow, Poland
| | - Zaneta Wojnarowska
- Institute of Physics, University of Silesia, Uniwersytecka 4, 40-007 Katowice, Poland
- Silesian Center for Education and Interdisciplinary Research, 75 Pulku Piechoty 1, 41-500 Chorzow, Poland
| | - Karolina Adrjanowicz
- Institute of Physics, University of Silesia, Uniwersytecka 4, 40-007 Katowice, Poland
- Silesian Center for Education and Interdisciplinary Research, 75 Pulku Piechoty 1, 41-500 Chorzow, Poland
| | - K. L. Ngai
- CNR-IPCF, Dipartimento di Fisica, Università di Pisa, Largo B. Pontecorvo 3, I-56127 Pisa, Italy
| | - Marian Paluch
- Institute of Physics, University of Silesia, Uniwersytecka 4, 40-007 Katowice, Poland
- Silesian Center for Education and Interdisciplinary Research, 75 Pulku Piechoty 1, 41-500 Chorzow, Poland
| |
Collapse
|
14
|
Ali S, Bandyopadhyay R. Aggregation and stability of anisotropic charged clay colloids in aqueous medium in the presence of salt. Faraday Discuss 2016; 186:455-71. [PMID: 26789113 DOI: 10.1039/c5fd00124b] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Na-montmorillonite nanoclay is a colloid of layered mineral silicate. When dispersed in water, this mineral swells on absorption of water and exfoliates into platelets with electric double layers on their surfaces. Even at low particle concentration, the aqueous dispersion can exhibit a spontaneous ergodicity breaking phase transition from a free flowing liquid to nonequilibrium, kinetically arrested and disordered states such as gels and glasses. In an earlier publication [Applied Clay Science, 2015, 114, 8592], we showed that the stability of clay gels can be enhanced by adding a salt later to the clay dispersion prepared in deionized water, rather than by adding the clay mineral to a previously mixed salt solution. Here, we directly track the collapsing interface of sedimenting clay gels using an optical method and show that adding salt after dispersing the clay mineral does indeed result in more stable gels even in very dilute dispersions. These weak gels are seen to exhibit a transient collapse after a finite delay time, a phenomenon observed previously in depletion gels. The velocity of the collapse oscillates with the age of the sample. However, the average velocity of collapse increases with sample age up to a peak value before decreasing at higher ages. With increasing salt concentration, the delay time for transient collapse decreases, while the peak value of the collapsing velocity increases. Using ultrasound attenuation spectroscopy, rheometry and cryogenic scanning electron microscopy, we confirm that morphological changes of the gel network assembly, facilitated by thermal fluctuations, lead to the observed collapse phenomenon. Since clay minerals are used extensively in polymer nanocomposites, as rheological modifiers, stabilizers and gas absorbents, we believe that the results reported in this work are extremely useful for several practical applications and also for understanding geophysical phenomena such as the formation and stability of quicksand and river deltas.
Collapse
Affiliation(s)
- Samim Ali
- Raman Research Institute, C. V. Raman Avenue, Sadashivanagar, Bangalore 560080, India.
| | - Ranjini Bandyopadhyay
- Raman Research Institute, C. V. Raman Avenue, Sadashivanagar, Bangalore 560080, India.
| |
Collapse
|
15
|
Ali S, Bandyopadhyay R. Effect of electrolytes on the microstructure and yielding of aqueous dispersions of colloidal clay. SOFT MATTER 2016; 12:414-421. [PMID: 26477340 DOI: 10.1039/c5sm01700a] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Na-montmorillonite is a natural clay mineral and is available in abundance in nature. The aqueous dispersions of charged and anisotropic platelets of this mineral exhibit non-ergodic kinetically arrested states ranging from soft glassy phases dominated by interparticle repulsions to colloidal gels stabilized by salt induced attractive interactions. When the salt concentration in the dispersing medium is varied systematically, viscoelasticity and yield stress of the dispersion show non-monotonic behavior at a critical salt concentration, thus signifying a morphological change in the dispersion microstructures. We directly visualize the microscopic structures of these kinetically arrested phases using cryogenic scanning electron microscopy. We observe the existence of honeycomb-like network morphologies for a wide range of salt concentrations. The transition of the gel morphology, dominated by overlapping coin (OC) and house of cards (HoC) associations of clay particles at low salt concentrations to a new network structure dominated by face-face coagulation of platelets, is observed across the critical salt concentration. We further assess the stability of these gels under gravity using electroacoustics. This study, performed for concentrated clay dispersions for a wide concentration range of externally added salt, is useful in our understanding of many geophysical phenomena that involve the salt induced aggregation of natural clay minerals.
Collapse
Affiliation(s)
- Samim Ali
- Raman Research Institute, C. V. Raman Avenue, Sadashivanagar, Bangalore 560080, India.
| | | |
Collapse
|
16
|
Hazra S, Sircar S, Khatun T, Choudhury MD, Giri A, Karmakar S, Dutta T, Das S, Tarafdar S. Unstable crack propagation in LAPONITE® gels: selection of a sinusoidal mode in an electric field. RSC Adv 2016. [DOI: 10.1039/c6ra12116k] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
We report observation of wavy cracks and naturally patterned fracture surfaces in drying LAPONITE® paste.
Collapse
Affiliation(s)
- Somasri Hazra
- Condensed Matter Physics Research Centre
- Physics Department
- Jadavpur University
- Kolkata 700032
- India
| | - Sudeshna Sircar
- Condensed Matter Physics Research Centre
- Physics Department
- Jadavpur University
- Kolkata 700032
- India
| | - Tajkera Khatun
- Physics Department
- Charuchandra College
- Kolkata 700029
- India
| | - Moutushi Dutta Choudhury
- Condensed Matter Physics Research Centre
- Physics Department
- Jadavpur University
- Kolkata 700032
- India
| | - Abhra Giri
- Condensed Matter Physics Research Centre
- Physics Department
- Jadavpur University
- Kolkata 700032
- India
| | - Sanat Karmakar
- Condensed Matter Physics Research Centre
- Physics Department
- Jadavpur University
- Kolkata 700032
- India
| | - Tapati Dutta
- Physics Department
- St. Xavier's College
- Kolkata 700016
- India
| | - Shantanu Das
- Reactor Control Division
- Bhabha Atomic Research Centre
- Mumbai 400085
- India
| | - Sujata Tarafdar
- Condensed Matter Physics Research Centre
- Physics Department
- Jadavpur University
- Kolkata 700032
- India
| |
Collapse
|
17
|
Rams-Baron M, Wojnarowska Z, Jedrzejowska A, Swiety-Pospiech A, Paluch M. The implications of various molecular interactions on the dielectric behavior of cimetidine and cimetidine hydrochloride. RSC Adv 2016. [DOI: 10.1039/c6ra17685b] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
We employed broadband dielectric spectroscopy to characterize the molecular dynamics of cimetidine base and cimetidine hydrochloride, materials with similar structural skeletons but involving different molecular interactions (ionic vs. non-ionic).
Collapse
Affiliation(s)
- M. Rams-Baron
- Institute of Physics
- University of Silesia
- 40-007 Katowice
- Poland
- Silesian Center for Education and Interdisciplinary Research
| | - Z. Wojnarowska
- Institute of Physics
- University of Silesia
- 40-007 Katowice
- Poland
- Silesian Center for Education and Interdisciplinary Research
| | - A. Jedrzejowska
- Institute of Physics
- University of Silesia
- 40-007 Katowice
- Poland
- Silesian Center for Education and Interdisciplinary Research
| | - A. Swiety-Pospiech
- Institute of Physics
- University of Silesia
- 40-007 Katowice
- Poland
- Silesian Center for Education and Interdisciplinary Research
| | - M. Paluch
- Institute of Physics
- University of Silesia
- 40-007 Katowice
- Poland
- Silesian Center for Education and Interdisciplinary Research
| |
Collapse
|
18
|
Saha D, Joshi YM, Bandyopadhyay R. Kinetics of the glass transition of fragile soft colloidal suspensions. J Chem Phys 2015; 143:214901. [DOI: 10.1063/1.4936625] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Affiliation(s)
- Debasish Saha
- Soft Condensed Matter Group, Raman Research Institute, C. V. Raman Avenue, Sadashivanagar, Bangalore 560 080, India
| | - Yogesh M. Joshi
- Department of Chemical Engineering, Indian Institute of Technology Kanpur, Kanpur 208 016, India
| | - Ranjini Bandyopadhyay
- Soft Condensed Matter Group, Raman Research Institute, C. V. Raman Avenue, Sadashivanagar, Bangalore 560 080, India
| |
Collapse
|
19
|
Saha D, Bandyopadhyay R, Joshi YM. Dynamic light scattering study and DLVO analysis of physicochemical interactions in colloidal suspensions of charged disks. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2015; 31:3012-3020. [PMID: 25726709 DOI: 10.1021/acs.langmuir.5b00291] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
The interparticle interactions in colloidal suspensions of charged disks of Laponite clay in water were investigated using dynamic light scattering (DLS) and Derjaguin-Landau-Verwey-Overbeek (DLVO) theory. We studied the effects of clay concentration (C(L)), the concentration of externally added salt (C(S)), and temperature (T) on the microscopic dynamics of the clay suspensions. The fast (τ1) and mean slow relaxation times (⟨τ(ww)⟩) of Laponite suspensions were extracted from intensity autocorrelation functions measured at different waiting times (t(w)) after sample preparation. Comprehensive Laponite concentration-salt concentration-temperature-time superpositions of both the microscopic diffusive time scales and the stretching exponent corresponding to the slow relaxation process highlight the self-similar nature of the energy landscapes of the Laponite suspensions. The evolution of the sodium ion concentration in the aging suspension with tw, measured for several values of CL, CS, and T, was used in a DLVO analysis of the free energy of the suspension for two charged disks parallely approaching one another. This analysis confirms that, in addition to repulsive interparticle interactions, attractive interactions also play a pivotal role in the microscopic dynamics of spontaneously evolving Laponite suspensions.
Collapse
Affiliation(s)
- Debasish Saha
- †Soft Condensed Matter Group, Raman Research Institute, C. V. Raman Avenue, Sadashivanagar, Bangalore 560 080, India
| | - Ranjini Bandyopadhyay
- †Soft Condensed Matter Group, Raman Research Institute, C. V. Raman Avenue, Sadashivanagar, Bangalore 560 080, India
| | - Yogesh M Joshi
- ‡Department of Chemical Engineering, Indian Institute of Technology Kanpur, Kanpur 208 016, India
| |
Collapse
|
20
|
Abstract
Many household and industrially important soft colloidal materials, such as pastes, concentrated suspensions and emulsions, foams, slurries, inks, and paints, are very viscous and do not flow over practical timescales until sufficient stress is applied. This behavior originates from restricted mobility of the constituents arrested in disordered structures of varying length scales, termed colloidal glasses and gels. Usually these materials are thermodynamically out of equilibrium, which induces a time-dependent evolution of the structure and the properties. This review presents an overview of the rheological behavior of this class of materials. We discuss the experimental observations and theoretical developments regarding the microstructure of these materials, emphasizing the complex coupling between the deformation field and nonequilibrium structures in colloidal glasses and gels, which leads to a rich array of rheological behaviors with profound implications for various industrial processes and products.
Collapse
Affiliation(s)
- Yogesh M Joshi
- Department of Chemical Engineering, Indian Institute of Technology Kanpur, Kanpur 208016, India;
| |
Collapse
|