1
|
Zhang S, Jiang T, Li M, Sun H, Wu H, Wu W, Li Y, Jiang H. Graphene-Based Wound Dressings for Wound Healing: Mechanism, Technical Analysis, and Application Status. ACS Biomater Sci Eng 2024; 10:6790-6813. [PMID: 39467733 DOI: 10.1021/acsbiomaterials.4c01142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/30/2024]
Abstract
The development of novel wound dressings is critical in medical care. Graphene and its derivatives possess excellent biomedical properties, making them highly suitable for various applications in medical dressings. This review provides a comprehensive technical analysis and the current application status of graphene-based medical dressings. Initially, we discuss the chemical structure and the fabrication method of graphene and its derivatives. We then provide a detailed summary of the mechanisms by which graphene materials promote wound repair across the four stages of wound healing. Subsequently, we categorize the types of graphene-based wound dressings and analyze corresponding characteristics. Finally, we analyze the challenges encountered at present and propose solutions regarding future development trends. This paper aims to serve as a reference for further research in skin tissue engineering and the development of innovative graphene-based medical dressings.
Collapse
Affiliation(s)
- Shanguo Zhang
- School of Mechatronics Engineering, Harbin Institute of Technology, No. 92 West Da-zhi Street, Harbin 150001, People's Republic of China
| | - Tianyi Jiang
- School of Mechatronics Engineering, Harbin Institute of Technology, No. 92 West Da-zhi Street, Harbin 150001, People's Republic of China
| | - Ming Li
- School of Mechatronics Engineering, Harbin Institute of Technology, No. 92 West Da-zhi Street, Harbin 150001, People's Republic of China
| | - Haoxiu Sun
- School of Life Sciences, Harbin Institute of Technology, No. 2 Yikuang Street, Harbin 150001, People's Republic of China
- School of Interdisciplinary Medicine and Engineering, Harbin Medical University, No. 157 Health Road, Harbin 150001, People's Republic of China
| | - Hao Wu
- School of Mechatronics Engineering, Harbin Institute of Technology, No. 92 West Da-zhi Street, Harbin 150001, People's Republic of China
| | - Wenlong Wu
- School of Mechatronics Engineering, Harbin Institute of Technology, No. 92 West Da-zhi Street, Harbin 150001, People's Republic of China
| | - Yu Li
- School of Life Sciences, Harbin Institute of Technology, No. 2 Yikuang Street, Harbin 150001, People's Republic of China
| | - Hongyuan Jiang
- School of Mechatronics Engineering, Harbin Institute of Technology, No. 92 West Da-zhi Street, Harbin 150001, People's Republic of China
| |
Collapse
|
2
|
Kim JU, Ko J, Kim YS, Jung M, Jang MH, An YH, Hwang NS. Electrical Stimulating Redox Membrane Incorporated with PVA/Gelatin Nanofiber for Diabetic Wound Healing. Adv Healthc Mater 2024; 13:e2400170. [PMID: 38989721 DOI: 10.1002/adhm.202400170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 06/18/2024] [Indexed: 07/12/2024]
Abstract
Chronic wounds adversely affect the quality of life. Although electrical stimulation has been utilized to treat chronic wounds, there are still limitations to practicing it due to the complicated power system. Herein, an electrostimulating membrane incorporated with electrospun nanofiber (M-sheet) to treat diabetic wounds is developed. Through the screen printing method, the various alternate patterns of both Zn and AgCl on a polyurethane substrate, generating redox-mediated electrical fields are introduced. The antibacterial ability of the patterned membrane against both E. coli and S. aureus is confirmed. Furthermore, the poly(vinyl alcohol) (PVA)/gelatin electrospun fiber is incorporated into the patterned membrane to enhance biocompatibility and maintain the wet condition in the wound environment. The M-sheet can improve cell proliferation and migration in vitro and has an immune regulatory effect by inducing the polarization of macrophage to the M2 phenotype. Finally, when applied to a diabetic skin wound model, the M-sheet displays an accelerated wound healing rate and enhances re-epithelialization, collagen synthesis, and angiogenesis. It suggests that the M-sheet is a simple and portable system for the spontaneous generation of electrical stimulation and has great potential to be used in the practical wound and other tissue engineering applications.
Collapse
Affiliation(s)
- Jeong-Uk Kim
- School of Chemical and Biological Engineering, Seoul National University, Seoul, 08826, Republic of Korea
| | - Junghyeon Ko
- School of Chemical and Biological Engineering, Seoul National University, Seoul, 08826, Republic of Korea
| | - Ye-Sol Kim
- School of Chemical and Biological Engineering, Seoul National University, Seoul, 08826, Republic of Korea
| | - Minwoong Jung
- Biosensor Laboratories Inc, Seoul National University, Gwanak-gu, Seoul, 08826, Republic of Korea
| | - Myoung-Hoon Jang
- Biosensor Laboratories Inc, Seoul National University, Gwanak-gu, Seoul, 08826, Republic of Korea
| | - Young-Hyeon An
- BioMax/N-Bio Institute, Seoul National University, Seoul, 08826, Republic of Korea
| | - Nathaniel S Hwang
- School of Chemical and Biological Engineering, Seoul National University, Seoul, 08826, Republic of Korea
- BioMax/N-Bio Institute, Seoul National University, Seoul, 08826, Republic of Korea
- Institute of Engineering Research, Seoul National University, Seoul, 08826, Republic of Korea
| |
Collapse
|
3
|
Rahimnejad M, Makkar H, Dal-Fabbro R, Malda J, Sriram G, Bottino MC. Biofabrication Strategies for Oral Soft Tissue Regeneration. Adv Healthc Mater 2024; 13:e2304537. [PMID: 38529835 PMCID: PMC11254569 DOI: 10.1002/adhm.202304537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 03/01/2024] [Indexed: 03/27/2024]
Abstract
Gingival recession, a prevalent condition affecting the gum tissues, is characterized by the exposure of tooth root surfaces due to the displacement of the gingival margin. This review explores conventional treatments, highlighting their limitations and the quest for innovative alternatives. Importantly, it emphasizes the critical considerations in gingival tissue engineering leveraging on cells, biomaterials, and signaling factors. Successful tissue-engineered gingival constructs hinge on strategic choices such as cell sources, scaffold design, mechanical properties, and growth factor delivery. Unveiling advancements in recent biofabrication technologies like 3D bioprinting, electrospinning, and microfluidic organ-on-chip systems, this review elucidates their precise control over cell arrangement, biomaterials, and signaling cues. These technologies empower the recapitulation of microphysiological features, enabling the development of gingival constructs that closely emulate the anatomical, physiological, and functional characteristics of native gingival tissues. The review explores diverse engineering strategies aiming at the biofabrication of realistic tissue-engineered gingival grafts. Further, the parallels between the skin and gingival tissues are highlighted, exploring the potential transfer of biofabrication approaches from skin tissue regeneration to gingival tissue engineering. To conclude, the exploration of innovative biofabrication technologies for gingival tissues and inspiration drawn from skin tissue engineering look forward to a transformative era in regenerative dentistry with improved clinical outcomes.
Collapse
Affiliation(s)
- Maedeh Rahimnejad
- Department of Cariology, Restorative Sciences, and Endodontics, School of Dentistry, University of Michigan, Ann Arbor, MI, USA
| | - Hardik Makkar
- Faculty of Dentistry, National University of Singapore, Singapore
| | - Renan Dal-Fabbro
- Department of Cariology, Restorative Sciences, and Endodontics, School of Dentistry, University of Michigan, Ann Arbor, MI, USA
| | - Jos Malda
- Regenerative Medicine Center Utrecht, Utrecht, The Netherlands
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
- Department of Orthopedics, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Gopu Sriram
- Faculty of Dentistry, National University of Singapore, Singapore
- NUS Centre for Additive Manufacturing (AM.NUS), National University of Singapore, Singapore
- Department of Biomedical Engineering, National University of Singapore, Singapore
| | - Marco C. Bottino
- Department of Cariology, Restorative Sciences, and Endodontics, School of Dentistry, University of Michigan, Ann Arbor, MI, USA
- Department of Biomedical Engineering, College of Engineering, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
4
|
Vasudevan A, Majumder N, Sharma I, Kaur I, Sundarrajan S, Venugopal JR, Vijayaraghavan P, Singh N, Ramakrishna S, Ghosh S, M Tripathi D, Kaur S. Liver Extracellular Matrix-Based Nanofiber Scaffolds for the Culture of Primary Hepatocytes and Drug Screening. ACS Biomater Sci Eng 2023; 9:6357-6368. [PMID: 37847169 DOI: 10.1021/acsbiomaterials.3c01216] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2023]
Abstract
Immortalized liver cell lines and primary hepatocytes are currently used as in vitro models for hepatotoxic drug screening. However, a decline in the viability and functionality of hepatocytes with time is an important limitation of these culture models. Advancements in tissue engineering techniques have allowed us to overcome this challenge by designing suitable scaffolds for maintaining viable and functional primary hepatocytes for a longer period of time in culture. In the current study, we fabricated liver-specific nanofiber scaffolds with polylactic acid (PLA) along with a decellularized liver extracellular matrix (LEM) by the electrospinning technique. The fabricated hybrid PLA-LEM scaffolds were more hydrophilic and had better swelling properties than the PLA scaffolds. The hybrid scaffolds had a pore size of 38 ± 8 μm and supported primary rat hepatocyte cultures for 10 days. Increased viability (2-fold increase in the number of live cells) and functionality (5-fold increase in albumin secretion) were observed in primary hepatocytes cultured on the PLA-LEM scaffolds as compared to those on conventional collagen-coated plates on day 10 of culture. A significant increase in CYP1A2 enzyme activity was observed in hepatocytes cultured on PLA-LEM hybrid scaffolds in comparison to those on collagen upon induction with phenobarbital. Drugs like acetaminophen and rifampicin showed the highest toxicity in hepatocytes cultured on hybrid scaffolds. Also, the lethal dose of these drugs in rodents was accurately predicted as 1.6 g/kg and 594 mg/kg, respectively, from the corresponding IC50 values obtained from drug-treated hepatocytes on hybrid scaffolds. Thus, the fabricated liver-specific electrospun scaffolds maintained primary hepatocyte viability and functionality for an extended period in culture and served as an effective ex vivo drug screening platform to predict an accurate in vivo drug-induced hepatotoxicity.
Collapse
Affiliation(s)
- Ashwini Vasudevan
- Department of Molecular and Cellular Medicine, Institute of Liver and Biliary Sciences, New Delhi 110070, India
- Amity Institute of Biotechnology, Sector-125, Amity University Uttar Pradesh, Noida 201301, India
| | - Nilotpal Majumder
- Department of Textile and Fibre Engineering, Indian Institute of Technology Delhi, New Delhi 110016, India
| | - Indu Sharma
- Department of Molecular and Cellular Medicine, Institute of Liver and Biliary Sciences, New Delhi 110070, India
| | - Impreet Kaur
- Department of Molecular and Cellular Medicine, Institute of Liver and Biliary Sciences, New Delhi 110070, India
| | - Subramanian Sundarrajan
- Department of Mechanical Engineering, National University of Singapore, Singapore 117581, Singapore
- Department of Prosthodontics, Saveetha Dental College and Hospitals, Saveetha Institute of Medical & Technical Sciences, Saveetha University, Chennai 600077, India
| | - Jayarama Reddy Venugopal
- Faculty of Industrial Sciences and Technology, Universiti Malaysia Pahang, Kuantan 26600, Malaysia
| | - Pooja Vijayaraghavan
- Amity Institute of Biotechnology, Sector-125, Amity University Uttar Pradesh, Noida 201301, India
| | - Neetu Singh
- Centre for Biomedical Engineering, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
| | - Seeram Ramakrishna
- Department of Mechanical Engineering, National University of Singapore, Singapore 117581, Singapore
| | - Sourabh Ghosh
- Department of Textile and Fibre Engineering, Indian Institute of Technology Delhi, New Delhi 110016, India
| | - Dinesh M Tripathi
- Department of Molecular and Cellular Medicine, Institute of Liver and Biliary Sciences, New Delhi 110070, India
| | - Savneet Kaur
- Department of Molecular and Cellular Medicine, Institute of Liver and Biliary Sciences, New Delhi 110070, India
| |
Collapse
|
5
|
Elshazly N, Saad MM, El Backly RM, Hamdy A, Patruno M, Nouh S, Saha S, Chakraborty J, Marei MK. Nanoscale borosilicate bioactive glass for regenerative therapy of full-thickness skin defects in rabbit animal model. Front Bioeng Biotechnol 2023; 11:1036125. [PMID: 37274157 PMCID: PMC10233017 DOI: 10.3389/fbioe.2023.1036125] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Accepted: 05/08/2023] [Indexed: 06/06/2023] Open
Abstract
Bioactive glass (BG) occupies a significant position in the field of hard and soft tissue regeneration. Different processing techniques and formulas have been introduced to expand their regenerative, angiogenic, and antibacterial properties. In the present study, a new formula of bborosilicate bioactive glass nanofibers was prepared and tested for its wound-healing efficacy in a rabbit animal model. The glass formula ((1-2) mol% of B2O3 (68-69) mol% of SiO2, and (29-30) mol% of CaO) was prepared primarily by the sol-gel technique followed by the electrospinning technique. The material was characterized for its ultrastructure using scanning electron microscopy, chemical composition using FTIR, and its dynamic in vitro biodegradability using ICP-AES. Twelve rabbits were subjected to surgical induction of full-thickness skin defects using a 1 cm2 custom-made stainlessteel skin punch. The bioactive glass nanofibers were used as a grafting material in 6 experimental rabbits, while the defects in the remaining rabbits were considered as the negative control samples. All defects were assessed clinically for the decrease in wound size and clinical signs of healing and histologically for angiogenesis, collagen density, inflammatory response, cell recruitment, epithelial lining, and appendages at 1,2 and 3 weeks following the intervention. Structural analysis of the glass fibers confirmed their nano-size which ranged from 150 to 700 nm. Moreover, the chemical analysis confirmed the presence of SiO2 and B2O3 groups within the structure of the nanofibers. Additionally, dynamic biodegradation analysis confirmed the rapid degradation of the material starting from the first 24 h and rapid leaching of calcium, silicon, and boron ions confirming its bioactivity. The wound healing study of the nanofibrous scaffold confirmed its ability to accelerate wound healing and the closure rate in healthy rabbits. Histological analysis of the defects confirmed the angiogenic, regenerative and antibacterial ability of the material throughout the study period. The results unveil the powerful therapeutic properties of the formed nanofibers and open a new gate for more experimental and clinical applications.
Collapse
Affiliation(s)
- Noha Elshazly
- Tissue Engineering Laboratories, Faculty of Dentistry, Alexandria University, Alexandria, Egypt
- Department of Comparative Biomedicine and Food Science, University of Padova, Legnaro, Italy
| | - Manal M. Saad
- Tissue Engineering Laboratories, Faculty of Dentistry, Alexandria University, Alexandria, Egypt
- Oral Biology, Faculty of Oral and Dental Medicine, Ahram Canadian University, Giza, Egypt
| | - Rania M. El Backly
- Tissue Engineering Laboratories, Faculty of Dentistry, Alexandria University, Alexandria, Egypt
- Endodontics, Conservative Dentistry Department, Faculty of Dentistry, Alexandria University, Alexandria, Egypt
| | - Ayat Hamdy
- Tissue Engineering Laboratories, Faculty of Dentistry, Alexandria University, Alexandria, Egypt
| | - Marco Patruno
- Department of Comparative Biomedicine and Food Science, University of Padova, Legnaro, Italy
| | - Samir Nouh
- Tissue Engineering Laboratories, Faculty of Dentistry, Alexandria University, Alexandria, Egypt
- Department of Surgery, Faculty of Veterinary Medicine, Alexandria University, Alexandria, Egypt
| | - Suman Saha
- Bioceramics and Coating Division, Central Glass and Ceramics Research Institutes, Kolkata, India
| | - Jui Chakraborty
- Bioceramics and Coating Division, Central Glass and Ceramics Research Institutes, Kolkata, India
| | - Mona K. Marei
- Tissue Engineering Laboratories, Faculty of Dentistry, Alexandria University, Alexandria, Egypt
- Department of Removable Prosthodontics, Faculty of Dentistry, Alexandria University, Alexandria, Egypt
| |
Collapse
|
6
|
Electrohydrodynamic Techniques for the Manufacture and/or Immobilization of Vesicles. Polymers (Basel) 2023; 15:polym15040795. [PMID: 36850078 PMCID: PMC9963335 DOI: 10.3390/polym15040795] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 01/30/2023] [Accepted: 02/03/2023] [Indexed: 02/09/2023] Open
Abstract
The development of accurate drug delivery systems is one of the main challenges in the biomedical field. A huge variety of structures, such as vesicles, nanoparticles, and nanofibers, have been proposed as carriers for bioactive agents, aiming for precision in administration and dosage, safety, and bioavailability. This review covers the use of electrohydrodynamic techniques both for the immobilization and for the synthesis of vesicles in a non-conventional way. The state of the art discusses the most recent advances in this field as well as the advantages and limitations of electrospun and electrosprayed amphiphilic structures as precursor templates for the in situ vesicle self-assembly. Finally, the perspectives and challenges of combined strategies for the development of advanced structures for the delivery of bioactive agents are analyzed.
Collapse
|
7
|
Li J, Chen JN, Peng ZX, Chen NB, Liu CB, Zhang P, Zhang X, Chen GQ. Multifunctional Electrospinning Polyhydroxyalkanoate Fibrous Scaffolds with Antibacterial and Angiogenesis Effects for Accelerating Wound Healing. ACS APPLIED MATERIALS & INTERFACES 2023; 15:364-377. [PMID: 36577512 DOI: 10.1021/acsami.2c16905] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
To treat large-scale wounds or chronic ulcers, it is highly desirable to develop multifunctional wound dressings that integrate antibacterial and angiogenic properties. While many biomaterials have been fabricated as wound dressings for skin regeneration, few reports have addressed the issue of complete skin regeneration due to the lack of vasculature and hair follicles. Herein, an instructive poly(3-hydroxybutyrate-co-4-hydroxybutyrate) (P34HB) fibrous wound dressing that integrates an antibacterial ciprofloxacin (CIP) and pro-angiogenic dimethyloxalylglycine (DMOG) is successfully prepared via electrospinning. The resultant dressings exhibit suitable flexibility with tensile strength and elongation at break up to 4.08 ± 0.18 MPa and 354.8 ± 18.4%, respectively. The in vitro results revealed that the groups of P34HB/CIP/DMOG dressings presented excellent biocompatibility on cell proliferation and significantly promote the spread and migration of L929 cells in both transwell and scratch assays. Capillary-like tube formation is also significantly enhanced in the P34HB/CIP/DMOG group dressings. Additionally, dressings from the P34HB/CIP and P34HB/CIP/DMOG groups show a broad spectrum of antimicrobial action against Gram-positive Staphylococcus aureus and Gram-negative Escherichia coli. In vivo studies further demonstrated that the prepared dressings in the P34HB/CIP/DMOG group not only improved wound closure, increased re-epithelialization and collagen formation, as well as reduced inflammatory response but also increased angiogenesis and remodeling, resulting in complete skin regeneration and hair follicles. Collectively, this work provides a simple but efficient approach for the design of a versatile wound dressing with the potential to have a synergistic effect on the rapid stimulation of angiogenesis as well as antibacterial activity in full-thickness skin repair.
Collapse
Affiliation(s)
- Jian Li
- Shenzhen Engineering Research Center for Medical Bioactive Materials, Center for Translational Medicine Research & Development, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong 518055, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jiang-Nan Chen
- School of Life Sciences, Center for Synthetic and Systems Biology, Tsinghua University, Beijing 100084, China
- Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing 100084, China
| | - Zi-Xin Peng
- Shenzhen Engineering Research Center for Medical Bioactive Materials, Center for Translational Medicine Research & Development, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong 518055, China
| | - Ning-Bo Chen
- Research Laboratory for Biomedical Optics and Molecular Imaging, CAS Key Laboratory of Health Informatics, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Cheng-Bo Liu
- Research Laboratory for Biomedical Optics and Molecular Imaging, CAS Key Laboratory of Health Informatics, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Peng Zhang
- Shenzhen Engineering Research Center for Medical Bioactive Materials, Center for Translational Medicine Research & Development, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong 518055, China
| | - Xu Zhang
- Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing 100084, China
- Key Laboratory of Industrial Biocatalysis, Ministry of Education, Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
| | - Guo-Qiang Chen
- School of Life Sciences, Center for Synthetic and Systems Biology, Tsinghua University, Beijing 100084, China
- Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing 100084, China
- Key Laboratory of Industrial Biocatalysis, Ministry of Education, Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
| |
Collapse
|
8
|
Aloe vera Nanofibers Contained Pseudomonas Bacteriophages Fabrication, Characterization, and Biofunction. BIONANOSCIENCE 2022. [DOI: 10.1007/s12668-022-01016-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
9
|
Singh YP, Dasgupta S. Gelatin-based electrospun and lyophilized scaffolds with nano scale feature for bone tissue engineering application: review. JOURNAL OF BIOMATERIALS SCIENCE. POLYMER EDITION 2022; 33:1704-1758. [PMID: 35443894 DOI: 10.1080/09205063.2022.2068943] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The rebuilding of the normal functioning of the damaged human body bone tissue is one of the main objectives of bone tissue engineering (BTE). Fabricated scaffolds are mostly treated as artificial supports and as materials for regeneration of neo bone tissues and must closely biomimetic the native extracellular matrix of bone. The materials used for developing scaffolds should be biodegradable, nontoxic, and biocompatible. For the resurrection of bone disorder, specifically natural and synthetic polymers such as chitosan, PCL, gelatin, PGA, PLA, PLGA, etc. meet the requirements for serving their functions as artificial bone substitute materials. Gelatin is one of the potential candidates which could be blended with other polymers or composites to improve its physicochemical, mechanical, and biological performances as a bone graft. Scaffolds are produced by several methods including electrospinning, self-assembly, freeze-drying, phase separation, fiber drawing, template synthesis, etc. Among them, freeze-drying and electrospinning are among the popular, simplest, versatile, and cost-effective techniques. The design and preparation of freeze-dried and electrospun scaffolds are of intense research over the last two decades. Freeze-dried and electrospun scaffolds offer a distinctive architecture at the micro to nano range with desired porosity and pore interconnectivity for selective movement of small biomolecules and play its role as an appropriate matrix very similar to the natural bone extracellular matrix. This review focuses on the properties and functionalization of gelatin-based polymer and its composite in the form of bone scaffolds fabricated primarily using lyophilization and electrospinning technique and their applications in BTE.
Collapse
Affiliation(s)
- Yogendra Pratap Singh
- Department of Ceramic Engineering, National Institute of Technology Rourkela, Rourkela, Odisha, India
| | - Sudip Dasgupta
- Department of Ceramic Engineering, National Institute of Technology Rourkela, Rourkela, Odisha, India
| |
Collapse
|
10
|
Chernonosova VS, Laktionov PP. Structural Aspects of Electrospun Scaffolds Intended for Prosthetics of Blood Vessels. Polymers (Basel) 2022; 14:polym14091698. [PMID: 35566866 PMCID: PMC9105676 DOI: 10.3390/polym14091698] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 04/12/2022] [Accepted: 04/17/2022] [Indexed: 12/28/2022] Open
Abstract
Electrospinning is a popular method used to fabricate small-diameter vascular grafts. However, the importance of structural characteristics of the scaffold determining interaction with endothelial cells and their precursors and blood cells is still not exhaustively clear. This review discusses current research on the significance and impact of scaffold architecture (fiber characteristics, porosity, and surface roughness of material) on interactions between cells and blood with the material. In addition, data about the effects of scaffold topography on cellular behaviour (adhesion, proliferation, and migration) are necessary to improve the rational design of electrospun vascular grafts with a long-term perspective.
Collapse
Affiliation(s)
- Vera S. Chernonosova
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch, Russian Academy of Sciences, 630090 Novosibirsk, Russia;
- Meshalkin National Medical Research Center, Ministry of Health of the Russian Federation, 630055 Novosibirsk, Russia
- Correspondence: ; Tel.: +7-(383)-363-51-44
| | - Pavel P. Laktionov
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch, Russian Academy of Sciences, 630090 Novosibirsk, Russia;
- Meshalkin National Medical Research Center, Ministry of Health of the Russian Federation, 630055 Novosibirsk, Russia
| |
Collapse
|
11
|
Adsorption of adrucil on [La-CTF-0]3+ system for drug delivery by density functional theory. COMPUT THEOR CHEM 2021. [DOI: 10.1016/j.comptc.2021.113294] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
12
|
Bogdanova AS, Sokolova AI, Pavlova ER, Klinov DV, Bagrov DV. Investigation of cellular morphology and proliferation on patterned electrospun PLA-gelatin mats. J Biol Phys 2021; 47:205-214. [PMID: 34032971 PMCID: PMC8185091 DOI: 10.1007/s10867-021-09574-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Accepted: 05/10/2021] [Indexed: 10/21/2022] Open
Abstract
The morphology and proliferation of eukaryotic cells depend on their microenvironment. When electrospun mats are used as tissue engineering scaffolds, the local alignment of the fibers has a pronounced influence on cells. Here we analyzed the morphology of the patterned mats produced by electrospinning of PLA-gelatin blend onto a conductive grid. We investigated the cellular morphology and proliferation of two cell lines (keratinocytes HaCaT and fibroblasts NIH 3T3) on the patterned mats. The non-patterned mats of the same chemical composition were used as control ones. The HaCaT cells predominantly grew on convex areas of the patterned mats along with increasing their nucleus area and decreasing cell area. The 3T3 cells had a lower proliferative rate when grown on the patterned mats. The results can be valuable for further development of the procedures, which allow the patterned electrospun mats development as well as for the investigation of cell-substrate interactions.
Collapse
Affiliation(s)
- Alexandra Sergeevna Bogdanova
- Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, Moscow, Russia.
- Moscow Institute of Physics and Technology, Dolgoprudny, Moscow Region, Russia.
| | - Anastasiia Ivanovna Sokolova
- Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, Moscow, Russia
- Institute for Medical Physics and Biophysics, Münster, Germany
| | - Elizaveta Robertovna Pavlova
- Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, Moscow, Russia
- Moscow Institute of Physics and Technology, Dolgoprudny, Moscow Region, Russia
| | - Dmitry Vladimirovich Klinov
- Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, Moscow, Russia
| | - Dmitry Vladimirovich Bagrov
- Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, Moscow, Russia
- Department of Bioengineering, Faculty of Biology, Lomonosov Moscow State University, Moscow, Russia
| |
Collapse
|
13
|
Hu C, Chu C, Liu L, Wang C, Jin S, Yang R, Rung S, Li J, Qu Y, Man Y. Dissecting the microenvironment around biosynthetic scaffolds in murine skin wound healing. SCIENCE ADVANCES 2021; 7:7/22/eabf0787. [PMID: 34039601 PMCID: PMC8153724 DOI: 10.1126/sciadv.abf0787] [Citation(s) in RCA: 80] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Accepted: 04/02/2021] [Indexed: 02/05/2023]
Abstract
The structural properties of biomaterials play crucial roles in guiding cell behavior and influencing immune responses against the material. We fabricated electrospun membranes with three types of surface topography (random, aligned, and latticed), introduced them to dorsal skin excisional wounds in mice and rats, and evaluated their effects on wound healing and immunomodulatory properties. An overview of different immune cells in the microenvironment with the help of single-cell RNA sequencing revealed diverse cellular heterogeneity in vivo. The time course of immune response was advanced toward an adaptive immunity–dominant stage by the aligned scaffold. In mice without mature T lymphocytes, lack of wound-induced hair neogenesis indicated a regulatory role of T cells on hair follicle regeneration. The microenvironment around scaffolds involved an intricate interplay of immune and cutaneous cells.
Collapse
Affiliation(s)
- Chen Hu
- Department of Oral Implantology and State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China
| | - Chenyu Chu
- Department of Oral Implantology and State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China
| | - Li Liu
- State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Collaborative Innovation Center for Biotherapy, Chengdu, Sichuan 610041, China
| | - Chenbing Wang
- Department of Oral Implantology and State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China
| | - Shue Jin
- Research Center for Nano-Biomaterials, Analytical, and Testing Center, Sichuan University, Chengdu 610064, China
| | - Renli Yang
- Department of Oral Implantology and State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China
| | - Shengan Rung
- Department of Oral Implantology and State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China
| | - Jidong Li
- Research Center for Nano-Biomaterials, Analytical, and Testing Center, Sichuan University, Chengdu 610064, China
| | - Yili Qu
- Department of Oral Implantology and State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China
| | - Yi Man
- Department of Oral Implantology and State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China.
| |
Collapse
|
14
|
Ghaderpour A, Hoseinkhani Z, Yarani R, Mohammadiani S, Amiri F, Mansouri K. Altering the characterization of nanofibers by changing the electrospinning parameters and their application in tissue engineering, drug delivery, and gene delivery systems. POLYM ADVAN TECHNOL 2021. [DOI: 10.1002/pat.5242] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Amir Ghaderpour
- Medical Biology Research Center Health Technology Institute, Kermanshah University of Medical Sciences Kermanshah Iran
- Biology Department, Urmia Branch Islamic Azad University Urmia Iran
| | - Zohreh Hoseinkhani
- Medical Biology Research Center Health Technology Institute, Kermanshah University of Medical Sciences Kermanshah Iran
| | - Reza Yarani
- Translational Type 1 Diabetes Research, Department of Clinical Research Steno Diabetes Center Copenhagen Gentofte Denmark
| | | | - Farshid Amiri
- Medical Biology Research Center Health Technology Institute, Kermanshah University of Medical Sciences Kermanshah Iran
| | - Kamran Mansouri
- Medical Biology Research Center Health Technology Institute, Kermanshah University of Medical Sciences Kermanshah Iran
- Molecular Medicine Department, Faculty of Medicine Kermanshah University of Medical Kermanshah Iran
| |
Collapse
|
15
|
Rather AH, Wani TU, Khan RS, Pant B, Park M, Sheikh FA. Prospects of Polymeric Nanofibers Loaded with Essential Oils for Biomedical and Food-Packaging Applications. Int J Mol Sci 2021; 22:4017. [PMID: 33924640 PMCID: PMC8069027 DOI: 10.3390/ijms22084017] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Revised: 04/09/2021] [Accepted: 04/09/2021] [Indexed: 02/08/2023] Open
Abstract
Essential oils prevent superbug formation, which is mainly caused by the continuous use of synthetic drugs. This is a significant threat to health, the environment, and food safety. Plant extracts in the form of essential oils are good enough to destroy pests and fight bacterial infections in animals and humans. In this review article, different essential oils containing polymeric nanofibers fabricated by electrospinning are reviewed. These nanofibers containing essential oils have shown applications in biomedical applications and as food-packaging materials. This approach of delivering essential oils in nanoformulations has attracted considerable attention in the scientific community due to its low price, a considerable ratio of surface area to volume, versatility, and high yield. It is observed that the resulting nanofibers possess antimicrobial, anti-inflammatory, and antioxidant properties. Therefore, they can reduce the use of toxic synthetic drugs that are utilized in the cosmetics, medicine, and food industries. These nanofibers increase barrier properties against light, oxygen, and heat, thereby protecting and preserving the food from oxidative damage. Moreover, the nanofibers discussed are introduced with naturally derived chemical compounds in a controlled manner, which simultaneously prevents their degradation. The nanofibers loaded with different essential oils demonstrate an ability to increase the shelf-life of various food products while using them as active packaging materials.
Collapse
Affiliation(s)
- Anjum Hamid Rather
- Department of Nanotechnology, University of Kashmir Hazratbal, Srinagar 190006, Jammu and Kashmir, India; (A.H.R.); (T.U.W.); (R.S.K.)
| | - Taha Umair Wani
- Department of Nanotechnology, University of Kashmir Hazratbal, Srinagar 190006, Jammu and Kashmir, India; (A.H.R.); (T.U.W.); (R.S.K.)
| | - Rumysa Saleem Khan
- Department of Nanotechnology, University of Kashmir Hazratbal, Srinagar 190006, Jammu and Kashmir, India; (A.H.R.); (T.U.W.); (R.S.K.)
| | - Bishweshwar Pant
- Carbon Composite Energy Nanomaterials Research Center, Woosuk University, Wanju-Gun 55338, Jeollabuk-do, Korea;
| | - Mira Park
- Carbon Composite Energy Nanomaterials Research Center, Woosuk University, Wanju-Gun 55338, Jeollabuk-do, Korea;
| | - Faheem A. Sheikh
- Department of Nanotechnology, University of Kashmir Hazratbal, Srinagar 190006, Jammu and Kashmir, India; (A.H.R.); (T.U.W.); (R.S.K.)
| |
Collapse
|
16
|
Murali VP, Holmes CA. Biomaterial-based extracellular vesicle delivery for therapeutic applications. Acta Biomater 2021; 124:88-107. [PMID: 33454381 DOI: 10.1016/j.actbio.2021.01.010] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2020] [Revised: 12/21/2020] [Accepted: 01/08/2021] [Indexed: 12/13/2022]
Abstract
Extracellular vesicle (EV)- based therapies have been successfully tested in preclinical models for several biomedical applications, including tissue engineering, drug delivery and cancer therapy. However, EVs are most commonly delivered via local or systemic injection, which results in rapid clearance. In order to prolong the retention of EVs at target site and improve their therapeutic efficacy, biomaterial-based delivery systems are being investigated. This review discusses the various biomaterial-based systems that have been used to deliver EVs for therapeutic applications, specifically highlighting any strategies for controlled release. Further, challenges to clinical translation of biomaterial-based EV delivery systems are also discussed.
Collapse
Affiliation(s)
- Vishnu Priya Murali
- Department of Chemical and Biomedical Engineering, College of Engineering, Florida A&M University-Florida State University, 2525 Pottsdamer Street, Room A131, Tallahassee, FL 32310, USA.
| | - Christina A Holmes
- Department of Chemical and Biomedical Engineering, College of Engineering, Florida A&M University-Florida State University, 2525 Pottsdamer Street, Room A131, Tallahassee, FL 32310, USA.
| |
Collapse
|
17
|
Rostamabadi H, Falsafi SR, Rostamabadi MM, Assadpour E, Jafari SM. Electrospraying as a novel process for the synthesis of particles/nanoparticles loaded with poorly water-soluble bioactive molecules. Adv Colloid Interface Sci 2021; 290:102384. [PMID: 33706198 DOI: 10.1016/j.cis.2021.102384] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 02/17/2021] [Accepted: 02/18/2021] [Indexed: 12/21/2022]
Abstract
Hydrophobicity and low aqueous-solubility of different drugs/nutraceuticals remain a persistent challenge for their development and clinical/food applications. A range of nanotechnology strategies have been implemented to address this issue, and amongst which a particular emphasis has been made on those that afford an improved biological performance and tunable release kinetic of bioactives through a one-step process. More recently, the technique of electrospraying (or electrohydrodynamic atomization) has attained notable impulse in virtue of its potential to tune attributes of nano/micro-structured particles (e.g., porosity, particle size, etc.), rendering a near zero-order release kinetics, diminished burst release manner, as well as its simplicity, reproducibility, and applicability to a broad spectrum of hydrophobic and poorly water-soluble bioactives. Controlled morphology or monodispersity of designed particles could be properly obtained via electrospraying, with a high encapsulation efficiency and without unfavorable denaturation of thermosensitive bioactives upon encapsulation. This paper overviews the recent technological advances in electrospraying for the encapsulation of low queues-soluble bioactive agents. State-of-the-art, advantages, applications, and challenges for its implementation in pharmaceutical/food researches are also discussed.
Collapse
Affiliation(s)
- Hadis Rostamabadi
- Faculty of Food Science and Technology, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran.
| | - Seid Reza Falsafi
- Faculty of Food Science and Technology, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran
| | - Mohammad Mahdi Rostamabadi
- Department of Food Science and Technology, College of Agriculture, Isfahan University of Technology, Isfahan 84156-83111, Iran
| | - Elham Assadpour
- Faculty of Food Science and Technology, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran
| | - Seid Mahdi Jafari
- Faculty of Food Science and Technology, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran.
| |
Collapse
|
18
|
Li C, Liu L, Zhang T, Wang F, Wang L. β-Tricalcium phosphate contained beaded-fiber scaffolds characterized by high early osteoinductive activity for vascularized bone regeneration. Colloids Surf B Biointerfaces 2021; 201:111639. [PMID: 33639511 DOI: 10.1016/j.colsurfb.2021.111639] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2020] [Revised: 02/09/2021] [Accepted: 02/15/2021] [Indexed: 10/24/2022]
Abstract
The calcium phosphate component and surface topology of a scaffold are considered the two main factors that influence osteogenic differentiation. This research reports a one-step but effective scaffold preparation method that can regulate the morphology of nanofibers and control the distribution and release behavior of calcium phosphate nanoparticles (CaPs). Two beaded-on-string CaPs-loaded electrospun scaffolds (PT7.5 and PT4.5) with composite microstructures of microbeads and nanofibers were fabricated by adjusting the concentration of the electrospinning solution. The presence of the composite microstructure was conducive to the surface exposure and sustained release of bioactive components, which in turn could significantly promote the biomineralization and protein adsorption of the scaffold. A study of the human umbilical vein endothelial cells (HUVECs) and rat-bone marrow-derived mesenchymal stem cells (rBMSCs) revealed that cells cultured on scaffolds with composite microstructures (especially PT4.5) could enhance tube formation of the HUVECs and osteogenic differentiation of rBMSCs. The PT4.5 with significantly different microbead and nanofiber sizes presented the high potential to improve the early osteoinductive activity and angiogenesis of the CaPs-loaded electrospun scaffold and expand its advantage in bone regeneration.
Collapse
Affiliation(s)
- Chaojing Li
- Key Laboratory of Textile Science and Technology of Ministry of Education and College of Textiles, Donghua University, 2999 North Renmin Road, Shanghai 201620, China.
| | - Laijun Liu
- Key Laboratory of Textile Science and Technology of Ministry of Education and College of Textiles, Donghua University, 2999 North Renmin Road, Shanghai 201620, China
| | - Tiantian Zhang
- Key Laboratory of Textile Science and Technology of Ministry of Education and College of Textiles, Donghua University, 2999 North Renmin Road, Shanghai 201620, China
| | - Fujun Wang
- Key Laboratory of Textile Science and Technology of Ministry of Education and College of Textiles, Donghua University, 2999 North Renmin Road, Shanghai 201620, China; Engineering Research Center of Technical Textiles, Ministry of Education, Donghua University, Shanghai 201620, China.
| | - Lu Wang
- Key Laboratory of Textile Science and Technology of Ministry of Education and College of Textiles, Donghua University, 2999 North Renmin Road, Shanghai 201620, China
| |
Collapse
|
19
|
Mirică IC, Furtos G, Lucaciu O, Pascuta P, Vlassa M, Moldovan M, Campian RS. Electrospun Membranes Based on Polycaprolactone, Nano-Hydroxyapatite and Metronidazole. MATERIALS 2021; 14:ma14040931. [PMID: 33669270 PMCID: PMC7920077 DOI: 10.3390/ma14040931] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 02/08/2021] [Accepted: 02/11/2021] [Indexed: 12/12/2022]
Abstract
The aim of this research was to develop new electrospun membranes (EMs) based on polycaprolactone (PCL) with or without metronidazole (MET)/nano-hydroxyapatite (nHAP) content. New nHAP with a mean diameter of 34 nm in length was synthesized. X-ray diffraction (XRD) and attenuated total reflectance Fourier transform infrared spectroscopy (FTIR-ATR) were used for structural characterization of precursors and EMs. The highest mechanical properties (the force at maximum load, Young's modulus and tensile strength) were found for the PCL membranes, and these properties decreased for the other samples in the following order: 95% PCL + 5% nHAP > 80% PCL + 20% MET > 75% PCL + 5% nHAP + 20% MET. The stiffness increased with the addition of 5 wt.% nHAP. The SEM images of EMs showed randomly oriented bead-free fibers that generated a porous structure with interconnected macropores. The fiber diameter showed values between 2 and 16 µm. The fiber diameter increased with the addition of nHAP filler and decreased when MET was added. New EMs with nHAP and MET could be promising materials for guided bone regeneration or tissue engineering.
Collapse
Affiliation(s)
- Ioana-Codruţa Mirică
- Department of Oral Health, Iuliu Hatieganu University of Medicine and Pharmacy, Victor Babes Street 15, 400012 Cluj-Napoca, Romania; (I.-C.M.); (O.L.); (R.-S.C.)
| | - Gabriel Furtos
- Department of Dental Materials, Babes-Bolyai University-Raluca Ripan, Institute of Research in Chemistry, Fantanele Street 30, 400294 Cluj-Napoca, Romania; (M.V.); (M.M.)
- Correspondence: ; Tel.: +40-364-405972
| | - Ondine Lucaciu
- Department of Oral Health, Iuliu Hatieganu University of Medicine and Pharmacy, Victor Babes Street 15, 400012 Cluj-Napoca, Romania; (I.-C.M.); (O.L.); (R.-S.C.)
| | - Petru Pascuta
- Technical University of Cluj-Napoca, Memorandumului Street 28, 400114 Cluj-Napoca, Romania;
| | - Mihaela Vlassa
- Department of Dental Materials, Babes-Bolyai University-Raluca Ripan, Institute of Research in Chemistry, Fantanele Street 30, 400294 Cluj-Napoca, Romania; (M.V.); (M.M.)
| | - Mărioara Moldovan
- Department of Dental Materials, Babes-Bolyai University-Raluca Ripan, Institute of Research in Chemistry, Fantanele Street 30, 400294 Cluj-Napoca, Romania; (M.V.); (M.M.)
| | - Radu-Septimiu Campian
- Department of Oral Health, Iuliu Hatieganu University of Medicine and Pharmacy, Victor Babes Street 15, 400012 Cluj-Napoca, Romania; (I.-C.M.); (O.L.); (R.-S.C.)
| |
Collapse
|
20
|
Ning Y, Shen W, Ao F. Application of blocking and immobilization of electrospun fiber in the biomedical field. RSC Adv 2020; 10:37246-37265. [PMID: 35521229 PMCID: PMC9057162 DOI: 10.1039/d0ra06865a] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2020] [Accepted: 09/22/2020] [Indexed: 12/13/2022] Open
Abstract
The fiber obtained by electrospinning technology is a kind of biomaterial with excellent properties, which not only has a unique micro-nanostructure that gives it a large specific surface area and porosity, but also has satisfactory biocompatibility and degradability (if the spinning material used is a degradable polymer). These biomaterials provide a suitable place for cell attachment and proliferation, and can also achieve immobilization. On the other hand, its large porosity and three-dimensional spatial structure show unique blocking properties in drug delivery applications in order to achieve the purpose of slow release or even controlled release. The immobilization effect or blocking effect of these materials is mainly reflected in the hollow or core-shell structure. The purpose of this paper is to understand the application of the electrospun fiber based on biodegradable polymers (aliphatic polyesters) in the biomedical field, especially the immobilization or blocking effect of the electrospun fiber membrane on cells, drugs or enzymes. This paper focuses on the performance of these materials in tissue engineering, wound dressing, drug delivery system, and enzyme immobilization technology. Finally, based on the existing research basis of the electrospun fiber in the biomedical field, a potential research direction in the future is put forward, and few suggestions are also given for the technical problems that urgently need to be solved.
Collapse
Affiliation(s)
- Yuanlan Ning
- School of Food and Biological Engineering, Shaanxi University of Science & Technology Xi'an 710021 PR China +86-187-2925-6877 +86-187-1726-7199
| | - Wen Shen
- School of Food and Biological Engineering, Shaanxi University of Science & Technology Xi'an 710021 PR China +86-187-2925-6877 +86-187-1726-7199
| | - Fen Ao
- School of Food and Biological Engineering, Shaanxi University of Science & Technology Xi'an 710021 PR China +86-187-2925-6877 +86-187-1726-7199
| |
Collapse
|
21
|
Gao D, Wang Z, Wu Z, Guo M, Wang Y, Gao Z, Zhang P, Ito Y. 3D-printing of solvent exchange deposition modeling (SEDM) for a bilayered flexible skin substitute of poly (lactide-co-glycolide) with bioorthogonally engineered EGF. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 112:110942. [PMID: 32409088 DOI: 10.1016/j.msec.2020.110942] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2020] [Revised: 03/06/2020] [Accepted: 04/07/2020] [Indexed: 12/12/2022]
Abstract
Biodegradable polyesters have been widely used as rigid biomedical apparatus because of high mechanical properties but few flexible implants. Herein, we report a flexible poly(lactide-co-glycolide) (PLGA) scaffold using a rapid in situ formation system based on phase separation by solvent exchange deposition modeling (SEDM), which was different from traditional 3D printing of fused deposition modeling (FDM). The FDM printed product was rigidity, its Young's modulus was approximate 2.6 times higher than that of SEDM printed sample. In addition, the thickness of the solidified ink would not shrink during the SEDM printing process, its surface had nano-/micro pores in favor of protein immobilization and cell adhesion. Then a flexible bilayered scaffold with nano-/microstructure was constructed combing SEDM with electrospinning technology for skin substitute, wherein the SEDM printed sample acted as a sub-layer for cell and tissue ingrowth, the densely packed electrospun nanofibers served as an upper-layer improving the sub-layer's tensile strength by 57.07% and preventing from bacteria as physical barrier. Ultimately, the bilayered scaffold immobilized epidermal growth factor (EGF) by a bioorthogonal approach was successfully applied to facilitate full-thickness wound healing of rats.
Collapse
Affiliation(s)
- Daqian Gao
- The Ministry of Education Key Laboratory of Bio-based Material Science & Technology, College of Material Science and Engineering, Northeast Forestry University, Harbin 150040, PR China
| | - Zongliang Wang
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, PR China
| | - Zhenxu Wu
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, PR China
| | - Min Guo
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, PR China
| | - Yu Wang
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, PR China.
| | - Zhenhua Gao
- The Ministry of Education Key Laboratory of Bio-based Material Science & Technology, College of Material Science and Engineering, Northeast Forestry University, Harbin 150040, PR China.
| | - Peibiao Zhang
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, PR China.
| | - Yoshihiro Ito
- Emergent Bioengineering Materials Research Team, RIKEN Center for Emergent Matter Science, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| |
Collapse
|
22
|
Lee HJ, Abueva CD, Padalhin AR, Lee BT. Soya protein isolate-polyethylene oxide electrospun nanofiber membrane with bone marrow-derived mesenchymal stem cell for enhanced bone regeneration. J Biomater Appl 2020; 34:1142-1149. [PMID: 31805803 DOI: 10.1177/0885328219891614] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
In this study, we prepared an electrospun nanofiber membrane from soya protein isolate (SPI) and polyethylene oxide (PEO) loaded with rat bone marrow-derived mesenchymal stem cells (rBMSC), as a cell-scaffold approach to enhance bone regeneration. Different ratios of SPI:PEO (7:0, 7:1, 7:3, 7:5, and 0:7) was investigated to obtain uniform nanofibers, and crosslinked with EDC/NHS to stabilize the membranes. SPI/PEO membrane (7:3) was found to create more uniform and stable nanofibers at a flow rate of 9 µL/min, spun in a cylindrical collector rotating at 350 r/min, 23 kV DC voltage, and needle tip to collector distance of 13 cm. The loaded rBMSC were pre-differentiated to ensure commitment towards osteoblastic lineage. The SPI/PEO electrospun nanofiber membranes were successful in allowing for cell attachment and growth of the rBMSC and was further investigated in vivo using a rat skull defect model. New bone formation was observed for the optimized SPI/PEO electrospun nanofiber membrane (7:3) with and without rBMSC, but with faster new bone formation for SPI/PEO electrospun nanofiber membrane loaded with rBMSC as compared to SPI/PEO electrospun nanofiber membrane only and control (defect only).
Collapse
Affiliation(s)
- Hyun-Jung Lee
- Department of Regenerative Medicine, College of Medicine, Soonchunhyang University, Cheonan, Republic of Korea
| | - Celine Dg Abueva
- Department of Regenerative Medicine, College of Medicine, Soonchunhyang University, Cheonan, Republic of Korea
- Institute of Tissue Regeneration, College of Medicine, Cheonan, Republic of Korea
| | - Andrew R Padalhin
- Institute of Tissue Regeneration, College of Medicine, Cheonan, Republic of Korea
| | - Byong-Taek Lee
- Department of Regenerative Medicine, College of Medicine, Soonchunhyang University, Cheonan, Republic of Korea
- Institute of Tissue Regeneration, College of Medicine, Cheonan, Republic of Korea
| |
Collapse
|
23
|
Ravindran Girija A, Palaninathan V, Strudwick X, Balasubramanian S, Dasappan Nair S, Cowin AJ. Collagen-functionalized electrospun smooth and porous polymeric scaffolds for the development of human skin-equivalent. RSC Adv 2020; 10:26594-26603. [PMID: 35515800 PMCID: PMC9055397 DOI: 10.1039/d0ra04648e] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Accepted: 07/07/2020] [Indexed: 01/22/2023] Open
Abstract
Electrospun polymer fibers have garnered substantial importance in regenerative medicine owing to their intrinsic 3D topography, extracellular matrix microenvironment, biochemical flexibility, and mechanical support. In particular, a material's nano-topography can have a significant effect on cellular responses, including adhesion, proliferation, differentiation, and migration. In this study, poly(l-lactic acid) (PLLA), a biodegradable polymer with excellent biocompatibility was electrospun into fibers with either smooth or porous topologies. The scaffolds were further modified and biofunctionalized with 0.01% and 0.1% collagen to enhance bioactivity and improve cellular interactions. Human keratinocytes (HaCaTs) and fibroblasts (human foreskin fibroblasts-HFF) were cultured on the scaffolds using a modified co-culture technique, where keratinocytes were grown on the dorsal plane for 5 days, followed by flipping, seeding with fibroblasts on the ventral plane and culturing for a further 5 days. Following this, cellular adhesion of the skin cells on both the unmodified and collagen-modified scaffolds (smooth and porous) was performed using scanning electron microscopy (SEM) and immunofluorescence. Distinct outcomes were observed with the unmodified smooth scaffolds showing superior cell adhesion than the porous scaffolds. Modification of the porous and smooth scaffolds with 0.1% collagen enhanced the adhesion and migration of both keratinocytes and fibroblasts to these scaffolds. Further, the collagen-modified scaffolds (both porous and smooth) produced confluent and uniform epidermal sheets of keratinocytes on one plane with healthy fibroblasts populated within the scaffolds. Thus, presenting a vast potential to serve as a self-organized skin substitute this may be a promising biomaterial for development as a dressing for patients suffering from wounds. Collagen-functionalized electrospun smooth and porous poly(l-lactide) scaffolds supporting keratinocytes and fibroblasts as a potential model to serve as self-organized skin substitute.![]()
Collapse
Affiliation(s)
| | | | - Xanthe Strudwick
- Future Industries Institute
- University of South Australia
- Adelaide
- Australia
| | | | | | - Allison J. Cowin
- Future Industries Institute
- University of South Australia
- Adelaide
- Australia
| |
Collapse
|
24
|
Ranjan VD, Zeng P, Li B, Zhang Y. In vitro cell culture in hollow microfibers with porous structures. Biomater Sci 2020; 8:2175-2188. [DOI: 10.1039/c9bm01986c] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Hollow and porous cell-encapsulated microfibers have been fabricated via simultaneously electrospinning two different biomaterial-based polymer solutions using a coaxial spinneret.
Collapse
Affiliation(s)
- Vivek Damodar Ranjan
- NTU Institute for Health Technologies
- Interdisciplinary Graduate School
- Nanyang Technological University
- Singapore 639798
| | - Peiqin Zeng
- School of Mechanical & Aerospace Engineering
- Nanyang Technological University
- Singapore 639798
| | - Boyuan Li
- School of Mechanical & Aerospace Engineering
- Nanyang Technological University
- Singapore 639798
| | - Yilei Zhang
- Department of Mechanical Engineering
- University of Canterbury
- New Zealand, 8041
| |
Collapse
|
25
|
Tang M, Hou D, Ding C, Wang K, Wang D, Wang J. Anti-oil-fouling hydrophobic-superoleophobic composite membranes for robust membrane distillation performance. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 696:133883. [PMID: 31446287 DOI: 10.1016/j.scitotenv.2019.133883] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2019] [Revised: 07/25/2019] [Accepted: 08/10/2019] [Indexed: 06/10/2023]
Abstract
As a promising thermally driven separation process, membrane distillation (MD) is capable of treating challenging wastewaters. However, the traditional hydrophobic membranes are vulnerable to fouling by non-polar contaminants owing to the strong hydrophobic-hydrophobic interactions. To address this problem, we developed novel anti-oil-fouling MD membranes in this study. The composite membranes with asymmetric wettability were fabricated through electrospinning polyacrylonitrile (PAN) fibrous coating on a hydrophobic polytetrafluoroethylene (PTFE) membrane, followed by hydrolyzing the PAN coating with ethylenediamine (EDA) and NaOH, respectively. These two composite membranes exhibited excellent underwater superoleophobicity, with the underwater oil contact angle >150°, which can be attributed to the fibrous and re-entrant surface structure and the optimized surface hydrophilicity of the electrospun coating. During MD process using saline and oily emulsion as feed, the composite membranes presented robust anti-oil-fouling performance, indicating by stable permeate flux and salt rejection. A novel oil-droplet adhesion force probe was introduced to quasi-quantitatively elucidate oil-membrane interaction and evaluate membrane fouling propensity, the force spectroscopy indicated that the fabricated composite membranes had fairly less attractive to crude oil compared with the PTFE membrane. Our research results suggest that the novel composite membranes with asymmetric wettability were competent to serve as an anti-oil-fouling MD membrane for desalinating challenging saline and oily wastewaters.
Collapse
Affiliation(s)
- Min Tang
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100190, China
| | - Deyin Hou
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100190, China.
| | - Chunli Ding
- School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300130, China
| | - Kunpeng Wang
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100190, China
| | - Dewu Wang
- School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300130, China
| | - Jun Wang
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| |
Collapse
|
26
|
Dehghan-Manshadi N, Fattahi S, Hadizadeh M, Nikukar H, Moshtaghioun SM, Aflatoonian B. The influence of elastomeric polyurethane type and ratio on the physicochemical properties of electrospun polyurethane/silk fibroin hybrid nanofibers as potential scaffolds for soft and hard tissue engineering. Eur Polym J 2019. [DOI: 10.1016/j.eurpolymj.2019.109294] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
27
|
Aadil KR, Nathani A, Sharma CS, Lenka N, Gupta P. Investigation of poly(vinyl) alcohol-gellan gum based nanofiber as scaffolds for tissue engineering applications. J Drug Deliv Sci Technol 2019. [DOI: 10.1016/j.jddst.2019.101276] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
|
28
|
Development of polyvinyl alcohol/β-cyclodextrin antimicrobial nanofibers for fresh mushroom packaging. Food Chem 2019; 300:125249. [PMID: 31352291 DOI: 10.1016/j.foodchem.2019.125249] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Revised: 07/22/2019] [Accepted: 07/23/2019] [Indexed: 12/30/2022]
Abstract
Under the optimal conditions, a crosslinked electrospun polyvinyl alcohol/cinnamon essential oil/β-cyclodextrin (CPVA-CEO-β-CD) nanofibrous films for sustained release of antimicrobials were successfully prepared. Cinnamon essential oil (CEO) can be sustainably released due to CPVA-CEO-β-CD nanofibers complex delivery systems. The chemical crosslinking and physical welding achieved simultaneously by glutaraldehyde atomization fumigation, making fibers more suitable for fresh food packaging. Nanofibrous films were characterized in terms of SEM, ATR-FTIR, DSC, water contact angle analysis and antibacterial trials. ATR-FTIR and DSC data indicated that CEO was encapsulated in a β-CD cavity and they coexisted in PVA nanofibers. The water contact angle of the crosslinked PVA nanofibrous films increased with CEO and the values were always below 90°. Crosslinked nanofibers possessed fine properties in vitro antibacterial against Staphylococcus aureus and Escherichia coli. Furthermore, CPVA/β-CD/CEO nanofibrous films delayed decay of mushroom during storage, indicating their potential implementation in active food packaging.
Collapse
|
29
|
Li T, Tian L, Liao S, Ding X, Irvine SA, Ramakrishna S. Fabrication, mechanical property and in vitro evaluation of poly (L-lactic acid-co-ε-caprolactone) core-shell nanofiber scaffold for tissue engineering. J Mech Behav Biomed Mater 2019; 98:48-57. [PMID: 31195187 DOI: 10.1016/j.jmbbm.2019.06.003] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Revised: 04/18/2019] [Accepted: 06/03/2019] [Indexed: 12/31/2022]
Abstract
Coaxial electrospinning, in which Poly (L-lactic acid-co-ε-caprolactone) (PLC) with different Lactic acid (LA) to caprolactone (CL) ratio (75:25 and 50:50) were employed to electrospin core-shell nanofibers which could mimic the native extracellular matrix for tissue engineering applications. Core-shell nanofibrous scaffolds of PLC (50:50)/BSA (426 ± 157 nm) and PLC (75:25)/BSA (427 ± 197 nm) were fabricated and model drug bovine serum albumin (BSA) was entrapped in the core layer. The morphology, core-shell structure and sustained release behaviors were evaluated by Scanning electron microscopy (SEM), transmission electron microscopy (TEM), inverted fluorescence microscopy, water contact angle test and in vitro release test, respectively. The effect of core-shell structure and shell layer materials on the variation tendency of mechanical characterization in dry and wet situation were also investigated by tensile testing. The in vitro biocompatibility of scaffolds were investigated by growing human mesenchymal stem cells (hMSCs) on scaffolds surface and the proliferation of cells were evaluated with Alamar Blue tests. In vitro cultivations of hMSCs showed that PLC (50:50)/BSA scaffolds supported a significantly higher proliferation rate of seeded cells than scaffolds prepared by polymer PLC (75:25)/BSA. Overall, the PLC core-shell nanofibers possessed potentially regulable mechanical properties useful for tissue engineering as well as sustained release potential for medical applications.
Collapse
Affiliation(s)
- Tingxiao Li
- School of Fashion Engineering, Shanghai University of Engineering Science, Shanghai, 201620, China
| | - Lingling Tian
- Center of Nanofibers & Nanotechnology, Department of Mechanical Engineering, National University of Singapore, Singapore, 117576
| | - Susan Liao
- School of Materials and Science Engineering, Nanyang Technological University, Singapore, 639798.
| | - Xin Ding
- College of Textiles, Donghua University, Shanghai, 201620, China
| | - Scott A Irvine
- School of Materials and Science Engineering, Nanyang Technological University, Singapore, 639798
| | - Seeram Ramakrishna
- Center of Nanofibers & Nanotechnology, Department of Mechanical Engineering, National University of Singapore, Singapore, 117576; Guangdong-Hongkong-Macau Institute of CNS Regeneration (GHMICR), Jinan University, Guangzhou, 510632, China
| |
Collapse
|
30
|
Yang M, Guo Z, Li T, Li J, Chen L, Wang J, Wu J, Wu Z. Synergetic effect of chemical and topological signals of gingival regeneration scaffold on the behavior of human gingival fibroblasts. J Biomed Mater Res A 2019; 107:1875-1885. [PMID: 31034755 DOI: 10.1002/jbm.a.36708] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Revised: 04/13/2019] [Accepted: 04/24/2019] [Indexed: 11/11/2022]
Affiliation(s)
- Moyang Yang
- Key Laboratory of Oral MedicineGuangzhou Institute of Oral Disease, Stomatology Hospital of Guangzhou Medical University Guangzhou China
| | - Zhenzhao Guo
- Department of OrthopedicThe First Affiliated Hospital, Jinan University Guangzhou China
| | - Tong Li
- Department of ProsthodonticsHospital of Stomatology, Jilin University Changchun China
| | - Jing Li
- Department of ProsthodonticsHospital of Stomatology, Jilin University Changchun China
| | - Liyu Chen
- Key Laboratory of Oral MedicineGuangzhou Institute of Oral Disease, Stomatology Hospital of Guangzhou Medical University Guangzhou China
| | - Junmei Wang
- Key Laboratory of Oral MedicineGuangzhou Institute of Oral Disease, Stomatology Hospital of Guangzhou Medical University Guangzhou China
| | - Jincheng Wu
- Key Laboratory of Oral MedicineGuangzhou Institute of Oral Disease, Stomatology Hospital of Guangzhou Medical University Guangzhou China
| | - Zhe Wu
- Key Laboratory of Oral MedicineGuangzhou Institute of Oral Disease, Stomatology Hospital of Guangzhou Medical University Guangzhou China
| |
Collapse
|
31
|
Hong S, Kang EY, Byeon J, Jung SH, Hwang C. Embossed Membranes with Vascular Patterns Guide Vascularization in a 3D Tissue Model. Polymers (Basel) 2019; 11:E792. [PMID: 31052571 PMCID: PMC6572394 DOI: 10.3390/polym11050792] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Revised: 04/26/2019] [Accepted: 04/29/2019] [Indexed: 01/12/2023] Open
Abstract
The vascularization of three-dimensional (3D) tissue constructs is necessary for transporting nutrients and oxygen to the component cells. In this study, a vacuum forming method was applied to emboss a vascular pattern on an electrospun membrane so that guided vascular structures could develop within the construct. Two- or six-layer constructs of electrospun membranes seeded with endothelial cells and pericytes were stacked and subcutaneously implanted into mice. Blood vessel formation in the implanted constructs with six alternating layers of flat membranes and membranes embossed with a blood vessel pattern was observed after two weeks of implantation. The formation of blood vessels was observed along the embossed blood vessel pattern in the structure of the embossed membrane laminated at four weeks and eight weeks. Vascular endothelial growth factor (VEGF) and angiopoietin 1 (Ang-1) were highly expressed in the vascularized structures. Therefore, we demonstrated that a structure capable of producing a desired blood vessel shape with electrospun membranes embossed with a blood vessel pattern can be manufactured, and that a variety of structures can be manufactured using electrospun membranes in the tissue engineering era.
Collapse
Affiliation(s)
- Soyoung Hong
- Biomedical Engineering Research Center, Asan Institute for Life Sciences, Asan Medical Center, Seoul 05505, Korea.
| | - Eun Young Kang
- Biomedical Engineering Research Center, Asan Institute for Life Sciences, Asan Medical Center, Seoul 05505, Korea.
| | - Jaehee Byeon
- Biomedical Engineering Research Center, Asan Institute for Life Sciences, Asan Medical Center, Seoul 05505, Korea.
| | - Sung-Ho Jung
- Departments of Thoracic and Cardiovascular Surgery, Asan Medical Center, Seoul 05505, Korea.
| | - Changmo Hwang
- Biomedical Engineering Research Center, Asan Institute for Life Sciences, Asan Medical Center, Seoul 05505, Korea.
- Department of Convergence Medicine, University of Ulsan College of Medicine & Asan Institute for Life Sciences, Asan Medical Center, Seoul 05505, Korea.
| |
Collapse
|
32
|
Electrospun polymer micro/nanofibers as pharmaceutical repositories for healthcare. J Control Release 2019; 302:19-41. [PMID: 30922946 DOI: 10.1016/j.jconrel.2019.03.020] [Citation(s) in RCA: 210] [Impact Index Per Article: 35.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Revised: 03/22/2019] [Accepted: 03/23/2019] [Indexed: 12/19/2022]
|
33
|
Jin S, Sun F, Zou Q, Huang J, Zuo Y, Li Y, Wang S, Cheng L, Man Y, Yang F, Li J. Fish Collagen and Hydroxyapatite Reinforced Poly(lactide-co-glycolide) Fibrous Membrane for Guided Bone Regeneration. Biomacromolecules 2019; 20:2058-2067. [PMID: 31009574 DOI: 10.1021/acs.biomac.9b00267] [Citation(s) in RCA: 66] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- Shue Jin
- Research Center for Nano-Biomaterials, Analytical and Testing Center, Sichuan University, Chengdu 610064, China
| | - Fuhua Sun
- Research Center for Nano-Biomaterials, Analytical and Testing Center, Sichuan University, Chengdu 610064, China
| | - Qin Zou
- Research Center for Nano-Biomaterials, Analytical and Testing Center, Sichuan University, Chengdu 610064, China
| | - Jinhui Huang
- Research Center for Nano-Biomaterials, Analytical and Testing Center, Sichuan University, Chengdu 610064, China
| | - Yi Zuo
- Research Center for Nano-Biomaterials, Analytical and Testing Center, Sichuan University, Chengdu 610064, China
| | - Yubao Li
- Research Center for Nano-Biomaterials, Analytical and Testing Center, Sichuan University, Chengdu 610064, China
| | - Suping Wang
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610065, China
| | - Lei Cheng
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610065, China
| | - Yi Man
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610065, China
| | - Fang Yang
- Department of Biomaterials, Radboud University Medical Center, P.O. Box 9101, 6500 HB, Nijmegen, The Netherlands
| | - Jidong Li
- Research Center for Nano-Biomaterials, Analytical and Testing Center, Sichuan University, Chengdu 610064, China
| |
Collapse
|
34
|
Santillán J, Dwomoh EA, Rodríguez-Avilés YG, Bello SA, Nicolau E. Fabrication and Evaluation of Polycaprolactone Beads-on-String Membranes for Applications in Bone Tissue Regeneration. ACS APPLIED BIO MATERIALS 2019; 2:1031-1040. [DOI: 10.1021/acsabm.8b00628] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
- Jaime Santillán
- Department of Physics, University of Puerto Rico, Rio Piedras Campus, 17 Ave. Universidad Ste. 1701, San Juan, Puerto Rico 00925-2537, United States
- Molecular Science Research Center, University of Puerto Rico, 1390 Ponce De León Ave, Suite 2, San Juan, Puerto Rico 00931-3346, United States
| | - Emmanuel A. Dwomoh
- Department of Biology, City University of New York, City College, New York, New York 10031, United States
| | - Yaiel G. Rodríguez-Avilés
- Department of Biology, University of Puerto Rico, Rio Piedras Campus, 17 Ave. Universidad Ste. 1701, San Juan, Puerto Rico 00925-2537, United States
| | - Samir A. Bello
- Department of Biology, University of Puerto Rico, Rio Piedras Campus, 17 Ave. Universidad Ste. 1701, San Juan, Puerto Rico 00925-2537, United States
| | - Eduardo Nicolau
- Department of Chemistry, University of Puerto Rico, Rio Piedras Campus, 17 Ave. Universidad Ste. 1701, San Juan, Puerto Rico 00925-2537, United States
- Molecular Science Research Center, University of Puerto Rico, 1390 Ponce De León Ave, Suite 2, San Juan, Puerto Rico 00931-3346, United States
| |
Collapse
|
35
|
Nitti P, Gallo N, Natta L, Scalera F, Palazzo B, Sannino A, Gervaso F. Influence of Nanofiber Orientation on Morphological and Mechanical Properties of Electrospun Chitosan Mats. JOURNAL OF HEALTHCARE ENGINEERING 2018; 2018:3651480. [PMID: 30538809 PMCID: PMC6260544 DOI: 10.1155/2018/3651480] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Revised: 10/05/2018] [Accepted: 10/24/2018] [Indexed: 12/22/2022]
Abstract
This work explored the use of chitosan (Cs) and poly(ethylene oxide) (PEO) blends for the fabrication of electrospun fiber-orientated meshes potentially suitable for engineering fiber-reinforced soft tissues such as tendons, ligaments, or meniscus. To mimic the fiber alignment present in native tissue, the CS/PEO blend solution was electrospun using a traditional static plate, a rotating drum collector, and a rotating disk collector to get, respectively, random, parallel, circumferential-oriented fibers. The effects of the different orientations (parallel or circumferential) and high-speed rotating collector influenced fiber morphology, leading to a reduction in nanofiber diameters and an improvement in mechanical properties.
Collapse
Affiliation(s)
- Paola Nitti
- Department of Engineering for Innovation, University of Salento, Lecce 73100, Italy
| | - Nunzia Gallo
- Department of Engineering for Innovation, University of Salento, Lecce 73100, Italy
| | - Lara Natta
- Department of Engineering for Innovation, University of Salento, Lecce 73100, Italy
| | - Francesca Scalera
- Department of Engineering for Innovation, University of Salento, Lecce 73100, Italy
| | - Barbara Palazzo
- Department of Engineering for Innovation, University of Salento, Lecce 73100, Italy
- Ghimas S.p.A. c/o Dhitech Scarl, Lecce 73100, Italy
| | - Alessandro Sannino
- Department of Engineering for Innovation, University of Salento, Lecce 73100, Italy
| | - Francesca Gervaso
- Department of Engineering for Innovation, University of Salento, Lecce 73100, Italy
| |
Collapse
|
36
|
Nootem J, Chalorak P, Meemon K, Mingvanish W, Pratumyot K, Ruckthong L, Srisuwannaket C, Niamnont N. Electrospun cellulose acetate doped with astaxanthin derivatives from Haematococcus pluvialis for in vivo anti-aging activity. RSC Adv 2018; 8:37151-37158. [PMID: 35557819 PMCID: PMC9088889 DOI: 10.1039/c8ra08156e] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Accepted: 10/28/2018] [Indexed: 11/24/2022] Open
Abstract
This research aims to study the release, in vivo anti-aging activity against Caenorhabditis elegans and stability of astaxanthins in a crude acetone extract of Haematococcus pluvialis from electrospun cellulose acetate (CA) nanofibers. The content and 2,2-diphenyl-1-picryl-hydrazyl-hydrate (DPPH) radical scavenging activity of astaxanthins in the crude extract were also determined. The content of astaxanthins was reported in terms of total carotenoid content (TCC) and found to be 10.75 ± 0.16 mg gcE-1. IC50 of DPPH radical scavenging activity for astaxanthins was 233.33 ± 4.18 μg mL-1. It has been well known that astaxanthins are very unstable under environmental conditions, so the electrospinning technique was used to enhance their stability. In order to fabricate CA nanofibers containing a crude acetone extract of H. pluvialis, various solvent systems and percent loading of the crude acetone extract were studied. The optimal solvent system for fabrication of CA nanofibers was the acetone/dimethylformamide (DMF) system (2 : 1 v/v) with incorporation of 0.25% v/v Tween80, resulting in good morphology of CA nanofibers with av. 420 nm diameter. The loading efficiency (%) of the crude astaxanthins extract was 5% w/w of CA. With regard to the results of the in vivo oxidative stress assay, C. elegans pre-treated with 200 μg mL-1 of the crude extract had a survival percent of 56 after administration of 250 mM of paraquat for 8 h. Under phosphate-buffered saline (pH 7.4) containing 10% v/v acetone, the release of astaxanthins from the CA nanofibers loaded with the crude extract exhibited a prolonged profile. The stability of astaxanthins in electrospun CA nanofibers was examined using the freeze-thaw cycle testing through a DPPH radical scavenging assay. It was found that their stability was significantly different (P < 0.05) after the 12th freeze-thaw cycle compared with the crude extract.
Collapse
Affiliation(s)
- Jukkrit Nootem
- Organic Synthesis, Electrochemistry & Natural Product Research Unit, Department of Chemistry, Faculty of Science, King Mongkut's University of Technology Thonburi Bangkok 10140 Thailand
| | - Pawanrat Chalorak
- Department of Anatomy, Faculty of Science, Mahidol University Bangkok 10400 Thailand
| | - Krai Meemon
- Department of Anatomy, Faculty of Science, Mahidol University Bangkok 10400 Thailand
| | - Withawat Mingvanish
- Organic Synthesis, Electrochemistry & Natural Product Research Unit, Department of Chemistry, Faculty of Science, King Mongkut's University of Technology Thonburi Bangkok 10140 Thailand
| | - Kornkanya Pratumyot
- Organic Synthesis, Electrochemistry & Natural Product Research Unit, Department of Chemistry, Faculty of Science, King Mongkut's University of Technology Thonburi Bangkok 10140 Thailand
| | - Leela Ruckthong
- Organic Synthesis, Electrochemistry & Natural Product Research Unit, Department of Chemistry, Faculty of Science, King Mongkut's University of Technology Thonburi Bangkok 10140 Thailand
| | - Choladda Srisuwannaket
- Organic Synthesis, Electrochemistry & Natural Product Research Unit, Department of Chemistry, Faculty of Science, King Mongkut's University of Technology Thonburi Bangkok 10140 Thailand
| | - Nakorn Niamnont
- Organic Synthesis, Electrochemistry & Natural Product Research Unit, Department of Chemistry, Faculty of Science, King Mongkut's University of Technology Thonburi Bangkok 10140 Thailand
| |
Collapse
|
37
|
Sensini A, Cristofolini L. Biofabrication of Electrospun Scaffolds for the Regeneration of Tendons and Ligaments. MATERIALS (BASEL, SWITZERLAND) 2018; 11:E1963. [PMID: 30322082 PMCID: PMC6213815 DOI: 10.3390/ma11101963] [Citation(s) in RCA: 88] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/01/2018] [Revised: 09/29/2018] [Accepted: 10/04/2018] [Indexed: 12/16/2022]
Abstract
Tendon and ligament tissue regeneration and replacement are complex since scaffolds need to guarantee an adequate hierarchical structured morphology, and non-linear mechanical properties. Moreover, to guide the cells' proliferation and tissue re-growth, scaffolds must provide a fibrous texture mimicking the typical of the arrangement of the collagen in the extracellular matrix of these tissues. Among the different techniques to produce scaffolds, electrospinning is one of the most promising, thanks to its ability to produce fibers of nanometric size. This manuscript aims to provide an overview to researchers approaching the field of repair and regeneration of tendons and ligaments. To clarify the general requirements of electrospun scaffolds, the first part of this manuscript presents a general overview concerning tendons' and ligaments' structure and mechanical properties. The different types of polymers, blends and particles most frequently used for tendon and ligament tissue engineering are summarized. Furthermore, the focus of the review is on describing the different possible electrospinning setups and processes to obtain different nanofibrous structures, such as mats, bundles, yarns and more complex hierarchical assemblies. Finally, an overview concerning how these technologies are exploited to produce electrospun scaffolds for tendon and ligament tissue applications is reported together with the main findings and outcomes.
Collapse
Affiliation(s)
- Alberto Sensini
- Department of Industrial Engineering, School of Engineering and Architecture, Alma Mater Studiorum-Università di Bologna, 40131 Bologna, Italy.
| | - Luca Cristofolini
- Department of Industrial Engineering, School of Engineering and Architecture, Alma Mater Studiorum-Università di Bologna, 40131 Bologna, Italy.
- Health Sciences and Technologies-Interdepartmental Center for Industrial Research (HST-ICIR), Alma Mater Studiorum-Università di Bologna, 40064 Ozzano dell'Emilia, Bologna, Italy.
| |
Collapse
|
38
|
Incorporating platelet-rich plasma into coaxial electrospun nanofibers for bone tissue engineering. Int J Pharm 2018; 547:656-666. [DOI: 10.1016/j.ijpharm.2018.06.020] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2018] [Revised: 05/15/2018] [Accepted: 06/06/2018] [Indexed: 12/11/2022]
|
39
|
Babar AA, Miao D, Ali N, Zhao J, Wang X, Yu J, Ding B. Breathable and Colorful Cellulose Acetate-Based Nanofibrous Membranes for Directional Moisture Transport. ACS APPLIED MATERIALS & INTERFACES 2018; 10:22866-22875. [PMID: 29870228 DOI: 10.1021/acsami.8b07393] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Textiles with excellent moisture transport characteristics play key role in regulating comfort of the body, and use of color in textiles helps in developing aesthetically pleasing apparels. Herein, we report an aesthetically pleasing and breathable dual-layer cellulose acetate (CA) based nanofibrous membranes with exceptional directional moisture transport performance. The outer layer was synthesized by subjecting CA nanofibers to hydrolysis and reactive dyeing processes, which converted moderately hydrophobic CA nanofibers into uniformly colored superhydrophilic CA nanofibers with an excellent wettability. In addition to excellent wettability and superhydrophilic nature, dyed CA (DCA) nanofibers also offered high color yield and dye fixation as well as considerable colorfastness performance against washing and light, thus, were used as the outer layer. However, pristine CA nanofibers were chosen as the inner layer for their moderate hydrophobicity. The subsequent CA/DCA nanofiber membrane produced a high wettability gradient, which facilitated directional moisture transport from CA to DCA layers. The resultant dual-layer nanofiber membranes offered a high color yield of 16.33 with ∼82% dye fixation, excellent accumulative one-way transport capacity (919%), remarkable overall moisture management capacity (0.89), and reasonably high water vapor transport rate (12.11 kg d-1 m-2), suggesting them to be a potential substrate for fast sweat-release applications.
Collapse
Affiliation(s)
- Aijaz Ahmed Babar
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University , Shanghai 201620 , China
- Textile Engineering Department , Mehran University of Engineering & Technology , Jamshoro 76060 , Pakistan
| | - Dongyang Miao
- Key Laboratory of Textile Science & Technology, Ministry of Education, College of Textiles, Donghua University , Shanghai 201620 , China
| | - Nadir Ali
- Key Laboratory of Textile Science & Technology, Ministry of Education, College of Textiles, Donghua University , Shanghai 201620 , China
- Textile Engineering Department , Mehran University of Engineering & Technology , Jamshoro 76060 , Pakistan
| | - Jing Zhao
- Key Laboratory of Textile Science & Technology, Ministry of Education, College of Textiles, Donghua University , Shanghai 201620 , China
| | - Xianfeng Wang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University , Shanghai 201620 , China
- Key Laboratory of Textile Science & Technology, Ministry of Education, College of Textiles, Donghua University , Shanghai 201620 , China
- Innovation Center for Textile Science and Technology , Donghua University , Shanghai 200051 , China
| | - Jianyong Yu
- Innovation Center for Textile Science and Technology , Donghua University , Shanghai 200051 , China
| | - Bin Ding
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University , Shanghai 201620 , China
- Key Laboratory of Textile Science & Technology, Ministry of Education, College of Textiles, Donghua University , Shanghai 201620 , China
- Innovation Center for Textile Science and Technology , Donghua University , Shanghai 200051 , China
| |
Collapse
|
40
|
Das P, Ojah N, Kandimalla R, Mohan K, Gogoi D, Dolui SK, Choudhury AJ. Surface modification of electrospun PVA/chitosan nanofibers by dielectric barrier discharge plasma at atmospheric pressure and studies of their mechanical properties and biocompatibility. Int J Biol Macromol 2018; 114:1026-1032. [DOI: 10.1016/j.ijbiomac.2018.03.115] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2017] [Revised: 02/06/2018] [Accepted: 03/21/2018] [Indexed: 12/01/2022]
|
41
|
Zhou F, Wen M, Zhou P, Zhao Y, Jia X, Fan Y, Yuan X. Electrospun membranes of PELCL/PCL-REDV loading with miRNA-126 for enhancement of vascular endothelial cell adhesion and proliferation. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2018; 85:37-46. [DOI: 10.1016/j.msec.2017.12.005] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2017] [Revised: 09/07/2017] [Accepted: 12/07/2017] [Indexed: 10/18/2022]
|
42
|
Wu T, Xue J, Li H, Zhu C, Mo X, Xia Y. General Method for Generating Circular Gradients of Active Proteins on Nanofiber Scaffolds Sought for Wound Closure and Related Applications. ACS APPLIED MATERIALS & INTERFACES 2018; 10:8536-8545. [PMID: 29420008 PMCID: PMC7758906 DOI: 10.1021/acsami.8b00129] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Scaffolds functionalized with circular gradients of active proteins are attractive for tissue regeneration because of their enhanced capability to accelerate cell migration and/or promote neurite extension in a radial fashion. Here, we report a general method for generating circular gradients of active proteins on scaffolds composed of radially aligned nanofibers. In a typical process, the scaffold, with its central portion raised using a copper wire to take a cone shape, was placed in a container (upright or up-side-down), followed by dropwise addition of bovine serum albumin (BSA) solution into the container. As such, a circular gradient of BSA was generated along each nanofiber. The bare regions uncovered by BSA were then filled with an active protein of interest. In demonstrating their potential applications, we used different model systems to examine the effects of two types of protein gradients. While the gradient of laminin and epidermal growth factor accelerated the migration of fibroblasts and keratinocytes, respectively, from the periphery toward the center of the scaffold, the gradient of nerve growth factor promoted the radial extension of neurites from the embryonic chick dorsal root ganglion. This method for generating circular gradients of active proteins can be readily extended to different types of scaffolds to suit wound closure and related applications that involve cell migration and/or neurite extension in a radial fashion.
Collapse
Affiliation(s)
- Tong Wu
- The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, Georgia 30332, United States
- State Key Lab for Modification of Chemical Fibers and Polymer Materials, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620, P. R. China
| | - Jiajia Xue
- The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, Georgia 30332, United States
| | - Haoxuan Li
- The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, Georgia 30332, United States
| | - Chunlei Zhu
- The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, Georgia 30332, United States
| | - Xiumei Mo
- State Key Lab for Modification of Chemical Fibers and Polymer Materials, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620, P. R. China
| | - Younan Xia
- The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, Georgia 30332, United States
- School of Chemistry and Biochemistry, School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
- Corresponding Author:
| |
Collapse
|
43
|
|
44
|
Gong P, Du J, Wang D, Cao B, Tian M, Wang Y, Sun L, Ji S, Liu Z. Fluorinated graphene as an anticancer nanocarrier: an experimental and DFT study. J Mater Chem B 2018; 6:2769-2777. [DOI: 10.1039/c8tb00102b] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Both experimental and theoretical research was conducted to explore the performance of fluorinated graphene as a novel anticancer nanocarrier, and we also reported its first application in cancer chemo-photothermal therapy.
Collapse
Affiliation(s)
- Peiwei Gong
- Institute of Anticancer Agents Development and Theranostic Application
- The Key Laboratory of Life-Organic Analysis and Key Laboratory of Pharmaceutical Intermediates and Analysis of Natural Medicine
- Department of Chemistry and Chemical Engineering
- Qufu Normal University
- Qufu 273165
| | - Jiuyao Du
- Institute of Anticancer Agents Development and Theranostic Application
- The Key Laboratory of Life-Organic Analysis and Key Laboratory of Pharmaceutical Intermediates and Analysis of Natural Medicine
- Department of Chemistry and Chemical Engineering
- Qufu Normal University
- Qufu 273165
| | - Dandan Wang
- Institute of Anticancer Agents Development and Theranostic Application
- The Key Laboratory of Life-Organic Analysis and Key Laboratory of Pharmaceutical Intermediates and Analysis of Natural Medicine
- Department of Chemistry and Chemical Engineering
- Qufu Normal University
- Qufu 273165
| | - Bobo Cao
- Institute of Anticancer Agents Development and Theranostic Application
- The Key Laboratory of Life-Organic Analysis and Key Laboratory of Pharmaceutical Intermediates and Analysis of Natural Medicine
- Department of Chemistry and Chemical Engineering
- Qufu Normal University
- Qufu 273165
| | - Meng Tian
- Institute of Anticancer Agents Development and Theranostic Application
- The Key Laboratory of Life-Organic Analysis and Key Laboratory of Pharmaceutical Intermediates and Analysis of Natural Medicine
- Department of Chemistry and Chemical Engineering
- Qufu Normal University
- Qufu 273165
| | - Yuhua Wang
- Institute of Anticancer Agents Development and Theranostic Application
- The Key Laboratory of Life-Organic Analysis and Key Laboratory of Pharmaceutical Intermediates and Analysis of Natural Medicine
- Department of Chemistry and Chemical Engineering
- Qufu Normal University
- Qufu 273165
| | - Lu Sun
- Institute of Anticancer Agents Development and Theranostic Application
- The Key Laboratory of Life-Organic Analysis and Key Laboratory of Pharmaceutical Intermediates and Analysis of Natural Medicine
- Department of Chemistry and Chemical Engineering
- Qufu Normal University
- Qufu 273165
| | - Shuaijie Ji
- Institute of Anticancer Agents Development and Theranostic Application
- The Key Laboratory of Life-Organic Analysis and Key Laboratory of Pharmaceutical Intermediates and Analysis of Natural Medicine
- Department of Chemistry and Chemical Engineering
- Qufu Normal University
- Qufu 273165
| | - Zhe Liu
- Institute of Anticancer Agents Development and Theranostic Application
- The Key Laboratory of Life-Organic Analysis and Key Laboratory of Pharmaceutical Intermediates and Analysis of Natural Medicine
- Department of Chemistry and Chemical Engineering
- Qufu Normal University
- Qufu 273165
| |
Collapse
|
45
|
Hong S, Jung BY, Hwang C. Multilayered Engineered Tissue Sheets for Vascularized Tissue Regeneration. Tissue Eng Regen Med 2017; 14:371-381. [PMID: 30603493 PMCID: PMC6171602 DOI: 10.1007/s13770-017-0049-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2016] [Revised: 12/20/2016] [Accepted: 02/02/2017] [Indexed: 12/01/2022] Open
Abstract
A major hurdle in engineering thick and laminated tissues such as skin is how to vascularize the tissue. This study introduces a promising strategy for generating multi-layering engineered tissue sheets consisting of fibroblasts and endothelial cells co-seeded on highly micro-fibrous, biodegradable polycaprolactone membrane. Analysis of the conditions for induction of the vessels in vivo showed that addition of endothelial cell sheets into the laminated structure increases the number of incorporated cells and promotes primitive endothelial vessel growth. In vivo analysis of 11-layered constructs showed that seeding a high number of endothelial cells resulted in better cell survival and vascularization 4 weeks after implantation. Within one week after implantation in vivo, red blood cells were detected in the middle section of three-layered engineered tissue sheets composed of polycaprolactone/collagen membranes. Our engineered tissue sheets have several advantages, such as easy handling for cell seeding, manipulation by stacking each layer, a flexible number of cells for next-step applications and versatile tissue regeneration, and automated thick tissue generation with proper vascularization.
Collapse
Affiliation(s)
- Soyoung Hong
- Biomedical Engineering Research Center, Asan Institute for Life Sciences, Asan Medical Center, 88, Olympic-ro 43-gil, Songpa-gu, Seoul, 05505 Korea
| | - Bo Young Jung
- Biomedical Engineering Research Center, Asan Institute for Life Sciences, Asan Medical Center, 88, Olympic-ro 43-gil, Songpa-gu, Seoul, 05505 Korea
| | - Changmo Hwang
- Biomedical Engineering Research Center, Asan Institute for Life Sciences, Asan Medical Center, 88, Olympic-ro 43-gil, Songpa-gu, Seoul, 05505 Korea
- Department of Convergence Medicine, University of Ulsan College of Medicine & Asan Institute for Life Sciences, Asan Medical Center, 88, Olympic-ro 43-gil, Songpa-gu, Seoul, 05505 Korea
| |
Collapse
|
46
|
Differentiation of dental pulp stem cells into chondrocytes upon culture on porous chitosan-xanthan scaffolds in the presence of kartogenin. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2017; 80:594-602. [PMID: 28866206 DOI: 10.1016/j.msec.2017.07.005] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2017] [Revised: 05/21/2017] [Accepted: 07/06/2017] [Indexed: 12/25/2022]
Abstract
Adhesion, proliferation and differentiation of dental pulp stem cells (DPSCs) into chondrocytes were investigated in this work with the purpose of broadening the array of cell alternatives to the therapy of cartilage lesions related to tissue engineering approaches. A porous chitosan-xanthan (C-X) matrix was used as scaffold and kartogenin was used as a selective chondrogenic differentiation promoter. The scaffold was characterized regarding aspect and surface morphology, absorption and stability in culture medium, thickness, porosity, thermogravimetric behavior, X-ray diffraction, mechanical properties and indirect cytocompatibility. The behavior of DPSCs cultured on the scaffold was evaluated by scanning electron microscopy and cell differentiation, by histological analysis. A sufficiently stable amorphous scaffold with mean thickness of 0.89±0.01mm and high culture medium absorption capacity (13.20±1.88g/g) was obtained, and kartogenin concentrations as low as 100nmol/L were sufficient to efficiently induce DPSCs differentiation into chondrocytes, showing that the strategy proposed may be a straightforward and effective approach for tissue engineering aiming at the therapy of cartilage lesions.
Collapse
|
47
|
Hong HJ, Koom WS, Koh WG. Cell Microarray Technologies for High-Throughput Cell-Based Biosensors. SENSORS (BASEL, SWITZERLAND) 2017; 17:E1293. [PMID: 28587242 PMCID: PMC5492771 DOI: 10.3390/s17061293] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/30/2017] [Revised: 05/24/2017] [Accepted: 05/31/2017] [Indexed: 12/27/2022]
Abstract
Due to the recent demand for high-throughput cellular assays, a lot of efforts have been made on miniaturization of cell-based biosensors by preparing cell microarrays. Various microfabrication technologies have been used to generate cell microarrays, where cells of different phenotypes are immobilized either on a flat substrate (positional array) or on particles (solution or suspension array) to achieve multiplexed and high-throughput cell-based biosensing. After introducing the fabrication methods for preparation of the positional and suspension cell microarrays, this review discusses the applications of the cell microarray including toxicology, drug discovery and detection of toxic agents.
Collapse
Affiliation(s)
- Hye Jin Hong
- Department of Chemical and Biomolecular Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 120-749, Korea.
| | - Woong Sub Koom
- Department of Radiation Oncology, Yonsei University College of Medicine, 50 Yonsei-ro, Seodaemun-gu, Seoul 120-749, Korea.
| | - Won-Gun Koh
- Department of Chemical and Biomolecular Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 120-749, Korea.
| |
Collapse
|
48
|
Combined chemical and structural signals of biomaterials synergistically activate cell-cell communications for improving tissue regeneration. Acta Biomater 2017; 55:249-261. [PMID: 28377306 DOI: 10.1016/j.actbio.2017.03.056] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2016] [Revised: 02/24/2017] [Accepted: 03/31/2017] [Indexed: 01/20/2023]
Abstract
Biomaterials are only used as carriers of cells in the conventional tissue engineering. Considering the multi-cell environment and active cell-biomaterial interactions in tissue regeneration process, in this study, structural signals of aligned electrospun nanofibers and chemical signals of bioglass (BG) ionic products in cell culture medium are simultaneously applied to activate fibroblast-endothelial co-cultured cells in order to obtain an improved skin tissue engineering construct. Results demonstrate that the combined biomaterial signals synergistically activate fibroblast-endothelial co-culture skin tissue engineering constructs through promotion of paracrine effects and stimulation of gap junctional communication between cells, which results in enhanced vascularization and extracellular matrix protein synthesis in the constructs. Structural signals of aligned electrospun nanofibers play an important role in stimulating both of paracrine and gap junctional communication while chemical signals of BG ionic products mainly enhance paracrine effects. In vivo experiments reveal that the activated skin tissue engineering constructs significantly enhance wound healing as compared to control. This study indicates the advantages of synergistic effects between different bioactive signals of biomaterials can be taken to activate communication between different types of cells for obtaining tissue engineering constructs with improved functions. STATEMENT OF SIGNIFICANCE Tissue engineering can regenerate or replace tissue or organs through combining cells, biomaterials and growth factors. Normally, for repairing a specific tissue, only one type of cells, one kind of biomaterials, and specific growth factors are used to support cell growth. In this study, we proposed a novel tissue engineering approach by simply using co-cultured cells and combined biomaterial signals. Using a skin tissue engineering model, we successfully proved that the combined biomaterial signals such as surface nanostructures and bioactive ions could synergistically stimulate the cell-cell communication in co-culture system through paracrine effects and gap junction activation, and regulated expression of growth factors and extracellular matrix proteins, resulting in an activated tissue engineering constructs that significantly enhanced skin regeneration.
Collapse
|
49
|
Liu Y, Nguyen A, Allen A, Zoldan J, Huang Y, Chen JY. Regenerated cellulose micro-nano fiber matrices for transdermal drug release. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2017; 74:485-492. [PMID: 28254322 DOI: 10.1016/j.msec.2016.12.048] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2016] [Revised: 11/15/2016] [Accepted: 12/11/2016] [Indexed: 11/29/2022]
|
50
|
Trinca RB, Westin CB, da Silva JAF, Moraes ÂM. Electrospun multilayer chitosan scaffolds as potential wound dressings for skin lesions. Eur Polym J 2017. [DOI: 10.1016/j.eurpolymj.2017.01.021] [Citation(s) in RCA: 81] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|