1
|
Pepe A, Laezza A, Ostuni A, Scelsi A, Laurita A, Bochicchio B. Bioconjugation of Carbohydrates to Gelatin Sponges Promoting 3D Cell Cultures. Biomimetics (Basel) 2023; 8:biomimetics8020193. [PMID: 37218779 DOI: 10.3390/biomimetics8020193] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 04/28/2023] [Accepted: 05/02/2023] [Indexed: 05/24/2023] Open
Abstract
Gelatin sponges are widely employed as hemostatic agents, and are gaining increasing interest as 3D scaffolds for tissue engineering. To broaden their possible application in the field of tissue engineering, a straightforward synthetic protocol able to anchor the disaccharides, maltose and lactose, for specific cell interactions was developed. A high conjugation yield was confirmed by 1H-NMR and FT-IR spectroscopy, and the morphology of the resulting decorated sponges was characterized by SEM. After the crosslinking reaction, the sponges preserve their porous structure as ascertained by SEM. Finally, HepG2 cells cultured on the decorated gelatin sponges show high viability and significant differences in the cellular morphology as a function of the conjugated disaccharide. More spherical morphologies are observed when cultured on maltose-conjugated gelatin sponges, while a more flattened aspect is discerned when cultured onto lactose-conjugated gelatin sponges. Considering the increasing interest in small-sized carbohydrates as signaling cues on biomaterial surfaces, systematic studies on how small carbohydrates might influence cell adhesion and differentiation processes could take advantage of the described protocol.
Collapse
Affiliation(s)
- Antonietta Pepe
- Laboratory of Protein-Inspired Biomaterials, Department of Science, University of Basilicata, Via Ateneo Lucano, 10, 85100 Potenza, Italy
| | - Antonio Laezza
- Laboratory of Protein-Inspired Biomaterials, Department of Science, University of Basilicata, Via Ateneo Lucano, 10, 85100 Potenza, Italy
| | - Angela Ostuni
- Cellular Biochemistry Laboratory, Department of Science, University of Basilicata, Via Ateneo Lucano, 10, 85100 Potenza, Italy
| | - Alessandra Scelsi
- Laboratory of Protein-Inspired Biomaterials, Department of Science, University of Basilicata, Via Ateneo Lucano, 10, 85100 Potenza, Italy
| | - Alessandro Laurita
- Microscopy Area, Department of Science, University of Basilicata, Via Ateneo Lucano, 10, 85100 Potenza, Italy
| | - Brigida Bochicchio
- Laboratory of Protein-Inspired Biomaterials, Department of Science, University of Basilicata, Via Ateneo Lucano, 10, 85100 Potenza, Italy
| |
Collapse
|
2
|
Fadilah NIM, Phang SJ, Kamaruzaman N, Salleh A, Zawani M, Sanyal A, Maarof M, Fauzi MB. Antioxidant Biomaterials in Cutaneous Wound Healing and Tissue Regeneration: A Critical Review. Antioxidants (Basel) 2023; 12:antiox12040787. [PMID: 37107164 DOI: 10.3390/antiox12040787] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Revised: 02/21/2023] [Accepted: 03/07/2023] [Indexed: 03/29/2023] Open
Abstract
Natural-based biomaterials play an important role in developing new products for medical applications, primarily in cutaneous injuries. A large panel of biomaterials with antioxidant properties has revealed an advancement in supporting and expediting tissue regeneration. However, their low bioavailability in preventing cellular oxidative stress through the delivery system limits their therapeutic activity at the injury site. The integration of antioxidant compounds in the implanted biomaterial should be able to maintain their antioxidant activity while facilitating skin tissue recovery. This review summarises the recent literature that reported the role of natural antioxidant-incorporated biomaterials in promoting skin wound healing and tissue regeneration, which is supported by evidence from in vitro, in vivo, and clinical studies. Antioxidant-based therapies for wound healing have shown promising evidence in numerous animal studies, even though clinical studies remain very limited. We also described the underlying mechanism of reactive oxygen species (ROS) generation and provided a comprehensive review of ROS-scavenging biomaterials found in the literature in the last six years.
Collapse
|
3
|
Kim J, Choi Y, Park J, Choi J. Gelatin-Gallic Acid Microcomplexes Release GO/Cu Nanomaterials to Eradicate Antibiotic-Resistant Microbes and Their Biofilm. ACS Infect Dis 2023; 9:296-307. [PMID: 36696596 DOI: 10.1021/acsinfecdis.2c00439] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Wound-infecting bacteria are typically Pseudomonas aeruginosa and Staphylococcus epidermidis, both of which form biofilms and become resistant to antibiotics. To solve this problem, copper nanoparticles (Cu) on graphene oxide (GO) nanosheets were used as antibacterial materials. Since the excessive use of antibacterial substances is fatal to normal tissues, GO/Cu was encapsulated with a gelatin complex to lower the cytotoxicity. Among the catechol-based substances, gallic acid (GA), which has anti-inflammatory and antibacterial properties, was used in this study to impart stability to the gelatin complex. Gelatin (GE) and gallic acid (GA) were combined by a crosslinking method using 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide (EDC)/N-hydroxysuccinimide (NHS) as a crosslinker, and the crosslinking was confirmed by Fourier transform infrared (FT-IR), 1H NMR, and the fluorescence property of GA. The GO/Cu@GE-GA microcomplexes exhibited more antibacterial effect against Gram-positive bacteria (S. epidermidis) and Gram-negative bacteria (P. aeruginosa) than when GO/Cu alone was used, and the antibiofilm effect was also confirmed. The cytotoxicity evaluation for human skin cells (human dermal fibroblast (HDF)) at the same concentration showed that it had low cytotoxicity and biocompatibility. This study shows the potential of antimicrobial gelatin microcomplex in prohibiting infectious bacteria and their biofilms and controlling the release of antimicrobial substances.
Collapse
Affiliation(s)
- Jiwon Kim
- School of Integrative Engineering, Chung-Ang University, Seoul 06974, Republic of Korea
| | - Yonghyun Choi
- School of Integrative Engineering, Chung-Ang University, Seoul 06974, Republic of Korea.,Feynman Institute of Technology, Nanomedicine Corporation, Seoul 06974, Republic of Korea
| | - Jongjun Park
- School of Integrative Engineering, Chung-Ang University, Seoul 06974, Republic of Korea
| | - Jonghoon Choi
- School of Integrative Engineering, Chung-Ang University, Seoul 06974, Republic of Korea.,Feynman Institute of Technology, Nanomedicine Corporation, Seoul 06974, Republic of Korea
| |
Collapse
|
4
|
Montazerian H, Davoodi E, Baidya A, Badv M, Haghniaz R, Dalili A, Milani AS, Hoorfar M, Annabi N, Khademhosseini A, Weiss PS. Bio-macromolecular design roadmap towards tough bioadhesives. Chem Soc Rev 2022; 51:9127-9173. [PMID: 36269075 PMCID: PMC9810209 DOI: 10.1039/d2cs00618a] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Emerging sutureless wound-closure techniques have led to paradigm shifts in wound management. State-of-the-art biomaterials offer biocompatible and biodegradable platforms enabling high cohesion (toughness) and adhesion for rapid bleeding control as well as robust attachment of implantable devices. Tough bioadhesion stems from the synergistic contributions of cohesive and adhesive interactions. This Review provides a biomacromolecular design roadmap for the development of tough adhesive surgical sealants. We discuss a library of materials and methods to introduce toughness and adhesion to biomaterials. Intrinsically tough and elastic polymers are leveraged primarily by introducing strong but dynamic inter- and intramolecular interactions either through polymer chain design or using crosslink regulating additives. In addition, many efforts have been made to promote underwater adhesion via covalent/noncovalent bonds, or through micro/macro-interlock mechanisms at the tissue interfaces. The materials settings and functional additives for this purpose and the related characterization methods are reviewed. Measurements and reporting needs for fair comparisons of different materials and their properties are discussed. Finally, future directions and further research opportunities for developing tough bioadhesive surgical sealants are highlighted.
Collapse
Affiliation(s)
- Hossein Montazerian
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, California 90095, USA.
- California NanoSystems Institute, University of California, Los Angeles, Los Angeles, California 90095, USA
- Terasaki Institute for Biomedical Innovation, Los Angeles, Los Angeles, California 90024, USA.
| | - Elham Davoodi
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, California 90095, USA.
- California NanoSystems Institute, University of California, Los Angeles, Los Angeles, California 90095, USA
- Terasaki Institute for Biomedical Innovation, Los Angeles, Los Angeles, California 90024, USA.
- Multi-Scale Additive Manufacturing Lab, Mechanical and Mechatronics Engineering Department, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada
| | - Avijit Baidya
- Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, Los Angeles, California 90095, USA.
| | - Maryam Badv
- California NanoSystems Institute, University of California, Los Angeles, Los Angeles, California 90095, USA
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, California 90095, USA
- Department of Biomedical Engineering, Schulich School of Engineering, University of Calgary, Calgary, Alberta T2N 1N4, Canada
| | - Reihaneh Haghniaz
- Terasaki Institute for Biomedical Innovation, Los Angeles, Los Angeles, California 90024, USA.
| | - Arash Dalili
- School of Engineering, University of British Columbia, Kelowna, British Columbia V1V 1V7, Canada
| | - Abbas S Milani
- School of Engineering, University of British Columbia, Kelowna, British Columbia V1V 1V7, Canada
| | - Mina Hoorfar
- School of Engineering, University of British Columbia, Kelowna, British Columbia V1V 1V7, Canada
- School of Engineering and Computer Science, University of Victoria, Victoria, British Columbia V8P 3E6, Canada
| | - Nasim Annabi
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, California 90095, USA.
- Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, Los Angeles, California 90095, USA.
| | - Ali Khademhosseini
- Terasaki Institute for Biomedical Innovation, Los Angeles, Los Angeles, California 90024, USA.
| | - Paul S Weiss
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, California 90095, USA.
- California NanoSystems Institute, University of California, Los Angeles, Los Angeles, California 90095, USA
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, California 90095, USA
- Department of Materials Science and Engineering, University of California, Los Angeles, Los Angeles, California 90095, USA
| |
Collapse
|
5
|
Sulaiman SB, Abdul Rani RB, Mohamad Yahaya NHB, Tabata Y, Hiraoka Y, Seet WT, Ng MH. Physical and natural cross-linking approaches on 3D gelatin microspheres for cartilage regeneration. Tissue Eng Part C Methods 2022; 28:557-569. [PMID: 35615885 DOI: 10.1089/ten.tec.2022.0073] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
The use of gelatin microspheres (GM) as a cell carrier has been extensively researched. One of its limitation is that it dissolves rapidly in aqueous settings, precluding its use for long-term cell propagation. This circumstance necessitates the use of cross-linking agents to circumvent the constraint. Thus, the current study examines two different methods of cross-linking and their effect on the microsphere's '"physicochemical and cartilage tissue regeneration capacity. Crosslinking was accomplished by physical [Dehydrothermal (DHT)] and natural (Genipin) cross-linking of the 3D gelatin microspheres (GM). We begin by comparing the microstructures of the scaffolds and their long-term resistance to degradation under physiological conditions (in isotonic solution, at 37 °C, pH = 7.4). Infrared spectroscopy indicated that the gelatin structure was preserved after the cross-linking treatments. The cross-linked GM" 'demonstrated good cell adhesion, viability, proliferation, and widespread 3D scaffold colonization when seeded with human bone marrow mesenchymal stem cells (BMSCs). Additionally, the cross-linked microspheres enhanced chondrogenesis, as demonstrated by the data. It was discovered that cross-linked GM increased the expression of cartilage-related genes and the biosynthesis of a glycosaminoglycan-positive matrix as compared to non-crosslinked GM. In comparison, DHT-crosslinked results were significantly enhanced. To summarize, DHT treatment was found to be a superior approach for cross-linking the GM in order to promote better cartilage tissue regeneration.
Collapse
Affiliation(s)
- Shamsul Bin Sulaiman
- Universiti Kebangsaan Malaysia, 61775, Centre for Tissue Engineering and Regenerative Medicine (CTERM), Bangi, Selangor, Malaysia;
| | - Rizal Bin Abdul Rani
- Universiti Kebangsaan Malaysia, 61775, Orthopedic & Traumatology, Bangi, Selangor, Malaysia;
| | | | - Yasuhiko Tabata
- Institute for Frontier Medical Sciences, Dept of Biomaterials, 53 Shogoinkawara-cho, Sakyo-ku, Kyoto, Kyoto, Japan, 6068507;
| | | | - Wan Tai Seet
- UKM, 61775, Centre for Tissue Engineering and Regenerative Medicine, 12th Floor, Clinical Block, Jalan Yaacob Latif, Cheras, Kuala Lumpur, Malaysia, 56000;
| | - Min Hwei Ng
- Universiti Kebangsaan Malaysia, 61775, Tissue Engineering Centre, 12th Floor, Clinical Block, Jalan Yaacob Latif, Cheras, Kuala Lumpur, Federal Territory, Malaysia, 56000.,Universiti Kebangsaan Malaysia Medical Centre, 12th Floor, Clinical Block, Jalan Yaacob Latif, 12th Floor, Clinical Block, Jalan Yaacob Latif, Malaysia;
| |
Collapse
|
6
|
Nike DU, Katas H, Mohd NF, Hiraoka Y, Tabata Y, Idrus RBH, Fauzi MB. Characterisation of Rapid In Situ Forming Gelipin Hydrogel for Future Use in Irregular Deep Cutaneous Wound Healing. Polymers (Basel) 2021; 13:3152. [PMID: 34578052 PMCID: PMC8468405 DOI: 10.3390/polym13183152] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 09/08/2021] [Accepted: 09/15/2021] [Indexed: 12/28/2022] Open
Abstract
The irregular deep chronic wound is a grand challenge to be healed due to multiple factors including slow angiogenesis that causing regenerated tissue failure. The narrow gap of deep wounds could hinder and slow down normal wound healing. Thus, the current study aimed to develop a polymerised genipin-crosslinked gelatin (gelipin) hydrogel (GNP_GH) as a potential biodegradable filler for the abovementioned limitations. Briefly, GNP_GH bioscaffolds have been developed successfully within three-minute polymerisation at room temperature (22-24 °C). The physicochemical and biocompatibility of GNP_GH bioscaffolds were respectively evaluated. Amongst GNP_GH groups, the 0.1%GNP_GH10% displayed the highest injectability (97.3 ± 0.6%). Meanwhile, the 0.5%GNP_GH15% degraded within more than two weeks with optimum swelling capacity (108.83 ± 15.7%) and higher mechanical strength (22.6 ± 3.9 kPa) than non-crosslinked gelatin hydrogel 15% (NC_GH15%). Furthermore, 0.1%GNP_GH15% offered higher porosity (>80%) and lower wettability (48.7 ± 0.3) than NC_GH15%. Surface and cross-section SEM photographs displayed an interconnected porous structure for all GNP_GH groups. The EDX spectra and maps represented no major changes after GNP modification. Moreover, no toxicity effect of GNP_GH against dermal fibroblasts was shown during the biocompatibility test. In conclusion, the abovementioned findings indicated that gelipin has excellent physicochemical properties and acceptable biocompatibility as an acellular rapid treatment for future use in irregular deep cutaneous wounds.
Collapse
Affiliation(s)
- Dewi Utami Nike
- Centre for Tissue Engineering and Regenerative Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, Bandar Tun Razak, Kuala Lumpur 56000, Malaysia; (D.U.N.); (R.B.H.I.)
| | - Haliza Katas
- Centre for Drug Delivery Technology, Faculty of Pharmacy, Universiti Kebangsaan Malaysia, Kuala Lumpur 56000, Malaysia;
| | - Nor Fatimah Mohd
- Kumpulan Perubatan Johor Ampang Puteri Specialist Hospital, Ampang, Kuala Lumpur 68000, Malaysia;
| | - Yosuke Hiraoka
- Biomaterial Group, R&D Center, Yao City 581-0000, Japan;
| | - Yasuhiko Tabata
- Department of Biomaterials, Sakyo-ku, Kyoto 606-8500, Japan;
| | - Ruszymah Bt Hj Idrus
- Centre for Tissue Engineering and Regenerative Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, Bandar Tun Razak, Kuala Lumpur 56000, Malaysia; (D.U.N.); (R.B.H.I.)
| | - Mh Busra Fauzi
- Centre for Tissue Engineering and Regenerative Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, Bandar Tun Razak, Kuala Lumpur 56000, Malaysia; (D.U.N.); (R.B.H.I.)
| |
Collapse
|
7
|
Montazerian H, Baidya A, Haghniaz R, Davoodi E, Ahadian S, Annabi N, Khademhosseini A, Weiss PS. Stretchable and Bioadhesive Gelatin Methacryloyl-Based Hydrogels Enabled by in Situ Dopamine Polymerization. ACS APPLIED MATERIALS & INTERFACES 2021; 13:40290-40301. [PMID: 34410697 DOI: 10.1021/acsami.1c10048] [Citation(s) in RCA: 61] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Hydrogel patches with high toughness, stretchability, and adhesive properties are critical to healthcare applications including wound dressings and wearable devices. Gelatin methacryloyl (GelMA) provides a highly biocompatible and accessible hydrogel platform. However, low tissue adhesion and poor mechanical properties of cross-linked GelMA patches (i.e., brittleness and low stretchability) have been major obstacles to their application for sealing and repair of wounds. Here, we show that adding dopamine (DA) moieties in larger quantities than those of conjugated counterparts to the GelMA prepolymer solution followed by alkaline DA oxidation could result in robust mechanical and adhesive properties in GelMA-based hydrogels. In this way, cross-linked patches with ∼140% stretchability and ∼19 000 J/m3 toughness, which correspond to ∼5.7 and ∼3.3× improvement, respectively, compared to that of GelMA controls, were obtained. The DA oxidization in the prepolymer solution was found to play an important role in activating adhesive properties of cross-linked GelMA patches (∼4.0 and ∼6.9× increase in adhesion force under tensile and shear modes, respectively) due to the presence of reactive oxidized quinone species. We further conducted a parametric study on the factors such as UV light parameters, the photoinitiator type (i.e., lithium phenyl-2,4,6-trimethylbenzoylphosphinate, LAP, versus 2-hydroxy-4'-(2-hydroxyethoxy)-2-methylpropiophenone, Irgacure 2959), and alkaline DA oxidation to tune the cross-linking density and thereby hydrogel compliance for better adhesive properties. The superior adhesion performance of the resulting hydrogel along with in vitro cytocompatibility demonstrated its potential for use in skin-attachable substrates.
Collapse
Affiliation(s)
- Hossein Montazerian
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, California 90095, United States
- California NanoSystems Institute, University of California, Los Angeles, Los Angeles, California 90095, United States
- Terasaki Institute for Biomedical Innovation, Los Angeles, California 90024, United States
| | - Avijit Baidya
- Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, Los Angeles, California 90095, United States
| | - Reihaneh Haghniaz
- Terasaki Institute for Biomedical Innovation, Los Angeles, California 90024, United States
| | - Elham Davoodi
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, California 90095, United States
- California NanoSystems Institute, University of California, Los Angeles, Los Angeles, California 90095, United States
- Terasaki Institute for Biomedical Innovation, Los Angeles, California 90024, United States
- Mechanical and Mechatronics Engineering Department, University of Waterloo, 200 University Avenue West, Waterloo, Ontario N2L 3G1, Canada
| | - Samad Ahadian
- Terasaki Institute for Biomedical Innovation, Los Angeles, California 90024, United States
| | - Nasim Annabi
- Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, Los Angeles, California 90095, United States
| | - Ali Khademhosseini
- Terasaki Institute for Biomedical Innovation, Los Angeles, California 90024, United States
| | - Paul S Weiss
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, California 90095, United States
- California NanoSystems Institute, University of California, Los Angeles, Los Angeles, California 90095, United States
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, California 90095, United States
- Department of Materials Science and Engineering, University of California, Los Angeles, Los Angeles, California 90095, United States
| |
Collapse
|
8
|
Contardi M, Lenzuni M, Fiorentini F, Summa M, Bertorelli R, Suarato G, Athanassiou A. Hydroxycinnamic Acids and Derivatives Formulations for Skin Damages and Disorders: A Review. Pharmaceutics 2021; 13:999. [PMID: 34371691 PMCID: PMC8309026 DOI: 10.3390/pharmaceutics13070999] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 06/25/2021] [Accepted: 06/26/2021] [Indexed: 02/06/2023] Open
Abstract
Alterations of skin homeostasis are widely diffused in our everyday life both due to accidental injuries, such as wounds and burns, and physiological conditions, such as late-stage diabetes, dermatitis, or psoriasis. These events are locally characterized by an intense inflammatory response, a high generation of harmful free radicals, or an impairment in the immune response regulation, which can profoundly change the skin tissue' repair process, vulnerability, and functionality. Moreover, diabetes diffusion, antibiotic resistance, and abuse of aggressive soaps and disinfectants following the COVID-19 emergency could be causes for the future spreading of skin disorders. In the last years, hydroxycinnamic acids and derivatives have been investigated and applied in several research fields for their anti-oxidant, anti-inflammatory, and anti-bacterial activities. First, in this study, we give an overview of these natural molecules' current source and applications. Afterwards, we review their potential role as valid alternatives to the current therapies, supporting the management and rebalancing of skin disorders and diseases at different levels. Also, we will introduce the recent advances in the design of biomaterials loaded with these phenolic compounds, specifically suitable for skin disorders treatments. Lastly, we will suggest future perspectives for introducing hydroxycinnamic acids and derivatives in treating skin disorders.
Collapse
Affiliation(s)
- Marco Contardi
- Smart Materials, Italian Institute of Technology, 16163 Genoa, Italy; (M.L.); (F.F.); (G.S.)
| | - Martina Lenzuni
- Smart Materials, Italian Institute of Technology, 16163 Genoa, Italy; (M.L.); (F.F.); (G.S.)
- DIBRIS, University of Genoa, 16145 Genoa, Italy
| | - Fabrizio Fiorentini
- Smart Materials, Italian Institute of Technology, 16163 Genoa, Italy; (M.L.); (F.F.); (G.S.)
- DIBRIS, University of Genoa, 16145 Genoa, Italy
| | - Maria Summa
- Translational Pharmacology, Italian Institute of Technology, 16163 Genoa, Italy; (M.S.); (R.B.)
| | - Rosalia Bertorelli
- Translational Pharmacology, Italian Institute of Technology, 16163 Genoa, Italy; (M.S.); (R.B.)
| | - Giulia Suarato
- Smart Materials, Italian Institute of Technology, 16163 Genoa, Italy; (M.L.); (F.F.); (G.S.)
- Translational Pharmacology, Italian Institute of Technology, 16163 Genoa, Italy; (M.S.); (R.B.)
| | - Athanassia Athanassiou
- Smart Materials, Italian Institute of Technology, 16163 Genoa, Italy; (M.L.); (F.F.); (G.S.)
| |
Collapse
|
9
|
Cirillo G, Pantuso E, Curcio M, Vittorio O, Leggio A, Iemma F, De Filpo G, Nicoletta FP. Alginate Bioconjugate and Graphene Oxide in Multifunctional Hydrogels for Versatile Biomedical Applications. Molecules 2021; 26:1355. [PMID: 33802608 PMCID: PMC7961670 DOI: 10.3390/molecules26051355] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 02/27/2021] [Accepted: 02/28/2021] [Indexed: 12/15/2022] Open
Abstract
In this work, we combined electrically-conductive graphene oxide and a sodium alginate-caffeic acid conjugate, acting as a functional element, in an acrylate hydrogel network to obtain multifunctional materials designed to perform multiple tasks in biomedical research. The hybrid material was found to be well tolerated by human fibroblast lung cells (MRC-5) (viability higher than 94%) and able to modify its swelling properties upon application of an external electric field. Release experiments performed using lysozyme as the model drug, showed a pH and electro-responsive behavior, with higher release amounts and rated in physiological vs. acidic pH. Finally, the retainment of the antioxidant properties of caffeic acid upon conjugation and polymerization processes (Trolox equivalent antioxidant capacity values of 1.77 and 1.48, respectively) was used to quench the effect of hydrogen peroxide in a hydrogel-assisted lysozyme crystallization procedure.
Collapse
Affiliation(s)
- Giuseppe Cirillo
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende (CS), Italy; (M.C.); (A.L.); (F.I.); (F.P.N.)
| | - Elvira Pantuso
- National Research Council of Italy (CNR)—Institute on Membrane Technology (ITM), 87036 Rende (CS), Italy;
| | - Manuela Curcio
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende (CS), Italy; (M.C.); (A.L.); (F.I.); (F.P.N.)
| | - Orazio Vittorio
- Children’s Cancer Institute, Lowy Cancer Research Centre, UNSW Sydney, Sydney, NSW 2031, Australia;
- School of Women’s and Children’s Health, Faculty of Medicine, UNSW Sydney, Sydney, NSW 2052, Australia
- ARC Centre of Excellence for Convergent BioNano Science and Technology, Australian Centre for NanoMedicine, UNSW Sydney, Sydney, NSW 2052, Australia
| | - Antonella Leggio
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende (CS), Italy; (M.C.); (A.L.); (F.I.); (F.P.N.)
| | - Francesca Iemma
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende (CS), Italy; (M.C.); (A.L.); (F.I.); (F.P.N.)
| | - Giovanni De Filpo
- Department of Chemistry and Chemical Technologies, University of Calabria, 87036 Rende (CS), Italy;
| | - Fiore Pasquale Nicoletta
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende (CS), Italy; (M.C.); (A.L.); (F.I.); (F.P.N.)
| |
Collapse
|
10
|
Affiliation(s)
- Hailong Fan
- Institute for Chemical Reaction Design and Discovery (WPI-ICReDD), Hokkaido University,
N21W10, Kita-ku, Sapporo 001-0021, Japan
| | - Jian Ping Gong
- Institute for Chemical Reaction Design and Discovery (WPI-ICReDD), Hokkaido University,
N21W10, Kita-ku, Sapporo 001-0021, Japan
- Faculty of Advanced Life Science, Hokkaido University, N21W11, Kita-ku, Sapporo 001-0021, Japan
- Global Station for Soft Matter GI-CoRE, Hokkaido University, N21W11, Kita-ku, Sapporo 001-0021, Japan
| |
Collapse
|
11
|
Subbarayan R, Barathidasan R, Raja STK, Arumugam G, Kuruvilla S, Shanthi P, Ranga Rao S. Human gingival derived neuronal cells in the optimized caffeic acid hydrogel for hemitransection spinal cord injury model. J Cell Biochem 2019; 121:2077-2088. [PMID: 31646674 DOI: 10.1002/jcb.29452] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Accepted: 10/08/2019] [Indexed: 01/17/2023]
Abstract
Spinal cord injury induces scar formation causes axonal damage that leads to the degeneration of axonal function. Still, there is no robust conceptual design to regenerate the damaged axon after spinal injury. Therefore, the present study demonstrates that human gingival derived neuronal stem cells (GNSCs) transplants in the injectable caffeic acid bioconjugated hydrogel (CBGH) helps to bridge the cavity and promote the engraftment and repopulation of transplants in the injured spinal tissue. Our study reports that the bioluminescence imaging in vivo imaging system (IVIS) provides a satisfactory progression in CBGH-GNSCs transplants compare to lesion control and CBGH alone. Immune regulators interleukin-6 (IL-6), tumor necrosis factor-α, neutrophil elastase are decreased, IL-10 is increased. Likewise, immunostaining (TAU/TUJ-1, SOX-2/NeuN, MAP-2/PSD93, NSE, S100b, and GFAP) shown repopulated cells. Also, TRA-1-81 expression confirms the absence of immune rejection in the CBGH-GNSCs transplants. However, locomotor recovery test, gene (IL-6, CASPASE3, p14-ARF, VEGF, LCAM, BDNF, NT3, NGN2, TrKc, FGF2, Sox-2, TUJ-1, MAP-2, Nestin, and NeuN) and protein expression (TAU, TUJ-1, SOX-2 MAP-2, PSD93, NeuN, TRA-1-81, GFAP, TAU, and MBP) shows functional improvements in the CBGH-GNSCs group. Further, GABA and glutamine level demonstrates the new synaptic vesicle formation. Hence, the CBGH scaffold enhances GNSCs transplants to restore the injured spinal tissue.
Collapse
Affiliation(s)
- Rajasekaran Subbarayan
- Centre for Regenerative Medicine and Stem Cell Research, Central Research Facility, Sri Ramachandra Medical College and Research Institute, Chennai, India
| | - Rajamani Barathidasan
- Centre for toxicology and Developmental Research (CEFT), Sri Ramachandra Medical College and Research Institute, Chennai, India
| | - Selvaraj T K Raja
- Biological Material Laboratory, Central Leather Research Institute Adyar, Chennai, Tamil Nadu, India
| | - Gnanamani Arumugam
- Biological Material Laboratory, Central Leather Research Institute Adyar, Chennai, Tamil Nadu, India
| | | | - Palanivelu Shanthi
- Department of Pathology, Dr ALM PGIBMS, University of Madras Taramani Campus, Chennai, India
| | - Suresh Ranga Rao
- Department of Periodontology and Implantology, Faculty of Dental Sciences and Centre for Regenerative Medicine and Stem Cell Research, Sri Ramachandra Medical College and Research Institute, Chennai, India
| |
Collapse
|
12
|
Piluso S, Labet M, Zhou C, Seo JW, Thielemans W, Patterson J. Engineered Three-Dimensional Microenvironments with Starch Nanocrystals as Cell-Instructive Materials. Biomacromolecules 2019; 20:3819-3830. [PMID: 31490664 DOI: 10.1021/acs.biomac.9b00907] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Naturally, cells reside in three-dimensional (3D) microenvironments composed of biopolymers that guide cellular behavior via topographical features as well as through mechanical and biochemical cues. However, most studies describing the influence of topography on cells' behavior are performed on rigid and synthetic two-dimensional substrates. To design systems that more closely resemble native microenvironments, herein we develop 3D nanocomposite hydrogels consisting of starch nanocrystals (SNCs) embedded in a gelatin matrix. The incorporation of different concentrations of SNCs (0.05, 0.2, and 0.5 wt %) results in an increase of compressive modulus when compared to hydrogels without SNCs, without affecting the swelling ratio, thus providing a tunable system. Confirming the cytocompatibility of the novel composites, the viability of encapsulated L929 fibroblasts is >90% in all hydrogels. The cellular metabolic activity and DNA content are similar for all formulations and increase over time, indicating that the fibroblasts proliferate within the hydrogels. After 4 d of culture, Live/Dead staining and F-actin/nuclei staining show that the encapsulated fibroblasts develop an elongated morphology in the hydrogels. On the other hand, encapsulated chondrogenic progenitor ATDC5 cells also maintain a viability around 90% but display a round morphology, especially in the hydrogels with SNCs, indicating a potential application of the materials for cartilage tissue engineering. We believe that topographical and mechanical cues within 3D microenvironments can be a powerful tool to instruct cells' behavior and that the developed gelatin/SNC nanocomposite warrants further study.
Collapse
Affiliation(s)
- Susanna Piluso
- Department of Materials Engineering , KU Leuven , 3001 Leuven , Belgium
| | - Marianne Labet
- Renewable Materials and Nanotechnology Research Group, Department of Chemical Engineering , KU Leuven , Campus Kulak Kortrijk , 8500 Kortrijk , Belgium
| | - Chen Zhou
- Department of Materials Engineering , KU Leuven , 3001 Leuven , Belgium
| | - Jin Won Seo
- Department of Materials Engineering , KU Leuven , 3001 Leuven , Belgium
| | - Wim Thielemans
- Renewable Materials and Nanotechnology Research Group, Department of Chemical Engineering , KU Leuven , Campus Kulak Kortrijk , 8500 Kortrijk , Belgium
| | | |
Collapse
|
13
|
Liu Y, Cheong NG S, Yu J, Tsai WB. Modification and crosslinking of gelatin-based biomaterials as tissue adhesives. Colloids Surf B Biointerfaces 2019; 174:316-323. [DOI: 10.1016/j.colsurfb.2018.10.077] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2018] [Revised: 09/29/2018] [Accepted: 10/27/2018] [Indexed: 11/29/2022]
|
14
|
Subbarayan R, Girija DM, Rao SR. Human umbilical cord tissue stem cells and neuronal lineages in an injectable caffeic acid-bioconjugated gelatin hydrogel for transplantation. J Cell Physiol 2018; 234:1967-1977. [PMID: 30144033 DOI: 10.1002/jcp.26834] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Accepted: 05/10/2018] [Indexed: 11/09/2022]
Abstract
Present-day scaffolds are useful in cell therapy to a reasonable extent, but in pursuit of improvising the scaffold to improve the outcome, we tested a new injectable caffeic acid-bioconjugated gelatin hydrogel scaffold (CBGH; with tunable stiffness -10%). Two-dimensional (2D) form of human umbilical cord tissue-derived mesenchymal stem cells (HUCMSCs) culture performed based on our previously reported methods and characterized by using multipotent and pluripotent analysis. In addition, neurogenesis was induced in the presence of retinoic acid or neural growth factor or epidermal growth factor categorized by neuronal markers. The viability, proliferation rate, and vascular endothelial growth factor expression of HUCMSCs increased significantly in the CBGH scaffold. In addition, there was an increase in CD90 and TRA-1-81 phenotypic expressions and SOX-2, MAP-2, TAU, NeuN, and NF, which confirmed the neurogenesis of encapsulated HUCMSCs. Topographical elucidation by scanning electron microscopy data showed that the HUCMSCs proliferated and migrated inside the construct. Hematoxylin and eosin staining demonstrated a more viable structural pattern and cresyl violet staining showed the Nissl synthesis, confirming the presence of functional neurons in the encapsulated form. The molecular-level analysis further substantiated that HUCMSCs cultured in CBGH expressed significantly greater upregulation of stemness, neuronal genes, and protein expression compared with the adherent culture. Correspondingly, this is the first time that we have measured the fluorescence intensity variation of the HUCMSCs-stained cell segmentation process using customized MATLAB code execution to reduce the background noise and autofluorescence. We conclude that this novel CBGH scaffold increases the viability, proliferation, stemness, and also neuronal transdifferentiation of HUCMSCs in a three-dimensional culture than the 2D plastic adherent culture.
Collapse
Affiliation(s)
- Rajasekaran Subbarayan
- Centre for Regenerative Medicine and Stem Cell Research, Central Research Facility, Sri Ramachandra Medical College and Research Institute, Porur, India
| | - Dinesh Murugan Girija
- Centre for Indian Systems of Medicine Quality Assurance and Standardization, Central Research Facility, Sri Ramachandra Medical College and Research Institute, Porur, India
| | - Suresh Ranga Rao
- Department of Periodontology and Implantology, Faculty of Dental Sciences, Centre for Regenerative Medicine and Stem Cell Research, Sri Ramachandra Medical College and Research Institute, Porur, India
| |
Collapse
|
15
|
Manikandan A, Thirupathi Kumara Raja S, Thiruselvi T, Gnanamani A. Engineered fish scale gelatin: An alternative and suitable biomaterial for tissue engineering. J BIOACT COMPAT POL 2017. [DOI: 10.1177/0883911517724810] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
- A Manikandan
- Biological Material Laboratory, Microbiology Division, CSIR-Central Leather Research Institute (CLRI), Chennai, India
| | - S Thirupathi Kumara Raja
- Biological Material Laboratory, Microbiology Division, CSIR-Central Leather Research Institute (CLRI), Chennai, India
| | - T Thiruselvi
- Biological Material Laboratory, Microbiology Division, CSIR-Central Leather Research Institute (CLRI), Chennai, India
| | - A Gnanamani
- Biological Material Laboratory, Microbiology Division, CSIR-Central Leather Research Institute (CLRI), Chennai, India
| |
Collapse
|
16
|
Thirupathi Kumara Raja S, Prakash T, Gnanamani A. Redox responsive albumin autogenic nanoparticles for the delivery of cancer drugs. Colloids Surf B Biointerfaces 2017; 152:393-405. [PMID: 28157647 DOI: 10.1016/j.colsurfb.2017.01.044] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2016] [Revised: 01/23/2017] [Accepted: 01/24/2017] [Indexed: 11/26/2022]
Abstract
The present study explores preparation and characterization of redox sensitive albumin autogenic nanoparticles (ANPs) for drug delivery applications. Human serum albumin nanoparticles are prepared by desolvation method. The particles are stabilized through self-crosslinking and no external stabilizers are involved in the preparation. ANPs are then subjected to Camptothecin (CPT) drug loading. Experiments on in vitro and in vivo release profile, cytotoxic and cytocompatability, hemocompatability, blood clearance, tracking and bio imaging are studied in detail. The redox sensitive and drug release properties of ANPs studied in the presence of glutathione. Results on the physical, chemical and instrumental characterization warrant the property of the nanoparticles. ANPs obtained in the present study is biocompatible, biodegradable, effectively entangle the chosen drug, release the drug in the controlled manner, sensitive to reducing environment, nil toxicity and appreciable uptake by cells. In the current scenario on the requirement of a drug carrier with redox sensitive property to encounter cancer cells, the results of the present study on albumin nanoparticles with redox sensitivity is smart and pave the way in the cancer therapeutics.
Collapse
Affiliation(s)
- S Thirupathi Kumara Raja
- Biological Material Laboratory, Microbiology Division, CSIR-CLRI, Adyar, Chennai 600 020, Tamil Nadu, India
| | - T Prakash
- Biological Material Laboratory, Microbiology Division, CSIR-CLRI, Adyar, Chennai 600 020, Tamil Nadu, India
| | - A Gnanamani
- Biological Material Laboratory, Microbiology Division, CSIR-CLRI, Adyar, Chennai 600 020, Tamil Nadu, India.
| |
Collapse
|
17
|
Thiruselvi T, Thirupathi Kumara Raja S, Shanuja SK, Iswarya S, Gnanamani A. Induced oxidative stress management in wounds through phenolic acids engineered fibrous protein: An in vitro assessment using polymorphonuclear (PMN) cells. Int J Biol Macromol 2016; 96:485-493. [PMID: 28034822 DOI: 10.1016/j.ijbiomac.2016.12.063] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2016] [Revised: 12/22/2016] [Accepted: 12/23/2016] [Indexed: 10/20/2022]
Abstract
The present study explores the preparation, characterization and the role of phenolic acid tethered fibrous protein in the management of induced oxidative stress studied under in vitro conditions. In brief, the biomaterial is prepared by engineering the fibrous protein with dihydroxy and trihydroxy phenolic acid moieties and subjected to characterization to ensure the tethering. The resultant biomaterial studied for its efficacy as a free radical scavenger using polymorphonuclear (PMN) cells with induced oxidative stress and also as an agent for cell migration using fibroblasts cells. Results revealed that induced oxidative stress in PMN cells after exposure to UVB radiation managed well with the prepared biomaterial by reducing the levels of superoxide anion, oxygen and hydroxyl radicals. Further, the protein and the phenolic acid interaction supports the cell migration as evidenced from the scratch assay. In conclusion, though phenolic acids are well known for their antimicrobial and antioxidant potential, indenting these acids directly to the wounds is not sensible, but tethering to protein explored the scavenging activity as expected. The present study infers that phenolic acid engineered protein has a significant role in managing the imbalance in the redox state prevailing in wounds and supports the healing at appreciable level.
Collapse
Affiliation(s)
- T Thiruselvi
- CSIR-Central Leather Research Institute, Adyar, Chennai 20, Tamil Nadu, India
| | | | - S K Shanuja
- CSIR-Central Leather Research Institute, Adyar, Chennai 20, Tamil Nadu, India
| | - S Iswarya
- CSIR-Central Leather Research Institute, Adyar, Chennai 20, Tamil Nadu, India
| | - A Gnanamani
- CSIR-Central Leather Research Institute, Adyar, Chennai 20, Tamil Nadu, India.
| |
Collapse
|
18
|
GhavamiNejad A, Park CH, Kim CS. In Situ Synthesis of Antimicrobial Silver Nanoparticles within Antifouling Zwitterionic Hydrogels by Catecholic Redox Chemistry for Wound Healing Application. Biomacromolecules 2016; 17:1213-23. [PMID: 26891456 DOI: 10.1021/acs.biomac.6b00039] [Citation(s) in RCA: 159] [Impact Index Per Article: 19.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
A multifunctional hydrogel that combines the dual functionality of both antifouling and antimicrobial capacities holds great potential for many bioapplications. Many approaches and different materials have been employed to synthesize such a material. However, a systematic study, including in vitro and in vivo evaluation, on such a material as wound dressings is highly scarce at present. Herein, we report on a new strategy that uses catecholic chemistry to synthesize antimicrobial silver nanoparticles impregnated into antifouling zwitterionic hydrogels. For this purpose, hydrophobic dopamine methacrylamide monomer (DMA) was mixed in an aqueous solution of sodium tetraborate decahydrate and DMA monomer became soluble after increasing pH to 9 due to the complexation between catechol groups and boron. Then, cross-linking polymerization of zwitterionic monomer was carried out with the solution of the protected dopamine monomer to produce a new hydrogel. When this new hydrogel comes in contact with a silver nitrate solution, silver nanoparticles (AgNPs) are formed in its structure as a result of the redox property of the catechol groups and in the absence of any other external reducing agent. The results obtained from TEM and XRD measurements indicate that AgNPs with diameters of around 20 nm had formed within the networks. FESEM images confirmed that the silver nanoparticles were homogeneously incorporated throughout the hydrogel network, and FTIR spectroscopy demonstrated that the catechol moiety in the polymeric backbone of the hydrogel is responsible for the reduction of silver ions into the AgNPs. Finally, the in vitro and in vivo experiments suggest that these mussel-inspired, antifouling, antibacterial hydrogels have great potential for use in wound healing applications.
Collapse
Affiliation(s)
- Amin GhavamiNejad
- Department of Bionanosystem Engineering Graduate School and ‡Division of Mechanical Design Engineering, Chonbuk National University , Jeonju City, Republic of Korea
| | - Chan Hee Park
- Department of Bionanosystem Engineering Graduate School and ‡Division of Mechanical Design Engineering, Chonbuk National University , Jeonju City, Republic of Korea
| | - Cheol Sang Kim
- Department of Bionanosystem Engineering Graduate School and ‡Division of Mechanical Design Engineering, Chonbuk National University , Jeonju City, Republic of Korea
| |
Collapse
|
19
|
Rao SR, Subbarayan R, Dinesh MG, Arumugam G, Raja STK. Differentiation of human gingival mesenchymal stem cells into neuronal lineages in 3D bioconjugated injectable protein hydrogel construct for the management of neuronal disorder. Exp Mol Med 2016; 48:e209. [PMID: 26869025 PMCID: PMC4892868 DOI: 10.1038/emm.2015.113] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2015] [Revised: 09/14/2015] [Accepted: 09/30/2015] [Indexed: 01/05/2023] Open
Abstract
The success of regeneration attempt is based on an ideal combination of stem cells, scaffolding and growth factors. Tissue constructs help to maintain stem cells in a required area for a desired time. There is a need for easily obtainable cells, potentially autologous stem cells and a biologically acceptable scaffold for use in humans in different difficult situations. This study aims to address these issues utilizing a unique combination of stem cells from gingiva and a hydrogel scaffold, based on a natural product for regenerative application. Human gingival mesenchymal stem cells (HGMSCs) were, with due induction, differentiated to neuronal lineages to overcome the problems associated with birth tissue-related stem cells. The differentiation potential of neuronal lineages was confirmed with suitable specific markers. The properties of mesenchymal stem cells in encapsulated form were observed to be similar to free cells. The encapsulated cells (3D) were then subjected to differentiation into neuronal lineages with suitable inducers, and the morphology and gene expression of transient cells were analyzed. HGMSCs was differentiated into neuronal lineages as both free and encapsulated forms without any significant differences. The presence of Nissl bodies and the neurite outgrowth confirm the differentiation. The advantages of this new combination appear to make it a promising tissue construct for translational application.
Collapse
Affiliation(s)
- Suresh Ranga Rao
- Department of Periodontology and Implantology, Faculty of Dental Sciences, Centre for Regenerative Medicine and Stem Cell Research, Sri Ramachandra University, Chennai, India
| | - Rajasekaran Subbarayan
- Centre for Regenerative Medicine and Stem Cell Research, Central Research Facility, Sri Ramachandra University, Chennai, India
| | - Murugan Girija Dinesh
- Centres for Indian Systems of Medicine Quality Assurance and Standardization, Sri Ramachandra University, Chennai, India
| | - Gnanamani Arumugam
- Microbiology Division, Central Leather Research Institute Adyar, Chennai, India
| | | |
Collapse
|
20
|
T T, Raja S TK, R A, S. K S, A G. Handling and managing bleeding wounds using tissue adhesive hydrogel: a comparative assessment on two different hydrogels. RSC Adv 2016. [DOI: 10.1039/c6ra00284f] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The present study explores the preparation and a comparative assessment on the physical, mechanical and biological properties of two different tissue adhesive hydrogels (TAHs) for the management of bleeding wounds.
Collapse
Affiliation(s)
- Thiruselvi T
- CSIR-CLRI (Central Leather Research Institute)
- Chennai-20
- India
| | | | - Aravindhan R
- CSIR-CLRI (Central Leather Research Institute)
- Chennai-20
- India
| | - Shanuja S. K
- CSIR-CLRI (Central Leather Research Institute)
- Chennai-20
- India
| | - Gnanamani A
- CSIR-CLRI (Central Leather Research Institute)
- Chennai-20
- India
| |
Collapse
|
21
|
Lei K, Ma Q, Yu L, Ding J. Functional biomedical hydrogels for in vivo imaging. J Mater Chem B 2016; 4:7793-7812. [DOI: 10.1039/c6tb02019d] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
In vivo imaging of biomedical hydrogels enables real-time and non-invasive visualization of the status of structure and function of hydrogels.
Collapse
Affiliation(s)
- Kewen Lei
- State Key Laboratory of Molecular Engineering of Polymers
- Department of Macromolecular Science
- Fudan University
- Shanghai 200433
- China
| | - Qian Ma
- State Key Laboratory of Molecular Engineering of Polymers
- Department of Macromolecular Science
- Fudan University
- Shanghai 200433
- China
| | - Lin Yu
- State Key Laboratory of Molecular Engineering of Polymers
- Department of Macromolecular Science
- Fudan University
- Shanghai 200433
- China
| | - Jiandong Ding
- State Key Laboratory of Molecular Engineering of Polymers
- Department of Macromolecular Science
- Fudan University
- Shanghai 200433
- China
| |
Collapse
|
22
|
Shankar KG, Kumar SU, Sowndarya S, Sridevi J, Angel SS, Rose C. Rumen tissue derived decellularized submucosa collagen or its chitosan-treated film as a cutaneous wound healant and 1H NMR-metabolite profiling of plasma. RSC Adv 2016. [DOI: 10.1039/c6ra21441j] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Developing an ideal wound dressing material for skin defects is of significant importance in a clinical emergency and is currently a global burden.
Collapse
Affiliation(s)
- K. Gopal Shankar
- Biochemistry and Biotechnology Laboratory
- CSIR-Central Leather Research Institute
- Chennai 600 020
- India
| | - S. Udhaya Kumar
- Biochemistry and Biotechnology Laboratory
- CSIR-Central Leather Research Institute
- Chennai 600 020
- India
| | - S. Sowndarya
- Biochemistry and Biotechnology Laboratory
- CSIR-Central Leather Research Institute
- Chennai 600 020
- India
| | - J. Sridevi
- Inorganic & Physical Chemistry Laboratory
- CSIR-Central Leather Research Institute
- Chennai 600 020
- India
| | - S. Soniya Angel
- Biochemistry and Biotechnology Laboratory
- CSIR-Central Leather Research Institute
- Chennai 600 020
- India
| | - C. Rose
- Biochemistry and Biotechnology Laboratory
- CSIR-Central Leather Research Institute
- Chennai 600 020
- India
| |
Collapse
|
23
|
Raja STK, Thiruselvi T, Mandal AB, Gnanamani A. pH and redox sensitive albumin hydrogel: A self-derived biomaterial. Sci Rep 2015; 5:15977. [PMID: 26527296 PMCID: PMC4630586 DOI: 10.1038/srep15977] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2014] [Accepted: 09/15/2015] [Indexed: 12/24/2022] Open
Abstract
Serum albumin can be transformed to a stimuli (pH and redox) responsive hydrogel using the reduction process followed by oxidative refolding. The preparation of albumin hydrogel involves a range of concentrations (75, 150, 300, 450, 600 and 750 μM) and pH (2.0-10.0) values and the gelation begins at a concentration of 150 μM and 4.5-8.0 pH value. The hydrogel shows maximum swelling at alkali pH (pH > 9.0). The increase in albumin concentration increases hydrogel stability, rheological property, compressive strength, proteolytic resistance and rate of in vivo biodegradation. Based on the observed physical and biological properties of albumin hydrogel, 450 μM was determined to be an optimum concentration for further experiments. In addition, the hemo- and cytocompatibility analyses revealed the biocompatibility nature of albumin hydrogel. The experiments on in vitro drug (Tetracycline) delivery were carried out under non reducing and reducing conditions that resulted in the sustained and fast release of the drug, respectively. The methodology used in the preparation of albumin hydrogel may lead to the development of autogenic tissue constructs. In addition, the methodology can have various applications in tissue engineering and drug delivery.
Collapse
|
24
|
Ahadian S, Sadeghian RB, Salehi S, Ostrovidov S, Bae H, Ramalingam M, Khademhosseini A. Bioconjugated Hydrogels for Tissue Engineering and Regenerative Medicine. Bioconjug Chem 2015; 26:1984-2001. [DOI: 10.1021/acs.bioconjchem.5b00360] [Citation(s) in RCA: 99] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Samad Ahadian
- WPI-Advanced
Institute for Materials Research, Tohoku University, Sendai 980-8577, Japan
| | - Ramin Banan Sadeghian
- WPI-Advanced
Institute for Materials Research, Tohoku University, Sendai 980-8577, Japan
| | - Sahar Salehi
- WPI-Advanced
Institute for Materials Research, Tohoku University, Sendai 980-8577, Japan
| | - Serge Ostrovidov
- WPI-Advanced
Institute for Materials Research, Tohoku University, Sendai 980-8577, Japan
| | - Hojae Bae
- College
of Animal Bioscience and Technology, Department of Bioindustrial Technologies, Konkuk University, Hwayang-dong,
Kwangjin-gu, Seoul 143-701, Republic of Korea
| | - Murugan Ramalingam
- WPI-Advanced
Institute for Materials Research, Tohoku University, Sendai 980-8577, Japan
- Centre
for Stem Cell Research, Institute for Stem Cell Biology and Regenerative Medicine, Christian Medical College Campus, Vellore 632002, India
| | - Ali Khademhosseini
- WPI-Advanced
Institute for Materials Research, Tohoku University, Sendai 980-8577, Japan
- College
of Animal Bioscience and Technology, Department of Bioindustrial Technologies, Konkuk University, Hwayang-dong,
Kwangjin-gu, Seoul 143-701, Republic of Korea
- Department
of Medicine, Center for Biomedical Engineering, Brigham and Women’s Hospital, Harvard Medical School, Cambridge, Massachusetts 02139, United States
- Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, Massachusetts 02115, United States
| |
Collapse
|