1
|
Vieira de Almeida H, Escobar da Silva LC, Ganzarolli de Oliveira M. Nitric oxide-releasing photocrosslinked chitosan cryogels. Nitric Oxide 2024; 146:48-57. [PMID: 38579898 DOI: 10.1016/j.niox.2024.03.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Revised: 03/26/2024] [Accepted: 03/28/2024] [Indexed: 04/07/2024]
Abstract
The highly porous morphology of chitosan cryogels, with submicrometric-sized pore cell walls, provides a large surface area which leads to fast water absorption and elevated swelling degrees. These characteristics are crucial for the applications of nitric oxide (NO) releasing biomaterials, in which the release of NO is triggered by the hydration of the material. In the present study, we report the development of chitosan cryogels (CS) with a porous structure of interconnected cells, with wall thicknesses in the range of 340-881 nm, capable of releasing NO triggered by the rapid hydration process. This property was obtained using an innovative strategy based on the functionalization of CS with two previously synthesized S-nitrosothiols: S-nitrosothioglycolic acid (TGA(SNO)) and S-nitrosomercaptosuccinic acid (MSA(SNO)). For this purpose, CS was previously methacrylated with glycidyl methacrylate and subsequently submitted to photocrosslinking and freeze-drying processes. The photocrosslinked hydrogels thus obtained were then functionalized with TGA(SNO) and MSA(SNO) in reactions mediated by carbodiimide. After functionalization, the hydrogels were frozen and freeze-dried to obtain porous S-nitrosated chitosan cryogels with high swelling capacities. Through chemiluminescence measurements, we demonstrated that CS-TGA(SNO) and CS-MSA(SNO) cryogels spontaneously release NO upon water absorption at rates of 3.34 × 10-2 nmol mg-1 min-1 and 1.27 × 10-1 nmol mg-1 min-1, respectively, opening new perspectives for the use of CS as a platform for localized NO delivery in biomedical applications.
Collapse
|
2
|
Zhang Q, Liu X, Ma W, Jia K, Yang M, Meng L, Wang L, Ji Y, Chen J, Lin J, Pan C. A nitric oxide-catalytically generating carboxymethyl chitosan/sodium alginate hydrogel coating mimicking endothelium function for improving the biocompatibility. Int J Biol Macromol 2023; 253:126727. [PMID: 37673159 DOI: 10.1016/j.ijbiomac.2023.126727] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Revised: 08/31/2023] [Accepted: 09/03/2023] [Indexed: 09/08/2023]
Abstract
Thanks to their outstanding mechanical properties and corrosion resistance in physiological environments, titanium and its alloys are broadly explored in the field of intravascular devices. However, the biocompatibility is insufficient, causing thrombus formation and even implantation failure. In this study, inspired by the functions of endothelial glycocalyx and the NO-releasing of endothelial cells (ECs), a biomimetic coating (TNTA-Se) with three-dimensional gel-like structures and NO-catalytically generating ability was constructed on the titanium surface. To this end, the titanium alloy was firstly anodized and then annealed to form nanotube structures imitating the three-dimensional villous of glycocalyx, followed by the preparation of the Cu2+-loaded polydopamine intermediate layer for the immobilization of carboxymethyl chitosan and sodium alginate to form the hydrogel structure. Finally, an organoselenium compound (selenocystamine) as an active catalyst was covalently immobilized on the surface to develop a bioactive coating mimicking endothelial function with NO-generating activity. The surface morphologies and chemical structures of the biomimetic coating were characterized by scanning electron microscopy (SEM), energy dispersion X-ray spectroscopy (EDS), X-ray photoelectron spectroscopy (XPS), and attenuated total reflection Fourier transform infrared spectroscopy (ATR-FTIR), and the results indicated that the NO-catalytically generating hydrogel coating was successfully constructed. The results of water contact angle and protein adsorption suggested that the TNTA-Se coating exhibited excellent hydrophilicity, the promotion of bovine serum albumin (BSA) adsorption while the inhibition of fibrinogen (FIB) adsorption. Upon the addition of NO donor S-nitroso glutathione (GSNO) and reducing agent glutathione (GSH), the surface (TNTA-NO) displayed excellent blood compatibility and cytocompatibility to ECs. Compared with other surfaces, the TNTA-NO coating can not only further promote BSA adsorption and inhibit the adhesion and activation of platelets as well as hemolysis, but also significantly enhance ECs adhesion and proliferation and up-regulate VEGF and NO expression of ECs. The current study demonstrated that the NO-catalytically generating hydrogel coating on the titanium alloy can mimic the glycocalyx structure and endothelium function to catalyze a large number of NO donors in human blood to produce NO, and thus simultaneously enhance the surface hemocompatibility and endothelialization, representing a promising strategy for long-term cardiovascular implants of titanium-based devices.
Collapse
Affiliation(s)
- Qiuyang Zhang
- Faculty of Mechanical and Material Engineering, Jiangsu Provincial Engineering Research Center for Biomaterials and Advanced Medical Devices, Huaiyin Institute of Technology, Huai'an 223003, China
| | - Xuhui Liu
- The Affiliated Huai'an Hospital, Xuzhou Medical University, Huai'an 223003, China
| | - Wenfu Ma
- Faculty of Mechanical and Material Engineering, Jiangsu Provincial Engineering Research Center for Biomaterials and Advanced Medical Devices, Huaiyin Institute of Technology, Huai'an 223003, China
| | - Kunpeng Jia
- Faculty of Mechanical and Material Engineering, Jiangsu Provincial Engineering Research Center for Biomaterials and Advanced Medical Devices, Huaiyin Institute of Technology, Huai'an 223003, China
| | - Minhui Yang
- Faculty of Mechanical and Material Engineering, Jiangsu Provincial Engineering Research Center for Biomaterials and Advanced Medical Devices, Huaiyin Institute of Technology, Huai'an 223003, China
| | - Lingjie Meng
- Faculty of Mechanical and Material Engineering, Jiangsu Provincial Engineering Research Center for Biomaterials and Advanced Medical Devices, Huaiyin Institute of Technology, Huai'an 223003, China
| | - Lingtao Wang
- Faculty of Mechanical and Material Engineering, Jiangsu Provincial Engineering Research Center for Biomaterials and Advanced Medical Devices, Huaiyin Institute of Technology, Huai'an 223003, China
| | - Yan Ji
- Faculty of Mechanical and Material Engineering, Jiangsu Provincial Engineering Research Center for Biomaterials and Advanced Medical Devices, Huaiyin Institute of Technology, Huai'an 223003, China
| | - Jie Chen
- Faculty of Mechanical and Material Engineering, Jiangsu Provincial Engineering Research Center for Biomaterials and Advanced Medical Devices, Huaiyin Institute of Technology, Huai'an 223003, China
| | - Jiafeng Lin
- The Second Affiliated Hospital and YuYing Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Changjiang Pan
- Faculty of Mechanical and Material Engineering, Jiangsu Provincial Engineering Research Center for Biomaterials and Advanced Medical Devices, Huaiyin Institute of Technology, Huai'an 223003, China.
| |
Collapse
|
3
|
Navale GR, Singh S, Ghosh K. NO donors as the wonder molecules with therapeutic potential: Recent trends and future perspectives. Coord Chem Rev 2023. [DOI: 10.1016/j.ccr.2023.215052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
|
4
|
Jiang D, Pan L, Yang X, Ji Z, Zheng C, Meng Z, Liang B, Zhang W, Chen J, Shi C. Photo-controllable burst generation of peroxynitrite based on synergistic interactions of polymeric nitric oxide donors and IR780 for enhancing broad-spectrum antibacterial therapy. Acta Biomater 2023; 159:259-274. [PMID: 36690050 DOI: 10.1016/j.actbio.2023.01.032] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 01/08/2023] [Accepted: 01/16/2023] [Indexed: 01/21/2023]
Abstract
The newly attractive peroxynitrite (ONOO-) therapy can prominently enhance antibacterial therapeutic efficacy. However, it is a great challenge but urgently needed to generate ONOO- with adjustable release rate and dosage in order to satisfy personalized treatments for different disease types and severities. Herein, PSNO@IR780 nanoparticles are fabricated via co-assembly of an amphiphilic PEG-b-PAASNO block copolymer grafted with abundant nitric oxide (NO) donor units and IR780 as a photothermal and photodynamic agent. Photo-controllable burst generation of ONOO- from PSNO@IR780 nanoparticles could be realized based on synergistic reactions of rapid NO release induced by increased local temperature and efficiently produced superoxide anion radical (O2•-) from IR780. The maximum ONOO- release dosage is up to 6.73 ± 0.07 µM and release rate is up to 98.1 ± 1.38 nM/s. Furthermore, the ONOO- release behavior can be precisely manipulated by varying sample concentrations, irradiated durations, output power densities, and laser switches, respectively. Ultra-efficiently generated ONOO- from biocompatible PSNO@IR780 nanoparticles significantly elevated broad spectrum antibacterial efficiency through damaging bacterial membranes. Thus, PSNO@IR780 nanoparticles may present a new insight into preparation of burst and controllable generating ONOO- materials, and provide new opportunities for antibacterial therapy. STATEMENT OF SIGNIFICANCE: 1. Polymeric NO donor (PEG-b-PAASNO) grafted with abundant NO donor units was synthesized. 2. PSNO@IR780 nanoparticles were prepared by co-assembly of IR780 and amphiphilic PEG-b-PAASNOpolymer. 3. The maximum ONOO- release dosage from PSNO@IR780 nanoparticles was 6.73 ± 0.08 µM. 4. The fastest ONOO- release rate from PSNO@IR780 nanoparticles was 98.1 ± 1.4 nM/s. 5. Ultra-efficiently generated ONOO- significantly elevated antibacterial efficiency via damaging bac-terial membranes.
Collapse
Affiliation(s)
- Dawei Jiang
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang 325000, China; Joint Center of Translational Medicine, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang 325000, China
| | - Luqi Pan
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang 325000, China; Joint Center of Translational Medicine, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang 325000, China
| | - Xiao Yang
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang 325000, China; Joint Center of Translational Medicine, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang 325000, China
| | - Zhixiao Ji
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang 325000, China; Joint Center of Translational Medicine, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang 325000, China
| | - Cheng Zheng
- Department of Critical Care Medicine, Taizhou Municipal Hospital, Taizhou, Zhejiang 318000, China
| | - Zhizhen Meng
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang 325000, China; Joint Center of Translational Medicine, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang 325000, China; Department of Oncology, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, China
| | - Bin Liang
- Department of Oncology, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, China
| | - Weian Zhang
- Shanghai Key Laboratory of Functional Materials Chemistry, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200030, China.
| | - Jinfei Chen
- Department of Oncology, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, China.
| | - Changcan Shi
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang 325000, China; Joint Center of Translational Medicine, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang 325000, China; Department of Oncology, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, China.
| |
Collapse
|
5
|
Kumar R, Chug MK, Brisbois EJ. Long-Term Storage Stability and Nitric Oxide Release Behavior of ( N-Acetyl- S-nitrosopenicillaminyl)- S-nitrosopenicillamine-Incorporated Silicone Rubber Coatings. ACS APPLIED MATERIALS & INTERFACES 2022; 14:30595-30606. [PMID: 35759508 PMCID: PMC9708111 DOI: 10.1021/acsami.2c06712] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Physical incorporation of nitric oxide (NO) releasing materials in biomedical grade polymer matrices to fabricate antimicrobial coatings and devices is an economically viable process. However, achieving long-term NO release with a minimum or no leaching of the NO donor from the polymer matrix is still a challenging task. Herein, (N-acetyl-S-nitrosopenicillaminyl)-S-nitrosopenicillamine (SNAP-SNAP), a penicillamine dipeptide NO-releasing molecule, is incorporated into a commercially available biomedical grade silicone rubber (SR) to fabricate a NO-releasing coating (SNAP-SNAP/SR). The storage stabilities of the SNAP-SNAP powder and SNAP-SNAP/SR coating were analyzed at different temperatures. The SNAP-SNAP/SR coatings with varying wt % of SNAP-SNAP showed a tunable and sustained NO release for up to 6 weeks. Further, S-nitroso-N-acetylpenicillamine (SNAP), a well-explored NO-releasing molecule, was incorporated into a biomedical grade silicone polymer to fabricate a NO-releasing coating (SNAP/SR) and a comparative analysis of the NO release and S-nitrosothiol (RSNO) leaching behavior of 10 wt % SNAP-SNAP/SR and 10 wt % SNAP/SR was studied. Interestingly, the 10 wt % SNAP-SNAP/SR coatings exhibited ∼36% higher NO release and 4 times less leaching of NO donors than the 10 wt % SNAP/SR coatings. Further, the 10 wt % SNAP-SNAP/SR coatings exhibited promising antibacterial properties against Staphylococcus aureus and Escherichia coli due to the persistent release of NO. The 10 wt % SNAP-SNAP/SR coatings were also found to be biocompatible against NIH 3T3 mouse fibroblast cells. These results corroborate the sustained stability and NO-releasing properties of the SNAP-SNAP in a silicone polymer matrix and demonstrate the potential for the SNAP-SNAP/SR polymer in the fabrication of long-term indwelling biomedical devices and implants to enhance biocompatibility and resist device-related infections.
Collapse
Affiliation(s)
- Rajnish Kumar
- School of Chemical, Materials and Biomedical Engineering, University of Georgia, Athens, Georgia 30602, United States
| | - Manjyot Kaur Chug
- School of Chemical, Materials and Biomedical Engineering, University of Georgia, Athens, Georgia 30602, United States
| | - Elizabeth J Brisbois
- School of Chemical, Materials and Biomedical Engineering, University of Georgia, Athens, Georgia 30602, United States
| |
Collapse
|
6
|
Zang Y, Vlcek JR, Cuchiaro J, Popat KC, Olver CS, Kipper MJ, Reynolds MM. Ex vivo evaluation of blood coagulation on endothelial glycocalyx-inspired surfaces using thromboelastography. IN VITRO MODELS 2022; 1:59-71. [PMID: 39872977 PMCID: PMC11749744 DOI: 10.1007/s44164-021-00001-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 08/12/2021] [Accepted: 08/23/2021] [Indexed: 01/30/2025]
Abstract
Purpose Present blood-contacting materials have not yet demonstrated to be effective in reducing blood coagulation without causing additional side effects clinically. We have developed an endothelial glycocalyx-inspired biomimetic surface that combines nanotopography, heparin presentation, and nitric oxide (NO)-releasing features. The resulting modified surfaces have already shown promise in reducing unfavorable blood-material interactions using platelet-rich plasma. In this study, the efficacy of modified surfaces for reducing coagulation of human whole blood was measured. In addition, the effects of leached polysaccharides and chemical modification of the modified surfaces were evaluated. Methods Leached polysaccharides in the incubation solution were detected by a refractive index method to determine the potential influences of these modified surfaces on the blood coagulation observation. Chemical modifications by the nitrosation process on the polysaccharides in the modified surfaces were detected using attenuated total reflectance-Fourier transform infrared spectroscopy (ATR-FTIR). Clot formation parameters were measured using thromboelastography (TEG), a clinically relevant technique to evaluate whole blood coagulation. Results No polysaccharides were detected in the heparinized polyelectrolyte multilayer-coated titania nanotube array surface (TiO2NT + PEM) incubation solution; however, polysaccharides were detected from NO-releasing TiO2NT + PEM surface (TiO2NT + PEM + NO) incubation solution both after the nitrosation process and after all NO was released. The structures of thiolated chitosan and heparin were altered by t-butyl nitrite. All heparin-containing surfaces were shown to slow or inhibit clot formation. Conclusion This study is the first to evaluate these endothelial glycocalyx-inspired surfaces using clinically relevant parameters, as well as proposing potential influences of these modified surfaces on the inhibition of clot formation. Supplementary Information The online version contains supplementary material available at 10.1007/s44164-021-00001-w.
Collapse
Affiliation(s)
- Yanyi Zang
- School of Biomedical Engineering, Colorado State University, Fort Collins, CO USA
- Present Address: Autonomous Reanimation and Evacuation Research Program, The Geneva Foundation, Brook City-Base, San Antonio, TX USA
| | - Jessi R. Vlcek
- School of Biomedical Engineering, Colorado State University, Fort Collins, CO USA
| | - Jamie Cuchiaro
- Department of Chemistry, Colorado State University, Fort Collins, CO USA
| | - Ketul C. Popat
- School of Biomedical Engineering, Colorado State University, Fort Collins, CO USA
- Department of Mechanical Engineering, Colorado State University, Fort Collins, CO USA
- School of Advanced Materials Discovery, Colorado State University, Fort Collins, CO USA
| | - Christine S. Olver
- Veterinary Clinical Pathology Section, Colorado State University, Fort Collins, CO USA
| | - Matt J. Kipper
- School of Biomedical Engineering, Colorado State University, Fort Collins, CO USA
- School of Advanced Materials Discovery, Colorado State University, Fort Collins, CO USA
- Department of Chemical and Biological Engineering, Colorado State University, Fort Collins, CO USA
| | - Melissa M. Reynolds
- School of Biomedical Engineering, Colorado State University, Fort Collins, CO USA
- Department of Chemistry, Colorado State University, Fort Collins, CO USA
- School of Advanced Materials Discovery, Colorado State University, Fort Collins, CO USA
| |
Collapse
|
7
|
Qian Y, Kumar R, Chug MK, Massoumi H, Brisbois EJ. Therapeutic Delivery of Nitric Oxide Utilizing Saccharide-Based Materials. ACS APPLIED MATERIALS & INTERFACES 2021; 13:52250-52273. [PMID: 34714640 PMCID: PMC9050970 DOI: 10.1021/acsami.1c10964] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
As a gasotransmitter, nitric oxide (NO) regulates physiological pathways and demonstrates therapeutic effects such as vascular relaxation, anti-inflammation, antiplatelet, antithrombosis, antibacterial, and antiviral properties. However, gaseous NO has high reactivity and a short half-life, so NO delivery and storage are critical questions to be solved. One way is to develop stable NO donors and the other way is to enhance the delivery and storage of NO donors from biomaterials. Most of the researchers studying NO delivery and applications are using synthetic polymeric materials, and they have demonstrated significant therapeutic effects of these NO-releasing polymeric materials on cardiovascular diseases, respiratory disease, bacterial infections, etc. However, some researchers are exploring saccharide-based materials to fulfill the same tasks as their synthetic counterparts while avoiding the concerns of biocompatibility, biodegradability, and sustainability. Saccharide-based materials are abundant in nature and are biocompatible and biodegradable, with wide applications in bioengineering, drug delivery, and therapeutic disease treatments. Saccharide-based materials have been implemented with various NO donors (like S-nitrosothiols and N-diazeniumdiolates) via both chemical and physical methods to deliver NO. These NO-releasing saccharide-based materials have exhibited controlled and sustained NO release and demonstrated biomedical applications in various diseases (respiratory, Crohn's, cardiovascular, etc.), skin or wound applications, antimicrobial treatment, bone regeneration, anticoagulation, as well as agricultural and food packaging. This review aims to highlight the studies in methods and progress in developing saccharide-based NO-releasing materials and investigating their potential applications in biomedical, bioengineering, and disease treatment.
Collapse
Affiliation(s)
- Yun Qian
- School of Chemical, Materials & Biomedical Engineering, University of Georgia, Athens, Georgia 30602, United States
| | - Rajnish Kumar
- School of Chemical, Materials & Biomedical Engineering, University of Georgia, Athens, Georgia 30602, United States
| | - Manjyot Kaur Chug
- School of Chemical, Materials & Biomedical Engineering, University of Georgia, Athens, Georgia 30602, United States
| | - Hamed Massoumi
- School of Chemical, Materials & Biomedical Engineering, University of Georgia, Athens, Georgia 30602, United States
| | - Elizabeth J Brisbois
- School of Chemical, Materials & Biomedical Engineering, University of Georgia, Athens, Georgia 30602, United States
| |
Collapse
|
8
|
Vlcek JR, Hedayati M, Melvin AC, Reynolds MM, Kipper MJ. Blood-Compatible Materials: Vascular Endothelium-Mimetic Surfaces that Mitigate Multiple Cell-Material Interactions. Adv Healthc Mater 2021; 10:e2001748. [PMID: 33448158 DOI: 10.1002/adhm.202001748] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Indexed: 12/17/2022]
Abstract
When flowing whole blood contacts medical device surfaces, the most common blood-material interactions result in coagulation, inflammation, and infection. Many new blood-contacting biomaterials have been proposed based on strategies that address just one of these common modes of failure. This study proposes to mitigate unfavorable biological reactions that occur with blood-contacting medical devices by designing multifunctional surfaces, with features optimized to meet multiple performance criteria. These multifunctional surfaces incorporate the release of the small molecule hormone nitric oxide (NO) with surface chemistry and nanotopography that mimic features of the vascular endothelial glycocalyx. These multifunctional surfaces have features that interact with coagulation components, inflammatory cells, and bacterial cells. While a single surface feature alone may not be sufficient to achieve multiple functions, the release of NO from the surfaces along with their modification to mimic the endothelial glycocalyx synergistically improves platelet-, leukocyte-, and bacteria-surface interactions. This work demonstrates that new blood-compatible materials should be designed with multiple features, to better address the multiple modes of failure of blood-contacting medical devices.
Collapse
Affiliation(s)
- Jessica R. Vlcek
- School of Biomedical Engineering Colorado State University Fort Collins CO 80523 USA
| | - Mohammadhasan Hedayati
- Department of Chemical and Biological Engineering Colorado State University Fort Collins CO 80523 USA
| | - Alyssa C. Melvin
- Department of Chemistry Colorado State University Fort Collins CO 80532 USA
| | - Melissa M. Reynolds
- Department of Chemistry Department of Chemical and Biological Engineering, and School of Biomedical Engineering Colorado State University Fort Collins CO 80523 USA
| | - Matt J. Kipper
- Department of Chemical and Biological Engineering School of Biomedical Engineering, and School of Advanced Materials Discovery Colorado State University Fort Collins CO 80523 USA
| |
Collapse
|
9
|
Pelegrino MT, Pieretti JC, Nakazato G, Gonçalves MC, Moreira JC, Seabra AB. Chitosan chemically modified to deliver nitric oxide with high antibacterial activity. Nitric Oxide 2020; 106:24-34. [PMID: 33098968 DOI: 10.1016/j.niox.2020.10.003] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 09/10/2020] [Accepted: 10/18/2020] [Indexed: 02/06/2023]
Abstract
The aim of the current study is to report a simple and efficient method to chemically modify chitosan in order to form S-nitroso-chitosan for antibacterial applications. Firstly, commercial chitosan (CS) was modified to form thiolated chitosan (TCS) based on an easy and environmental-friendly method. TCS was featured based on physicochemical and morphological techniques. Results have confirmed that thiol groups in TCS formed after CS's primary amino groups were replaced with secondary amino groups. Free thiol groups in TCS were nitrosated to form S-nitrosothiol moieties covalently bond to the polymer backbone (S-nitroso-CS). Kinetic measurements have shown that S-nitroso-CS was capable of generating NO in a sustained manner at levels suitable for biomedical applications. The antibacterial activities of CS, TCS and S-nitroso-CS were evaluated based on the minimum inhibitory concentration (MIC), minimum bactericidal concentration (MBC) and time-kill curves determined for Escherichia coli, Staphylococcus aureus and Streptococcus mutans. MIC/MBC values reached 25/25, 0.7/0.7 and 3.1/3.1 μg mL-1 for CS/TCS and 3.1/3.1, 0.1/0.2, 0.1/0.2 μg mL-1 for S-nitroso-CS, respectively. Decreased MIC and MBC values have indicated that S-nitroso-CS has higher antibacterial activity than CS and TCS. Time-kill curves have shown that the bacterial cell viability decreased 5-fold for E. coli and 2-fold for S. mutans in comparison to their respective controls, after 0.5 h of incubation with S-nitroso-CS. Together, CS backbone chemically modified with S-nitroso moieties have yielded a polymer capable of generating therapeutic NO concentrations with strong antibacterial effect.
Collapse
Affiliation(s)
- Milena T Pelegrino
- Center for Natural and Human Sciences, Universidade Federal do ABC, Santo André, Brazil
| | - Joana C Pieretti
- Center for Natural and Human Sciences, Universidade Federal do ABC, Santo André, Brazil
| | - Gerson Nakazato
- Department of Microbiology, Biology Sciences Center, Londrina State University (UEL), Londrina, Brazil
| | - Marcelly Chue Gonçalves
- Department of Microbiology, Biology Sciences Center, Londrina State University (UEL), Londrina, Brazil
| | - José Carlos Moreira
- Center for Engineering, Modeling and Applied Social Sciences, Universidade Federal do ABC, Santo André, Brazil
| | - Amedea B Seabra
- Center for Natural and Human Sciences, Universidade Federal do ABC, Santo André, Brazil.
| |
Collapse
|
10
|
Allison CL, Lutzke A, Reynolds MM. Identification of low molecular weight degradation products from chitin and chitosan by electrospray ionization time-of-flight mass spectrometry. Carbohydr Res 2020; 493:108046. [PMID: 32497941 DOI: 10.1016/j.carres.2020.108046] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Revised: 04/10/2020] [Accepted: 05/22/2020] [Indexed: 10/24/2022]
Abstract
The beneficial effects provided by chitosan oligosaccharides (COS) make them of interest in medical research. The monomers that constitute COS confer distinct properties, so controlling COS composition during their production is significant. In this work, we degraded chitin and chitosan polymers and identified low molecular weight products such as COS that formed, using electrospray ionization time-of-flight mass spectrometry. Our results show that hydrochloric acid, hydrogen peroxide, and nitrous acid generate distinct products from chitin and chitosan. Hydrochloric acid degrades chitin and chitosan to produce glucosamine (GlcN) monomers and oligomers. Hydrogen peroxide degrades chitosan to produce GlcN and N-acetyl-d-glucosamine (GlcNAc) monomers and oligomers, and nitrous acid degrades chitosan to produce 2,5-anhydro- d-mannose. Our studies show that COS composition is dictated by both the degradation protocol and the starting polymer. Additionally, our results enable selection of degradation protocols based on their ability to degrade chitin and chitosan and facilitate the production of COS with desired compositions.
Collapse
Affiliation(s)
- Christopher L Allison
- Department of Chemistry, Colorado State University, 1801 Campus Delivery, Fort Collins, CO, 80523, United States.
| | - Alec Lutzke
- Department of Chemical and Biological Engineering, Colorado State University, 1370 Campus Delivery, Fort Collins, CO, 80523, United States.
| | - Melissa M Reynolds
- Department of Chemistry, Colorado State University, 1801 Campus Delivery, Fort Collins, CO, 80523, United States; Department of Chemical and Biological Engineering, Colorado State University, 1370 Campus Delivery, Fort Collins, CO, 80523, United States; School of Biomedical Engineering, Colorado State University, 1376 Campus Delivery, Fort Collins, CO, 80523, United States.
| |
Collapse
|
11
|
Dillon KM, Carrazzone RJ, Matson JB, Kashfi K. The evolving landscape for cellular nitric oxide and hydrogen sulfide delivery systems: A new era of customized medications. Biochem Pharmacol 2020; 176:113931. [PMID: 32224139 PMCID: PMC7263970 DOI: 10.1016/j.bcp.2020.113931] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Accepted: 03/20/2020] [Indexed: 02/09/2023]
Abstract
Nitric oxide (NO) and hydrogen sulfide (H2S) are industrial toxins or pollutants; however, both are produced endogenously and have important biological roles in most mammalian tissues. The recognition that these gasotransmitters have a role in physiological and pathophysiological processes has presented opportunities to harness their intracellular effects either through inhibition of their production; or more commonly, through inducing their levels and or delivering them by various modalities. In this review article, we have focused on an array of NO and H2S donors, their hybrids with other established classes of drugs, and the various engineered delivery platforms such a fibers, polymers, nanoparticles, hydrogels, and others. In each case, we have reviewed the rationale for their development.
Collapse
Affiliation(s)
- Kearsley M Dillon
- Department of Chemistry and Macromolecules Innovation Institute, Virginia Tech, Blacksburg, VA 24061, USA; Virginia Tech Center for Drug Discovery, Virginia Tech, Blacksburg, VA 24061, USA
| | - Ryan J Carrazzone
- Department of Chemistry and Macromolecules Innovation Institute, Virginia Tech, Blacksburg, VA 24061, USA; Virginia Tech Center for Drug Discovery, Virginia Tech, Blacksburg, VA 24061, USA
| | - John B Matson
- Department of Chemistry and Macromolecules Innovation Institute, Virginia Tech, Blacksburg, VA 24061, USA; Virginia Tech Center for Drug Discovery, Virginia Tech, Blacksburg, VA 24061, USA.
| | - Khosrow Kashfi
- Department of Molecular, Cellular, and Biomedical Sciences, Sophie Davis School of Biomedical Education, City University of New York School of Medicine, 160 Convent Avenue, New York, NY 10031, USA; Graduate Program in Biology, City University of New York Graduate Center, NY, USA.
| |
Collapse
|
12
|
Barnes M, Brisbois EJ. Clinical use of inhaled nitric oxide: Local and systemic applications. Free Radic Biol Med 2020; 152:422-431. [PMID: 31785330 DOI: 10.1016/j.freeradbiomed.2019.11.029] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Revised: 11/15/2019] [Accepted: 11/21/2019] [Indexed: 12/26/2022]
Abstract
Upon the FDA approval for inhaled nitric oxide (iNO) in 1999 to treat persistent pulmonary hypertension in neonates, iNO has proven to be a beneficial therapeutic in multiple diseases. We aim to review applications of iNO that have modeled its protective and therapeutic attributes, as well as highlight preliminary studies that could allude to future avenues of use. Numerous publications have reported specific incidences where iNO therapy has proved advantageous, while some applications have potential after further validation. Establishing guidelines on dosing, duration, and defined clinical uses are crucial for the future of iNO. Delivery of iNO has been controlled by a sole distributor, and comes with high cost, and lack of portability. A shift in patents has allowed for new designs for iNO device synthesis, with many new developments of iNO medical devices that will likely change the future of iNO in a medical setting.
Collapse
Affiliation(s)
- Megan Barnes
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL, USA
| | - Elizabeth J Brisbois
- Department of Materials Science & Engineering, University of Central Florida, Orlando, FL, USA.
| |
Collapse
|
13
|
Roy A, Samanta S, Singha K, Maity P, Kumari N, Ghosh A, Dhara S, Pal S. Development of a Thermoresponsive Polymeric Composite Film Using Cross-Linked β-Cyclodextrin Embedded with Carbon Quantum Dots as a Transdermal Drug Carrier. ACS APPLIED BIO MATERIALS 2020; 3:3285-3293. [DOI: 10.1021/acsabm.0c00246] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Arpita Roy
- Department of Chemistry, Indian Institute of Technology (ISM) Dhanbad, Jharkhand 826004, India
| | - Subhendu Samanta
- Department of Chemistry, Indian Institute of Technology (ISM) Dhanbad, Jharkhand 826004, India
| | - Koushik Singha
- Department of Chemistry, Indian Institute of Technology (ISM) Dhanbad, Jharkhand 826004, India
| | - Pritiprasanna Maity
- School of Medical Science and Technology, Indian Institute of Technology Kharagpur, West Bengal 721302, India
| | - Nimmy Kumari
- Department of Pharmaceutical Sciences & Technology, Birla Institute of Technology Mesra, Ranchi 835215, India
| | - Animesh Ghosh
- Department of Pharmaceutical Sciences & Technology, Birla Institute of Technology Mesra, Ranchi 835215, India
| | - Santanu Dhara
- School of Medical Science and Technology, Indian Institute of Technology Kharagpur, West Bengal 721302, India
| | - Sagar Pal
- Department of Chemistry, Indian Institute of Technology (ISM) Dhanbad, Jharkhand 826004, India
| |
Collapse
|
14
|
Yang Y, Gao P, Wang J, Tu Q, Bai L, Xiong K, Qiu H, Zhao X, Maitz MF, Wang H, Li X, Zhao Q, Xiao Y, Huang N, Yang Z. Endothelium-Mimicking Multifunctional Coating Modified Cardiovascular Stents via a Stepwise Metal-Catechol-(Amine) Surface Engineering Strategy. RESEARCH (WASHINGTON, D.C.) 2020; 2020:9203906. [PMID: 32405627 PMCID: PMC7196174 DOI: 10.34133/2020/9203906] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Accepted: 03/22/2020] [Indexed: 12/14/2022]
Abstract
Stenting is currently the major therapeutic treatment for cardiovascular diseases. However, the nonbiogenic metal stents are inclined to trigger a cascade of cellular and molecular events including inflammatory response, thrombogenic reactions, smooth muscle cell hyperproliferation accompanied by the delayed arterial healing, and poor reendothelialization, thus leading to restenosis along with late stent thrombosis. To address prevalence critical problems, we present an endothelium-mimicking coating capable of rapid regeneration of a competently functioning new endothelial layer on stents through a stepwise metal (copper)-catechol-(amine) (MCA) surface chemistry strategy, leading to combinatorial endothelium-like functions with glutathione peroxidase-like catalytic activity and surface heparinization. Apart from the stable nitric oxide (NO) generating rate at the physiological level (2.2 × 10-10 mol/cm2/min lasting for 60 days), this proposed strategy could also generate abundant amine groups for allowing a high heparin conjugation efficacy up to ∼1 μg/cm2, which is considerably higher than most of the conventional heparinized surfaces. The resultant coating could create an ideal microenvironment for bringing in enhanced anti-thrombogenicity, anti-inflammation, anti-proliferation of smooth muscle cells, re-endothelialization by regulating relevant gene expressions, hence preventing restenosis in vivo. We envision that the stepwise MCA coating strategy would facilitate the surface endothelium-mimicking engineering of vascular stents and be therefore helpful in the clinic to reduce complications associated with stenosis.
Collapse
Affiliation(s)
- Ying Yang
- Key Laboratory of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China
- Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane 4059, Australia
- Australia-China Centre for Tissue Engineering and Regenerative Medicine, Queensland University of Technology, Brisbane 4059, Australia
| | - Peng Gao
- Key Laboratory of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China
| | - Juan Wang
- Key Laboratory of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China
| | - Qiufen Tu
- Key Laboratory of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China
| | - Long Bai
- Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane 4059, Australia
- Australia-China Centre for Tissue Engineering and Regenerative Medicine, Queensland University of Technology, Brisbane 4059, Australia
| | - Kaiqin Xiong
- Key Laboratory of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China
| | - Hua Qiu
- Key Laboratory of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China
| | - Xin Zhao
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China
| | - Manfred F. Maitz
- Key Laboratory of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China
- Max Bergmann Center of Biomaterials, Leibniz Institute of Polymer Research Dresden, Hohe Strasse 6, 01069 Dresden, Germany
| | - Huaiyu Wang
- Institute of Biomedicine and Biotechnology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Xiangyang Li
- Key Laboratory of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China
| | - Qiang Zhao
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Sciences, Nankai University, Tianjin, China
| | - Yin Xiao
- Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane 4059, Australia
- Australia-China Centre for Tissue Engineering and Regenerative Medicine, Queensland University of Technology, Brisbane 4059, Australia
| | - Nan Huang
- Key Laboratory of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China
| | - Zhilu Yang
- Key Laboratory of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China
| |
Collapse
|
15
|
Ahonen MJR, Dorrier JM, Schoenfisch MH. Antibiofilm Efficacy of Nitric Oxide-Releasing Alginates against Cystic Fibrosis Bacterial Pathogens. ACS Infect Dis 2019; 5:1327-1335. [PMID: 31136714 PMCID: PMC6773255 DOI: 10.1021/acsinfecdis.9b00016] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Colonization of the lungs by biofilm-forming pathogens is a major cause of mortality in cystic fibrosis (CF). In CF patients, these pathogens are difficult to treat due to the additional protection provided by both the biofilm exopolysaccharide matrix and thick, viscous mucus. The antibiofilm efficacy of nitric oxide (NO)-releasing alginates was evaluated against Pseudomonas aeruginosa, Burkholderia cepacia, Staphylococcus aureus, and methicillin-resistant S. aureus biofilms in both aerobic and anaerobic environments. Varying the amine precursor grafted onto alginate oligosaccharides imparted tunable NO storage (∼0.1-0.3 μmol/mg) and release kinetics (∼4-40 min half-lives) in the artificial sputum media used for biofilm testing. The NO-releasing alginates were highly antibacterial against the four CF-relevant pathogens, achieving a 5-log reduction in biofilm viability after 24 h of treatment, with biocidal efficacy dependent on NO-release kinetics. Aerobic biofilms required greater starting NO doses to achieve killing relative to the anaerobic biofilms. Relative to tobramycin (the minimum concentration of antibacterial agent required to achieve a 5-log reduction in viability after 24 h, MBEC24h, of ≥2000 μg/mL) and vancomycin (MBEC24h ≥ 1000 μg/mL), the NO-releasing alginates proved to be more effective (NO dose ≤ 520 μg/mL) regardless of growth conditions.
Collapse
Affiliation(s)
- Mona Jasmine R. Ahonen
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, CB 3290, NC 27599, United States
| | - Jamie M. Dorrier
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, CB 3290, NC 27599, United States
| | - Mark H. Schoenfisch
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, CB 3290, NC 27599, United States
| |
Collapse
|
16
|
Ahonen MJR, Hill DB, Schoenfisch MH. Nitric oxide-releasing alginates as mucolytic agents. ACS Biomater Sci Eng 2019; 5:3409-3418. [PMID: 32309634 DOI: 10.1021/acsbiomaterials.9b00482] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The excessive production of thick, viscous mucus in severe respiratory diseases leads to obstruction of the airways and provides a suitable environment for the colonization of pathogenic bacteria. The effect of nitric oxide (NO)-releasing alginates with varying NO release kinetics on the viscoelastic properties of human bronchial epithelial (HBE) mucus was evaluated as a function of the NO-release kinetics using parallel plate rheology. Low molecular weight (~5 kDa) alginates with high NO flux (~4000 ppb/mg) and sustained release (half-life ~0.3 h) proved to be most effective in reducing both mucus elasticity and viscosity (≥60% reduction for both). The efficacy of the NO-releasing alginates was shown to be dose-dependent, with high concentrations of NO-releasing alginates (~80 mg•mL-1) resulting in greater reduction of the viscosity and elasticity of the mucus samples. Greater reduction in mucus rheology was also achieved with NO-releasing alginates at lower concentrations when compared to both NO-releasing chitosan, a similarly biocompatible cationic polymer, and N-acetyl cysteine (NAC), a conventional mucolytic agent.
Collapse
Affiliation(s)
- Mona Jasmine R Ahonen
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599-3290, United States
| | - David B Hill
- Marsico Lung Institute, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599-7248, United States
| | - Mark H Schoenfisch
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599-3290, United States
| |
Collapse
|
17
|
Allison CL, Lutzke A, Reynolds MM. Examining the effect of common nitrosating agents on chitosan using a glucosamine oligosaccharide model system. Carbohydr Polym 2019; 203:285-291. [PMID: 30318215 DOI: 10.1016/j.carbpol.2018.09.052] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2018] [Revised: 09/19/2018] [Accepted: 09/19/2018] [Indexed: 11/15/2022]
Abstract
Chitosan has received substantial attention as a biomaterial due to its unique properties. It has become increasingly common to derivatize chitosan to produce nitric oxide (NO)-releasing materials that exert various therapeutic effects through the action of NO. It is generally the case that these NO-releasing polymers are prepared by exposure to high-pressure NO or nitrosating agents like nitrous acid (HNO2) or alkyl nitrites (RONO). In our study, mass spectrometry and spectroscopic methods demonstrate that both monomeric and oligomeric glucosamine experience chemical alteration after exposure to HNO2-based nitrosating conditions from the literature. In polymeric chitosan, HNO2-based nitrosating conditions were found to induce degradation through the formation of 2,5-anhydro-d-mannose and oligosaccharides. In contrast, the RONO tert-butyl nitrite and high-pressure NO were not found to significantly degrade or otherwise alter the structure of glucosamine or its oligomers, supporting the suitability of these approaches.
Collapse
Affiliation(s)
- Christopher L Allison
- Department of Chemistry, Colorado State University, 1801 Campus Delivery, Fort Collins, CO 80523, United States.
| | - Alec Lutzke
- Department of Chemical and Biological Engineering, Colorado State University, 1370 Campus Delivery, Fort Collins, CO 80523, United States.
| | - Melissa M Reynolds
- Department of Chemistry, Colorado State University, 1801 Campus Delivery, Fort Collins, CO 80523, United States; Department of Chemical and Biological Engineering, Colorado State University, 1370 Campus Delivery, Fort Collins, CO 80523, United States; School of Biomedical Engineering, Colorado State University, 1376 Campus Delivery, Fort Collins, CO 80523, United States.
| |
Collapse
|
18
|
Chen X, Song J, Chen X, Yang H. X-ray-activated nanosystems for theranostic applications. Chem Soc Rev 2019; 48:3073-3101. [PMID: 31106315 DOI: 10.1039/c8cs00921j] [Citation(s) in RCA: 171] [Impact Index Per Article: 28.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
X-rays are widely applied in clinical medical facilities for radiotherapy (RT) and biomedical imaging. However, the sole use of X-rays for cancer treatment leads to insufficient radiation energy deposition due to the low X-ray attenuation coefficients of living tissues and organs, producing unavoidable excessive radiation doses with serious side effects to healthy body parts. Over the past decade, developments in materials science and nanotechnology have led to rapid progress in the field of X-ray-activated tumor-targeting nanosystems, which are able to tackle even systemic tumors and relieve the burden of exposure to large radiation doses. Additionally, novel imaging contrast agents and techniques have also been developed. In comparison with conventional external light sources (e.g., near infrared), the X-ray technique is ideal for the activation of nanosystems for cancer treatment and biomedical imaging applications due to its nearly unlimited penetration depth in living tissues and organisms. In this review, we systematically describe the interaction mechanisms between X-rays and nanosystems, and provide an overview of X-ray-sensitive materials and the recent progress on X-ray-activated nanosystems for cancer-associated theranostic applications.
Collapse
Affiliation(s)
- Xiaofeng Chen
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, College of Chemistry, Fuzhou University, Fuzhou 350108, P. R. China.
| | | | | | | |
Collapse
|
19
|
Hopkins SP, Pant J, Goudie MJ, Schmiedt C, Handa H. Achieving Long-Term Biocompatible Silicone via Covalently Immobilized S-Nitroso- N-acetylpenicillamine (SNAP) That Exhibits 4 Months of Sustained Nitric Oxide Release. ACS APPLIED MATERIALS & INTERFACES 2018; 10:27316-27325. [PMID: 30028941 PMCID: PMC7951114 DOI: 10.1021/acsami.8b08647] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Ever since the role of endogenous nitric oxide (NO) in controlling a wide variety of biological functions was discovered approximately three decades back, multiple NO-releasing polymeric materials have been developed. However, most of these materials are typically short lived due to the inefficient incorporation of the NO donor molecules within the polymer matrix. In the present study, S-nitroso- N-acetyl penicillamine (SNAP) is covalently attached to poly(dimethylsiloxane) (PDMS) to create a highly stable nitric oxide (NO) releasing material for biomedical applications. By tethering SNAP to the cross-linker of PDMS, the NO donor is unable to leach into the surrounding environment. This is the first time that a sustainable NO release and bacterial inhibition for over 125 days has been achieved by any NO-releasing polymer with supporting evidence of potential long-term hemocompatibility and biocompatibility. The material proves to have very high antibacterial efficacy against Staphylococcus aureus by demonstrating a 99.99% reduction in the first 3 days in a continuous flow CDC bioreactor, whereas a similar inhibitory potential of 99.50% was maintained by the end of 1 month. Hemocompatibility of SNAP-PDMS was tested using a rabbit extracorporeal circuit (ECC) model over a 4 h period. Thrombus formation was greatly reduced within the SNAP-PDMS-coated ECCs compared to the control circuits, observing a 78% reduction in overall thrombus mass accumulation. These results demonstrate the potential of utilizing this material for blood and tissue contacting biomedical devices in long-term clinical applications where infection and unwanted clotting are major issues.
Collapse
Affiliation(s)
- Sean P. Hopkins
- School of Chemical, Materials and Biomedical Engineering, University of Georgia, Athens 30602, United States
| | - Jitendra Pant
- School of Chemical, Materials and Biomedical Engineering, University of Georgia, Athens 30602, United States
| | - Marcus J. Goudie
- School of Chemical, Materials and Biomedical Engineering, University of Georgia, Athens 30602, United States
| | - Chad Schmiedt
- Department of Small Animal Medicine and Surgery, University of Georgia, Athens 30602, United States
| | - Hitesh Handa
- School of Chemical, Materials and Biomedical Engineering, University of Georgia, Athens 30602, United States
| |
Collapse
|
20
|
Yang L, Feura ES, Ahonen MJR, Schoenfisch MH. Nitric Oxide-Releasing Macromolecular Scaffolds for Antibacterial Applications. Adv Healthc Mater 2018; 7:e1800155. [PMID: 29756275 PMCID: PMC6159924 DOI: 10.1002/adhm.201800155] [Citation(s) in RCA: 119] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2018] [Revised: 03/26/2018] [Indexed: 01/03/2023]
Abstract
Exogenous nitric oxide (NO) represents an attractive antibacterial agent because of its ability to both disperse and directly kill bacterial biofilms while avoiding resistance. Due to the challenges associated with administering gaseous NO, NO-releasing macromolecular scaffolds are developed to facilitate NO delivery. This progress report describes the rational design and application of NO-releasing macromolecular scaffolds as antibacterial therapeutics. Special consideration is given to the role of the physicochemical properties of the NO storage vehicles on antibacterial or anti-biofilm activity.
Collapse
Affiliation(s)
- Lei Yang
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Evan S. Feura
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Mona Jasmine R. Ahonen
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Mark H. Schoenfisch
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| |
Collapse
|
21
|
Yapor JP, Neufeld BH, Tapia JB, Reynolds MM. Biodegradable crosslinked polyesters derived from thiomalic acid and S-nitrosothiol analogues for nitric oxide release. J Mater Chem B 2018; 6:4071-4081. [PMID: 31372219 PMCID: PMC6675467 DOI: 10.1039/c8tb00566d] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Crosslinked polyesters with Young's moduli similar to that of certain soft biological tissues were prepared via bulk polycondensation of thiomalic acid and 1,8-octanediol alone, and with citric or maleic acid. The copolymers were converted to nitric oxide (NO)-releasing S-nitrosothiol (RSNO) analogues by reaction with tert-butyl nitrite. Additional conjugation steps were avoided by inclusion of the thiolated monomer during the polycondensation to permit thiol conversion to RSNOs. NO release at physiological pH and temperature (pH 7.4, 37 °C) was determined by chemiluminescence-based NO detection. The average total NO content for poly(thiomalic-co-maleic acid-co-1,8-octanediol), poly(thiomalic-co-citric acid-co-1,8-octanediol), and poly(thiomalic acid-co-1,8-octanediol) was 130 ± 39 μmol g-1, 200 ± 35 μmol g-1, and 130 ± 11 μmol g-1, respectively. The antibacterial properties of the S-nitrosated analogues were confirmed against Escherichia coli and Staphylococcus aureus. The hydrolytic degradation products were analyzed by time-of-flight mass spectrometry after a 10-week study to investigate their composition. Tensile mechanical tests were performed on the non-nitrosated polymers as well as their S-nitrosated derivatives and suggested that the materials have appropriate Young's moduli and elongation values for biomedical applications.
Collapse
Affiliation(s)
- Janet P. Yapor
- Department of Chemistry, Colorado State University, Fort Collins, CO 80523, USA
| | - Bella H. Neufeld
- Department of Chemistry, Colorado State University, Fort Collins, CO 80523, USA
| | - Jesus B. Tapia
- Department of Chemistry, Colorado State University, Fort Collins, CO 80523, USA
| | - Melissa M. Reynolds
- Department of Chemistry, Colorado State University, Fort Collins, CO 80523, USA
- School of Biomedical Engineering, Colorado State University, Fort Collins, CO 80523, USA
| |
Collapse
|
22
|
Abstract
Low and high molecular weight alginate biopolymers were chemically modified to store and release potentially therapeutic levels of nitric oxide (NO). Carbodiimide chemistry was first used to modify carboxylic acid functional groups with a series of small molecule alkyl amines. The resulting secondary amines were subsequently converted to N-diazeniumdiolate NO donors via reaction with NO gas under basic conditions. NO donor-modified alginates stored between 0.4-0.6 μmol NO·mg-1. In aqueous solution, the NO-release kinetics were diverse (0.3-13 h half-lives), dependent on the precursor amine structure. The liberated NO showed bactericidal activity against Pseudomonas aeruginosa and Staphylococcus aureus with pathogen eradication efficiency dependent on both molecular weight and NO-release kinetics. The combination of lower molecular weight (∼5 kDa) alginates with moderate NO-release durations (half-life of ∼4 h) resulted in enhanced killing of both planktonic and biofilm-based bacteria. Toxicity against human respiratory epithelial (A549) cells proved negligible at NO-releasing alginate concentrations required to achieve a 5-log reduction in viability in the biofilm eradication assay.
Collapse
Affiliation(s)
- Mona Jasmine R. Ahonen
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, CB 3290, NC 27599, United States
| | - Dakota J. Suchyta
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, CB 3290, NC 27599, United States
| | - Huanyu Zhu
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, CB 3290, NC 27599, United States
| | - Mark H. Schoenfisch
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, CB 3290, NC 27599, United States
| |
Collapse
|
23
|
Annich GM, Zaulan O, Neufeld M, Wagner D, Reynolds MM. Thromboprophylaxis in Extracorporeal Circuits: Current Pharmacological Strategies and Future Directions. Am J Cardiovasc Drugs 2017; 17:425-439. [PMID: 28536932 DOI: 10.1007/s40256-017-0229-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The development of extracorporeal devices for organ support has been a part of medical history and progression since the late 1900s. These types of technology are primarily used and developed in the field of critical care medicine. Unfractionated heparin, discovered in 1916, has really been the only consistent form of thromboprophylaxis for attenuating or even preventing the blood-biomaterial reaction that occurs when such technologies are initiated. The advent of regional anticoagulation for procedures such as continuous renal replacement therapy and plasmapheresis have certainly removed the risks of systemic heparinization and heparin effect, but the challenges of the blood-biomaterial reaction and downstream effects remain. In addition, regional anticoagulation cannot realistically be applied in a system such as extracorporeal membrane oxygenation because of the high blood flow rates needed to support the patient. More recently, advances in the technology itself have resulted in smaller, more compact extracorporeal life support (ECLS) systems that can-at certain times and in certain patients-run without any form of anticoagulation. However, the majority of patients on ECLS systems require some type of systemic anticoagulation; therefore, the risks of bleeding and thrombosis persist, the most devastating of which is intracranial hemorrhage. We provide a concise overview of the primary and alternate agents and monitoring used for thromboprophylaxis during use of ECLS. In addition, we explore the potential for further biomaterial and technologic developments and what they could provide when applied in the clinical arena.
Collapse
Affiliation(s)
- Gail M Annich
- Department of Critical Care Medicine, The Hospital for Sick Children, University of Toronto, 555 University Avenue, M5G 1X8, Toronto, ON, Canada.
| | - Oshri Zaulan
- Department of Critical Care Medicine, The Hospital for Sick Children, University of Toronto, 555 University Avenue, M5G 1X8, Toronto, ON, Canada
| | - Megan Neufeld
- Department of Chemistry, Colorado State University, Fort Collins, Colorado, USA
| | - Deborah Wagner
- Departments of Pharmacology and Anesthesia, University of Michigan, Ann Arbor, Michigan, USA
| | - Melissa M Reynolds
- Department of Chemistry, School of Biomedical Engineering, Chemical and Biological Engineering, Colorado State University, Fort Collins, Colorado, USA
| |
Collapse
|
24
|
Roy A, Maity PP, Dhara S, Pal S. Biocompatible, stimuli-responsive hydrogel of chemically crosslinked β-cyclodextrin as amoxicillin carrier. J Appl Polym Sci 2017. [DOI: 10.1002/app.45939] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Arpita Roy
- Polymer Chemistry Laboratory, Department of Applied Chemistry; Indian Institute of Technology (ISM); Dhanbad 826004 India
| | - Priti Prasanna Maity
- Biomaterials and Tissue Engineering Laboratory, School of Medical Science and Technology; Indian Institute of Technology; Kharagpur, Kharagpur 721302 India
| | - Santanu Dhara
- Biomaterials and Tissue Engineering Laboratory, School of Medical Science and Technology; Indian Institute of Technology; Kharagpur, Kharagpur 721302 India
| | - Sagar Pal
- Polymer Chemistry Laboratory, Department of Applied Chemistry; Indian Institute of Technology (ISM); Dhanbad 826004 India
| |
Collapse
|
25
|
Non-enzymatic nitric oxide release from biodegradable S-nitrosothiol bound polymer: synthesis, characterization, and antibacterial effect. Polym Bull (Berl) 2017. [DOI: 10.1007/s00289-017-2199-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
26
|
Implications of molecular diversity of chitin and its derivatives. Appl Microbiol Biotechnol 2017; 101:3513-3536. [DOI: 10.1007/s00253-017-8229-1] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Revised: 02/26/2017] [Accepted: 03/04/2017] [Indexed: 02/03/2023]
|
27
|
Neufeld MJ, Lutzke A, Tapia JB, Reynolds MM. Metal-Organic Framework/Chitosan Hybrid Materials Promote Nitric Oxide Release from S-Nitrosoglutathione in Aqueous Solution. ACS APPLIED MATERIALS & INTERFACES 2017; 9:5139-5148. [PMID: 28164705 PMCID: PMC6322424 DOI: 10.1021/acsami.6b14937] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
It has been previously demonstrated that copper-based metal-organic frameworks (MOFs) accelerate formation of the therapeutically active molecule nitric oxide (NO) from S-nitrosothiols (RSNOs). Because RSNOs are naturally present in blood, this function is hypothesized to permit the controlled production of NO through use of MOF-based blood-contacting materials. The practical implementation of MOFs in this application typically requires incorporation within a polymer support, yet this immobilization has been shown to impair the ability of the MOF to interact with the NO-forming RSNO substrate. Here, the water-stable, copper-based MOF H3[(Cu4Cl)3-(BTTri)8] (H3BTTri = 1,3,5-tris(1H-1,2,3-triazol-5-yl)benzene), or Cu-BTTri, was incorporated within the naturally derived polysaccharide chitosan to form membranes that were evaluated for their ability to enhance NO generation from the RSNO S-nitrosoglutathione (GSNO). This is the first report to evaluate MOF-induced NO release from GSNO, the most abundant small-molecule RSNO. At a 20 μM initial GSNO concentration (pH 7.4 phosphate buffered saline, 37 °C), chitosan/Cu-BTTri membranes induced the release of 97 ± 3% of theoretical NO within approximately 4 h, corresponding to a 65-fold increase over the baseline thermal decomposition of GSNO. Furthermore, incorporation of Cu-BTTri within hydrophilic chitosan did not impair the activity of the MOF, unlike earlier efforts using hydrophobic polyurethane or poly(vinyl chloride). The reuse of the membranes continued to enhance NO production from GSNO in subsequent experiments, suggesting the potential for continued use. Additionally, the major organic product of Cu-BTTri-promoted GSNO decomposition was identified as oxidized glutathione via mass spectrometry, confirming prior hypotheses. Structural analysis by pXRD and assessment of copper leaching by ICP-AES indicated that Cu-BTTri retains crystallinity and exhibits no significant degradation following exposure to GSNO. Taken together, these findings provide insight into the function and utility of polymer/Cu-BTTri systems and may support the development of future MOF-based biomaterials.
Collapse
Affiliation(s)
- Megan J. Neufeld
- Department of Chemistry, Colorado State University, Fort Collins, Colorado 80523, United States
| | - Alec Lutzke
- Department of Chemistry, Colorado State University, Fort Collins, Colorado 80523, United States
| | - Jesus B. Tapia
- Department of Chemistry, Colorado State University, Fort Collins, Colorado 80523, United States
| | - Melissa M. Reynolds
- Department of Chemistry, Colorado State University, Fort Collins, Colorado 80523, United States
- School of Biomedical Engineering, Colorado State University, Fort Collins, Colorado 80523, United States
- Chemical and Biological Engineering, Colorado State University, Fort Collins, Colorado 80523, United States
| |
Collapse
|
28
|
Simon-Walker R, Romero R, Staver JM, Zang Y, Reynolds MM, Popat KC, Kipper MJ. Glycocalyx-Inspired Nitric Oxide-Releasing Surfaces Reduce Platelet Adhesion and Activation on Titanium. ACS Biomater Sci Eng 2016; 3:68-77. [PMID: 33429688 DOI: 10.1021/acsbiomaterials.6b00572] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The endothelial glycocalyx lining the inside surfaces of blood vessels has multiple features that prevent inflammation, blood clot formation, and infection. This surface represents the highest standard in blood compatibility for long-term contact with blood under physiological flow rates. Engineering materials used in blood-contacting biomedical devices, including metals and polymers, have undesirable interactions with blood that lead to failure modes associated with inflammation, blood clotting, and infection. Platelet adhesion and activation are key events governing these undesirable interactions. In this work, we propose a new surface modification to titanium with three features inspired by the endothelial glcyocalyx: First, titanium surfaces are anodized to produce titania nanotubes with high surface area. Second, the nanostructured surfaces are coated with heparin-chitosan polyelectrolyte multilayers to provide glycosaminoglycan functionalization. Third, chitosan is modified with a nitric oxide-donor chemistry to provide an important antithrombotic small-molecule signal. We show that these surfaces are nontoxic with respect to platelets and leukocytes. The combination of glycocalyx-inspired features results in a dramatic reduction of platelet and leukocyte adhesion and platelet activation.
Collapse
Affiliation(s)
- Rachael Simon-Walker
- School of Biomedical Engineering, Colorado State University, 1376 Campus Delivery, Fort Collins, Colorado 80523-1376, United States
| | - Raimundo Romero
- School of Biomedical Engineering, Colorado State University, 1376 Campus Delivery, Fort Collins, Colorado 80523-1376, United States
| | - Joseph M Staver
- Department of Chemical and Biological Engineering, Colorado State University, 1370 Campus Delivery, Fort Collins, Colorado 80523-1370, United States
| | - Yanyi Zang
- School of Biomedical Engineering, Colorado State University, 1376 Campus Delivery, Fort Collins, Colorado 80523-1376, United States
| | - Melissa M Reynolds
- School of Biomedical Engineering, Colorado State University, 1376 Campus Delivery, Fort Collins, Colorado 80523-1376, United States.,Department of Chemical and Biological Engineering, Colorado State University, 1370 Campus Delivery, Fort Collins, Colorado 80523-1370, United States.,Department of Chemistry, Colorado State University, 1872 Campus Delivery, Fort Collins, Colorado 80523-1872, United States
| | - Ketul C Popat
- School of Biomedical Engineering, Colorado State University, 1376 Campus Delivery, Fort Collins, Colorado 80523-1376, United States.,Department of Mechanical Engineering, Colorado State University, 1374 Campus Delivery, Fort Collins, Colorado 80523-1374, United States
| | - Matt J Kipper
- School of Biomedical Engineering, Colorado State University, 1376 Campus Delivery, Fort Collins, Colorado 80523-1376, United States.,Department of Chemical and Biological Engineering, Colorado State University, 1370 Campus Delivery, Fort Collins, Colorado 80523-1370, United States
| |
Collapse
|
29
|
Carvalho LCR, Queda F, Santos CVA, Marques MMB. Selective Modification of Chitin and Chitosan: En Route to Tailored Oligosaccharides. Chem Asian J 2016; 11:3468-3481. [DOI: 10.1002/asia.201601041] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2016] [Indexed: 11/06/2022]
Affiliation(s)
- Luísa C. R. Carvalho
- LAQV@REQUIMTE, Departamento de Química; Faculdade de Ciências e Tecnologia; Universidade Nova de Lisboa; Campus de Caparica 2829-516 Caparica Portugal
| | - Fausto Queda
- LAQV@REQUIMTE, Departamento de Química; Faculdade de Ciências e Tecnologia; Universidade Nova de Lisboa; Campus de Caparica 2829-516 Caparica Portugal
| | - Cátia V. Almeida Santos
- LAQV@REQUIMTE, Departamento de Química; Faculdade de Ciências e Tecnologia; Universidade Nova de Lisboa; Campus de Caparica 2829-516 Caparica Portugal
| | - M. Manuel B. Marques
- LAQV@REQUIMTE, Departamento de Química; Faculdade de Ciências e Tecnologia; Universidade Nova de Lisboa; Campus de Caparica 2829-516 Caparica Portugal
| |
Collapse
|
30
|
Lutzke A, Neufeld BH, Neufeld MJ, Reynolds MM. Nitric oxide release from a biodegradable cysteine-based polyphosphazene. J Mater Chem B 2016; 4:1987-1998. [DOI: 10.1039/c6tb00037a] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
First report of nitric oxide (NO) release from a biodegradable polyphosphazene containing theS-nitrosothiol NO donor group.
Collapse
Affiliation(s)
- Alec Lutzke
- Department of Chemistry
- Colorado State University
- Fort Collins
- USA
| | | | | | - Melissa M. Reynolds
- Department of Chemistry
- Colorado State University
- Fort Collins
- USA
- School of Biomedical Engineering
| |
Collapse
|
31
|
Yang L, Lu Y, Soto RJ, Shah A, Ahonen MJR, Schoenfisch MH. S-Nitrosothiol-modified hyperbranched polyesters. Polym Chem 2016. [DOI: 10.1039/c6py01516f] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
S-Nitrosothiol-modified hyperbranched polyesters as a novel biodegradable nitric oxide-releasing scaffold.
Collapse
Affiliation(s)
- Lei Yang
- Department of Chemistry
- University of North Carolina – Chapel Hill
- Chapel Hill
- USA
| | - Yuan Lu
- Department of Chemistry
- University of North Carolina – Chapel Hill
- Chapel Hill
- USA
| | - Robert J. Soto
- Department of Chemistry
- University of North Carolina – Chapel Hill
- Chapel Hill
- USA
| | - Anand Shah
- Department of Chemistry
- University of North Carolina – Chapel Hill
- Chapel Hill
- USA
| | | | - Mark H. Schoenfisch
- Department of Chemistry
- University of North Carolina – Chapel Hill
- Chapel Hill
- USA
| |
Collapse
|
32
|
Yapor JP, Lutzke A, Pegalajar-Jurado A, Neufeld BH, Damodaran VB, Reynolds MM. Biodegradable citrate-based polyesters with S-nitrosothiol functional groups for nitric oxide release. J Mater Chem B 2015; 3:9233-9241. [PMID: 32262922 DOI: 10.1039/c5tb01625h] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Nitric oxide (NO) is a biologically-active free radical involved in numerous physiological processes such as regulation of vasodilation, promotion of cell proliferation and angiogenesis, and modulation of the inflammatory and immune responses. Furthermore, NO has demonstrated the ability to mitigate the foreign body response that often results in the failure of implanted biomedical devices. Although NO has promising therapeutic value, the short physiological half-life of exogenous NO complicates its effective delivery. For this reason, the development of NO-releasing materials that permit the localized delivery of NO is an advantageous method of utilizing this molecule for biomedical applications. Herein, we report the synthesis and characterization of biodegradable NO-releasing polyesters prepared from citric acid, maleic acid, and 1,8-octanediol. NO release was achieved by incorporation of S-nitrosothiol donor groups through conjugation of cysteamine and ethyl cysteinate to the polyesters, followed by S-nitrosation with tert-butyl nitrite. The extent of NO loading and the release properties under physiological conditions (pH 7.4 PBS, 37 °C) were determined by chemiluminesence-based NO detection. The average total NO content of poly(citric-co-maleic acid-co-1,8-octanediol)-cysteamine was determined to be 0.45 ± 0.07 mol NO g-1 polymer, while the NO content for poly(citric-co-maleic acid-co-1,8-octanediol)-ethyl cysteinate was 0.16 ± 0.04 mol NO g-1 polymer. Continuous NO release under physiological conditions was observed for at least 6 days for the cysteamine analog and 4 days for the ethyl cysteinate analog. Cell viability assays and morphological studies with human dermal fibroblasts indicated an absence of toxic leachates at a cytotoxic level, and suggested that these citrate-based polyesters may be suitable for future biomedical applications.
Collapse
Affiliation(s)
- J P Yapor
- Department of Chemistry, Colorado State University, Fort Collins, CO 80523, USA.
| | | | | | | | | | | |
Collapse
|
33
|
Fan W, Bu W, Zhang Z, Shen B, Zhang H, He Q, Ni D, Cui Z, Zhao K, Bu J, Du J, Liu J, Shi J. X‐ray Radiation‐Controlled NO‐Release for On‐Demand Depth‐Independent Hypoxic Radiosensitization. Angew Chem Int Ed Engl 2015. [DOI: 10.1002/ange.201504536] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Affiliation(s)
- Wenpei Fan
- State Key Laboratory of High Performance Ceramics and Superfine Microstructures, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050 (P.R. China)
| | - Wenbo Bu
- State Key Laboratory of High Performance Ceramics and Superfine Microstructures, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050 (P.R. China)
| | - Zhen Zhang
- Department of Radiology, Shanghai Cancer Hospital, Fudan University, Shanghai, 200032 (P.R. China)
| | - Bo Shen
- Institute of Radiation Medicine, Fudan University, Shanghai, 200032 (P.R. China)
| | - Hui Zhang
- Department of Radiology, Shanghai Cancer Hospital, Fudan University, Shanghai, 200032 (P.R. China)
| | - Qianjun He
- State Key Laboratory of High Performance Ceramics and Superfine Microstructures, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050 (P.R. China)
| | - Dalong Ni
- State Key Laboratory of High Performance Ceramics and Superfine Microstructures, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050 (P.R. China)
| | - Zhaowen Cui
- State Key Laboratory of High Performance Ceramics and Superfine Microstructures, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050 (P.R. China)
| | - Kuaile Zhao
- Department of Radiology, Shanghai Cancer Hospital, Fudan University, Shanghai, 200032 (P.R. China)
| | - Jiwen Bu
- State Key Laboratory of Neuroscience, Institute of Neuroscience, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, 200031 (P.R. China)
| | - Jiulin Du
- State Key Laboratory of Neuroscience, Institute of Neuroscience, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, 200031 (P.R. China)
| | - Jianan Liu
- State Key Laboratory of High Performance Ceramics and Superfine Microstructures, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050 (P.R. China)
| | - Jianlin Shi
- State Key Laboratory of High Performance Ceramics and Superfine Microstructures, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050 (P.R. China)
| |
Collapse
|
34
|
Fan W, Bu W, Zhang Z, Shen B, Zhang H, He Q, Ni D, Cui Z, Zhao K, Bu J, Du J, Liu J, Shi J. X-ray Radiation-Controlled NO-Release for On-Demand Depth-Independent Hypoxic Radiosensitization. Angew Chem Int Ed Engl 2015; 54:14026-30. [DOI: 10.1002/anie.201504536] [Citation(s) in RCA: 192] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2015] [Revised: 06/21/2015] [Indexed: 11/10/2022]
|