1
|
Zhang DH, Yang L, Li N, Su K, Liu L, Li CY. Detection of ciprofloxacin and pH by carbon dots and rapid, visual sensing analysis. Food Chem 2024; 459:140313. [PMID: 39106536 DOI: 10.1016/j.foodchem.2024.140313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 06/29/2024] [Accepted: 07/01/2024] [Indexed: 08/09/2024]
Abstract
Food safety is a serious issue worldwide and practical detection method is vital for the supervision of food safety. It is necessary to establish efficient and economical methods to detect antibiotics, especially antibiotics in complex systems. This study employs citric acid and m-phenylenediamine to synthesize N, P-codoped carbon dots (N, P-CDs) by a microwave-assisted method. Anhydrous ethanol and phosphoric acid are essential to the properties of N, P-CDs. A "turn-on" fluorescent probe based on N, P-CDs was established for detecting ciprofloxacin (CIP) with detection limit down to 24.2 nm. Semiquantitative test stripe and a PS color detection system for CIP were developed to achieve visual and smart detection. The test stripe is applied to the visual detection of CIP residues in milk and a popular Chinese cuisine, Malatang, for the first time. N, P-CDs can also be used to detect pH in the range of pH 7.5-12.
Collapse
Affiliation(s)
- Dao-Han Zhang
- College of Chemical and Pharmaceutical Engineering, Hebei University of Science and Technology, Shijiazhuang 050018, China
| | - Liang Yang
- Department of Gynecology, Second Hospital of Hebei Medical University, Shijiazhuang 050000, China
| | - Nan Li
- Department of Neurosurgery, Second Hospital of Hebei Medical University, Shijiazhuang 050000, China
| | - Kun Su
- Surgical Department II, The First Affiliated Hospital of Hebei University of Chinese Medicine, Hebei, Provincial Hospital of Chinese Medicine, Shijiazhuang 050000, China
| | - Lei Liu
- College of Chemical and Pharmaceutical Engineering, Hebei University of Science and Technology, Shijiazhuang 050018, China; Hebei Innovation Center of Pharmaceutical and Chemical Engineering, Hebei University of Science and Technology, Shijiazhuang 050018, China.
| | - Chun-Yan Li
- College of Chemical and Pharmaceutical Engineering, Hebei University of Science and Technology, Shijiazhuang 050018, China
| |
Collapse
|
2
|
Pu Q, Wang C, Yin X, Ye N, Zhang L, Xiang Y. A ratiometric fluorescent dark box and smartphone integrated portable sensing platform based on hydrogen bonding induction for on-site determination of enrofloxacin. Food Chem 2024; 455:139876. [PMID: 38823143 DOI: 10.1016/j.foodchem.2024.139876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 05/15/2024] [Accepted: 05/27/2024] [Indexed: 06/03/2024]
Abstract
Enrofloxacin (ENR) residues in animal-derived food and water threaten human health. Simple, low-cost and on-site detection methods are urgently needed. Blue emitting carbon quantum dots (CQDs) and orange rhodamine B (RhB) were used as recognition and reference signals, respectively, to construct a ratiometric fluorescence sensor. After the addition of ENR, the color of the sensor changed from orange to blue because hydrogen bonding induced a considerable increase in CQDs fluorescence. Based on this mechanism, a simple and low cost on-site portable sensing platform was constructed, which integrated a stable UV light strip and a smartphone with voice-controlled phototaking function and an RGB app. The t-test results of spiked ENR recoveries for diluted milk, honey and drinking water revealed no significant differences between the ratiometric fluorescent sensor and portable sensing platform. Thus, this portable sensing platform provides a novel strategy for on-site quantification of quinolone antibiotics in foodstuffs and environmental water.
Collapse
Affiliation(s)
- Qi Pu
- Department of Chemistry, Capital Normal University, Beijing 100048, China
| | - Chumeng Wang
- Department of Chemistry, Capital Normal University, Beijing 100048, China
| | - Xinyue Yin
- Department of Chemistry, Capital Normal University, Beijing 100048, China
| | - Nengsheng Ye
- Department of Chemistry, Capital Normal University, Beijing 100048, China
| | - Lu Zhang
- Department of Chemistry, Capital Normal University, Beijing 100048, China.
| | - Yuhong Xiang
- Department of Chemistry, Capital Normal University, Beijing 100048, China.
| |
Collapse
|
3
|
Sivaselvam S, Anjana RS, Dhujana NS, Victor M, Jayasree RS. Nitrogen-doped carbon dots: a novel biosensing platform for selective norfloxacin detection and bioimaging. J Mater Chem B 2024; 12:7635-7645. [PMID: 39007591 DOI: 10.1039/d4tb01006j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/16/2024]
Abstract
Incomplete metabolism and non-biodegradable nature of norfloxacin (NORx) lead to its persistent residues in the environment and food, potentially fostering the emergence of antibiotic resistance and posing a significant threat to public health. Hence, we developed a norfloxacin sensor employing hydrothermally synthesized N-doped carbon dots (N-Ch-CQDs) from chitosan and PEI demonstrated high sensitivity and specificity towards the antibiotic detection. The quantum yield of excitation-dependent emission of N-Ch-CQDs was effectively tuned from 4.6 to 21.5% by varying the concentration of PEI (5-15%). With the enhanced fluorescence in the presence of norfloxacin, N-Ch-CQDs exhibited a linear detection range of 20-1400 nM with a limit of detection (LoD) of 9.3 nM. The high biocompatibility of N-Ch-CQDs was confirmed in the in vitro and in vivo model and showed the environment-friendly nature of the sensor. Detailed study elucidated the formation of strong hydrogen bonds between N-Ch-CQDs and NORx, leading to fluorescence enhancement. The developed sensor's capability to detect NORx was evaluated in water and milk samples. The recovery rate ranged from 98.5% to 103.5%, demonstrating the sensor's practical applicability. Further, the bioimaging potential of N-Ch-CQDs was demonstrated in both the in vitro (L929 cells) and in vivo model (C. elegans). The synergistic influence of the defecation pattern and functioning of intestinal barrier mitigates the translocation of N-Ch-CQDs into the reproductive organ of nematodes. This study revealed the bioimaging and fluorescent sensing ability of N-Ch-CQDs, which holds significant promise for extensive application in the biomedical field.
Collapse
Affiliation(s)
- S Sivaselvam
- Division of Biophotonics and Imaging, Department of Biomaterial Sciences and Technology, Biomedical Technology Wing, Sree Chitra Tirunal Institute for Medical Sciences and Technology (SCTIMST), Trivandrum 695012, India.
| | - R S Anjana
- Division of Biophotonics and Imaging, Department of Biomaterial Sciences and Technology, Biomedical Technology Wing, Sree Chitra Tirunal Institute for Medical Sciences and Technology (SCTIMST), Trivandrum 695012, India.
| | - N S Dhujana
- Division of Biophotonics and Imaging, Department of Biomaterial Sciences and Technology, Biomedical Technology Wing, Sree Chitra Tirunal Institute for Medical Sciences and Technology (SCTIMST), Trivandrum 695012, India.
| | - Marina Victor
- Division of Biophotonics and Imaging, Department of Biomaterial Sciences and Technology, Biomedical Technology Wing, Sree Chitra Tirunal Institute for Medical Sciences and Technology (SCTIMST), Trivandrum 695012, India.
| | - Ramapurath S Jayasree
- Division of Biophotonics and Imaging, Department of Biomaterial Sciences and Technology, Biomedical Technology Wing, Sree Chitra Tirunal Institute for Medical Sciences and Technology (SCTIMST), Trivandrum 695012, India.
| |
Collapse
|
4
|
Fu M, Lan Y, Bao W, Li G, Lu H, Zhou L, Lan H, Mo X. Construction of carbon quantum dots/riboflavin fluorescent probe and its application in the detection of ciprofloxacin. LUMINESCENCE 2024; 39:e4858. [PMID: 39129443 DOI: 10.1002/bio.4858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Revised: 06/19/2024] [Accepted: 07/23/2024] [Indexed: 08/13/2024]
Abstract
The research outlined a novel approach for creating a sensitive and efficient ratio fluorescent probe for ciprofloxacin (CIP) detection. The method used the biomass materials passionfruit shell and diethylenetriamine as carbon and nitrogen sources, respectively, to prepare blue fluorescent carbon quantum dots (b-CQDs) with an average size of 3.29 nm and a quantum yield of 19.6% by a hydrothermal method. The newly designed b-CQDs/riboflavin ratio fluorescent probe demonstrates a distinct advantage for CIP monitoring, exhibiting a marked increase in fluorescence intensity at 445 nm upon interaction with CIP, while maintaining a stable intensity at 510 nm. In the water system, the I445 nm/I510 nm ratio of the fluorescent probe showed a significant linear relationship with CIP at the concentrations of 0-250 μmol·L-1, and the probe boasts a low detection limit of 0.86 μmol·L-1. The outstanding selectivity, broad detection range, low detection limits, and high quantum yield of the b-CQDs highlight their significant potential in the development of advanced sensing probes for efficient detection of ciprofloxacin, offering promising insights for future sensor technology advancements.
Collapse
Affiliation(s)
- Mingjun Fu
- College of Chemistry and Chemical Engineering, Guangxi University, Nanning, China
| | - Yuwei Lan
- College of Chemistry and Chemical Engineering, Guangxi University, Nanning, China
| | - Wenbin Bao
- College of Chemistry and Chemical Engineering, Guangxi University, Nanning, China
| | - Guowei Li
- College of Chemistry and Chemical Engineering, Guangxi University, Nanning, China
| | - Haiqin Lu
- College of Food and Light Industry, Guangxi University, Nanning, China
| | - Liya Zhou
- College of Chemistry and Chemical Engineering, Guangxi University, Nanning, China
| | - Huan Lan
- College of Chemistry and Chemical Engineering, Guangxi University, Nanning, China
| | - Xixian Mo
- College of Chemistry and Chemical Engineering, Guangxi University, Nanning, China
| |
Collapse
|
5
|
Fois L, Stagi L, Carboni D, Alboushi M, Khaleel A, Anedda R, Innocenzi P. The Formation of Carbon Dots from D-Glucose Studied by Infrared Spectroscopy. Chemistry 2024; 30:e202400158. [PMID: 38619533 DOI: 10.1002/chem.202400158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Revised: 04/08/2024] [Accepted: 04/15/2024] [Indexed: 04/16/2024]
Abstract
Carbon dots (C-dots) obtained from D-glucose have attracted great interest because of their properties and as a model for understanding the synthesis process and the origin of photoluminescence in carbon-based nanostructures. Synthesising C-dots under hydrothermal conditions has become one of the most common methods for their preparation. Understanding the details of this process is quite difficult. To tackle this challenge, we have adopted a multi-technique approach in our present work. We have correlated different spectroscopic analyses, such as infrared, Raman, fluorescence, NMR, and UV-Vis, to connect the emissions with specific chemical groups. In particular, in situ infrared analysis as a function of temperature has allowed following the formation of C=C, C=O, and COOH species and the rise of specific emissions. Only weak emissions due to n-π* transitions are detected upon post-synthesis thermal annealing.
Collapse
Affiliation(s)
- Livia Fois
- Laboratory of Materials Science and Nanotechnology (LMNT), Department of Biomedical Sciences, CR-INSTM, University of Sassari, 07100, Sassari, Italy
| | - Luigi Stagi
- Laboratory of Materials Science and Nanotechnology (LMNT), Department of Biomedical Sciences, CR-INSTM, University of Sassari, 07100, Sassari, Italy
| | - Davide Carboni
- Laboratory of Materials Science and Nanotechnology (LMNT), Department of Biomedical Sciences, CR-INSTM, University of Sassari, 07100, Sassari, Italy
| | - Meera Alboushi
- College of Science, Department of Chemistry, United Arab Emirates University., Al Ain., United Arab Emirates
| | - Abbas Khaleel
- College of Science, Department of Chemistry, United Arab Emirates University., Al Ain., United Arab Emirates
| | - Roberto Anedda
- Porto Conte Ricerche, Strada Provinciale 55, Porto Conte Capo Caccia, km. 8,400., 07041, Alghero (SS, Italy
| | - Plinio Innocenzi
- Laboratory of Materials Science and Nanotechnology (LMNT), Department of Biomedical Sciences, CR-INSTM, University of Sassari, 07100, Sassari, Italy
| |
Collapse
|
6
|
Cheng C, Han M, Xiang G, Fu X, Wang X, Lu C. Bimetallic iron-copper nanozyme for determination and degradation of norfloxacin in foods. Food Chem 2024; 444:138667. [PMID: 38335686 DOI: 10.1016/j.foodchem.2024.138667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 01/30/2024] [Accepted: 02/02/2024] [Indexed: 02/12/2024]
Abstract
Iron-copper nanozymes (Fe-Cu NZs) with good peroxidase activity were prepared through hydrothermal method by using copper nitrate as copper source, iron acetate as iron source and 2, 5-dihydroxyterephthalic acid as organic ligand. Upon oxidation of the colourless TMB to light blue products by Fe-Cu NZs, the addition of Norfloxacin (NOR) resulted in a colour change to dark blue. The absorbance of the system correlated linearly with NOR concentration in the range of 3.3 μM to 66 μM, and the detection limit (LOD) was 0.386 μM. A rapid colourimetric assay for the determination of NOR in food matrices was developed, with a detection time of only one minute. Additionally, the assay facilitated the simultaneous catalytic degradation of NOR via Fe-Cu NZs. The primary degradation mechanism of NOR was identified as the transformation of the quinolone ring and the cleavage of the C9 = C10 double bond, which was substantiated by high-performance liquid chromatography (HPLC).
Collapse
Affiliation(s)
- Cong Cheng
- College of Science, Sichuan Agricultural University, Chengdu 611130, Sichuan, China
| | - Min Han
- College of Science, Sichuan Agricultural University, Chengdu 611130, Sichuan, China
| | - Gang Xiang
- College of Agronomy, Sichuan Agricultural University, Chengdu 611130, Sichuan, China
| | - Xiaoying Fu
- Sichuan Agricultural University Library, Chengdu 611130, Sichuan, China
| | - Xianxing Wang
- College of Science, Sichuan Agricultural University, Chengdu 611130, Sichuan, China.
| | - Changfang Lu
- College of Science, Sichuan Agricultural University, Chengdu 611130, Sichuan, China.
| |
Collapse
|
7
|
Murugan K, Natarajan A. A novel N-CNDs/PAni modified molecular imprinted polymer for ultraselective and sensitive detection of ciprofloxacin in lentic ecosystems: a dual responsive optical sensor. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2024; 16:3413-3429. [PMID: 38766762 DOI: 10.1039/d4ay00323c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
The research study describes the development of a hybrid nanocomposite called nitro-doped carbon nanodots/polyaniline/molecularly imprinted polymer (N-CNDs/PAni/MIP). This composite is specifically engineered to function as a durable and flexible dual-response sensor to detect and analyze pharmaceutical organic contaminants (POCs). Powder X-Ray diffraction (PXRD), Fourier transform infrared (FT-IR), thermogravimetric analysis (TGA), transmission electron microscopy (TEM), and scanning electron microscopy (SEM) were employed to perform an exhaustive structural and morphological analysis of N-CNDs/PAni/MIP. N-CNDs/PAni/MIP emitted blue luminescence under ultraviolet irradiation and exhibited typical excitation-dependent emission properties. It can act as fluorescent probe for the detection of CIPRO with high selectivity and sensitivity with an IF value of 4.2. Furthermore, N-CNDs/PAni/MIP exhibited high peroxidase-like catalytic behavior. After adding CIPRO to the N-CNDs/PAni/MIP/TMB/H2O2 system, the blue color of the solution faded due to the reduction of blue ox-TMB to colorless TMB. Based on these two phenomena, with CIPRO as the target analyte, the N-CNDs/PAni/MIP dual sensor showed a minimal detection limit of 70 pM for the fluorescent signaling platform and 3.5 nM for the colorimetric probe with a linear range of 0.038-200 nM. The fluorometric and colorimetric assays based on N-CNDs/PAni/MIP for CIPRO detection were then successfully applied to lentic water as well as to tap water samples, demonstrating the sensitivity and dependability of the instrument. Furthermore, the synthesized PVA (N-CNDs/PAni/MIP) films enable the recognition of CIPRO, and these films have the potential to be integrated into portable sensing devices, providing a practical solution for rapid and on-site detection of CIPRO in various samples.
Collapse
Affiliation(s)
- Komal Murugan
- Department of Chemistry, Faculty of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu-603 203, India.
| | - Abirami Natarajan
- Department of Chemistry, Faculty of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu-603 203, India.
| |
Collapse
|
8
|
Hu B, Zhao W, Chen L, Liu Y, Ma Z, Yan Y, Meng M. Enhanced Molecularly Imprinted Fluorescent Test Strip for Rapid and Visual Detection of Norfloxacin via a Smartphone. Molecules 2024; 29:661. [PMID: 38338405 PMCID: PMC10856333 DOI: 10.3390/molecules29030661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Revised: 01/26/2024] [Accepted: 01/26/2024] [Indexed: 02/12/2024] Open
Abstract
Paper-based test strips with on-site visual detection have become a hot spot in the field of target detection. Yet, low specific surface area and uneven deposition limit the further application of test strips. Herein, a novel "turn-on" ratio of molecularly imprinted membranes (Eu@CDs-MIMs) was successfully prepared based on a Eu complex-doped polyvinylidene fluoride membrane for the selective, rapid and on-site visual detection of norfloxacin (NOR). The formation of surface-imprinted polymer-containing carbon dots (CDs) improves the roughness and hydrophilicity of Eu@CDs-MIMs. Fluorescence lifetimes and UV absorption spectra verified that the fluorescence enhancement of CDs is based on the synergistic effect of charge transfer and hydrogen bonding between CDs and NOR. The fluorescent test strip showed a linear fluorescent response within the concentration range of 5-50 nM with a limit of detection of 1.35 nM and a short response time of 1 min. In comparison with filter paper-based test strips, Eu@CDs-MIMs exhibit a brighter and more uniform fluorescent color change from red to blue that is visible to the naked eye. Additionally, the applied ratio fluorescent test strip was combined with a smartphone to translate RGB values into concentrations for the visual and quantitative detection of NOR and verified the detection results using high-performance liquid chromatography. The portable fluorescent test strip provides a reliable approach for the rapid, visual, and on-site detection of NOR and quinolones.
Collapse
Affiliation(s)
- Bo Hu
- School of Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China; (B.H.); (Z.M.)
| | - Wenshi Zhao
- Key Laboratory of Functional Materials Physics and Chemistry of the Ministry of Education, Jilin Normal University, Changchun 130103, China; (W.Z.); (Y.L.)
| | - Li Chen
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, China; (L.C.); (Y.Y.)
| | - Yang Liu
- Key Laboratory of Functional Materials Physics and Chemistry of the Ministry of Education, Jilin Normal University, Changchun 130103, China; (W.Z.); (Y.L.)
| | - Zhongfei Ma
- School of Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China; (B.H.); (Z.M.)
| | - Yongsheng Yan
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, China; (L.C.); (Y.Y.)
| | - Minjia Meng
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, China; (L.C.); (Y.Y.)
| |
Collapse
|
9
|
Zhang X, Tang X, Yu J, Ye H, Zhao L. A novel carbon dots synthesized based on easily accessible biological matrix for the detection of enrofloxacin residues. Microchem J 2023. [DOI: 10.1016/j.microc.2023.108690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/31/2023]
|
10
|
Li L, Yang L, Lin D, Xu S, Mei C, Yu S, Jiang C. Hydrogen-bond induced enhanced emission ratiometric fluorescent handy needle for visualization assay of amoxicillin by smartphone sensing platform. JOURNAL OF HAZARDOUS MATERIALS 2023; 444:130403. [PMID: 36403445 DOI: 10.1016/j.jhazmat.2022.130403] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 10/31/2022] [Accepted: 11/12/2022] [Indexed: 06/16/2023]
Abstract
Amoxicillin (AMO) is one of the most commonly used antibiotics, and its abuse in animal husbandry or clinical therapy can pose unpredictable hazards to humans. Therefore, it is crucial to develop a real-time and rapid method to accurately determine AMO content. Here, we designed a fluorescent nanoprobe for qualitative and quantitative AMO determination by using as-synthesized green safe materials of nontoxic red carbon dots (RCDs) and blue carbon dots (BCDs). In the presence of AMO, a reaction promoting hydrogen bonding occurred immediately, resulting in an instant increase in the intensity of the blue fluorescence of BCDs, accompanied by a marked color change from red to blue. For practical application, we designed a nontoxic sensing fluorescent handy needle to directly and quantitatively detect AMO in real samples. This portable and easy-to-use device was demonstrated on a smartphone platform based on 3D printing technology, which offers the advantages of simple production, excellent visualization, fast response, and instant quantitative detection. The device requires an extremely short detection time and has a sensitive detection limit of 2.39 nM. The method presented here enables real-time assessment for food safety, as well as on-site detection under field conditions to track various trace substances for timely health checks.
Collapse
Affiliation(s)
- Lingfei Li
- School of Chemistry and Chemical Engineering, Hefei University of Technology, Hefei, Anhui 230009, China; Institute of Solid State Physics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui 230031, China
| | - Liang Yang
- Institute of Solid State Physics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui 230031, China; State Key Laboratory of Transducer Technology, Chinese Academy of Sciences, Hefei, Anhui 230031, China.
| | - Dan Lin
- Institute of Solid State Physics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui 230031, China; State Key Laboratory of Transducer Technology, Chinese Academy of Sciences, Hefei, Anhui 230031, China
| | - Shihao Xu
- Institute of Solid State Physics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui 230031, China; State Key Laboratory of Transducer Technology, Chinese Academy of Sciences, Hefei, Anhui 230031, China
| | - Chunsheng Mei
- Institute of Solid State Physics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui 230031, China
| | - Shaoming Yu
- School of Chemistry and Chemical Engineering, Hefei University of Technology, Hefei, Anhui 230009, China.
| | - Changlong Jiang
- Institute of Solid State Physics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui 230031, China; State Key Laboratory of Transducer Technology, Chinese Academy of Sciences, Hefei, Anhui 230031, China.
| |
Collapse
|
11
|
Xing S, Cheng S, Tan M. Multi-emitter metal-organic frameworks as ratiometric luminescent sensors for food contamination and spoilage detection. Crit Rev Food Sci Nutr 2023; 64:7028-7044. [PMID: 36794423 DOI: 10.1080/10408398.2023.2179594] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2023]
Abstract
Food contamination and spoilage is a worldwide concern considering its adverse effect on public health and food security. Real time monitoring food quality can reduce the risk of foodborne disease to consumers. Particularly, the emergence of multi-emitter luminescent metal-organic frameworks (LMOFs) as ratiometric sensory materials has provided the possibility for food quality and safety detection with high sensitivity and selectivity taking advantage of specific host-guest interactions, pre-concentrating and molecule-sieving effects of MOFs. Furthermore, the excellent sensing performance of multi-emitter MOF-based ratiometric sensors including self-calibration, multi-dimensional recognition and visual signal readout is able to meet the increasing rigor requirement of food safety evaluation. Multi-emitter MOF-based ratiometric sensors have become the focus of food safety detection. This review focuses on design strategies for different multiple emission sources assembly to construct multi-emitter MOFs materials based on at least two emitting centers. The design strategies for creating multi-emitter MOFs can be mainly classified into three categories: (1) multiple emission building blocks assembly in a single MOF phase; (2) single non-luminescent MOF or LMOF phase as a matrix for chromophore guest(s); (3) heterostructured hybrids of LMOF with other luminescent materials. In addition, the sensing signal output modes of multi-emitter MOF-based ratiometric sensors have critically discussed. Next, we highlight the recent progress for the development of multi-emitter MOF as ratiometric sensors in food contamination and spoilage detection. Their future improvement and advancing direction potential for their practical application is finally discussed.
Collapse
Affiliation(s)
- Shanghua Xing
- Academy of Food Interdisciplinary Science, School of Food Science and Technology, Dalian Polytechnic University, Dalian, China
| | - Shasha Cheng
- Academy of Food Interdisciplinary Science, School of Food Science and Technology, Dalian Polytechnic University, Dalian, China
| | - Mingqian Tan
- Academy of Food Interdisciplinary Science, School of Food Science and Technology, Dalian Polytechnic University, Dalian, China
| |
Collapse
|
12
|
Yang S, Li Y, Chen L, Wang H, Shang L, He P, Dong H, Wang G, Ding G. Fabrication of Carbon-Based Quantum Dots via a "Bottom-Up" Approach: Topology, Chirality, and Free Radical Processes in "Building Blocks". SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023:e2205957. [PMID: 36610043 DOI: 10.1002/smll.202205957] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 12/28/2022] [Indexed: 06/17/2023]
Abstract
The discovery of carbon-based quantum dots (CQDs) has allowed opportunities for fluorescence bioimaging, tumor diagnosis and treatment, and photo-/electro-catalysis. Nevertheless, in the existing reviews related to the "bottom-up" approaches, attention is mainly paid to the applications of CQDs but not the formation mechanism of CQDs, which mainly derived from the high complexities during the synthesis of CQDs. Among the various synthetic methods, using small molecules as "building blocks", the development of a "bottom-up" approach has promoted the structural design, modulation of the photoluminescence properties, and control of the interfacial properties of CQDs. On the other hand, many works have demonstrated the "building blocks"-dependent properties of CQDs. In this review, from one of the most important variables, the relationships among intrinsic properties of "building blocks" and photoluminescence properties of CQDs are summarized. The topology, chirality, and free radical process are selected as descriptors for the intrinsic properties of "building blocks". This review focuses on the induction and summary of recent research results from the "bottom-up" process. Moreover, several empirical rules pertaining thereto are also proposed.
Collapse
Affiliation(s)
- Siwei Yang
- Joint Laboratory of Graphene Materials and Applications, State Key Laboratory of Functional Materials for Informatics, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai, 200050, P. R. China
- College of Materials Science and Opto-Electronic Technology, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Yongqiang Li
- Joint Laboratory of Graphene Materials and Applications, State Key Laboratory of Functional Materials for Informatics, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai, 200050, P. R. China
- College of Materials Science and Opto-Electronic Technology, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Liangfeng Chen
- Joint Laboratory of Graphene Materials and Applications, State Key Laboratory of Functional Materials for Informatics, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai, 200050, P. R. China
- College of Materials Science and Opto-Electronic Technology, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Hang Wang
- Joint Laboratory of Graphene Materials and Applications, State Key Laboratory of Functional Materials for Informatics, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai, 200050, P. R. China
- College of Materials Science and Opto-Electronic Technology, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Liuyang Shang
- Joint Laboratory of Graphene Materials and Applications, State Key Laboratory of Functional Materials for Informatics, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai, 200050, P. R. China
- College of Materials Science and Opto-Electronic Technology, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Peng He
- Joint Laboratory of Graphene Materials and Applications, State Key Laboratory of Functional Materials for Informatics, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai, 200050, P. R. China
- College of Materials Science and Opto-Electronic Technology, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Hui Dong
- Joint Laboratory of Graphene Materials and Applications, State Key Laboratory of Functional Materials for Informatics, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai, 200050, P. R. China
- College of Materials Science and Opto-Electronic Technology, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Gang Wang
- Department of Microelectronic Science and Engineering, School of Physical Science and Technology, Ningbo University, Ningbo, 315211, P. R. China
| | - Guqiao Ding
- Joint Laboratory of Graphene Materials and Applications, State Key Laboratory of Functional Materials for Informatics, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai, 200050, P. R. China
- College of Materials Science and Opto-Electronic Technology, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| |
Collapse
|
13
|
Korah BK, Thara CR, John N, John BK, Mathew S, Mathew B. Microwave abetted synthesis of carbon dots and its triple mode applications in tartrazine detection, manganese ion sensing and fluorescent ink. Food Control 2023. [DOI: 10.1016/j.foodcont.2023.109608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
14
|
Yang N, Wen QL, Fu YB, Long LF, Liao YJ, Hou SB, Qian P, Liu P, Ling J, Cao Q. A lead-free Cs 2ZnCl 4 perovskite nanocrystals fluorescent probe for highly selective detection of norfloxacin. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2022; 281:121568. [PMID: 35809424 DOI: 10.1016/j.saa.2022.121568] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 06/20/2022] [Accepted: 06/25/2022] [Indexed: 06/15/2023]
Abstract
The abuse of antibiotics would seriously affect human health and has become of worldwide critical concern, thus it is urgent to develop an environmentally friendly and nontoxic fluorescent probe for antibiotics sensing. In this work, a lead-free Cs2ZnCl4 perovskite nanocrystals (PNCs) probe was fabricated for sensing norfloxacin (NOR) employing a modified ligand-assisted reprecipitation method. The prepared Cs2ZnCl4 PNCs probe had strong blue emission around 440 nm, and the characteristics of PNCs were systematically characterized by X-ray photoelectric spectroscopy (XPS), Fourier transforms infrared spectroscopy (FTIR), transmission electron microscope (TEM) and powder X-ray diffraction (XRD). The results revealed that the fluorescence intensity of the Cs2ZnCl4 PNCs was significantly enhanced after the introduction of norfloxacin. The Cs2ZnCl4 PNCs can be used as a fluorescent probe to selectively and sensitively detect norfloxacin in the concentration range from 0.2 to 50.0 μM, with a correlation coefficient (R2) of 0.9954 and the limit of detection (LOD, 3σ) of 0.1499 µM. The preparation and application of a lead-free perovskite fluorescent probe for norfloxacin would promote the application of perovskite fluorescent probes in biochemical assays.
Collapse
Affiliation(s)
- Ni Yang
- National Demonstration Center for Experimental Chemistry and Chemical Engineering Education (Yunnan University), School of Chemical Science and Engineering, Yunnan University, Kunming 650091, China
| | - Qiu-Lin Wen
- National Demonstration Center for Experimental Chemistry and Chemical Engineering Education (Yunnan University), School of Chemical Science and Engineering, Yunnan University, Kunming 650091, China
| | - Yan-Bo Fu
- National Demonstration Center for Experimental Chemistry and Chemical Engineering Education (Yunnan University), School of Chemical Science and Engineering, Yunnan University, Kunming 650091, China
| | - Li-Fei Long
- National Demonstration Center for Experimental Chemistry and Chemical Engineering Education (Yunnan University), School of Chemical Science and Engineering, Yunnan University, Kunming 650091, China
| | - Yan-Ju Liao
- National Demonstration Center for Experimental Chemistry and Chemical Engineering Education (Yunnan University), School of Chemical Science and Engineering, Yunnan University, Kunming 650091, China
| | - Shi-Bo Hou
- National Demonstration Center for Experimental Chemistry and Chemical Engineering Education (Yunnan University), School of Chemical Science and Engineering, Yunnan University, Kunming 650091, China
| | - Peng Qian
- National Demonstration Center for Experimental Chemistry and Chemical Engineering Education (Yunnan University), School of Chemical Science and Engineering, Yunnan University, Kunming 650091, China
| | - Peng Liu
- National Demonstration Center for Experimental Chemistry and Chemical Engineering Education (Yunnan University), School of Chemical Science and Engineering, Yunnan University, Kunming 650091, China
| | - Jian Ling
- National Demonstration Center for Experimental Chemistry and Chemical Engineering Education (Yunnan University), School of Chemical Science and Engineering, Yunnan University, Kunming 650091, China.
| | - Qiue Cao
- National Demonstration Center for Experimental Chemistry and Chemical Engineering Education (Yunnan University), School of Chemical Science and Engineering, Yunnan University, Kunming 650091, China
| |
Collapse
|
15
|
Rajendran S, UshaVipinachandran V, Badagoppam Haroon KH, Ashokan I, Bhunia SK. A comprehensive review on multi-colored emissive carbon dots as fluorescent probes for the detection of pharmaceutical drugs in water. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2022; 14:4263-4291. [PMID: 36278849 DOI: 10.1039/d2ay01288j] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Exposure to constituent hazardous chemicals in medical products has become a threat to environmental health across the globe. Excessive medication and the mishandling of pharmaceutical drugs can lead to the increased presence of chemicals in the aquatic environment, causing water pollution. Only a few nanomaterials exist for the detection of these chemicals and they are limited in use due to their adverse toxicity, instability, cost, and low aqueous solubility. In contrast, carbon dots (C-dots), a member of the family of carbon-based nanomaterials, have various beneficial properties including excellent biocompatibility, strong photoluminescence, low photobleaching, tunable fluorescence, and easy surface modification. Herein, we summarize recent advancements in various synthetic strategies for high-quality tunable fluorescent C-dots. The root of fluorescence has been briefly explained via the quantum confinement effect, surface defects, and molecular fluorescence. The surface functional moieties of C-dots have been investigated in depth to recognize the various types of pharmaceutical drugs that are used for the treatment of patients. The modulation of C-dot fluorescence in the course of their interactions with these drugs has been carefully explained. Different types of interaction mechanisms behind the C-dot fluorescence alteration have been discussed. Finally, the challenges and future perspectives of C-dots have been proposed for the vibrant field development of C-dot-based drug sensors.
Collapse
Affiliation(s)
- Sathish Rajendran
- Department of Chemistry, School of Advanced Sciences, Vellore Institute of Technology, Vellore, 632014, India.
| | - Varsha UshaVipinachandran
- Department of Chemistry, School of Advanced Sciences, Vellore Institute of Technology, Vellore, 632014, India.
| | | | - Indhumathi Ashokan
- Department of Chemistry, School of Advanced Sciences, Vellore Institute of Technology, Vellore, 632014, India.
| | - Susanta Kumar Bhunia
- Department of Chemistry, School of Advanced Sciences, Vellore Institute of Technology, Vellore, 632014, India.
| |
Collapse
|
16
|
Biswas A, Maitra U. Ratiometric rapid distinction of two structurally similar fluoroquinolone antibiotics by a Tb/Eu hydrogel. RSC Adv 2022; 12:26106-26110. [PMID: 36275113 PMCID: PMC9477015 DOI: 10.1039/d2ra03668a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Accepted: 09/03/2022] [Indexed: 11/21/2022] Open
Abstract
Norfloxacin and ofloxacin are two frequently prescribed second-generation fluoroquinolone antibiotics with an identical 4-quinolone chromophore and hence, are difficult to distinguish by conventional methods (UV or fluorescence). We have designed a Tb3+/Eu3+/cholate cocktail that enabled us to differentiate these two drugs and rapidly measure their concentrations when present together. Additionally, a Tb3+-cholate gel-based paper sensor was developed to detect and quantify them in a single drug containing system with a limit of detection (LOD) well below 100 nM.
Collapse
Affiliation(s)
- Ananya Biswas
- Department of Organic Chemistry, Indian Institute of Science Bangalore 560012 Karnataka India
| | - Uday Maitra
- Department of Organic Chemistry, Indian Institute of Science Bangalore 560012 Karnataka India
| |
Collapse
|
17
|
Biomass-derived carbon dots as a sensitive and selective dual detection platform for fluoroquinolones and tetracyclines. Anal Bioanal Chem 2022; 414:4935-4951. [PMID: 35579676 DOI: 10.1007/s00216-022-04119-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 05/04/2022] [Indexed: 01/24/2023]
Abstract
A novel carbon dot (CD) was synthesized through the facile and simple hydrothermal method from Curcuma amada, as the precursor for the first time. These CDs with an average diameter of 4.6 nm display blue fluorescence, with excitation/emission maxima at 360/445 nm and a quantum yield of 14.1%. It exhibited high stability under different conditions and was characterized using various techniques. These CDs can be employed as a dual-sensing platform to detect tetracyclines and fluoroquinolones, two antibiotic classes. Even though antibiotics are regarded as an inevitable commodity, overuse and improper management of discarded antibiotics pose a severe threat to the environment. Herein, we developed a dual-sensing, biocompatible sensor with high selectivity and sensitivity to detect antibiotics. CD was employed as a fluorescence probe and detected tetracycline and fluoroquinolone antibiotic through inner filter effect-based fluorescence quenching and hydrogen bonding-based enhancement process, respectively. The linear range was 0-16 μM and the detection limit was 33 nM for tetracycline and 2 nM for fluoroquinolone antibiotic. As an electrochemical probe, CD selectively detected tetracycline with a lower detection limit of 0.5 nM over a linear range of 0-16 μM. Using both methods, a real sample analysis of the developed sensor exhibited accurate reliability and precision.
Collapse
|
18
|
Chen Y, Cui H, Wang M, Yang X, Pang S. N and S doped carbon dots as novel probes with fluorescence enhancement for fast and sensitive detection of Cr(VI). Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2021.128164] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
19
|
Li P, Du Y, Ma M, Zhang J. Nitrogen-doped graphene quantum dots coated with molecularly imprinted polymers as a fluorescent sensor for selective determination of warfarin. NEW J CHEM 2022. [DOI: 10.1039/d2nj00853j] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The strong photoluminescence of NGQDs and the selectivity of MIPs were combined to construct a fluorescent sensor for rapid determination of warfarin.
Collapse
Affiliation(s)
- Peipei Li
- Key Laboratory of Drug Quality Control and Pharmacovigilance (Ministry of Education), China Pharmaceutical University, Nanjing 210009, P. R. China
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, P. R. China
| | - Yingxiang Du
- Key Laboratory of Drug Quality Control and Pharmacovigilance (Ministry of Education), China Pharmaceutical University, Nanjing 210009, P. R. China
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, P. R. China
| | - Mingxuan Ma
- Key Laboratory of Drug Quality Control and Pharmacovigilance (Ministry of Education), China Pharmaceutical University, Nanjing 210009, P. R. China
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, P. R. China
| | - Jian Zhang
- Key Laboratory of Drug Quality Control and Pharmacovigilance (Ministry of Education), China Pharmaceutical University, Nanjing 210009, P. R. China
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, P. R. China
| |
Collapse
|
20
|
Chen J, Zhang Q, Xu F, Li S. Bimetallic organic frame nanosheet fluorescent probe used for detecting tetracycline and folic acid. Microchem J 2021. [DOI: 10.1016/j.microc.2021.106673] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
|
21
|
Trubetskaya OE, Trubetskoj OA, Richard C, Vervald AM, Burikov SA, Marchenkov VV, Shenderova OA, Patsaeva SV, Dolenko TA. High-performance size exclusion chromatography with online fluorescence and multi-wavelength absorbance detection for isolation of high-purity carbon dots fractions, free of non-fluorescent material. J Chromatogr A 2021; 1650:462251. [PMID: 34062482 DOI: 10.1016/j.chroma.2021.462251] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 05/10/2021] [Accepted: 05/11/2021] [Indexed: 10/21/2022]
Abstract
The carbon dots (CDs) from natural nanographite oxide mixture (NGO-MIX) and from its fraction NGO (3.5-10K) recovered after ultrafiltration and dialysis were analyzed by 3D-excitation/emission matrix and high-performance size exclusion chromatography (HPSEC) combined with online fluorescence and absorbance detections. HPSEC chromatograms obtained simultaneously with absorption within the wavelength range 200-500 nm and fluorescence detection at λexc/λem = 270/450 nm/nm showed that NGO-MIX sample is not homogeneous and consist of well resolved CDs fractions with different sizes, absorption spectra and distinct fluorescence and non-fluorescence properties. Despite the twice higher fluorescence intensity of fraction NGO (3.5-10K) compared to the NGO-MIX, some impurity of non-fluorescent components was detected by HPSEC. The absorbance spectra of chromatographic peaks, extracted from the data of multi-wavelength absorbance detector, demonstrated different combinations of absorbance maxima. It means that different chromatographic peaks correspond to sized and chemically different CDs fractions. This study demonstrated for the first time the possibility of separating oxidized nanographite into homogeneous free from non-fluorescent material CDs fractions with their simultaneous spectroscopic characterization.
Collapse
Affiliation(s)
- Olga E Trubetskaya
- Branch of Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 6, Institutskaya st., 142290 Pushchino, Moscow region, Russia.
| | - Oleg A Trubetskoj
- Institute of Basic Biological Problems, Russian Academy of Sciences, 2, Institutskaya str., 142290 Pushchino, Moscow region, Russia.
| | - Claire Richard
- Clermont Université, Université Blaise Pascal, Institut de Chimie de Clermont-Ferrand, Equipe Photochimie, BP 10448, F-63000 Clermont-Ferrand, France; CNRS, UMR 6296, ICCF, F-63171 Aubiere, France.
| | - Alexey M Vervald
- Faculty of Physics, M.V. Lomonosov Moscow State University, 1, bldg.2, Leninskie Gory, 119991 Moscow, Russia.
| | - Sergey A Burikov
- Faculty of Physics, M.V. Lomonosov Moscow State University, 1, bldg.2, Leninskie Gory, 119991 Moscow, Russia
| | - Victor V Marchenkov
- Institute of Protein Research, Russian Academy of Sciences, 4, Institutskaya str., 142290 Pushchino, Moscow region, Russia.
| | - Olga A Shenderova
- Adamas Nanotechnologies, Inc., 8100 Brownleigh Dr, Suit 120, Raleigh, NC27617, USA.
| | - Svetlana V Patsaeva
- Faculty of Physics, M.V. Lomonosov Moscow State University, 1, bldg.2, Leninskie Gory, 119991 Moscow, Russia.
| | - Tatiana A Dolenko
- Faculty of Physics, M.V. Lomonosov Moscow State University, 1, bldg.2, Leninskie Gory, 119991 Moscow, Russia.
| |
Collapse
|
22
|
Yuan X, Lv W, Wang B, Yan C, Ma Q, Zheng B, Du J, Xiao D. Silicon nanoparticles-based ratiometric fluorescence platform: Real-time visual sensing to ciprofloxacin and Cu 2. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2021; 253:119599. [PMID: 33662697 DOI: 10.1016/j.saa.2021.119599] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 01/19/2021] [Accepted: 02/04/2021] [Indexed: 06/12/2023]
Abstract
In this work, a silicon nanoparticles (Si NPs)-based ratiometric fluorescence sensing platform was conveniently fabricated by simply mixing fluorescent Si NPs as co-ligands and reference signal with lanthanide metal ion Eu3+ as response signal. The introduction of ciprofloxacin (CIP) remarkably turned on the characteristic fluorescence of Eu3+ at 590 nm and 619 nm through the "antenna effect". At the same time, the blue emission of Si NPs at 445 nm kept comparatively stable. A good linear relationship between the ratio fluorescence intensity and CIP concentration in the range of 0.211-132.4 μM with a limit of detection (LOD) of 89 nM was obtained. In the presence of Cu2+, the fluorescence emission of Eu3+ was sharply turned off because of the stronger coordination ability of Cu2+ with CIP, which guaranteed the sequential detection of Cu2+. Meanwhile, the distinct fluorescent color change from bright blue to red, then back to blue, enabled naked-eye visual detection of CIP and Cu2+ in the solution phase and on paper-based test strip, and was successfully applied to determine the levels of CIP in complicated food samples with high sensitivity.
Collapse
Affiliation(s)
- Xiaoying Yuan
- College of Chemistry, Sichuan University, Chengdu 610064, China
| | - Wendi Lv
- College of Chemistry, Sichuan University, Chengdu 610064, China
| | - Bing Wang
- College of Chemistry, Sichuan University, Chengdu 610064, China
| | - Chenglu Yan
- College of Chemistry, Sichuan University, Chengdu 610064, China
| | - Qiuting Ma
- College of Chemistry, Sichuan University, Chengdu 610064, China
| | - Baozhan Zheng
- College of Chemistry, Sichuan University, Chengdu 610064, China; Key Laboratory of Green Chemistry and Technology, Ministry of Education, Sichuan University, Chengdu 610064, China.
| | - Juan Du
- College of Chemistry, Sichuan University, Chengdu 610064, China; Key Laboratory of Green Chemistry and Technology, Ministry of Education, Sichuan University, Chengdu 610064, China.
| | - Dan Xiao
- College of Chemistry, Sichuan University, Chengdu 610064, China; Key Laboratory of Green Chemistry and Technology, Ministry of Education, Sichuan University, Chengdu 610064, China
| |
Collapse
|
23
|
Han Z, Sun T, Xu Z, Fan L, Yun H, Ge X, Liu X, Liu Y, Ning B. Detection of 4 quinolone antibiotics by chemiluminescence based on a novel Nor-Biotin bifunctional ligand and SA-ALP technology. Biosci Biotechnol Biochem 2021; 85:1720-1728. [PMID: 33960377 DOI: 10.1093/bbb/zbab081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Accepted: 04/22/2021] [Indexed: 11/13/2022]
Abstract
A simple and effective direct competitive chemiluminescence immunoassay for the detection of 4 kinds of quinolone antibiotics in milk was established using Nor-Biotin (biotin-modified norfloxacin [NOR]) bifunctional ligand and alkaline phosphatase-conjugated streptavidin signal amplification technology. The polyclonal antibody was obtained after the immunization of New Zealand White rabbits using norfloxacin-derived antigen. "Click chemistry" was used for the rapid and facile synthesis of the Nor-Biotin bifunctional ligand. After the optimization of the incubation time and reaction buffer, the direct competitive chemiluminescence assay method was developed and used for sensitive detection of 4 kinds of quinolone drugs (NOR, pefloxacin, ciprofloxacin, and danofloxacin). The IC50 of the 4 kinds of quinolone drugs ranged from 7.35 to 24.27 ng/mL, and the lowest detection limits ranged from 0.05 to 0.16 ng/mL, which were below their maximum residue levels, approved by the EU for treatment of food-producing animals. To demonstrate the applicability of the assay, artificially contaminated milk samples with the 4 quinolone drugs were analyzed. The mean recovery rates of the drugs ranged from 86.31% to 112.11%.
Collapse
Affiliation(s)
- Zhenyu Han
- School of Public Health, Inner Mongolia Medical University, Hohhot, China.,Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment and Food Safety, Tianjin Institute of Environmental and Operational Medicine, Tianjin, China
| | - Tieqiang Sun
- Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment and Food Safety, Tianjin Institute of Environmental and Operational Medicine, Tianjin, China
| | - Zehua Xu
- Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment and Food Safety, Tianjin Institute of Environmental and Operational Medicine, Tianjin, China
| | - Longxing Fan
- Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment and Food Safety, Tianjin Institute of Environmental and Operational Medicine, Tianjin, China.,Ministry of Education Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, China
| | - Hanxuan Yun
- School of Public Health, Inner Mongolia Medical University, Hohhot, China.,Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment and Food Safety, Tianjin Institute of Environmental and Operational Medicine, Tianjin, China
| | - Xuejiao Ge
- School of Public Health, Inner Mongolia Medical University, Hohhot, China.,Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment and Food Safety, Tianjin Institute of Environmental and Operational Medicine, Tianjin, China
| | - Xiao Liu
- Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment and Food Safety, Tianjin Institute of Environmental and Operational Medicine, Tianjin, China
| | - Ying Liu
- School of Public Health, Inner Mongolia Medical University, Hohhot, China
| | - Bao'an Ning
- Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment and Food Safety, Tianjin Institute of Environmental and Operational Medicine, Tianjin, China
| |
Collapse
|
24
|
Copper nanoclusters as a turn-on fluorescent probe for sensitive and selective detection of quinolones. Microchem J 2021. [DOI: 10.1016/j.microc.2021.105989] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
25
|
Fluorescence Ratio Nanoprobe Consisting of a Carbon Nanodots-Quantum Dots Composite for Visual Detection of Folic Acid in Dry Milk Powders. FOOD ANAL METHOD 2021. [DOI: 10.1007/s12161-021-02004-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
|
26
|
Advances and perspectives in carbon dot-based fluorescent probes: Mechanism, and application. Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2020.213686] [Citation(s) in RCA: 71] [Impact Index Per Article: 23.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
27
|
Lu C, Liu G, Yang Z, Wang Y, Rao H, Zhang W, Jing B, Wang X. A ratiometric fluorometric ciprofloxacin assay based on the use of riboflavin and carbon dots. Mikrochim Acta 2019; 187:37. [PMID: 31823018 DOI: 10.1007/s00604-019-3888-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Accepted: 09/30/2019] [Indexed: 02/08/2023]
Abstract
Carbon dots (CDs) were hydrothermally synthesized from selenious yeast. They were further coupled with riboflavin to form a dually emitting probe for ciprofloxacin (CIP). Under 370 nm excitation, the probe displays dual (blue and green) emissions with peaks at 443 and 510 nm. When CIP is added, the blue fluorescence of the CDs is enhanced while the green fluorescence remains unaffected. The ratio of the relative fluorescence intensities at 443 and 510 nm increases linearly in the 0.5-200 μM CIP concentration range. The fluorescent probe is selective and has a 0.13 μM detection limit. Satisfactory recoveries (97.9-101.1%) were received when the probe was used to quantify CIP in spiked water and human serum samples. Graphical abstractBlue-emissive carbon dots were prepared from selenious yeast via a hydrothermal method, and then coupled with riboflavin as a ratiometric fluorometric probe for ciprofloxacin determination.
Collapse
Affiliation(s)
- Changfang Lu
- College of Science, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Guanhui Liu
- College of Science, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Zhouping Yang
- College of Science, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Yanying Wang
- College of Science, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Hanbing Rao
- College of Science, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Wei Zhang
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Bo Jing
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Xianxiang Wang
- College of Science, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China.
| |
Collapse
|
28
|
He Y, Wang S, Wang J. Detection and quantification of folic acid in serum via a dual-emission fluorescence nanoprobe. Anal Bioanal Chem 2019; 411:7481-7487. [PMID: 31511949 DOI: 10.1007/s00216-019-02121-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Accepted: 09/02/2019] [Indexed: 02/05/2023]
Abstract
Folic acid (FA) is an essential vitamin in humans, and thus, rapid, accurate, and sensitive methods for its quantification in different biological samples are needed. This work describes a novel, simple, and effective dual-emission fluorescence nanoprobe for FA detection and quantification. The probe was covalently linked to amino-modified orange quantum dots (QDs) and carboxyl-modified blue graphene quantum dots (GQDs). The resulting material exhibited two emission peaks at 401 and 605 nm upon excitation at 310 nm. The probe had good selectivity and sensitivity toward FA with an exceptionally low detection limit (LOD = 0.09 nM). This probe was effectively used to quantify FA in animal serum samples. The method has potential utility for FA analysis in different types of biological samples. Graphical abstract.
Collapse
Affiliation(s)
- Yu He
- State Key Laboratory of Food Nutrition and Safety, College of Biotechnology and Food Engineering, Tianjin University of Science and Technology, Tianjin, 300457, China
| | - Shuo Wang
- Tianjin Key Laboratory of Food Science and Health, School of Medicine, Nankai University, Tianjin, 300071, China
| | - Junping Wang
- State Key Laboratory of Food Nutrition and Safety, College of Biotechnology and Food Engineering, Tianjin University of Science and Technology, Tianjin, 300457, China.
| |
Collapse
|
29
|
Liu H, Ding J, Zhang K, Ding L. Construction of biomass carbon dots based fluorescence sensors and their applications in chemical and biological analysis. Trends Analyt Chem 2019. [DOI: 10.1016/j.trac.2019.05.051] [Citation(s) in RCA: 77] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
30
|
Arroyave M, Springer V, Centurión ME. Novel Synthesis Without Separation and Purification Processes of Carbon Dots and Silver/Carbon Hybrid Nanoparticles. J Inorg Organomet Polym Mater 2019. [DOI: 10.1007/s10904-019-01266-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
31
|
Ke CB, Lu TL, Chen JL. Excitation-independent dual emissions of carbon dots synthesized by plasma irradiation of ionic liquids: Ratiometric fluorometric determination of norfloxacin and mercury(II). Mikrochim Acta 2019; 186:376. [DOI: 10.1007/s00604-019-3505-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Accepted: 05/12/2019] [Indexed: 11/28/2022]
|
32
|
Highly Sensitive and Selective Detection of Amoxicillin Using Carbon Quantum Dots Derived from Beet. J Fluoresc 2018; 28:759-765. [DOI: 10.1007/s10895-018-2237-0] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2018] [Accepted: 05/11/2018] [Indexed: 11/25/2022]
|
33
|
Zhao C, Jiao Y, Zhang L, Yang Y. One-step synthesis of S,B co-doped carbon dots and their application for selective and sensitive fluorescence detection of diethylstilbestrol. NEW J CHEM 2018. [DOI: 10.1039/c7nj04983h] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
S,B co-doped carbon dots were synthesized, and their application in the detection of diethylstilbestrol.
Collapse
Affiliation(s)
- Chunxi Zhao
- Faculty of Life Science and Technology
- Kunming University of Science and Technology
- Kunming
- China
| | - Yang Jiao
- Civil and environmental engineering
- Carnegie Mellon University
- Pittsburgh
- USA
| | - Lei Zhang
- Yunnan Jianniu Bio Technology Co., Ltd
- Kunming 650033
- China
| | - Yaling Yang
- Faculty of Life Science and Technology
- Kunming University of Science and Technology
- Kunming
- China
| |
Collapse
|
34
|
Ma Y, Song Y, Ma Y, Wei F, Xu G, Cen Y, Shi M, Xu X, Hu Q. N-doped carbon dots as a fluorescent probe for the sensitive and facile detection of carbamazepine based on the inner filter effect. NEW J CHEM 2018. [DOI: 10.1039/c8nj00764k] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
N-doped carbon dots are used as a fluorescent probe for the sensitive and facile determination of carbamazepine based on the inner filter effect.
Collapse
Affiliation(s)
- Yujie Ma
- School of Pharmacy
- Nanjing Medical University
- Nanjing
- P. R. China
| | - Yueyue Song
- School of Pharmacy
- Nanjing Medical University
- Nanjing
- P. R. China
| | - Yunsu Ma
- School of Pharmacy
- Nanjing Medical University
- Nanjing
- P. R. China
| | - Fangdi Wei
- School of Pharmacy
- Nanjing Medical University
- Nanjing
- P. R. China
| | - Guanhong Xu
- School of Pharmacy
- Nanjing Medical University
- Nanjing
- P. R. China
| | - Yao Cen
- School of Pharmacy
- Nanjing Medical University
- Nanjing
- P. R. China
| | - Menglan Shi
- School of Pharmacy
- Nanjing Medical University
- Nanjing
- P. R. China
| | - Xiaoman Xu
- School of Pharmacy
- Nanjing Medical University
- Nanjing
- P. R. China
| | - Qin Hu
- School of Pharmacy
- Nanjing Medical University
- Nanjing
- P. R. China
| |
Collapse
|
35
|
Hua XW, Bao YW, Chen Z, Wu FG. Carbon quantum dots with intrinsic mitochondrial targeting ability for mitochondria-based theranostics. NANOSCALE 2017; 9:10948-10960. [PMID: 28736787 DOI: 10.1039/c7nr03658b] [Citation(s) in RCA: 119] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
We prepare for the first time a novel type of fluorescent carbon quantum dot (or carbon dot, CD) with intrinsic mitochondrial targeting ability by a one-step hydrothermal treatment of chitosan, ethylenediamine and mercaptosuccinic acid. The as-prepared CDs can realize mitochondrial imaging and mitochondria-targeted photodynamic cancer therapy without further modifications of other mitochondriotropic ligands (such as triphenylphosphine, TPP). Currently, many commercial mitochondrial probes suffer from the lack of modifiable groups, poor photostability, short tracking time, high cost and/or complicated staining procedures, which severely limit their applications in live-cell mitochondrial imaging. Compared to commercial mitochondrial probes such as MitoTrackers, our CDs exhibit remarkable features including ultra-simple and cost-effective synthesis, excellent photostability, facile storage, easy surface modification, wash-free and long-term imaging capability and negligible cytotoxicity. Besides, since mitochondria are susceptible to the reactive oxygen species generated during chemo-, photo- or radiotherapy, mitochondria-targeted cancer therapy has attracted much attention due to its satisfying anticancer efficiency. To test if the CDs can be used for mitochondria-targeted drug delivery, they were conjugated with a photosensitizer rose bengal (RB) and the resultant CDs-RB nanomissiles achieved efficient cellular uptake and mitochondrial targeting/accumulation, realizing mitochondria-targeted photodynamic therapy. We believe that the CD-based nanotheranostics holds great promise in various biomedical applications.
Collapse
Affiliation(s)
- Xian-Wu Hua
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, P. R. China.
| | | | | | | |
Collapse
|
36
|
|
37
|
Carbon Dots for Bioimaging and Biosensing Applications. SPRINGER SERIES ON CHEMICAL SENSORS AND BIOSENSORS 2017. [DOI: 10.1007/5346_2017_10] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
|
38
|
Gao J, Zhu M, Huang H, Liu Y, Kang Z. Advances, challenges and promises of carbon dots. Inorg Chem Front 2017. [DOI: 10.1039/c7qi00614d] [Citation(s) in RCA: 94] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Carbon-dots with unique physical and chemical properties have versatile applications in environmental and energy fields.
Collapse
Affiliation(s)
- Jin Gao
- Jiangsu Key Laboratory for Carbon-based Functional Materials and Devices
- Institute of Functional Nano and Soft Materials (FUNSOM)
- Soochow University
- Suzhou
- China
| | - Mengmeng Zhu
- Jiangsu Key Laboratory for Carbon-based Functional Materials and Devices
- Institute of Functional Nano and Soft Materials (FUNSOM)
- Soochow University
- Suzhou
- China
| | - Hui Huang
- Jiangsu Key Laboratory for Carbon-based Functional Materials and Devices
- Institute of Functional Nano and Soft Materials (FUNSOM)
- Soochow University
- Suzhou
- China
| | - Yang Liu
- Jiangsu Key Laboratory for Carbon-based Functional Materials and Devices
- Institute of Functional Nano and Soft Materials (FUNSOM)
- Soochow University
- Suzhou
- China
| | - Zhenhui Kang
- Jiangsu Key Laboratory for Carbon-based Functional Materials and Devices
- Institute of Functional Nano and Soft Materials (FUNSOM)
- Soochow University
- Suzhou
- China
| |
Collapse
|
39
|
Lin M, Zou HY, Yang T, Liu ZX, Liu H, Huang CZ. An inner filter effect based sensor of tetracycline hydrochloride as developed by loading photoluminescent carbon nanodots in the electrospun nanofibers. NANOSCALE 2016; 8:2999-3007. [PMID: 26781447 DOI: 10.1039/c5nr08177g] [Citation(s) in RCA: 143] [Impact Index Per Article: 17.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
The inner filter effect (IFE), which results from the absorption of the excitation or emission light by absorbers, has been employed as an alternative approach in sensing systems due to its flexibility and simplicity. In this work, highly photoluminescent carbon nanodots (CDs), which were simply prepared through a new one-step microwave synthesis route, were loaded in electrospun nanofibers, and the obtained nanofibers were then successfully applied to develop a fluorescent IFE-based visual sensor for tetracycline hydrochloride (Tc) sensing in milk. This developed visual sensor has high selectivity owing to the requirements of the spectral overlap between the CDs and Tc, showing high promise in sensing chemistry with an efficient response and economic effect.
Collapse
Affiliation(s)
- Min Lin
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry (Southwest University), Ministry of Education, College of Pharmaceutical Science, Southwest University, Chongqing 400715, China.
| | - Hong Yan Zou
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry (Southwest University), Ministry of Education, College of Pharmaceutical Science, Southwest University, Chongqing 400715, China.
| | - Tong Yang
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry (Southwest University), Ministry of Education, College of Pharmaceutical Science, Southwest University, Chongqing 400715, China.
| | - Ze Xi Liu
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry (Southwest University), Ministry of Education, College of Pharmaceutical Science, Southwest University, Chongqing 400715, China.
| | - Hui Liu
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry (Southwest University), Ministry of Education, College of Pharmaceutical Science, Southwest University, Chongqing 400715, China.
| | - Cheng Zhi Huang
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry (Southwest University), Ministry of Education, College of Pharmaceutical Science, Southwest University, Chongqing 400715, China. and Chongqing Key Laboratory of Biomedical Analysis (Southwest University), Chongqing Science & Technology Commission, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400716, China
| |
Collapse
|
40
|
Wei S, Zhang R, Liu Y, Ding H, Zhang YL. Graphene quantum dots prepared from chemical exfoliation of multiwall carbon nanotubes: An efficient photocatalyst promoter. CATAL COMMUN 2016. [DOI: 10.1016/j.catcom.2015.11.010] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
41
|
Chen Z, Wang J, Miao H, Wang L, Wu S, Yang X. Fluorescent carbon dots derived from lactose for assaying folic acid. Sci China Chem 2015. [DOI: 10.1007/s11426-015-5536-1] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
42
|
Wang H, Wang Y, Guo J, Su Y, Sun C, Zhao J, Luo H, Dai X, Zou G. A new chemosensor for Ga3+ detection by fluorescent nitrogen-doped graphitic carbon dots. RSC Adv 2015. [DOI: 10.1039/c4ra15431b] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Nitrogen-doped graphitic carbon dots as chemosensors show a sensitive response (209 nM) to Ga3+ in range of 0–20 μM.
Collapse
Affiliation(s)
- Hao Wang
- College of Physics
- Optoelectronics and Energy & Collaborative Innovation Center of Suzhou Nano Science and Technology
- Soochow University
- Suzhou 215006
- P. R. China
| | - Yun Wang
- College of Physics
- Optoelectronics and Energy & Collaborative Innovation Center of Suzhou Nano Science and Technology
- Soochow University
- Suzhou 215006
- P. R. China
| | - Jun Guo
- Testing and Analysis Center
- Soochow University
- Suzhou
- P. R. China
| | - Ying Su
- College of Physics
- Optoelectronics and Energy & Collaborative Innovation Center of Suzhou Nano Science and Technology
- Soochow University
- Suzhou 215006
- P. R. China
| | - Cheng Sun
- College of Physics
- Optoelectronics and Energy & Collaborative Innovation Center of Suzhou Nano Science and Technology
- Soochow University
- Suzhou 215006
- P. R. China
| | - Jie Zhao
- College of Physics
- Optoelectronics and Energy & Collaborative Innovation Center of Suzhou Nano Science and Technology
- Soochow University
- Suzhou 215006
- P. R. China
| | - Hongmei Luo
- Department of Chemical and Materials Engineering
- New Mexico State University
- Las Cruces
- USA
| | - Xiao Dai
- College of Physics
- Optoelectronics and Energy & Collaborative Innovation Center of Suzhou Nano Science and Technology
- Soochow University
- Suzhou 215006
- P. R. China
| | - Guifu Zou
- College of Physics
- Optoelectronics and Energy & Collaborative Innovation Center of Suzhou Nano Science and Technology
- Soochow University
- Suzhou 215006
- P. R. China
| |
Collapse
|
43
|
Li D, Jia S, Fodjo EK, Xu H, Kong C, Wang Y. Highly sensitive “turn-on” fluorescence probe for the detection of sparfloxacin in human serum using silica-functionalized CdTe quantum dots. RSC Adv 2015. [DOI: 10.1039/c5ra21587k] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The hydrophilic carboxyl-capped CdTe@SiO2 quantum dots (SQDs) can served as a “turn-on” photoluminescence (PL) probe for highly sensitive and selective detection of sparfloxacin in human serum.
Collapse
Affiliation(s)
- Dan Li
- School of Chemical and Environmental Engineering
- Shanghai Institute of Technology
- Shanghai 201418
- P. R. China
| | - Shaojie Jia
- School of Chemical and Environmental Engineering
- Shanghai Institute of Technology
- Shanghai 201418
- P. R. China
| | - Essy Kouadio Fodjo
- Laboratory of Physical Chemistry
- University Felix Houphouet Boigny
- 22 BP 582 Abidjan 22
- Cote d’Ivoire
| | - Hu Xu
- School of Chemical and Environmental Engineering
- Shanghai Institute of Technology
- Shanghai 201418
- P. R. China
| | - Cong Kong
- East China Sea Fisheries Research Institute
- Chinese Academy of Fishery Sciences
- China
| | - Yuhong Wang
- School of Chemical and Environmental Engineering
- Shanghai Institute of Technology
- Shanghai 201418
- P. R. China
| |
Collapse
|