1
|
Wu Y, Minoshima M, Kikuchi K. Development of elliptic core-shell nanoparticles with fluorinated surfactants for 19F MRI. Front Chem 2024; 12:1408509. [PMID: 38933928 PMCID: PMC11199681 DOI: 10.3389/fchem.2024.1408509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 05/20/2024] [Indexed: 06/28/2024] Open
Abstract
Perfluorocarbon-encapsulated silica nanoparticles possess attractive features such as biological inertness and favorable colloidal properties for bioimaging with fluorine magnetic resonance imaging (19F MRI). Herein, a series of elliptic shaped silica nanoparticles with perfluorocarbon liquid perfluoro-15-crown-5 ether as core (PFCE@SiO2) were synthesized using fluorinated surfactants N-(perfluorononylmethyl)-N,N,N-trimethylammonium chloride (C10-TAC) and N-(perfluoroheptylmethyl)-N,N,N-trimethylammonium chloride (C8-TAC). The nanoparticles are characterized to obtain elliptic core-shell structures. PFCE@SiO2 showed strong 19F NMR signals of the encapsulated PFCE, indicating the potential as a highly sensitive 19F MRI probe. These elliptic PFCE@SiO2 nanoparticles provide a new option of 19F MRI probe with a morphology different from conventional nanospheres.
Collapse
Affiliation(s)
- Yue Wu
- Graduate School of Engineering, Osaka University, Suita, Japan
| | - Masafumi Minoshima
- Graduate School of Engineering, Osaka University, Suita, Japan
- Japan Science and Technology Agency PRESTO, Suita, Japan
| | - Kazuya Kikuchi
- Graduate School of Engineering, Osaka University, Suita, Japan
- Immunology Frontier Research Center, Osaka University, Suita, Japan
| |
Collapse
|
2
|
Ji Y, Zheng J, Geng Z, Wang X, Hou Y, Tian J, Hu J, Zhang Y, Zhang L. Fluorocarbon Nanodroplets: Their Formation and Stability in Complex Solution Systems. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:9108-9119. [PMID: 38632937 DOI: 10.1021/acs.langmuir.4c00475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/19/2024]
Abstract
Perfluorocarbon (PFC) nanodroplets (NDs) are expanding in a wide range of applications in biotechnology and nanotechnology. Their efficacy in biological systems is significantly influenced by their size uniformity and stability within bioelectrolyte contexts. Presently, methods for creating monodisperse, highly concentrated, and well-stabilized PFC NDs under harsh conditions using low energy consumption methods have not been thoroughly developed, and their stability has not been sufficiently explored. This gap restricts their applicability for advanced medical interventions in tissues with high pH levels and various electrolytic conditions. To tackle these challenges and to circumvent potential toxicity from surface stabilizers, we have conducted an in-depth investigation into the formation and stability of uncoated perfluorohexane (PFH) NDs, which were synthesized by using a low-energy consumption solvent exchange technique, across complex electrolyte compositions or a broad spectrum of pH levels. The results indicated that low concentrations of low-valent electrolyte ions facilitate the nucleation of NDs and consistently accelerate Ostwald ripening over an extended period. Conversely, high concentrations of highly valent electrolyte ions inhibit nucleation and decelerate the ripening process over time. Given the similarities between the properties of NDs and nanobubbles, we propose a potential stabilization mechanism. Electrolytes influence the Ostwald ripening of NDs by adjusting the adsorption and distribution of ions on the NDs' surface, modifying the thickness of the electric double layer, and fine-tuning the energy barrier between droplets. These insights enable precise control over the stability of PFC NDs through the meticulous adjustment of the surrounding electrolyte composition. This offers an effective preparation method and a theoretical foundation for employing bare PFC NDs in physiological settings.
Collapse
Affiliation(s)
- Yuwen Ji
- Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jin Zheng
- Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhanli Geng
- Key Laboratory of Comprehensive and Highly Efficient Utilization of Salt Lake Resources, Qinghai Institute of Salt Lakes, Chinese Academy of Sciences, Xining, Qinghai 810008, China
- Qinghai Provincial Key Laboratory of Resources and Chemistry of Salt Lakes, Xining, Qinghai 810008, China
| | - Xingya Wang
- Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China
- Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yangqian Hou
- Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jiakun Tian
- Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jun Hu
- Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China
- Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210, China
- Institute of Materiobiology, College of Science, Shanghai University, Shanghai 200444, China
- Xiangfu Laboratory, Jiashan 314102, China
| | - Yi Zhang
- Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China
- Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lijuan Zhang
- Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China
- Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
3
|
Mendes MIP, Coelho CDF, Schaberle FA, Moreno MJ, Calvete MJF, Arnaut LG. Nanodroplet vaporization with pulsed-laser excitation repeatedly amplifies photoacoustic signals at low vaporization thresholds. RSC Adv 2023; 13:35040-35049. [PMID: 38046627 PMCID: PMC10690495 DOI: 10.1039/d3ra05639b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Accepted: 11/22/2023] [Indexed: 12/05/2023] Open
Abstract
Nanodroplets' explosive vaporization triggered by absorption of laser pulses produces very large volume changes. These volume changes are two orders of magnitude higher than those of thermoelastic expansion generated by equivalent laser pulses, and should generate correspondingly higher photoacoustic waves (PAW). The generation of intense PAWs is desirable in photoacoustic tomography (PAT) to increase sensitivity. The biocompatibility and simplicity of nanodroplets obtained by sonication of perfluoropentane (PFP) in an aqueous solution of bovine serum albumin (BSA) containing a dye make them particularly appealing for use as contrast agents in clinical applications of PAT. Their usefulness depends on stability and reproducible vaporization of nanodroplets (liquid PFP inside) to microbubbles (gaseous PFP inside), and reversible condensation to nanodroplets. This work incorporates porphyrins with fluorinated chains and BSA labelled with fluorescent probes in PFP nanodroplets to investigate the structure and properties of such nanodroplets. Droplets prepared with average diameters in the 400-1000 nm range vaporize when exposed to nanosecond laser pulses with fluences above 3 mJ cm-2 and resist coalescence. The fluorinated chains are likely responsible for the low vaporization threshold, ∼2.5 mJ cm-2, which was obtained from the laser fluence dependence of the photoacoustic wave amplitudes. Only ca. 10% of the droplets incorporate fluorinated porphyrins. Nevertheless, PAWs generated with nanodroplets are ten times higher than those generated by aqueous BSA solutions containing an equivalent amount of porphyrin. Remarkably, successive laser pulses result in similar amplification, indicating that the microbubbles revert back to nanodroplets at a rate faster than the laser repetition rate (10 Hz). PFP nanodroplets are promising contrast agents for PAT and their performance increases with properly designed dyes.
Collapse
Affiliation(s)
- Maria Inês P Mendes
- CQC-IMS, Chemistry Department, University of Coimbra 3004-535 Coimbra Portugal
- LaserLeap Technologies Rua Coronel Júlio Veiga Simão, Edifício B, CTCV, S/N 3025-307 Coimbra Portugal
| | - Carlos D F Coelho
- CQC-IMS, Chemistry Department, University of Coimbra 3004-535 Coimbra Portugal
| | - Fábio A Schaberle
- CQC-IMS, Chemistry Department, University of Coimbra 3004-535 Coimbra Portugal
| | - Maria João Moreno
- CQC-IMS, Chemistry Department, University of Coimbra 3004-535 Coimbra Portugal
| | - Mário J F Calvete
- CQC-IMS, Chemistry Department, University of Coimbra 3004-535 Coimbra Portugal
| | - Luis G Arnaut
- CQC-IMS, Chemistry Department, University of Coimbra 3004-535 Coimbra Portugal
| |
Collapse
|
4
|
Kakaei N, Amirian R, Azadi M, Mohammadi G, Izadi Z. Perfluorocarbons: A perspective of theranostic applications and challenges. Front Bioeng Biotechnol 2023; 11:1115254. [PMID: 37600314 PMCID: PMC10436007 DOI: 10.3389/fbioe.2023.1115254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Accepted: 03/15/2023] [Indexed: 08/22/2023] Open
Abstract
Perfluorocarbon (PFC) are biocompatible compounds, chemically and biologically inert, and lacks toxicity as oxygen carriers. PFCs nanoemulsions and nanoparticles (NPs) are highly used in diagnostic imaging and enable novel imaging technology in clinical imaging modalities to notice and image pathological and physiological alterations. Therapeutics with PFCs such as the innovative approach to preventing thrombus formation, PFC nanodroplets utilized in ultrasonic medication delivery in arthritis, or PFC-based NPs such as Perfluortributylamine (PFTBA), Pentafluorophenyl (PFP), Perfluorohexan (PFH), Perfluorooctyl bromide (PFOB), and others, recently become renowned for oxygenating tumors and enhancing the effects of anticancer treatments as oxygen carriers for tumor hypoxia. In this review, we will discuss the recent advancements that have been made in PFC's applications in theranostic (therapeutics and diagnostics) as well as assess the benefits and drawbacks of these applications.
Collapse
Affiliation(s)
- Nasrin Kakaei
- Student Research Committee, School of Pharmacy, Kermanshah University of Medical Sciences, Kermanshah, Iran
- USERN Office, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Roshanak Amirian
- Student Research Committee, School of Pharmacy, Kermanshah University of Medical Sciences, Kermanshah, Iran
- USERN Office, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Mehdi Azadi
- Student Research Committee, School of Pharmacy, Kermanshah University of Medical Sciences, Kermanshah, Iran
- USERN Office, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Ghobad Mohammadi
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Zhila Izadi
- USERN Office, Kermanshah University of Medical Sciences, Kermanshah, Iran
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| |
Collapse
|
5
|
Zhao AX, Zhu YI, Chung E, Lee J, Morais S, Yoon H, Emelianov S. Factors Influencing the Repeated Transient Optical Droplet Vaporization Threshold and Lifetimes of Phase Change, Perfluorocarbon Nanodroplets. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:2238. [PMID: 37570555 PMCID: PMC10421047 DOI: 10.3390/nano13152238] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Revised: 07/24/2023] [Accepted: 07/26/2023] [Indexed: 08/13/2023]
Abstract
Perfluorocarbon nanodroplets (PFCnDs) are sub-micrometer emulsions composed of a surfactant-encased perfluorocarbon (PFC) liquid and can be formulated to transiently vaporize through optical stimulation. However, the factors governing repeated optical droplet vaporization (ODV) have not been investigated. In this study, we employ high-frame-rate ultrasound (US) to characterize the ODV thresholds of various formulations and imaging parameters and identify those that exhibit low vaporization thresholds and repeatable vaporization. We observe a phenomenon termed "preconditioning", where initial laser pulses generate reduced US contrast that appears linked with an increase in nanodroplet size. Variation in laser pulse repetition frequency is found not to change the vaporization threshold, suggesting that "preconditioning" is not related to residual heat. Surfactants (bovine serum albumin, lipids, and zonyl) impact the vaporization threshold and imaging lifetime, with lipid shells demonstrating the best performance with relatively low thresholds (21.6 ± 3.7 mJ/cm2) and long lifetimes (t1/2 = 104 ± 21.5 pulses at 75 mJ/cm2). Physiological stiffness does not affect the ODV threshold and may enhance nanodroplet stability. Furthermore, PFC critical temperatures are found to correlate with vaporization thresholds. These observations enhance our understanding of ODV behavior and pave the way for improved nanodroplet performance in biomedical applications.
Collapse
Affiliation(s)
- Andrew X. Zhao
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Emory University School of Medicine, Atlanta, GA 30332, USA;
| | - Yiying I. Zhu
- School of Electrical and Computer Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA (E.C.); (J.L.); (S.M.)
| | - Euisuk Chung
- School of Electrical and Computer Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA (E.C.); (J.L.); (S.M.)
| | - Jeehyun Lee
- School of Electrical and Computer Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA (E.C.); (J.L.); (S.M.)
| | - Samuel Morais
- School of Electrical and Computer Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA (E.C.); (J.L.); (S.M.)
| | - Heechul Yoon
- School of Electronics and Electrical Engineering, Dankook University, Yongin-si 16890, Republic of Korea;
| | - Stanislav Emelianov
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Emory University School of Medicine, Atlanta, GA 30332, USA;
- School of Electrical and Computer Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA (E.C.); (J.L.); (S.M.)
| |
Collapse
|
6
|
Holman R, Guillemin PC, Lorton O, Desgranges S, Contino-Pépin C, Salomir R. Assessing Enhanced Acoustic Absorption From Sonosensitive Perfluorocarbon Emulsion With Magnetic Resonance-Guided High-Intensity Focused Ultrasound and a Percolated Tissue-Mimicking Flow Phantom. ULTRASOUND IN MEDICINE & BIOLOGY 2023; 49:1510-1517. [PMID: 37117139 DOI: 10.1016/j.ultrasmedbio.2023.01.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 01/18/2023] [Accepted: 01/25/2023] [Indexed: 05/17/2023]
Abstract
OBJECTIVE Sonosensitive high-boiling point perfluorocarbon F8TAC18-PFOB emulsions previously exhibited thermal enhancement during focused ultrasound heating in ex vivo pig livers, kidneys and a laminar flow phantom. The main objectives of this study were to evaluate heating under turbulent conditions, observe perfusion effects, quantify heating in terms of acoustic absorption and model the experimental data. METHODS In this study, similar perfluorocarbon emulsions were circulated at incremental concentrations of 0.07, 0.13, 0.19 and 0.25% v:v through a percolated turbulent flow phantom, more representative of the biological tissue than a laminar flow phantom. The concentrations represent the droplet content in only the perfused fluid, rather than the droplet concentration throughout the entire cross-section. The temperature was measured with magnetic resonance thermometry, during focused ultrasound sonications of 67 W, 95% duty cycle and 33 s duration. These were used in Bioheat equation simulations to investigate in silico the thermal phenomena. The temperature change was compared with the control condition by circulating de-gassed and de-ionized water through the flow phantom without droplets. RESULTS With these 1.24 µm diameter droplets at 0.25% v:v, the acoustic absorption coefficient increased from 0.93 ± 0.05 at 0.0% v:v to 1.82 ± 0.22 m-1 at 0.25% v:v using a 0.1 mL s-1 flow rate. Without perfusion at 0.25% v:v, an increase was observed from 1.23 ± 0.07 m-1 at 0.0% v:v to 1.65 ± 0.17 m-1. CONCLUSION The results further support previously reported thermal enhancement with F8TAC18-PFOB emulsion, quantified the increased absorption at small concentration intervals, illustrated that the effects can be observed in a variety of visceral tissue models and provided a method to simulate untested scenarios.
Collapse
Affiliation(s)
- Ryan Holman
- Image Guided Interventions Laboratory, Department of Radiology, University of Geneva, Geneva, Switzerland.
| | - Pauline C Guillemin
- Image Guided Interventions Laboratory, Department of Radiology, University of Geneva, Geneva, Switzerland
| | - Orane Lorton
- Image Guided Interventions Laboratory, Department of Radiology, University of Geneva, Geneva, Switzerland
| | - Stéphane Desgranges
- Equipe Systèmes Amphiphiles bioactifs et Formulations Eco-compatibles, Unité Propre de Recherche et d'Innovation (UPRI), Avignon University, Avignon, France
| | - Christiane Contino-Pépin
- Equipe Systèmes Amphiphiles bioactifs et Formulations Eco-compatibles, Unité Propre de Recherche et d'Innovation (UPRI), Avignon University, Avignon, France
| | - Rares Salomir
- Image Guided Interventions Laboratory, Department of Radiology, University of Geneva, Geneva, Switzerland; Radiology Division, University Hospitals of Geneva, Geneva, Switzerland
| |
Collapse
|
7
|
Zhang W, Metzger H, Vlatakis S, Claxton A, Carbajal MA, Fung LF, Mason J, Chan KLA, Pouliopoulos AN, Fleck RA, Prentice P, Thanou M. Characterising the chemical and physical properties of phase-change nanodroplets. ULTRASONICS SONOCHEMISTRY 2023; 97:106445. [PMID: 37257208 PMCID: PMC10241977 DOI: 10.1016/j.ultsonch.2023.106445] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 05/04/2023] [Accepted: 05/15/2023] [Indexed: 06/02/2023]
Abstract
Phase-change nanodroplets have attracted increasing interest in recent years as ultrasound theranostic nanoparticles. They are smaller compared to microbubbles and they may distribute better in tissues (e.g. in tumours). They are composed of a stabilising shell and a perfluorocarbon core. Nanodroplets can vaporise into echogenic microbubbles forming cavitation nuclei when exposed to ultrasound. Their perfluorocarbon core phase-change is responsible for the acoustic droplet vaporisation. However, methods to quantify the perfluorocarbon core in nanodroplets are lacking. This is an important feature that can help explain nanodroplet phase change characteristics. In this study, we fabricated nanodroplets using lipids shell and perfluorocarbons. To assess the amount of perfluorocarbon in the core we used two methods, 19F NMR and FTIR. To assess the cavitation after vaporisation we used an ultrasound transducer (1.1 MHz) and a high-speed camera. The 19F NMR based method showed that the fluorine signal correlated accurately with the perfluorocarbon concentration. Using this correlation, we were able to quantify the perfluorocarbon core of nanodroplets. This method was used to assess the content of the perfluorocarbon of the nanodroplets in solutions over time. It was found that perfluoropentane nanodroplets lost their content faster and at higher ratio compared to perfluorohexane nanodroplets. The high-speed imaging indicates that the nanodroplets generate cavitation comparable to that from commercial contrast agent microbubbles. Nanodroplet characterisation should include perfluorocarbon concentration assessment as critical information for their development.
Collapse
Affiliation(s)
- Weiqi Zhang
- Institute of Cancer & Pharmaceutical Sciences, King's College London, United Kingdom
| | - Hilde Metzger
- School of Engineering, University of Glasgow, United Kingdom
| | - Stavros Vlatakis
- Institute of Cancer & Pharmaceutical Sciences, King's College London, United Kingdom
| | - Amelia Claxton
- Institute of Cancer & Pharmaceutical Sciences, King's College London, United Kingdom
| | | | - Leong Fan Fung
- Department of Surgical & Interventional Engineering, King's College London, United Kingdom
| | - James Mason
- Institute of Cancer & Pharmaceutical Sciences, King's College London, United Kingdom
| | - K L Andrew Chan
- Institute of Cancer & Pharmaceutical Sciences, King's College London, United Kingdom
| | | | - Roland A Fleck
- Centre for Ultrastructural Imaging, King's College London, United Kingdom
| | - Paul Prentice
- School of Engineering, University of Glasgow, United Kingdom
| | - Maya Thanou
- Institute of Cancer & Pharmaceutical Sciences, King's College London, United Kingdom.
| |
Collapse
|
8
|
Perfluorocarbon Nanodroplets as Potential Nanocarriers for Brain Delivery Assisted by Focused Ultrasound-Mediated Blood–Brain Barrier Disruption. Pharmaceutics 2022; 14:pharmaceutics14071498. [PMID: 35890391 PMCID: PMC9323719 DOI: 10.3390/pharmaceutics14071498] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 07/08/2022] [Accepted: 07/13/2022] [Indexed: 12/10/2022] Open
Abstract
The management of brain diseases remains a challenge, particularly because of the difficulty for drugs to cross the blood–brain barrier. Among strategies developed to improve drug delivery, nano-sized emulsions (i.e., nanoemulsions), employed as nanocarriers, have been described. Moreover, focused ultrasound-mediated blood–brain barrier disruption using microbubbles is an attractive method to overcome this barrier, showing promising results in clinical trials. Therefore, nanoemulsions combined with this technology represent a real opportunity to bypass the constraints imposed by the blood–brain barrier and improve the treatment of brain diseases. In this work, a stable freeze-dried emulsion of perfluorooctyl bromide nanodroplets stabilized with home-made fluorinated surfactants able to carry hydrophobic agents is developed. This formulation is biocompatible and droplets composing the emulsion are internalized in multiple cell lines. After intravenous administration in mice, droplets are eliminated from the bloodstream in 24 h (blood half-life (t1/2) = 3.11 h) and no long-term toxicity is expected since they are completely excreted from mice’ bodies after 72 h. In addition, intracerebral accumulation of tagged droplets is safely and significantly increased after focused ultrasound-mediated blood–brain barrier disruption. Thus, the proposed nanoemulsion appears as a promising nanocarrier for a successful focused ultrasound-mediated brain delivery of hydrophobic agents.
Collapse
|
9
|
Zhang W, Shi Y, Abd Shukor S, Vijayakumaran A, Vlatakis S, Wright M, Thanou M. Phase-shift nanodroplets as an emerging sonoresponsive nanomaterial for imaging and drug delivery applications. NANOSCALE 2022; 14:2943-2965. [PMID: 35166273 DOI: 10.1039/d1nr07882h] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Nanodroplets - emerging phase-changing sonoresponsive materials - have attracted substantial attention in biomedical applications for both tumour imaging and therapeutic purposes due to their unique response to ultrasound. As ultrasound is applied at different frequencies and powers, nanodroplets have been shown to cavitate by the process of acoustic droplet vapourisation (ADV), causing the development of mechanical forces which promote sonoporation through cellular membranes. This allows drugs to be delivered efficiently into deeper tissues where tumours are located. Recent reviews on nanodroplets are mostly focused on the mechanism of cavitation and their applications in biomedical fields. However, the chemistry of the nanodroplet components has not been discussed or reviewed yet. In this review, the commonly used materials and preparation methods of nanodroplets are summarised. More importantly, this review provides examples of variable chemistry components in nanodroplets which link them to their efficiency as ultrasound-multimodal imaging agents to image and monitor drug delivery. Finally, the drawbacks of current research, future development, and future direction of nanodroplets are discussed.
Collapse
Affiliation(s)
- Weiqi Zhang
- School of Cancer & Pharmaceutical Sciences, King's College London, UK.
| | - Yuhong Shi
- School of Cancer & Pharmaceutical Sciences, King's College London, UK.
| | | | | | - Stavros Vlatakis
- School of Cancer & Pharmaceutical Sciences, King's College London, UK.
| | - Michael Wright
- School of Cancer & Pharmaceutical Sciences, King's College London, UK.
| | - Maya Thanou
- School of Cancer & Pharmaceutical Sciences, King's College London, UK.
| |
Collapse
|
10
|
Li Y, Cui J, Li C, Zhou H, Chang J, Aras O, An F. 19 F MRI Nanotheranostics for Cancer Management: Progress and Prospects. ChemMedChem 2022; 17:e202100701. [PMID: 34951121 PMCID: PMC9432482 DOI: 10.1002/cmdc.202100701] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2021] [Revised: 12/23/2021] [Indexed: 12/24/2022]
Abstract
Fluorine magnetic resonance imaging (19 F MRI) is a promising imaging technique for cancer diagnosis because of its excellent soft tissue resolution and deep tissue penetration, as well as the inherent high natural abundance, almost no endogenous interference, quantitative analysis, and wide chemical shift range of the 19 F nucleus. In recent years, scientists have synthesized various 19 F MRI contrast agents. By further integrating a wide variety of nanomaterials and cutting-edge construction strategies, magnetically equivalent 19 F atoms are super-loaded and maintain satisfactory relaxation efficiency to obtain high-intensity 19 F MRI signals. In this review, the nuclear magnetic resonance principle underlying 19 F MRI is first described. Then, the construction and performance of various fluorinated contrast agents are summarized. Finally, challenges and future prospects regarding the clinical translation of 19 F MRI nanoprobes are considered. This review will provide strategic guidance and panoramic expectations for designing new cancer theranostic regimens and realizing their clinical translation.
Collapse
Affiliation(s)
- Yanan Li
- College of Medical Imaging, Shanxi Medical University, Taiyuan, 030001, Shanxi, China
| | - Jing Cui
- College of Medical Imaging, Shanxi Medical University, Taiyuan, 030001, Shanxi, China
| | - Chenlong Li
- College of Medical Imaging, Shanxi Medical University, Taiyuan, 030001, Shanxi, China
| | - Huimin Zhou
- College of Basic Medicine, Shanxi Medical University, Taiyuan, 030001, Shanxi, China
| | - Jun Chang
- College of Basic Medicine, Shanxi Medical University, Taiyuan, 030001, Shanxi, China
| | - Omer Aras
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Feifei An
- School of Public Health, Health Science Center, Xi'an Jiaotong University, No.76 Yanta West Road, Xi'an, 710061, Shaanxi, China
| |
Collapse
|
11
|
Joseph JM, Gigliobianco MR, Firouzabadi BM, Censi R, Di Martino P. Nanotechnology as a Versatile Tool for 19F-MRI Agent's Formulation: A Glimpse into the Use of Perfluorinated and Fluorinated Compounds in Nanoparticles. Pharmaceutics 2022; 14:382. [PMID: 35214114 PMCID: PMC8874484 DOI: 10.3390/pharmaceutics14020382] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 01/28/2022] [Accepted: 02/02/2022] [Indexed: 02/04/2023] Open
Abstract
Simultaneously being a non-radiative and non-invasive technique makes magnetic resonance imaging (MRI) one of the highly sought imaging techniques for the early diagnosis and treatment of diseases. Despite more than four decades of research on finding a suitable imaging agent from fluorine for clinical applications, it still lingers as a challenge to get the regulatory approval compared to its hydrogen counterpart. The pertinent hurdle is the simultaneous intrinsic hydrophobicity and lipophobicity of fluorine and its derivatives that make them insoluble in any liquids, strongly limiting their application in areas such as targeted delivery. A blossoming technique to circumvent the unfavorable physicochemical characteristics of perfluorocarbon compounds (PFCs) and guarantee a high local concentration of fluorine in the desired body part is to encapsulate them in nanosystems. In this review, we will be emphasizing different types of nanocarrier systems studied to encapsulate various PFCs and fluorinated compounds, headway to be applied as a contrast agent (CA) in fluorine-19 MRI (19F MRI). We would also scrutinize, especially from studies over the last decade, the different types of PFCs and their specific applications and limitations concerning the nanoparticle (NP) system used to encapsulate them. A critical evaluation for future opportunities would be speculated.
Collapse
Affiliation(s)
- Joice Maria Joseph
- School of Pharmacy, University of Camerino, 62032 Camerino, Italy; (J.M.J.); (B.M.F.); (P.D.M.)
| | | | | | - Roberta Censi
- School of Pharmacy, University of Camerino, 62032 Camerino, Italy; (J.M.J.); (B.M.F.); (P.D.M.)
| | - Piera Di Martino
- School of Pharmacy, University of Camerino, 62032 Camerino, Italy; (J.M.J.); (B.M.F.); (P.D.M.)
- Dipartimento di Farmacia, Università “G. D’Annunzio” Chieti e Pescara, 66100 Chieti, Italy
| |
Collapse
|
12
|
Holman R, Gui L, Lorton O, Guillemin P, Desgranges S, Contino-Pépin C, Salomir R. PFOB sonosensitive microdroplets: determining their interaction radii with focused ultrasound using MR thermometry and a Gaussian convolution kernel computation. Int J Hyperthermia 2022; 39:108-119. [PMID: 35000497 DOI: 10.1080/02656736.2021.2021304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022] Open
Abstract
Purpose: Micron-sized perfluorocarbon droplet adjuvants to focused ultrasound therapies allow lower applied power, circumvent unwanted prefocal heating, and enhance thermal dose in highly perfused tissues. The heat enhancement has been shown to saturate at increasing concentrations. Experiments were performed to empirically model the saturating heating effects during focused ultrasound.Materials and methods: The measurements were made at varying concentrations using magnetic resonance thermometry and focused ultrasound by circulating droplets of mean diameter 1.9 to 2.3 µm through a perfused phantom. A simulation was performed to estimate the interaction radius size, empirically.Results: The interaction radius, representing the radius of a sphere encompassing 90% of the probability for the transformation of acoustic energy into heat deposition around a single droplet, was determined experimentally from ultrasonic absorption coefficient measurements The simulations suggest the interaction radius was approximately 12.5-fold larger than the geometrical radius of droplets, corresponding to an interaction volume on the order of 2000 larger than the geometrical volume.Conclusions: The results provide information regarding the dose-response relationship from the droplets, a measure with 15% precision of their interaction radii with focused ultrasound, and subsequent insights into the underlying physical heating mechanism.
Collapse
Affiliation(s)
- Ryan Holman
- Image Guided Interventions Laboratory (GR-949), Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Laura Gui
- Image Guided Interventions Laboratory (GR-949), Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Orane Lorton
- Image Guided Interventions Laboratory (GR-949), Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Pauline Guillemin
- Image Guided Interventions Laboratory (GR-949), Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | | | | | - Rares Salomir
- Image Guided Interventions Laboratory (GR-949), Faculty of Medicine, University of Geneva, Geneva, Switzerland.,Radiology Division, University Hospitals of Geneva, Geneva, Switzerland
| |
Collapse
|
13
|
Holman R, Lorton O, Guillemin PC, Desgranges S, Contino-Pépin C, Salomir R. Perfluorocarbon Emulsion Contrast Agents: A Mini Review. Front Chem 2022; 9:810029. [PMID: 35083198 PMCID: PMC8785234 DOI: 10.3389/fchem.2021.810029] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Accepted: 12/09/2021] [Indexed: 12/31/2022] Open
Abstract
Perfluorocarbon emulsions offer a variety of applications in medical imaging. The substances can be useful for most radiological imaging modalities; including, magnetic resonance imaging, ultrasonography, computed tomography, and positron emission tomography. Recently, the substance has gained much interest for theranostics, with both imaging and therapeutic potential. As MRI sequences improve and more widespread access to 19F-MRI coils become available, perfluorocarbon emulsions have great potential for new commercial imaging agents, due to high fluorine content and previous regulatory approval as antihypoxants and blood substitutes. This mini review aims to discuss the chemistry and physics of these contrast agents, in addition to highlighting some of the past, recent, and potential applications.
Collapse
Affiliation(s)
- Ryan Holman
- Image Guided Interventions Laboratory (GR-949), Faculty of Medicine, University of Geneva, Geneva, Switzerland
- *Correspondence: Ryan Holman,
| | - Orane Lorton
- Image Guided Interventions Laboratory (GR-949), Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Pauline C. Guillemin
- Image Guided Interventions Laboratory (GR-949), Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | | | | | - Rares Salomir
- Image Guided Interventions Laboratory (GR-949), Faculty of Medicine, University of Geneva, Geneva, Switzerland
- Radiology Department, University Hospitals of Geneva, Geneva, Switzerland
| |
Collapse
|
14
|
Holman R, Lorton O, Guillemin PC, Desgranges S, Santini F, Preso DB, Farhat M, Contino-Pépin C, Salomir R. Perfluorocarbon emulsion enhances MR-ARFI displacement and temperature in vitro: Evaluating the response with MRI, NMR, and hydrophone. Front Oncol 2022; 12:1025481. [PMID: 36713528 PMCID: PMC9880467 DOI: 10.3389/fonc.2022.1025481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Accepted: 11/18/2022] [Indexed: 01/15/2023] Open
Abstract
Sonosensitive perfluorocarbon F8TAC18-PFOB emulsion is under development to enhance heating, increase thermal contrast, and reduce treatment times during focused ultrasound tumor ablation of highly perfused tissue. The emulsion previously showed enhanced heating during ex vivo and in vitro studies. Experiments were designed to observe the response in additional scenarios by varying focused ultrasound conditions, emulsion concentrations, and surfactants. Most notably, changes in acoustic absorption were assessed with MR-ARFI. Phantoms were developed to have thermal, elastic, and relaxometry properties similar to those of ex vivo pig tissue. The phantoms were embedded with varying amounts of F8TAC18-PFOB emulsion or lecithin-PFOB emulsion, between about 0.0-0.3% v:w, in 0.05% v:w increments. MR-ARFI measurements were performed using a FLASH-ARFI-MRT sequence to obtain simultaneous displacement and temperature measurements. A Fabry-Perot hydrophone was utilized to observe the acoustic emissions. Susceptibility-weighted imaging and relaxometry mapping were performed to observe concentration-dependent effects. 19F diffusion-ordered spectroscopy NMR was used to measure the diffusion coefficient of perfluorocarbon droplets in a water emulsion. Increased displacement and temperature were observed with higher emulsion concentration. In semi-rigid MR-ARFI phantoms, a linear response was observed with low-duty cycle MR-ARFI sonications and a mono-exponential saturating response was observed with sustained sonications. The emulsifiers did not have a significant effect on acoustic absorption in semi-rigid gels. Stable cavitation might also contribute to enhanced heating.
Collapse
Affiliation(s)
- Ryan Holman
- Image Guided Interventions Laboratory (GR-949), Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Orane Lorton
- Image Guided Interventions Laboratory (GR-949), Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Pauline C Guillemin
- Image Guided Interventions Laboratory (GR-949), Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Stéphane Desgranges
- Avignon Université, Equipe Systèmes Amphiphiles bioactifs et Formulations Eco-compatibles, Unité Propre de Recherche et d'Innovation (UPRI), Avignon, France
| | - Francesco Santini
- Department of Biomedical Engineering, University of Basel, Basel, Switzerland
| | - Davide Bernardo Preso
- Institute of Mechanical Engineering, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Mohamed Farhat
- Institute of Mechanical Engineering, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Christiane Contino-Pépin
- Avignon Université, Equipe Systèmes Amphiphiles bioactifs et Formulations Eco-compatibles, Unité Propre de Recherche et d'Innovation (UPRI), Avignon, France
| | - Rares Salomir
- Image Guided Interventions Laboratory (GR-949), Faculty of Medicine, University of Geneva, Geneva, Switzerland.,Radiology Department, University Hospitals of Geneva, Geneva, Switzerland
| |
Collapse
|
15
|
Grousson E, Mahler F, Keller S, Contino-Pépin C, Durand G. Hybrid Fluorocarbon-Hydrocarbon Surfactants: Synthesis and Colloidal Characterization. J Org Chem 2021; 86:14672-14683. [PMID: 34609857 DOI: 10.1021/acs.joc.1c01493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Four double-tailed hybrid fluorocarbon-hydrocarbon (F-H) surfactants with a poly(ethylene glycol) (PEG) polar headgroup were synthesized. The hydrophobic scaffold consists of an amino acid core, onto which were grafted both fluorocarbon and hydrocarbon chains of different lengths. The PEG polar head was connected to the hydrophobic scaffold through a copper(I)-mediated click reaction. The four derivatives exhibit aqueous solubility >100 g/L and self-assemble into micellar aggregates with micromolar critical micellar concentration (CMC) values, as demonstrated by isothermal titration calorimetry (ITC), surface tension (ST) measurements, and steady-state fluorescence spectroscopy. The CMC value decreased by a factor of ∼6 for each additional pair of CH2 groups, whereas a decrease by a factor of ∼2.5 was observed when the size of the PEG polar head was reduced from 2000 to 750 g/mol. Dynamic light scattering (DLS) showed unimodal micelle populations with hydrodynamic diameters of 10-15 nm, in agreement with results obtained from size-exclusion chromatography (SEC). The aggregation number increased with the hydrocarbon chain length but decreased with increasing PEG chain lengths. The combination in one molecular design of both low CMC and high water solubility makes these new surfactants promising systems for novel drug-delivery systems.
Collapse
Affiliation(s)
- Emilie Grousson
- Institut des Biomolécules Max Mousseron (IBMM)─UMR5247, 34093 Montpellier, France.,Equipe Chimie Bioorganique et Systèmes Amphiphiles (CBSA), Avignon Université, 84000 Avignon, France
| | - Florian Mahler
- Molecular Biophysics, Technische Universität Kaiserslautern, (TUK), Erwin-Schrödinger-Str. 13, 67663 Kaiserslautern, Germany
| | - Sandro Keller
- Molecular Biophysics, Technische Universität Kaiserslautern, (TUK), Erwin-Schrödinger-Str. 13, 67663 Kaiserslautern, Germany.,Biophysics, Institute of Molecular Biosciences (IMB), NAWI Graz, University of Graz, Humboldtstr. 50/III, 8010 Graz, Austria.,Field of Excellence BioHealth, University of Graz, 8010 Graz, Austria.,BioTechMed-Graz, 8010 Graz, Austria
| | - Christiane Contino-Pépin
- Institut des Biomolécules Max Mousseron (IBMM)─UMR5247, 34093 Montpellier, France.,Equipe Chimie Bioorganique et Systèmes Amphiphiles (CBSA), Avignon Université, 84000 Avignon, France
| | - Grégory Durand
- Institut des Biomolécules Max Mousseron (IBMM)─UMR5247, 34093 Montpellier, France.,Equipe Chimie Bioorganique et Systèmes Amphiphiles (CBSA), Avignon Université, 84000 Avignon, France
| |
Collapse
|
16
|
Le Gal M, Renard E, Simon-Colin C, Larrat B, Langlois V. Amphiphilic and Perfluorinated Poly(3-Hydroxyalkanoate) Nanocapsules for 19F Magnetic Resonance Imaging. Bioengineering (Basel) 2021; 8:bioengineering8090121. [PMID: 34562943 PMCID: PMC8466264 DOI: 10.3390/bioengineering8090121] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 08/27/2021] [Accepted: 09/02/2021] [Indexed: 12/17/2022] Open
Abstract
Nanoparticles have recently emerged as valuable tools in biomedical imaging techniques. Here PEGylated and fluorinated nanocapsules based on poly(3-hydroxyalkanoate) containing a liquid core of perfluorooctyl bromide PFOB were formulated by an emulsion-evaporation process as potential 19F MRI imaging agents. Unsaturated poly(hydroxyalkanoate), PHAU, was produced by marine bacteria using coprah oil and undecenoic acid as substrates. PHA-g-(F; PEG) was prepared by two successive controlled thiol-ene reactions from PHAU with firstly three fluorinated thiols having from 3 up to 17 fluorine atoms and secondly with PEG-SH. The resulting PHA-g-(F; PEG)-based PFOB nanocapsules, with a diameter close to 250–300 nm, are shown to be visible in 19F MRI with an acquisition time of 15 min. The results showed that PFOB-nanocapsules based on PHA-g-(F; PEG) have the potential to be used as novel contrast agents for 19F MRI.
Collapse
Affiliation(s)
- Marion Le Gal
- Laboratoire de Microbiologie des Environnements Extrêmes, CNRS, Ifremer, University Brest, F-29280 Plouzané, France; (M.L.G.); (C.S.-C.)
- ICMPE, CNRS, University Paris Est Creteil, F-94010 Creteil, France;
| | - Estelle Renard
- ICMPE, CNRS, University Paris Est Creteil, F-94010 Creteil, France;
| | - Christelle Simon-Colin
- Laboratoire de Microbiologie des Environnements Extrêmes, CNRS, Ifremer, University Brest, F-29280 Plouzané, France; (M.L.G.); (C.S.-C.)
| | - Benoit Larrat
- Université Paris-Saclay, CEA, CNRS, NeuroSpin, 91191 Gif-sur-Yvette, France;
| | - Valérie Langlois
- ICMPE, CNRS, University Paris Est Creteil, F-94010 Creteil, France;
- Correspondence:
| |
Collapse
|
17
|
Lee AL, Lee SH, Nguyen H, Cahill M, Kappel E, Pomerantz WCK, Haynes CL. Investigation of the Post-Synthetic Confinement of Fluorous Liquids Inside Mesoporous Silica Nanoparticles. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:5222-5231. [PMID: 33886317 PMCID: PMC9682517 DOI: 10.1021/acs.langmuir.1c00167] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Perfluorocarbon (PFC) filled nanoparticles are increasingly being investigated for various biomedical applications. Common approaches for PFC liquid entrapment involve surfactant-based emulsification and Pickering emulsions. Alternatively, PFC liquids are capable of being entrapped inside hollow nanoparticles via a postsynthetic loading method (PSLM). While the methodology for the PSLM is straightforward, the effect each loading parameter has on the PFC entrapment has yet to be investigated. Previous work revealed incomplete filling of the hollow nanoparticles. Changing the loading parameters was expected to influence the ability of the PFC to fill the core of the nanoparticles. Hence, it would be possible to model the loading mechanism and determine the influence each factor has on PFC entrapment by tracking the change in loading yield and efficiency of PFC-filled nanoparticles. Herein, neat PFC liquid was loaded into silica nanoparticles and extracted into aqueous phases while varying the sonication time, concentration of nanoparticles, volume ratio between aqueous and fluorous phases, and pH of the extraction water. Loading yields and efficiency were determined via 19F nuclear magnetic resonance and N2 physisorption isotherms. Sonication time was indicated to have the strongest correlation to loading yield and efficiency; however, method validation revealed that the current model does not fully explain the loading capabilities of the PSLM. Confounding variables and more finely controlled parameters need to be considered to better predict the behavior and loading capacity by the PSLM and warrants further study.
Collapse
Affiliation(s)
- Amani L Lee
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Sang-Hyuk Lee
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Huan Nguyen
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Meghan Cahill
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Elaine Kappel
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - William C K Pomerantz
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Christy L Haynes
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| |
Collapse
|
18
|
Al Rifai N, Desgranges S, Le Guillou-Buffello D, Giron A, Urbach W, Nassereddine M, Charara J, Contino-Pépin C, Taulier N. Ultrasound-triggered delivery of paclitaxel encapsulated in an emulsion at low acoustic pressures. J Mater Chem B 2021; 8:1640-1648. [PMID: 32011617 DOI: 10.1039/c9tb02493j] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
We investigated the in vitro ultrasound-triggered delivery of paclitaxel, a well known anti-cancerous drug, encapsulated in an emulsion and in the presence of CT26 tumor cells. The emulsion was made of nanodroplets, whose volume comprised 95% perfluoro-octyl bromide and 5% tributyl O-acetylcitrate, in which paclitaxel was solubilized. These nanodroplets, prepared using a high-pressure microfluidizer, were stabilized by a tailor-made and recently patented biocompatible fluorinated surfactant. The delivery investigations were performed at 37 °C using a high intensity focused ultrasound transducer at a frequency of 1.1 MHz. The ultrasonic pulse was made of 275 sinusoidal periods and the pulse repetition frequency was 200 Hz with a duty cycle of 5%. The measured viabilities of CT26 cells showed that paclitaxel delivery was achievable for peak-to-peak pressures of 0.4 and 3.5 MPa, without having to vaporize the perfluorocarbon part of the droplet or to induce inertial cavitation.
Collapse
Affiliation(s)
- N Al Rifai
- Sorbonne Université, CNRS, INSERM, Laboratoire d'Imagerie Biomédicale, LIB, F-75006 Paris, France. and Faculté des Sciences, Université Libanaise, Liban
| | - S Desgranges
- Équipe Chimie Bioorganique et Systèmes Amphiphiles, Institut des Biomolécules Max Mousseron, UMR 5247, Université d'Avignon, Avignon, France
| | - D Le Guillou-Buffello
- Sorbonne Université, CNRS, INSERM, Laboratoire d'Imagerie Biomédicale, LIB, F-75006 Paris, France.
| | - A Giron
- Sorbonne Université, CNRS, INSERM, Laboratoire d'Imagerie Biomédicale, LIB, F-75006 Paris, France.
| | - W Urbach
- Sorbonne Université, CNRS, INSERM, Laboratoire d'Imagerie Biomédicale, LIB, F-75006 Paris, France. and Laboratoire de Physique de l'École Normale Supérieure, ENS, Université PSL, CNRS, Sorbonne Université, Université de Paris, F-75005 Paris, France
| | | | - J Charara
- Faculté des Sciences, Université Libanaise, Liban
| | - C Contino-Pépin
- Équipe Chimie Bioorganique et Systèmes Amphiphiles, Institut des Biomolécules Max Mousseron, UMR 5247, Université d'Avignon, Avignon, France
| | - N Taulier
- Sorbonne Université, CNRS, INSERM, Laboratoire d'Imagerie Biomédicale, LIB, F-75006 Paris, France.
| |
Collapse
|
19
|
Lacanau V, Bonneté F, Wagner P, Schmitt M, Meyer D, Bihel F, Contino-Pépin C, Bourgeois D. From Electronic Waste to Suzuki-Miyaura Cross-Coupling Reaction in Water: Direct Valuation of Recycled Palladium in Catalysis. CHEMSUSCHEM 2020; 13:5224-5230. [PMID: 32672412 DOI: 10.1002/cssc.202001155] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 06/29/2020] [Indexed: 06/11/2023]
Abstract
From electronic waste to Pd-catalyzed reaction! The straightforward valuation of palladium recovered from electronic waste is reported here. Following a classical leaching stage, palladium is selectively extracted from a complex aqueous mixture of metallic cations into an organic phase. Afterwards, the judicious choice of a surfactant enables stabilization of palladium during back extraction cycles, and the direct preparation of an aqueous micellar solution, which can be employed in a model Suzuki-Miyaura cross-coupling reaction. Clean phase separation is observed, and distribution of all components between organic and aqueous phases is mastered. The proposed process avoids several waste generating steps dedicated to palladium isolation and ultimate purification, as well as the preparation of palladium pre-catalyst. This novel approach enables a better use of both natural resources and industrial wastes, through new cycles in circular economy.
Collapse
Affiliation(s)
- Valentin Lacanau
- Institut de Chimie Séparative de Marcoule, ICSM, CEA, CNRS, ENSCM, Université de Montpellier, BP 17171, Marcoule, 30207, Bagnols-sur-Cèze, France
- Equipe Chimie Bioorganique et Systèmes Amphiphiles Institut des Biomolécules Max Mousseron, UMR 5247, Avignon Université, 84911, Avignon, France
| | - Françoise Bonneté
- Equipe Chimie Bioorganique et Systèmes Amphiphiles Institut des Biomolécules Max Mousseron, UMR 5247, Avignon Université, 84911, Avignon, France
- Université de Paris LBPC-PM, CNRS, 75005, Paris, France
- Institut de Biologie Physico-Chimique, 75005, Paris, France
| | - Patrick Wagner
- Laboratoire d'Innovation thérapeutique, UMR 7200 Labex Medalis, CNRS, Université de Strasbourg, Faculté de Pharmacie, 74 route du Rhin, BP 60024, 67401, Illkirch, France
| | - Martine Schmitt
- Laboratoire d'Innovation thérapeutique, UMR 7200 Labex Medalis, CNRS, Université de Strasbourg, Faculté de Pharmacie, 74 route du Rhin, BP 60024, 67401, Illkirch, France
| | - Daniel Meyer
- Institut de Chimie Séparative de Marcoule, ICSM, CEA, CNRS, ENSCM, Université de Montpellier, BP 17171, Marcoule, 30207, Bagnols-sur-Cèze, France
| | - Frédéric Bihel
- Laboratoire d'Innovation thérapeutique, UMR 7200 Labex Medalis, CNRS, Université de Strasbourg, Faculté de Pharmacie, 74 route du Rhin, BP 60024, 67401, Illkirch, France
| | - Christiane Contino-Pépin
- Equipe Chimie Bioorganique et Systèmes Amphiphiles Institut des Biomolécules Max Mousseron, UMR 5247, Avignon Université, 84911, Avignon, France
| | - Damien Bourgeois
- Institut de Chimie Séparative de Marcoule, ICSM, CEA, CNRS, ENSCM, Université de Montpellier, BP 17171, Marcoule, 30207, Bagnols-sur-Cèze, France
| |
Collapse
|
20
|
Lorton O, Guillemin P, Holman R, Desgranges S, Gui L, Crowe LA, Terraz S, Nastasi A, Lazeyras F, Contino-Pépin C, Salomir R. Enhancement of HIFU thermal therapy in perfused tissue models using micron-sized FTAC-stabilized PFOB-core endovascular sonosensitizers. Int J Hyperthermia 2020; 37:1116-1130. [PMID: 32990101 PMCID: PMC8352380 DOI: 10.1080/02656736.2020.1817575] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND High intensity focused ultrasound (HIFU) is clinically accepted for the treatment of solid tumors but remains challenging in highly perfused tissue due to the heat sink effect. Endovascular liquid-core sonosensitizers have been previously suggested to enhance the thermal energy deposition at the focal area and to lower the near-/far-field heating. We are investigating the therapeutic potential of PFOB-FTAC micro-droplets in a perfused tissue-mimicking model and postmortem excised organs. METHOD A custom-made in vitro perfused tissue-mimicking model, freshly excised pig kidneys (n = 3) and liver (n = 1) were perfused and subjected to focused ultrasound generated by an MR-compatible HIFU transducer. PFOB-FTAC sonosensitizers were injected in the perfusion fluid up to 0.235% v/v ratio. Targeting and on-line PRFS thermometry were performed on a 3 T MR scanner. Assessment of the fluid perfusion was performed with pulsed color Doppler in vitro and with dynamic contrast-enhanced (DCE)-MRI in excised organs. RESULTS Our in vitro model of perfused tissue demonstrated re-usability. Sonosensitizer concentration and perfusion rate were tunable in situ. Differential heating under equivalent HIFU sonications demonstrated a dramatic improvement in the thermal deposition due to the sonosensitizers activity. Typically, the energy deposition was multiplied by a factor between 2.5 and 3 in perfused organs after the administration of micro-droplets, while DCE-MRI indicated an effective perfusion. CONCLUSION The current PFOB-FTAC micro-droplet sonosensitizers provided a large and sustained enhancement of the HIFU thermal deposition at the focal area, suggesting solutions for less technological constraints, lower risk for the near-/far- field heating. We also report a suitable experimental model for other MRgHIFU studies.
Collapse
Affiliation(s)
- Orane Lorton
- Image Guided Interventions Laboratory (GR-949), Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Pauline Guillemin
- Image Guided Interventions Laboratory (GR-949), Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Ryan Holman
- Image Guided Interventions Laboratory (GR-949), Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | | | - Laura Gui
- Image Guided Interventions Laboratory (GR-949), Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Lindsey A Crowe
- Radiology Department, University Hospitals of Geneva, Geneva, Switzerland
| | - Sylvain Terraz
- Radiology Department, University Hospitals of Geneva, Geneva, Switzerland
| | - Antonio Nastasi
- Visceral and Transplantation Division, University Hospitals, Geneva, Switzerland
| | - François Lazeyras
- Radiology Department, University Hospitals of Geneva, Geneva, Switzerland.,Center for Biomedical Imaging (CIBM), Geneva, Switzerland
| | | | - Rares Salomir
- Image Guided Interventions Laboratory (GR-949), Faculty of Medicine, University of Geneva, Geneva, Switzerland.,Radiology Department, University Hospitals of Geneva, Geneva, Switzerland
| |
Collapse
|
21
|
Melich R, Bussat P, Morici L, Vivien A, Gaud E, Bettinger T, Cherkaoui S. Microfluidic preparation of various perfluorocarbon nanodroplets: Characterization and determination of acoustic droplet vaporization (ADV) threshold. Int J Pharm 2020; 587:119651. [DOI: 10.1016/j.ijpharm.2020.119651] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Revised: 07/08/2020] [Accepted: 07/10/2020] [Indexed: 12/16/2022]
|
22
|
Zhu Y, Zhang G, Li M, Ma L, Huang J, Qiu L. Ultrasound-Augmented Phase Transition Nanobubbles for Targeted Treatment of Paclitaxel-Resistant Cancer. Bioconjug Chem 2020; 31:2008-2020. [PMID: 32628454 DOI: 10.1021/acs.bioconjchem.0c00364] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Yi Zhu
- Department of Ultrasound, West China Hospital, Sichuan University, Chengdu 610041, China
- Department of Ultrasound, the Affiliated Cancer Hospital, School of Medicine, University of Electronic Science and Technology of China, Sichuan Cancer Hospital & Institute, Chengdu 610041, China
| | - Guonan Zhang
- Department of Gynecological Oncology, the Affiliated Cancer Hospital, School of Medicine, University of Electronic Science and Technology of China, Sichuan Cancer Hospital & Institute, Chengdu 610041, China
| | - Meiying Li
- Department of Biochemistry & Molecular Biology, the Affiliated Cancer Hospital, School of Medicine, University of Electronic Science and Technology of China, Sichuan Cancer Hospital & Institute, Chengdu 610041, China
| | - Lang Ma
- Department of Ultrasound, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Jianming Huang
- Department of Biochemistry & Molecular Biology, the Affiliated Cancer Hospital, School of Medicine, University of Electronic Science and Technology of China, Sichuan Cancer Hospital & Institute, Chengdu 610041, China
| | - Li Qiu
- Department of Ultrasound, West China Hospital, Sichuan University, Chengdu 610041, China
| |
Collapse
|
23
|
Toumia Y, Cerroni B, Domenici F, Lange H, Bianchi L, Cociorb M, Brasili F, Chiessi E, D'Agostino E, Van Den Abeele K, Heymans SV, D'Hooge J, Paradossi G. Phase Change Ultrasound Contrast Agents with a Photopolymerized Diacetylene Shell. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:10116-10127. [PMID: 31042396 DOI: 10.1021/acs.langmuir.9b01160] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Phase change contrast agents for ultrasound (US) imaging consist of nanodroplets (NDs) with a perfluorocarbon (PFC) liquid core stabilized with a lipid or a polymer shell. Liquid ↔ gas transition, occurring in the core, can be triggered by US to produce acoustically active microbubbles (MBs) in a process named acoustic droplet vaporization (ADV). MB shells containing polymerized diacetylene moiety were considered as a good trade off between the lipid MBs, showing optimal attenuation, and the polymeric ones, displaying enhanced stability. This work reports on novel perfluoropentane and perfluorobutane NDs stabilized with a monolayer of an amphiphilic fatty acid, i.e. 10,12-pentacosadiynoic acid (PCDA), cured with ultraviolet (UV) irradiation. The photopolymerization of the diacetylene groups, evidenced by the appearance of a blue color due to the conjugation of ene-yne sequences, exhibits a chromatic transition from the nonfluorescent blue color to a fluorescent red color when the NDs are heated or the pH of the suspension is basic. An estimate of the molecular weights reached by the polymerized PCDA in the shell, poly(PCDA), has been obtained using gel permeation chromatography and MALDI-TOF mass spectrometry. The poly(PCDA)/PFC NDs show good biocompatibility with fibroblast cells. ADV efficiency and acoustic properties before and after the transition were tested using a 1 MHz probe, revealing a resonance frequency between 1 and 2 MHz similar to other lipidic MBs. The surface of PCDA shelled NDs can be easily modified without influencing the stability and the acoustic performances of droplets. As a proof of concept we report on the conjugation of cyclic RGD and PEG chains of the particles to support targeting ability toward endothelial cells.
Collapse
Affiliation(s)
- Yosra Toumia
- Department of Chemical Sciences and Technologies , University of Rome Tor Vergata , Via della Ricerca Scientifica 1 , 00133 , Rome , Italy
| | - Barbara Cerroni
- Department of Chemical Sciences and Technologies , University of Rome Tor Vergata , Via della Ricerca Scientifica 1 , 00133 , Rome , Italy
| | - Fabio Domenici
- Department of Chemical Sciences and Technologies , University of Rome Tor Vergata , Via della Ricerca Scientifica 1 , 00133 , Rome , Italy
| | - Heiko Lange
- Department of Chemical Sciences and Technologies , University of Rome Tor Vergata , Via della Ricerca Scientifica 1 , 00133 , Rome , Italy
| | - Livia Bianchi
- Department of Chemical Sciences and Technologies , University of Rome Tor Vergata , Via della Ricerca Scientifica 1 , 00133 , Rome , Italy
| | - Madalina Cociorb
- Department of Chemical Sciences and Technologies , University of Rome Tor Vergata , Via della Ricerca Scientifica 1 , 00133 , Rome , Italy
| | - Francesco Brasili
- Department of Chemical Sciences and Technologies , University of Rome Tor Vergata , Via della Ricerca Scientifica 1 , 00133 , Rome , Italy
| | - Ester Chiessi
- Department of Chemical Sciences and Technologies , University of Rome Tor Vergata , Via della Ricerca Scientifica 1 , 00133 , Rome , Italy
| | - Emiliano D'Agostino
- DoseVue NV , Philips Open Manufacturing Campus , Slachthuisstraat 96 , B-2300 Turnhout , Belgium
| | | | - Sophie V Heymans
- Department of Physics , KU Leuven , Kulak, 8500 Kortrijk , Belgium
| | - Jan D'Hooge
- Medical Center , KU Leuven , 3000 Leuven , Belgium
| | - Gaio Paradossi
- Department of Chemical Sciences and Technologies , University of Rome Tor Vergata , Via della Ricerca Scientifica 1 , 00133 , Rome , Italy
| |
Collapse
|
24
|
Martin AL, Homenick CM, Xiang Y, Gillies E, Matsuura N. Polyelectrolyte Coatings Can Control Charged Fluorocarbon Nanodroplet Stability and Their Interaction with Macrophage Cells. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:4603-4612. [PMID: 30757902 DOI: 10.1021/acs.langmuir.8b04051] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Fluorocarbon nanodroplets, ∼100 to ∼400 nm in diameter, are of immense interest in a variety of medical applications including the imaging and therapy of cancer and inflammatory diseases. However, fluorocarbon molecules are both hydrophobic and lipophobic; therefore, it is challenging to synthesize fluorocarbon nanodroplets with the optimal stability and surface properties without the use of highly specialized surfactants. Here, we hypothesize that we can decouple the control of fluorocarbon nanodroplet size and stability from its surface properties. We use a simple, two-step procedure where standard, easily available anionic fluorosurfactants are used to first stabilize the fluorocarbon nanodroplets, followed by electrostatically attaching functionalized polyelectrolytes to the nanodroplet surfaces to independently control their surface properties. Herein, we demonstrate that PEGylated polyelectrolyte coatings can effectively alter the fluorocarbon nanodroplet surface properties to reduce coalescence and its uptake into phagocytic cells in comparison with non-PEGylated polyelectrolyte coatings and uncoated nanodroplets, as measured by flow cytometry and fluorescence microscopy. In this study, perfluorooctyl bromide (PFOB) was used as a representative fluorocarbon material, and PEGylated PFOB nanodroplets with diameters between 250 and 290 nm, depending on the poly(ethylene glycol) block length, were prepared. The PEGylated PFOB nanodroplets had superior size stability in comparison with uncoated and non-PEGylated polyelectrolyte nanodroplets in saline and within macrophage cells. Of significance, non-PEGylated nanodroplets were rapidly internalized by macrophage cells, whereas PEGylated nanodroplets were predominantly colocalized on the cell membrane. This suggests that the PEGylated-polyelectrolyte coating on the charged PFOB nanodroplets may afford adjustable shielding from cells of the reticuloendothelial system. This report shows that using the same fluorosurfactant as a base layer, modularly assembled PFOB nanodroplets tailored for a variety of end applications can be created by selecting different polyelectrolyte coatings depending on their unique requirements for stability and interaction with phagocytic cells.
Collapse
Affiliation(s)
- Amanda L Martin
- Physical Sciences , Sunnybrook Research Institute , Toronto , Ontario M4N 3M5 , Canada
| | - Christa M Homenick
- Department of Chemistry and Department of Chemical and Biochemical Engineering , The University of Western Ontario , London , Ontario N6A 5B7 , Canada
| | | | - Elizabeth Gillies
- Department of Chemistry and Department of Chemical and Biochemical Engineering , The University of Western Ontario , London , Ontario N6A 5B7 , Canada
| | | |
Collapse
|
25
|
Picheth GF, Moine L, Houvenagel S, Menezes LRA, Sassaki GL, Dejean C, Huang N, Alves de Freitas R, Tsapis N. Impact of Polylactide Fluorinated End-Group Lengths and Their Dynamics on Perfluorohexane Microcapsule Morphology. Macromolecules 2019. [DOI: 10.1021/acs.macromol.9b00217] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
26
|
Zhu B, Wang L, Huang J, Xiang X, Tang Y, Cheng C, Yan F, Ma L, Qiu L. Ultrasound-triggered perfluorocarbon-derived nanobombs for targeted therapies of rheumatoid arthritis. J Mater Chem B 2019. [DOI: 10.1039/c9tb00978g] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The targeted US-triggered PFC-based “nanobombs” with US used to treat the RA in this work would offer a new treatment strategy and have a great potential for the application in the areas of theranostic agent and nanomedicine treatment.
Collapse
Affiliation(s)
- Bihui Zhu
- Department of Ultrasound
- Laboratory of Ultrasound Imaging Drug
- West China Hospital
- Sichuan University
- Chengdu 610041
| | - Liyun Wang
- Department of Ultrasound
- Laboratory of Ultrasound Imaging Drug
- West China Hospital
- Sichuan University
- Chengdu 610041
| | - Jianbo Huang
- Department of Ultrasound
- Laboratory of Ultrasound Imaging Drug
- West China Hospital
- Sichuan University
- Chengdu 610041
| | - Xi Xiang
- Department of Ultrasound
- Laboratory of Ultrasound Imaging Drug
- West China Hospital
- Sichuan University
- Chengdu 610041
| | - Yuanjiao Tang
- Department of Ultrasound
- Laboratory of Ultrasound Imaging Drug
- West China Hospital
- Sichuan University
- Chengdu 610041
| | - Chong Cheng
- College of Polymer Science and Engineering
- State Key Laboratory of Polymer Materials Engineering
- Sichuan University
- Chengdu 610065
- P. R. China
| | - Feng Yan
- Department of Ultrasound
- Laboratory of Ultrasound Imaging Drug
- West China Hospital
- Sichuan University
- Chengdu 610041
| | - Lang Ma
- Department of Ultrasound
- Laboratory of Ultrasound Imaging Drug
- West China Hospital
- Sichuan University
- Chengdu 610041
| | - Li Qiu
- Department of Ultrasound
- Laboratory of Ultrasound Imaging Drug
- West China Hospital
- Sichuan University
- Chengdu 610041
| |
Collapse
|
27
|
Desgranges S, Lorton O, Gui-Levy L, Guillemin P, Celicanin Z, Hyacinthe JN, Breguet R, Crowe LA, Becker CD, Soulié M, Taulier N, Contino-Pépin C, Salomir R. Micron-sized PFOB liquid core droplets stabilized with tailored-made perfluorinated surfactants as a new class of endovascular sono-sensitizers for focused ultrasound thermotherapy. J Mater Chem B 2019; 7:927-939. [DOI: 10.1039/c8tb01491d] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
The effect of micro-droplet concentration on HIFU beam absorption.
Collapse
|
28
|
Lorton O, Hyacinthe JN, Desgranges S, Gui L, Klauser A, Celicanin Z, Crowe LA, Lazeyras F, Allémann E, Taulier N, Contino-Pépin C, Salomir R. Molecular oxygen loading in candidate theranostic droplets stabilized with biocompatible fluorinated surfactants: Particle size effect and application to in situ 19F MRI mapping of oxygen partial pressure. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2018; 295:27-37. [PMID: 30096550 DOI: 10.1016/j.jmr.2018.07.019] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Revised: 07/04/2018] [Accepted: 07/30/2018] [Indexed: 06/08/2023]
Abstract
OBJECTIVE Perfluorocarbon nano- and micron-sized emulsions are a new field of investigation in cancer treatment due to their ability to be used as imaging contrast agents, or as delivery vectors for pharmaceuticals. They also demonstrated capability to enhance the efficiency of high intensity focused ultrasound thermo-therapy. In the context of new biomedical applications we investigated perfluorooctyl bromide (PFOB) theranostic droplets using 19F NMR. Each droplet contains biocompatible fluorinated surfactants composed of a polar Tris(hydroxymethyl)aminomethane head unit and hydrophobic perfluorinated tail (abbreviated as F-TAC). The influence of the droplet size on the oxygen loading capacity was determined from longitudinal relaxation (T1) data of 19F NMR signal. MATERIAL AND METHODS Liquid PFOB and five samples of PFOB droplets of average diameter 0.177, 0.259, 1.43, 3.12 and 4.53 µm were tested with different oxygen levels. A dedicated gas exchange system was validated to maintain steady state oxygen concentrations, including a spatial gradient of oxygen concentration. A prototyped transmit-receive switchable 19F/1H quadrature coil was integrated on a 3 T clinical scanner. The coil is compatible with focused ultrasound sonication for future application. A spectroscopy FID inversion-recovery (IR) sequence was used to measure the T1 value per sample and per value of equilibrium oxygen pressure. Pixel wise, spatial T1 mapping was performed with magnetization prepared 2D gradient echo sequences in tissue mimicking gels doped with theranostic droplets. RESULTS Experimental data indicated that the longitudinal relaxation rate of 19F signal of the investigated theranostic droplets depended approximately linearly on the oxygen level and its slope decreased with the particle size according to a second order polynomial over the investigated range. This semi-empirical model was derived from general thermodynamics and weak electrostatic forces theory and fitted the experimental data within 0.75% precision. The capacity of oxygen transportation for the described theranostic droplets tended to that of pure PFOB, while micron-sized droplets lost up to 50% of this capacity. In a specific setup producing a steady state gradient of oxygen concentration, we demonstrated spatial mapping of oxygen pressure gradient of 6 kPa/mm with 1 mm in-plane resolution. CONCLUSION The size-tunable PFOB theranostic droplets stabilized with F-TAC surfactants could be characterized by 19F MRI in a clinical setup readily compatible with interventional in vivo studies under MR guidance. Current precision and spatial resolution of T1 mapping are promising. A potential challenge for further in vivo studies is the reduction of the imaging time.
Collapse
Affiliation(s)
- Orane Lorton
- Image Guided Interventions Laboratory, Faculty of Medicine, University of Geneva, Switzerland.
| | - Jean-Noël Hyacinthe
- Image Guided Interventions Laboratory, Faculty of Medicine, University of Geneva, Switzerland; School of Health Sciences, HES-SO // University of Applied Sciences and Arts of Western, Switzerland
| | - Stéphane Desgranges
- Image Guided Interventions Laboratory, Faculty of Medicine, University of Geneva, Switzerland; University of Avignon, CBSA-IBMM (UMR5247), Avignon, France
| | - Laura Gui
- Image Guided Interventions Laboratory, Faculty of Medicine, University of Geneva, Switzerland
| | - Antoine Klauser
- Department of Radiology and Medical Informatics, University of Geneva, Switzerland
| | - Zarko Celicanin
- Department of Radiological Physics, University Hospital of Basel, Switzerland
| | - Lindsey A Crowe
- Department of Radiology and Medical Informatics, University of Geneva, Switzerland
| | - François Lazeyras
- Department of Radiology and Medical Informatics, University of Geneva, Switzerland
| | - Eric Allémann
- School of Pharmaceutical Sciences, University of Geneva, University of Lausanne, Geneva, Switzerland
| | - Nicolas Taulier
- Sorbonne Universités, UPMC Univ Paris 06, CNRS, INSERM, Laboratoire d'Imagerie Biomédicale (LIB), F-75006 Paris, France
| | | | - Rares Salomir
- Image Guided Interventions Laboratory, Faculty of Medicine, University of Geneva, Switzerland; University Hospitals of Geneva, Radiology Department, Geneva, Switzerland
| |
Collapse
|
29
|
Xie Y, Wang J, Wang Z, Krug KA, Rinehart JD. Perfluorocarbon-loaded polydopamine nanoparticles as ultrasound contrast agents. NANOSCALE 2018; 10:12813-12819. [PMID: 29947626 PMCID: PMC6319376 DOI: 10.1039/c8nr02605j] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
A versatile platform for the development of new ultrasound contrast agents is demonstrated through a one-pot synthesis and fluorination of submicron polydopamine (PDA-F) nanoparticles. The fluorophilicity of these particles allows loading with perfluoropentane (PFP) droplets that display strong and persistent ultrasound contrast in aqueous suspension and ex vivo tissue samples. Contrast under continuous imaging by color Doppler persists for 1 h in 135 nm PDA-F samples, even at maximum clinical imaging power (MI = 1.9). Additionally, use of a Cadence Contrast Pulse Sequence (CPS) results in a non-linear response suitable for imaging at 0.5 mg mL-1. Despite the PFP volatility and the lack of a hollow core, PDA-F particles display minimal signal loss after storage for over a week. The ability to tune size, metal-chelation, and add covalently-bound organic functionality offers myriad possibilities for extending this work to multimodal imaging, targeted delivery, and therapeutic functionality.
Collapse
Affiliation(s)
- Yijun Xie
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA 92093, USA,
- Materials Science and Engineering Program, University of California, San Diego, La Jolla, CA 92093, USA
| | - James Wang
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA 92093, USA,
- Department of NanoEngineering, University of California, San Diego, La Jolla, CA 92093, USA
| | - Zhao Wang
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA 92093, USA,
- Department of Chemistry, Northwestern University, Evanston, IL 60208, USA
| | - Kelsey A. Krug
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA 92093, USA,
| | - Jeffrey D. Rinehart
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA 92093, USA,
- Materials Science and Engineering Program, University of California, San Diego, La Jolla, CA 92093, USA
| |
Collapse
|
30
|
Zhang H, Chen J, Zhu X, Ren Y, Cao F, Zhu L, Hou L, Zhang H, Zhang Z. Ultrasound induced phase-transition and invisible nanobomb for imaging-guided tumor sonodynamic therapy. J Mater Chem B 2018; 6:6108-6121. [DOI: 10.1039/c8tb01788c] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
This ‘nanobomb’ can mechanically destroy tumor vessels, significantly relieve hypoxia within the tumor and reduce the microvessel density.
Collapse
Affiliation(s)
- Huijuan Zhang
- School of Pharmaceutical Sciences
- Zhengzhou University
- Zhengzhou 450001
- China
- Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases
| | - Jianjiao Chen
- School of Pharmaceutical Sciences
- Zhengzhou University
- Zhengzhou 450001
- China
| | - Xing Zhu
- School of Pharmaceutical Sciences
- Zhengzhou University
- Zhengzhou 450001
- China
| | - Yanping Ren
- School of Pharmaceutical Sciences
- Zhengzhou University
- Zhengzhou 450001
- China
| | - Fang Cao
- School of Pharmaceutical Sciences
- Zhengzhou University
- Zhengzhou 450001
- China
| | - Ling Zhu
- School of Pharmaceutical Sciences
- Zhengzhou University
- Zhengzhou 450001
- China
| | - Lin Hou
- School of Pharmaceutical Sciences
- Zhengzhou University
- Zhengzhou 450001
- China
| | - Hongling Zhang
- School of Pharmaceutical Sciences
- Zhengzhou University
- Zhengzhou 450001
- China
- Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases
| | - Zhenzhong Zhang
- School of Pharmaceutical Sciences
- Zhengzhou University
- Zhengzhou 450001
- China
- Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases
| |
Collapse
|
31
|
Zullino S, Argenziano M, Stura I, Guiot C, Cavalli R. From Micro- to Nano-Multifunctional Theranostic Platform: Effective Ultrasound Imaging Is Not Just a Matter of Scale. Mol Imaging 2018; 17:1536012118778216. [PMID: 30213222 PMCID: PMC6144578 DOI: 10.1177/1536012118778216] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Revised: 03/20/2018] [Accepted: 04/08/2018] [Indexed: 12/20/2022] Open
Abstract
Ultrasound Contrast Agents (UCAs) consisting of gas-filled-coated Microbubbles (MBs) with diameters between 1 and 10 µm have been used for a number of decades in diagnostic imaging. In recent years, submicron contrast agents have proven to be a viable alternative to MBs for ultrasound (US)-based applications for their capability to extravasate and accumulate in the tumor tissue via the enhanced permeability and retention effect. After a short overview of the more recent approaches to ultrasound-mediated imaging and therapeutics at the nanoscale, phase-change contrast agents (PCCAs), which can be phase-transitioned into highly echogenic MBs by means of US, are here presented. The phenomenon of acoustic droplet vaporization (ADV) to produce bubbles is widely investigated for both imaging and therapeutic applications to develop promising theranostic platforms.
Collapse
Affiliation(s)
- Sara Zullino
- Department of Neuroscience, University of Turin, Turin, Italy
| | - Monica Argenziano
- Department of Drug Science and Technology, University of Turin, Turin, Italy
| | - Ilaria Stura
- Department of Clinical and Biological Science, University of Turin, Turin, Italy
| | - Caterina Guiot
- Department of Neuroscience, University of Turin, Turin, Italy
| | - Roberta Cavalli
- Department of Drug Science and Technology, University of Turin, Turin, Italy
| |
Collapse
|
32
|
Li Y, Wan J, Zhang Z, Guo J, Wang C. Targeted Soft Biodegradable Glycine/PEG/RGD-Modified Poly(methacrylic acid) Nanobubbles as Intelligent Theranostic Vehicles for Drug Delivery. ACS APPLIED MATERIALS & INTERFACES 2017; 9:35604-35612. [PMID: 28967258 DOI: 10.1021/acsami.7b11392] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
The development of multifunctional ultrasound contrast agents has inspired considerable interest in the application of biomedical imaging and anticancer therapeutics. However, combining multiple components that can preferentially accumulate in tumors in a nanometer scale poses one of the major challenges in targeting drug delivery for theranostic application. Herein, reflux-precipitation polymerization, and N-(3-(dimethylamino)propyl)-N'-ethylcarbodiimide-meditated amidation reaction were introduced to effectively generate a new type of soft glycine/poly(ethylene glycol) (PEG)/RGD-modified poly(methacrylic acid) nanobubbles with a uniform morphology and desired particle size (less than 100 nm). Because of the enhanced biocompatibility resulting from the glycine modification, over 80% of the cells survived, even though the dosage of glycine-modified polymeric nanobubbles was up to 5 mg/mL. By loading doxorubicin as an anticancer drug and perfluorohexane as an ultrasound probe, the resulting glycine/PEG/RGD-modified nanobubbles showed remarkable cancer therapeutic efficacy and a high quality of ultrasonic imaging; thus, the ultrasonic signal exhibited a 1.47-fold enhancement at the tumor site after intravenous injection. By integrating diagnostic and therapeutic functions into a single nanobubble, the new type of theranostic nanobubbles offers a promising strategy to monitor the therapeutic effects, giving important insights into the ultrasound-traced and enhanced targeting drug delivery in biomedical applications.
Collapse
Affiliation(s)
- Yongjing Li
- State Key Laboratory of Molecular Engineering of Polymers, State Key Laboratory of ASIC & System, Department of Macromolecular Science, Laboratory of Advanced Materials, Fudan University , 220 Handan Road, Shanghai 200433, People's Republic of China
| | - Jiaxun Wan
- State Key Laboratory of Molecular Engineering of Polymers, State Key Laboratory of ASIC & System, Department of Macromolecular Science, Laboratory of Advanced Materials, Fudan University , 220 Handan Road, Shanghai 200433, People's Republic of China
| | - Zihao Zhang
- State Key Laboratory of Molecular Engineering of Polymers, State Key Laboratory of ASIC & System, Department of Macromolecular Science, Laboratory of Advanced Materials, Fudan University , 220 Handan Road, Shanghai 200433, People's Republic of China
| | - Jia Guo
- State Key Laboratory of Molecular Engineering of Polymers, State Key Laboratory of ASIC & System, Department of Macromolecular Science, Laboratory of Advanced Materials, Fudan University , 220 Handan Road, Shanghai 200433, People's Republic of China
| | - Changchun Wang
- State Key Laboratory of Molecular Engineering of Polymers, State Key Laboratory of ASIC & System, Department of Macromolecular Science, Laboratory of Advanced Materials, Fudan University , 220 Handan Road, Shanghai 200433, People's Republic of China
| |
Collapse
|
33
|
Zhang P, Cao Y, Chen H, Zhou B, Hu W, Zhang L. Preparation and evaluation of glycyrrhetinic acid-modified and honokiol-loaded acoustic nanodroplets for targeted tumor imaging and therapy with low-boiling-point phase-change perfluorocarbon. J Mater Chem B 2017; 5:5845-5853. [DOI: 10.1039/c7tb01215b] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Glycyrrhetinic acid-modified and honokiol-loaded acoustic nanodroplets for targeted tumor imaging and therapy with low-boiling-point phase-change perfluorocarbon.
Collapse
Affiliation(s)
- Ping Zhang
- Chongqing Key Laboratory of Biochemistry and Molecular Pharmacology
- Chongqing Research Center for Pharmaceutical Engineering
- School of pharmacy
- Chongqing Medical University
- Chongqing 400016
| | - Yang Cao
- Chongqing Key Laboratory of Ultrasound Molecular Imaging
- Institute of Ultrasound Imaging
- Chongqing Medical University
- Chongqing 400016
- P. R. China
| | - Huali Chen
- Chongqing Key Laboratory of Biochemistry and Molecular Pharmacology
- Chongqing Research Center for Pharmaceutical Engineering
- School of pharmacy
- Chongqing Medical University
- Chongqing 400016
| | - Bo Zhou
- Department of Cardiology, The First Affiliated Hospital
- Chongqing Medical University
- Chongqing 400016
- P. R. China
| | - Wenjing Hu
- Chongqingshi Shapingba District People's Hospital
- Chongqing 400030
- P. R. China
| | - Liangke Zhang
- Chongqing Key Laboratory of Biochemistry and Molecular Pharmacology
- Chongqing Research Center for Pharmaceutical Engineering
- School of pharmacy
- Chongqing Medical University
- Chongqing 400016
| |
Collapse
|
34
|
Vu KB, Chen T, Almahdali S, Bukhryakov KV, Rodionov VO. Hollow Nanospheres with Fluorous Interiors for Transport of Molecular Oxygen in Water. ChemistrySelect 2016. [DOI: 10.1002/slct.201600602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Khanh B. Vu
- KAUST Catalysis Center and Division of Physical Sciences and Engineering; King Abdullah University of Science and Technology; Thuwal 23955-6900 Kingdom of Saudi Arabia
- NTT Hi-Tech Institute; Nguyen Tat Thanh University; 298-300 A Nguyen Tat Thanh Street Ho Chi Minh City Vietnam
| | - Tianyou Chen
- KAUST Catalysis Center and Division of Physical Sciences and Engineering; King Abdullah University of Science and Technology; Thuwal 23955-6900 Kingdom of Saudi Arabia
| | - Sarah Almahdali
- KAUST Catalysis Center and Division of Physical Sciences and Engineering; King Abdullah University of Science and Technology; Thuwal 23955-6900 Kingdom of Saudi Arabia
| | - Konstantin V. Bukhryakov
- KAUST Catalysis Center and Division of Physical Sciences and Engineering; King Abdullah University of Science and Technology; Thuwal 23955-6900 Kingdom of Saudi Arabia
- Department of Chemistry; Massachusetts Institute of Technology; 77 Massachusetts Ave. Cambridge MA 02139-4307
| | - Valentin O. Rodionov
- KAUST Catalysis Center and Division of Physical Sciences and Engineering; King Abdullah University of Science and Technology; Thuwal 23955-6900 Kingdom of Saudi Arabia
| |
Collapse
|
35
|
Manta S, Delalande A, Bessodes M, Bureau MF, Scherman D, Pichon C, Mignet N. Characterization of Positively Charged Lipid Shell Microbubbles with Tunable Resistive Pulse Sensing (TRPS) Method: A Technical Note. ULTRASOUND IN MEDICINE & BIOLOGY 2016; 42:624-630. [PMID: 26653937 DOI: 10.1016/j.ultrasmedbio.2015.10.010] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2015] [Revised: 10/15/2015] [Accepted: 10/18/2015] [Indexed: 06/05/2023]
Abstract
Microbubbles are polydisperse microparticles. Their size distribution cannot be accurately measured from the current methods used, such as optical microscopy, electrical sensing or light scattering. Indeed, these techniques present some limitations when applied to microbubbles, which prompted us to investigate the use of an alternative technique: tunable resistive pulse sensing (TRPS). This technique is based on the principle of the Coulter counter with the advantage of being more flexible compared to other methods using this principle, since the flow rate, the potential difference and the pore size can be modulated. The main limitation of TRPS is that more than one size of nanopore membrane is required to obtain the full size distribution of polydisperse microparticles. To evaluate this technique, the concentration and the size distribution of positively charged microbubbles were studied using TRPS and compared to data obtained using optical microscopy. We describe herein the parameters required for the accurate measurement of microbubble concentration and size distribution by TRPS and present a statistical comparison of the data obtained by TRPS and optical microscopy.
Collapse
Affiliation(s)
- Simona Manta
- Paris Descartes University, Sorbonne Paris Cité, Team vectors for molecular imaging and targeted therapy, CNRS UTCBS UMR8258, INSERM UTCBS U1022, Chimie ParisTech, PSL Research University, Paris, France
| | - Anthony Delalande
- Center for Molecular Biophysics (CBM), CNRS UPR4301, Orléans, France
| | - Michel Bessodes
- Paris Descartes University, Sorbonne Paris Cité, Team vectors for molecular imaging and targeted therapy, CNRS UTCBS UMR8258, INSERM UTCBS U1022, Chimie ParisTech, PSL Research University, Paris, France
| | - Michel Francis Bureau
- Paris Descartes University, Sorbonne Paris Cité, Team vectors for molecular imaging and targeted therapy, CNRS UTCBS UMR8258, INSERM UTCBS U1022, Chimie ParisTech, PSL Research University, Paris, France
| | - Daniel Scherman
- Paris Descartes University, Sorbonne Paris Cité, Team vectors for molecular imaging and targeted therapy, CNRS UTCBS UMR8258, INSERM UTCBS U1022, Chimie ParisTech, PSL Research University, Paris, France
| | - Chantal Pichon
- Center for Molecular Biophysics (CBM), CNRS UPR4301, Orléans, France
| | - Nathalie Mignet
- Paris Descartes University, Sorbonne Paris Cité, Team vectors for molecular imaging and targeted therapy, CNRS UTCBS UMR8258, INSERM UTCBS U1022, Chimie ParisTech, PSL Research University, Paris, France.
| |
Collapse
|
36
|
Zhu Y, Zhang HB, Ding LJ, Chen Z, Sun DY, Jiang ZH. Synthesis and properties of perfluorocarbon chain terminated poly(ether sulfone). RSC Adv 2016. [DOI: 10.1039/c6ra17615a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Perfluorocarbon groups or related compounds are usually used to modify polymer materials because of their low surface energy properties.
Collapse
Affiliation(s)
- Ye Zhu
- Engineering Research Center of High Performance Plastic
- Ministry of Education
- College of Chemistry
- Jilin University
- Changchun 130012
| | - Hai-Bo Zhang
- Engineering Research Center of High Performance Plastic
- Ministry of Education
- College of Chemistry
- Jilin University
- Changchun 130012
| | - Lian-Jun Ding
- Engineering Research Center of High Performance Plastic
- Ministry of Education
- College of Chemistry
- Jilin University
- Changchun 130012
| | - Zheng Chen
- Engineering Research Center of High Performance Plastic
- Ministry of Education
- College of Chemistry
- Jilin University
- Changchun 130012
| | - Da-Ye Sun
- Engineering Research Center of High Performance Plastic
- Ministry of Education
- College of Chemistry
- Jilin University
- Changchun 130012
| | - Zhen-Hua Jiang
- Engineering Research Center of High Performance Plastic
- Ministry of Education
- College of Chemistry
- Jilin University
- Changchun 130012
| |
Collapse
|
37
|
Guédra M, Coulouvrat F. A model for acoustic vaporization of encapsulated droplets. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2015; 138:3656-3667. [PMID: 26723321 DOI: 10.1121/1.4937747] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
The use of encapsulated liquid nanoparticles is currently largely investigated for medical applications, mainly because their reduced size allows them to enter targeted areas which cannot be reached by large microbubbles (contrast agents). Low-boiling point perfluorocarbon droplets can be vaporized on-site under the action of the ultrasonic field, in order to turn them into echogeneous-eventually cavitating-microbubbles. This paper presents a theoretical model describing this phenomenon, paying particular attention to the finite size of the droplet and its encapsulation by a thin viscoelastic layer. Numerical simulations are done for droplets of radii 1 and 10 μm and for frequencies of 1-5 MHz. Results reveal that droplet surface tension and shell rigidity are responsible for an increase of the acoustic droplet vaporization threshold. Furthermore, this threshold does not vary monotonically with frequency, and an optimal frequency can be found to minimize it. Finally, the role of some physical properties on the dynamics of the particle is analyzed, such as the contrast of inner and outer liquids densities and the mechanical properties of the shell.
Collapse
Affiliation(s)
- Matthieu Guédra
- Sorbonne Universités, UPMC Univ Paris 06, CNRS, UMR 7190, Institut Jean Le Rond d'Alembert, F-75005 Paris, France
| | - François Coulouvrat
- Sorbonne Universités, UPMC Univ Paris 06, CNRS, UMR 7190, Institut Jean Le Rond d'Alembert, F-75005 Paris, France
| |
Collapse
|