1
|
Zhang S, Liu C, Su M, Zhou D, Tao Z, Wu S, Xiao L, Li Y. Development of citric acid-based biomaterials for biomedical applications. J Mater Chem B 2024. [PMID: 39465414 DOI: 10.1039/d4tb01666a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/29/2024]
Abstract
The development of bioactive materials with controllable preparation is of great significance for biomedical engineering. Citric acid-based biomaterials are one of the few bioactive materials with many advantages such as simple synthesis, controllable structure, biocompatibility, biomimetic viscoelastic mechanical behavior, controllable biodegradability, and further functionalization. In this paper, we review the development of multifunctional citrate-based biomaterials for biomedical applications, and summarize their multifunctional properties in terms of physical, chemical, and biological aspects, and finally the applications of citrate-based biomaterials in biomedical engineering, including bone tissue engineering, skin tissue engineering, drug/cell delivery, vascular and neural tissue engineering, and bioimaging.
Collapse
Affiliation(s)
- Shihao Zhang
- Engineering Research Center for Biomedical Materials of Ministry of Education, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Material Science & Engineering, East China University of Science and Technology, Shanghai 200237, China.
| | - Cailin Liu
- Engineering Research Center for Biomedical Materials of Ministry of Education, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Material Science & Engineering, East China University of Science and Technology, Shanghai 200237, China.
| | - Meng Su
- Wenzhou Institute of Shanghai University, Wenzhou 325000, China
| | - Dong Zhou
- Engineering Research Center for Biomedical Materials of Ministry of Education, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Material Science & Engineering, East China University of Science and Technology, Shanghai 200237, China.
| | - Ziwei Tao
- Engineering Research Center for Biomedical Materials of Ministry of Education, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Material Science & Engineering, East China University of Science and Technology, Shanghai 200237, China.
| | - Shiyong Wu
- Engineering Research Center for Biomedical Materials of Ministry of Education, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Material Science & Engineering, East China University of Science and Technology, Shanghai 200237, China.
| | - Lan Xiao
- School of Medicine and Dentistry, Griffith University, QLD 4222, Australia.
| | - Yulin Li
- Engineering Research Center for Biomedical Materials of Ministry of Education, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Material Science & Engineering, East China University of Science and Technology, Shanghai 200237, China.
- Wenzhou Institute of Shanghai University, Wenzhou 325000, China
| |
Collapse
|
2
|
Xiao Y, Long X, Zhang X, Mu J, Chen Q, Mai Y, Li Y, Xue H, Song P, Yang X, Zheng H. Enhanced chemiluminescence by carbon dots for rapid detection of bisphenol A and nitrite. Food Chem 2024; 463:141374. [PMID: 39326318 DOI: 10.1016/j.foodchem.2024.141374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2024] [Revised: 09/17/2024] [Accepted: 09/18/2024] [Indexed: 09/28/2024]
Abstract
Herein, a novel chemiluminescence (CL) sensor was successfully developed based on chlorine doped carbon dots (Cl/CDs) for the rapid determination of bisphenol A (BPA) and nitrite. The Cl/CDs were synthesized through a hydrothermal method, using ascorbic acid as the precursor and hydrochloric acid as the dopant. It was found that Cl/CDs significantly enhanced the CL intensity of the acid-KMnO4 system, while BPA and nitrite quenched the CL intensity of the Cl/CDs-sensitized acid-KMnO4 system. Under optimal conditions, BPA exhibited a linear detection range of 0.05-10 μM, with limits of detection (LOD) and quantification (LOQ) of 0.86 nM and 2.8 nM, respectively. Nitrite showed a linear detection range of 0.7-100 μM, with LOD and LOQ of 22.5 nM and 75 nM, respectively. The CL sensor was successfully use to determine BPA in water samples and nitrite in pickles, ham and celery, with spike recovery rates of 96.3 %-104.8 % and 96.0 %-104.9 %, respectively.
Collapse
Affiliation(s)
- Yujie Xiao
- Engineering Research Center of Active Substance Biotechnology, Ministry of Education, College of Life Sciences, Chongqing Normal University, Chongqing 401331, China
| | - Xiaoqin Long
- Engineering Research Center of Active Substance Biotechnology, Ministry of Education, College of Life Sciences, Chongqing Normal University, Chongqing 401331, China
| | - Xue Zhang
- College of Pharmacy, Chongqing Medical and Pharmaceutical College, Chongqing 401331, China
| | - Junjie Mu
- Engineering Research Center of Active Substance Biotechnology, Ministry of Education, College of Life Sciences, Chongqing Normal University, Chongqing 401331, China
| | - Qiuxiong Chen
- Engineering Research Center of Active Substance Biotechnology, Ministry of Education, College of Life Sciences, Chongqing Normal University, Chongqing 401331, China
| | - Yuxian Mai
- Engineering Research Center of Active Substance Biotechnology, Ministry of Education, College of Life Sciences, Chongqing Normal University, Chongqing 401331, China
| | - Ying Li
- Engineering Research Center of Active Substance Biotechnology, Ministry of Education, College of Life Sciences, Chongqing Normal University, Chongqing 401331, China
| | - Hao Xue
- Engineering Research Center of Active Substance Biotechnology, Ministry of Education, College of Life Sciences, Chongqing Normal University, Chongqing 401331, China
| | - Pengyang Song
- Chongqing Wansheng Economic and Technological Development Zone Planning and Natural Resources Bureau, Chongqing 401147, China
| | - Xian Yang
- Engineering Research Center of Active Substance Biotechnology, Ministry of Education, College of Life Sciences, Chongqing Normal University, Chongqing 401331, China.
| | - Hong Zheng
- Engineering Research Center of Active Substance Biotechnology, Ministry of Education, College of Life Sciences, Chongqing Normal University, Chongqing 401331, China; College of Chemistry, Chongqing Normal University, Chongqing 401331, China.
| |
Collapse
|
3
|
Anjali Devi JS, Madanan Anju S, Lekha GM, Aparna RS, George S. Luminescent carbon dots versus quantum dots and gold nanoclusters as sensors. NANOSCALE HORIZONS 2024. [PMID: 39037443 DOI: 10.1039/d4nh00107a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/23/2024]
Abstract
Ultra-small nanoparticles, including quantum dots, gold nanoclusters (AuNCs) and carbon dots (CDs), have emerged as a promising class of fluorescent material because of their molecular-like properties and widespread applications in sensing and imaging. However, the fluorescence properties of ultra-small gold nanoparticles (i.e., AuNCs) and CDs are more complicated and well distinguished from conventional quantum dots or organic dye molecules. At this frontier, we highlight recent developments in the fundamental understanding of the fluorescence emission mechanism of these ultra-small nanoparticles. Moreover, this review carefully analyses the underlying principles of ultra-small nanoparticle sensors. We expect that this information on ultra-small nanoparticles will fuel research aimed at achieving precise control over their fluorescence properties and the broadening of their applications.
Collapse
Affiliation(s)
- J S Anjali Devi
- Department of Chemistry, School of Physical and Mathematical Sciences, University of Kerala, Thiruvananthapuram 695581, Kerala, India.
- School of Chemical Sciences, Mahatma Gandhi University, Priyadarsini Hills P. O., Kottayam 686560, Kerala, India
- Department of Chemistry, Kannur University, Swami Anandatheertha Campus, Payyanur, Edat P. O. Kannur 670327, Kerala, India
| | - S Madanan Anju
- Department of Chemistry, School of Physical and Mathematical Sciences, University of Kerala, Thiruvananthapuram 695581, Kerala, India.
| | - G M Lekha
- Department of Chemistry, School of Physical and Mathematical Sciences, University of Kerala, Thiruvananthapuram 695581, Kerala, India.
| | - R S Aparna
- Department of Chemistry, School of Physical and Mathematical Sciences, University of Kerala, Thiruvananthapuram 695581, Kerala, India.
| | - Sony George
- Department of Chemistry, School of Physical and Mathematical Sciences, University of Kerala, Thiruvananthapuram 695581, Kerala, India.
| |
Collapse
|
4
|
O AA, Akhila BA, George S. Fluorescent Nitrogen-doped Carbon Dots-based Turn-off Sensor for Bilirubin. J Fluoresc 2024:10.1007/s10895-024-03771-0. [PMID: 38865062 DOI: 10.1007/s10895-024-03771-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Accepted: 05/14/2024] [Indexed: 06/13/2024]
Abstract
Bilirubin (BR), a heme protein produced from breakdown of haemoglobin is present in aged red blood cells; whose abnormal concentration is associated with diseases like hyperbilirubinemia, coronary disease, iron deficiency, and so on. Herein, we have synthesized a selective, sensitive, and low-cost sensing platform using fluorescent nitrogen doped carbon dots (NCDs), prepared from precursors; citric acid and urea via a simple microwave-assisted method. The emission at 444 nm on excitation with 360 nm was well quenched in presence of BR suggesting a direct turn-off detection for BR. Characterization of developed probe was done by UV-Visible absorption studies, photoluminescence studies, SEM, TEM, ATR-FTIR, XPS, and DLS analysis. BR was detected with a Limit of Detection (LoD) and Limit of Quantification (LoQ) of 0.32 µM and 1.08 µM respectively. NCDs exhibited excellent selectivity and sensitivity towards BR in the presence of co-existing biomolecules and ions. Practical feasibility was checked by paper-strip-based sensing of BR and spiked real human samples were used for conducting real sample analysis.
Collapse
Affiliation(s)
- Aswathy A O
- Department of Chemistry, School of Physical and Mathematical Sciences, University of Kerala, Kariavattom, Thiruvananthapuram, 695581, Kerala, India
| | - B A Akhila
- Department of Chemistry, School of Physical and Mathematical Sciences, University of Kerala, Kariavattom, Thiruvananthapuram, 695581, Kerala, India
| | - Sony George
- Department of Chemistry, International Inter University Centre for Sensing and Imaging (IIUCSI), University of Kerala, Coordinator, Kariavattom, Thiruvananthapuram, 695581, Kerala, India.
| |
Collapse
|
5
|
K Algethami F, Abdelhamid HN. Heteroatoms-doped carbon dots as dual probes for heavy metal detection. Talanta 2024; 273:125893. [PMID: 38508123 DOI: 10.1016/j.talanta.2024.125893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 02/17/2024] [Accepted: 03/07/2024] [Indexed: 03/22/2024]
Abstract
The utilization of l-cysteine in hydrothermal synthesis allows for the manufacture of carbon dots (CDs) that are doped with heteroatoms including oxygen, nitrogen, and sulfur (N, S, O-doped CDs). CDs have a particle size ranging from 1 to 3 nm, with an average particle size of 2.5 nm. N, S, and O-doped CDs display a blue fluorescence emission at a wavelength of 425 nm. It shows a reliance on the specific excitation wavelength between 320 and 500 nm. It has a selective quenching effect specifically with copper (Cu2+) ions when exposed to interactions with heavy metal ions, as compared to other metal ions. The assay has a limit of detection (LOD) of 2 μM and exhibits a linear correlation within the concentration range of 10-33.3 μM. The fluorescence mechanism was elucidated by employing various analytical techniques, such as transmission electron microscopy (TEM), high-resolution TEM , UV-Vis spectroscopy, zeta potential analysis, and conductometry. An analysis of the data reveals that Cu2+ ions exhibit a strong attraction to the external surface of N, S, and O-doped CDs, leading to the formation of aggregates. N, S, and O-doped CDs can be also used as probes for electrochemical investigations utilizing cyclic voltammetry (CV), linear sweep voltammetry (LSV), chronoamperometry (CA), and electrochemical impedance spectroscopy (EIS) to produce Nyquist and Bode plots. The electrochemical results offer substantiation for the interaction between Cu2+ ions and N, S, and O-doped CDs. Zero-dimensional carbon nanomaterials, i.e. CDs, can improve the detection of heavy metals using optical and electrochemical methods.
Collapse
Affiliation(s)
- Faisal K Algethami
- Department of Chemistry, College of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh, 11432, Saudi Arabia
| | - Hani Nasser Abdelhamid
- Department of Chemistry, Faculty of Science, Assiut University, Assiut, 71575, Egypt; Egyptian-Russian University, Badr City, Cairo, 11829, Egypt.
| |
Collapse
|
6
|
Sun R, Xiong S, Zhang W, Huang Y, Zheng J, Shao J, Chi Y. Highly Active Coreactant-Capped and Water-Stable 3D@2D Core-Shell Perovskite Quantum Dots as a Novel and Strong Self-Enhanced Electrochemiluminescence Probe. Anal Chem 2024; 96:5711-5718. [PMID: 38551104 DOI: 10.1021/acs.analchem.4c00951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/10/2024]
Abstract
Self-enhanced electrochemiluminescence (ECL) probes have attracted more and more attention in analytical chemistry for their significant simplification of the ECL sensing operation while improving the ECL sensing sensitivity. However, the development and applications of self-enhanced ECL probes are still in their infancy and mainly suffer from the requirement of a complicated synthesis strategy and relatively low self-enhanced ECL activity. In this work, we took advantage of the recently emerged perovskite quantum dots (PQDs) with high optical quantum yields and easy surface engineering to develop a new type of PQD-based self-enhanced ECL system. The long alkyl chain (C18) diethanolamine (i.e., N-octadecyldiethanolamine (ODA)) with high ECL coreactant activity was selected as a capping ligand to synthesize an ODA-capped PQD self-enhanced ECL probe. The preparation of the coreactant-capped PQDs is as simple as for the ordinary oleylamine (OAm)-capped PQDs, and the obtained ODA-capped PQDs exhibit very strong self-enhanced ECL activity, 82.5 times higher than that of traditional OAm-capped PQDs. Furthermore, the prepared ODA-PQDs have a unique nanostructure (ODA-CsPbBr3@CsPb2Br5), with the highly emissive 3D CsPbBr3 PQD as the core and the water-stable 2D CsPb2Br5 as the shell, which allows ODA-PQDs to be very stable in aqueous media. It is envisioned that the prepared ODA-3D@2D PQDs with the easy preparation method, strong self-enhanced ECL, and excellent water stability have promising applications in ECL sensing.
Collapse
Affiliation(s)
- Ruifen Sun
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350108, China
| | - Shuyun Xiong
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350108, China
| | - Weiwei Zhang
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350108, China
| | - Yun Huang
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350108, China
| | - Jingcheng Zheng
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350108, China
| | - Jiwei Shao
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350108, China
| | - Yuwu Chi
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350108, China
| |
Collapse
|
7
|
Al-Jaf SH, Omer KM. Dual-spot ratiometric microfluidic paper-based analytical device for accuracy and precision improvement. Talanta 2024; 269:125433. [PMID: 38008019 DOI: 10.1016/j.talanta.2023.125433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 11/09/2023] [Accepted: 11/16/2023] [Indexed: 11/28/2023]
Abstract
Instrumental and environmental fluctuations are common sources of error in smartphone-based optical detection, significantly affecting the accuracy of analytical measurements. In this regard, spotting the sample and reference simultaneously and in close proximity compensates for the fluctuations. This "dual-spot" design is similar to the double-beam technique used in spectrophotometry, which reduces fluctuations in the results. The underlying hypothesis is that any instrumental and/or environmental factors influencing the color intensity in the detection zones will similarly impact the color intensity in the control zone under the same conditions. To test our design, a ratiometric microfluidic paper-based analytical device (μPAD), functionalized with a mixture of green-emissive carbon dots (CDs) and red-emissive ethidium bromide, was developed for the selective detection of ascorbic acid (AA). The green emission of the CDs is quenched by both AA and Fe3+; NaF was thus loaded onto the 3D connector as a masking agent to remove the interference effect of the Fe3+ ions. The color variations were monitored under a UV lamp, using a smartphone to capture the images, and the RGB intensities were processed using the Color Grab application. The proposed double-spot method greatly enhanced the analytical precision and accuracy of the device. A linear working range from 0 to 125 μM was obtained, and the limit of detection was 2.71 μM. The μPAD was successfully used for the detection of AA in human serum, with recoveries from 87.27 to 98.52 %.
Collapse
Affiliation(s)
- Sabah H Al-Jaf
- Department of Chemistry, College of Science, University of Sulaimani, 46002, Sulaimani City, Kurdistan Region, Iraq; Department of Chemistry, College of Science, University of Garmian, Darbandikhan Road, 46021, Kalar City, Sulaimaniyah Province, Kurdistan of Iraq, Iraq
| | - Khalid M Omer
- Department of Chemistry, College of Science, University of Sulaimani, 46002, Sulaimani City, Kurdistan Region, Iraq.
| |
Collapse
|
8
|
Mohapatra D, Pratap R, Pandey V, Shreya S, Naik GG, Mandal SC, Otimenyin SO, Dubey PK, Parmar AS, Sahu AN. Bioengineered dual fluorescent carbon nano dots from Indian long pepper leaves for multifaceted environmental and health utilities. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:52182-52208. [PMID: 36826772 DOI: 10.1007/s11356-023-25887-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Accepted: 02/07/2023] [Indexed: 06/18/2023]
Abstract
In this article, we present the synthesis of Piper longum leaves-derived ethanolic carbon dots (PLECDs) using the most simplistic environmentally friendly solvothermal carbonization method. The PLECDs fluoresced pink color with maximum emission at 670 nm at 397 nm excitation. Additionally, the dried PLECDs dissolved in water showed green fluorescence with higher emission at 452 nm at 370 nm excitation. The UV spectra showed peaks in the UV region (271.25 nm and 320.79 nm) and a noticeable tail in the visible region, signifying the efficient synthesis of nano-sized carbon particles and the Mie scattering effect. Various functional groups (-OH, -N-H, -C-H, -C = C, -C-N, and -C-O) were identified using Fourier transform infrared spectroscopy (FTIR). Its nanocrystalline property was revealed by the sharp peaks in the X-ray diffraction (XRD). High-resolution transmission electron microscopy (HRTEM) photomicrograph displayed a roughly spherical structure with a mean size of 2.835 nm. The energy dispersive X-ray (EDAX) and X-ray photoelectron spectroscopy (XPS) revealed the elemental abundance of C, O, and N. The high-performance thin-layer chromatography (HPTLC) fingerprint of PLECDs showed an altered pattern than its precursor (Piper longum leaves ethanolic extract or PLLEE). The PLECDs sensed Cu2+ selectively with a limit of detection (LOD) and limit of quantification (LOQ) of 0.063 μM and 0.193 μM, respectively. It showed excellent cytotoxicity toward MDA-MB-231 (human breast cancer), SiHa (human cervical carcinoma), and B16F10 (murine melanoma) cell lines with excellent in vitro bioimaging outcomes. It also has free radical scavenging activity. The PLECDs also showed outstanding bacterial biocompatibility, pH-dependent fluorescence stability, photostability, physicochemical stability, and thermal stability.
Collapse
Affiliation(s)
- Debadatta Mohapatra
- Phytomedicine Research Laboratory, Department of Pharmaceutical Engineering & Technology, IIT (BHU), Varanasi, 221005, Uttar Pradesh, India
| | - Ravi Pratap
- Department of Physics, IIT (BHU), Varanasi, 221005, Uttar Pradesh, India
| | - Vivek Pandey
- Centre for Genetic Disorders, Institute of Science (BHU), Varanasi, 221005, Uttar Pradesh, India
| | - Singh Shreya
- Phytomedicine Research Laboratory, Department of Pharmaceutical Engineering & Technology, IIT (BHU), Varanasi, 221005, Uttar Pradesh, India
| | - Gaurav Gopal Naik
- Phytomedicine Research Laboratory, Department of Pharmaceutical Engineering & Technology, IIT (BHU), Varanasi, 221005, Uttar Pradesh, India
| | - Subhash C Mandal
- Pharmacognosy & Phytotherapy Research Laboratory, Division of Pharmacognosy, Department of Pharmaceutical Technology, Jadavpur University, Kolkata, 700032, India
| | - Sunday O Otimenyin
- Department of Pharmacology, Faculty of Pharmaceutical Sciences, University of Jos, Jos, Plateau State, Nigeria
| | - Pawan K Dubey
- Centre for Genetic Disorders, Institute of Science (BHU), Varanasi, 221005, Uttar Pradesh, India
| | - Avanish S Parmar
- Department of Physics, IIT (BHU), Varanasi, 221005, Uttar Pradesh, India
| | - Alakh N Sahu
- Phytomedicine Research Laboratory, Department of Pharmaceutical Engineering & Technology, IIT (BHU), Varanasi, 221005, Uttar Pradesh, India.
| |
Collapse
|
9
|
Mao Q, Yang J, Wu X, Fu Y, Song X, Ma T. Determination of multiple targets by using dual-fluorescence emissive carbon dots. CHINESE JOURNAL OF ANALYTICAL CHEMISTRY 2023. [DOI: 10.1016/j.cjac.2023.100227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
10
|
Wang Z, Jin X, Yan L, Yang Y, Liu X. Recent research progress in CDs@MOFs composites: fabrication, property modulation, and application. Mikrochim Acta 2022; 190:28. [PMID: 36520192 DOI: 10.1007/s00604-022-05597-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Accepted: 11/23/2022] [Indexed: 12/23/2022]
Abstract
Carbon dots (CDs) have exhibited a promising application prospect in many fields because of their good fluorescence properties, biocompatibility, low toxicity, and easy functionalization. In order to improve their photoelectricity and stability, metal-organic frameworks (MOFs) can be used as host materials to provide ideal carriers for CDs to realize the multifunctional composites of CDs and MOFs (CDs@MOFs). At present, CDs@MOFs composites have shown tremendous application potential because they have various advantages of both CDs and MOFs. In this review, the synthesis methods of CDs@MOFs composites are firstly introduced. Then, the influence of the synergy between CDs and MOFs on the regulation of their structures and optical properties is highlighted. Furthermore, the recent application researches of CDs@MOFs composites in fluorescent probes, solid-state lighting, and photoelectrocatalysis are generalized. Finally, the critical issues, challenges, and solutions on their structure and property regulation and application are put forward, and their commercialization direction is also prospected.
Collapse
Affiliation(s)
- Zhi Wang
- Key Laboratory of Interface Science and Engineering in Advanced Materials, Ministry of Education, Taiyuan University of Technology, Taiyuan, 030024, China
| | - Xudong Jin
- Key Laboratory of Interface Science and Engineering in Advanced Materials, Ministry of Education, Taiyuan University of Technology, Taiyuan, 030024, China
| | - Lingpeng Yan
- Key Laboratory of Interface Science and Engineering in Advanced Materials, Ministry of Education, Taiyuan University of Technology, Taiyuan, 030024, China.,College of Materials Science and Engineering, Taiyuan University of Technology, Taiyuan, 030024, China
| | - Yongzhen Yang
- Key Laboratory of Interface Science and Engineering in Advanced Materials, Ministry of Education, Taiyuan University of Technology, Taiyuan, 030024, China.
| | - Xuguang Liu
- College of Materials Science and Engineering, Taiyuan University of Technology, Taiyuan, 030024, China
| |
Collapse
|
11
|
Sun R, Yu X, Chen J, Zhang W, Huang Y, Zheng J, Chi Y. Highly Electrochemiluminescent Cs 4PbBr 6@CsPbBr 3 Perovskite Nanoacanthospheres and Their Application for Sensing Bisphenol A. Anal Chem 2022; 94:17142-17150. [PMID: 36444997 DOI: 10.1021/acs.analchem.2c03494] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Perovskite quantum dots (PQDs) as recently emerging electrochemiluminescence (ECL) luminophores have been paid much attention due to their good ECL activity, narrow ECL spectra, and easy preparation. However, the PQDs used for ECL sensing were mainly inherited from those PQDs prepared as strong fluorescence (FL) luminophores, which would limit the finding of highly ECL PQDs for sensing due to the very different mechanisms in generating excited-state luminophores between ECL and FL. In order to obtain highly electrochemiluminescent PQDs, for the first time we proposed to synthesize PQDs for ECL sensing rather than for FL-based analysis by optimizing the synthesis conditions. It was revealed that the volume of the precursor solution, the concentrations of CsBr and PbBr2, the amount of capping reagents, and the synthesis reaction temperature all significantly affect the ECL activity of PQDs. On the basis of the optimization of the synthesis conditions, we obtained a new type of PQDs with high ECL activity. The new PQDs were characterized by several technologies, such as scanning electron microscopy, transmission electron microscopy, X-ray diffraction, and energy dispersive X-ray spectrum, to be the hybrids of 3D PQDs (CsPbBr3) and 0D PQDs (Cs4PbBr6) with unique morphologies, i.e., Cs4PbBr6@CsPbBr3 PQD nanoacanthospheres (PNAs), in which Cs4PbBr6 was as the core and CsPbBr3 served as the shell. The obtained Cs4PbBr6@CsPbBr3 PNAs had much higher (>4 times) ECL activity than the prevailing 3D (CsPbBr3) PQDs. Finally, the novel Cs4PbBr6@CsPbBr3 PNAs have been applied for the ECL sensing of bisphenol A (BPA), showing a promising application of the highly electrochemiluminescent PQDs in analytical chemistry.
Collapse
Affiliation(s)
- Ruifen Sun
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, Fujian350108, China
| | - Xiumin Yu
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, Fujian350108, China
| | - Jie Chen
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, Fujian350108, China
| | - Weiwei Zhang
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, Fujian350108, China
| | - Yun Huang
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, Fujian350108, China
| | - Jingcheng Zheng
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, Fujian350108, China
| | - Yuwu Chi
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, Fujian350108, China
| |
Collapse
|
12
|
Chai Y, Feng Y, Zhang K, Li J. Preparation of Fluorescent Carbon Dots Composites and Their Potential Applications in Biomedicine and Drug Delivery-A Review. Pharmaceutics 2022; 14:pharmaceutics14112482. [PMID: 36432673 PMCID: PMC9697445 DOI: 10.3390/pharmaceutics14112482] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 11/11/2022] [Accepted: 11/14/2022] [Indexed: 11/19/2022] Open
Abstract
Carbon dots (CDs), a new member of carbon nanostructures, rely on surface modification and functionalization for their good fluorescence phosphorescence and excellent physical and chemical properties, including small size (<10 nm), high chemical stability, biocompatibility, non-toxicity, low cost, and easy synthesis. In the field of medical research on cancer (IARC), CDs, a new material with unique optical properties as a photosensitizer, are being applied to heating local apoptosis induction of cancer cells. In addition, imaging tools can also be combined with a drug to form the nanometer complex compound, the imaging guidance for multi-function dosage, so as to improve the efficiency of drug delivery, which also plays a big role in genetic diagnosis. This paper mainly includes three parts: The first part briefly introduces the synthesis and preparation of carbon dots, and summarizes the advantages and disadvantages of different preparation methods; The second part introduces the preparation methods of carbon dot composites. Finally, the application status of carbon dot composites in biomedicine, cancer theranostics, drug delivery, electrochemistry, and photocatalysis is summarized.
Collapse
Affiliation(s)
- Yaru Chai
- School of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450000, China
| | - Yashan Feng
- Advanced Functional Materials Laboratory, Zhengzhou Railway Vocational & Technical College, Zhengzhou 450000, China
| | - Kun Zhang
- School of Life Science, Zhengzhou University, Zhengzhou 450000, China
- Correspondence: (K.Z.); (J.L.); Tel.: +86-185-3995-6211 (J.L.)
| | - Jingan Li
- School of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450000, China
- Correspondence: (K.Z.); (J.L.); Tel.: +86-185-3995-6211 (J.L.)
| |
Collapse
|
13
|
Jadhav RW, Khobrekar PP, Bugde ST, Bhosale SV. Nanoarchitectonics of neomycin-derived fluorescent carbon dots for selective detection of Fe 3+ ions. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2022; 14:3289-3298. [PMID: 35968579 DOI: 10.1039/d2ay01040b] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The first-ever neomycin antibiotic-based carbon dots (Neo-CDs) were synthesized via a low-cost, eco-friendly, and single-step hydrothermal method using neomycin as a single precursor. The as-prepared Neo-CDs exhibited strong and stable blue fluorescence and were well characterized by TEM, UV-vis absorption, fluorescence emission, IR, XRD, Raman and XPS spectroscopy methods. The Neo-CDs showed a well-distributed size within the range of 4.5 to 7.8 nm, comprising various functional groups on the surface of the carbon core. The Neo-CDs exhibited exceptional emission behaviour, and fluorescence quantum yield was calculated to be 55% in double distilled water. Neo-CDs have been used as a fluorescent sensor for selective and sensitive detection of Fe3+ ions in aqueous solution in the fluorescence turn-off mode. From the set of metal ions, only the Fe3+ ion showed quenching of fluorescence due to photoinduced (PET) electron transfer from Neo-CDs to the half-filled 3d orbital of Fe3+ ions. The limit of detection for Fe3+ ions was calculated to be 0.854 μM. Further, the quenching efficiency and Stern-Volmer quenching constant have been calculated which are about 94% and 5.6 × 106 M-1, respectively.
Collapse
Affiliation(s)
- Ratan W Jadhav
- School of Chemical Sciences, Goa University, Taleigao Plateau, Goa-403 206, India.
| | - Pritesh P Khobrekar
- School of Chemical Sciences, Goa University, Taleigao Plateau, Goa-403 206, India.
| | - Sandesh T Bugde
- School of Chemical Sciences, Goa University, Taleigao Plateau, Goa-403 206, India.
| | - Sheshanath V Bhosale
- School of Chemical Sciences, Goa University, Taleigao Plateau, Goa-403 206, India.
| |
Collapse
|
14
|
In Vitro Cancer Cell Imaging, Free Radical Scavenging, and Fe3+ Sensing Activity of Green Synthesized Carbon Dots from Leaves of Piper longum. J CLUST SCI 2022. [DOI: 10.1007/s10876-022-02303-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
15
|
Graphene quantum dots: synthesis, properties, and applications to the development of optical and electrochemical sensors for chemical sensing. Mikrochim Acta 2022; 189:258. [PMID: 35701638 DOI: 10.1007/s00604-022-05353-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Accepted: 05/24/2022] [Indexed: 10/18/2022]
Abstract
GQDs exhibits exceptional electrochemical activity owing to their active edge sites that make them very attractive for biosensing applications. However, their use in the design of new biosensing devices for application to the detection and quantification of toxins, pathogens, and clinical biomarkers has so far not investigated in detail. In this regard, herein we provide a detailed review on various methodologies employed for the synthesis of GQDs, including bottom-up and top-down approaches, with a special focus on their applications in biosensing via fluorescence, photoluminescence, chemiluminescence, electrochemiluminescence, fluorescence resonance energy transfer, and electrochemical techniques. We believe that this review will shed light on the critical issues and widen the applications of GQDs for the design of biosensors with improved analytical response for future applications. HIGHLIGHTS: • Properties of GQDs play a critical role in biosensing applications. • Synthesis of GQDs using top-down and bottom-up approaches is discussed comprehensively. • Overview of advancements in GQD-based sensors over the last decade. • Methods for the design of selective and sensitive GQD-based sensors. • Challenges and opportunities for future GQD-based sensors.
Collapse
|
16
|
Zhang W, Zhong H, Zhao P, Shen A, Li H, Liu X. Carbon quantum dot fluorescent probes for food safety detection: Progress, opportunities and challenges. Food Control 2022. [DOI: 10.1016/j.foodcont.2021.108591] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
17
|
Xue W, Zhong J, Wu H, Zhang J, Chi Y. A visualized ratiometric fluorescence sensing system for copper ions based on gold nanoclusters/perovskite quantum dot@SiO 2 nanocomposites. Analyst 2021; 146:7545-7553. [PMID: 34812805 DOI: 10.1039/d1an01857d] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Excessive copper ions (Cu2+) cause serious environmental pollution and even endanger the health of organisms. Fluorescence chemosensing materials are widely used in the detection of metal ions due to their simple operation and high sensitivity. In this study, SiO2-encapsulated single perovskite quantum dot (PQD@SiO2) core-shell nanostructures which show strong, stable, and green fluorescence are synthesized and composited with gold nanoclusters (AuNCs) which show Cu2+-sensitive and red light-emitting fluorescence to obtain a visualized ratiometric fluorescence sensor (AuNCs/PQD@SiO2) for the detection of Cu2+. In the visualized detection of Cu2+, the green fluorescence emitted from the ion-insensitive PQD@SiO2 component is used as a reference signal and the red fluorescence emitted by ion-sensitive AuNC component is adopted as a sensing signal. In the presence of Cu2+, the red fluorescence is quenched whereas the green fluorescence remains stable, which results in a visualized fluorescence color change from orange-red to yellow and finally to green with increasing Cu2+ concentration. The significant change in the fluorescence color of AuNCs/PQD@SiO2 in response to Cu2+ enables a rapid, sensitive, and visualized detection of Cu2+. Further accurate and sensitive ratiometric fluorescence analysis of Cu2+ can be accomplished by measuring the ratio of fluorescence intensities at 643 and 520 nm (I643/I520) at a certain Cu2+ level. The developed AuNCs/PQD@SiO2-based sensor has been validated by its satisfactory application in the detection of Cu2+ in human serum and environmental water samples.
Collapse
Affiliation(s)
- Wanying Xue
- MOE Key Laboratory of Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, and College of Chemistry, Fuzhou University, Fuzhou, 350108, P.R. China. .,Department of Earth and Environmental Sciences, The University of Manchester, Oxford Road, Manchester, M13 9PL, UK
| | - Jiangyan Zhong
- MOE Key Laboratory of Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, and College of Chemistry, Fuzhou University, Fuzhou, 350108, P.R. China.
| | - Haishan Wu
- MOE Key Laboratory of Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, and College of Chemistry, Fuzhou University, Fuzhou, 350108, P.R. China.
| | - Jianhua Zhang
- Radiation Environment Supervision Station of Fujian Province, Fuzhou, 350012, P.R. China
| | - Yuwu Chi
- MOE Key Laboratory of Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, and College of Chemistry, Fuzhou University, Fuzhou, 350108, P.R. China.
| |
Collapse
|
18
|
Bendicho C, Lavilla I, Pena-Pereira F, de la Calle I, Romero V. Paper-Based Analytical Devices for Colorimetric and Luminescent Detection of Mercury in Waters: An Overview. SENSORS (BASEL, SWITZERLAND) 2021; 21:7571. [PMID: 34833647 PMCID: PMC8625215 DOI: 10.3390/s21227571] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/16/2021] [Revised: 11/08/2021] [Accepted: 11/10/2021] [Indexed: 11/16/2022]
Abstract
Lab-on-paper technologies, also known as paper-based analytical devices (PADs), have received increasing attention in the last years, and nowadays, their use has spread to virtually every application area, i.e., medical diagnostic, food safety, environmental monitoring, etc. Advantages inherent to on-field detection, which include avoiding sampling, sample preparation and conventional instrumentation in central labs, are undoubtedly driving many developments in this area. Heavy metals represent an important group of environmental pollutants that require strict controls due to the threat they pose to ecosystems and human health. In this overview, the development of PADs for Hg monitoring, which is considered the most toxic metal in the environment, is addressed. The main emphasis is placed on recognition elements (i.e., organic chromophores/fluorophores, plasmonic nanoparticles, inorganic quantum dots, carbon quantum dots, metal nanoclusters, etc.) employed to provide suitable selectivity and sensitivity. The performance of both microfluidic paper-based analytical devices and paper-based sensors using signal readout by colorimetry and luminescence will be discussed.
Collapse
Affiliation(s)
- Carlos Bendicho
- Centro de Investigación Mariña, Departamento de Química Analítica e Alimentaria, Campus de Vigo, Universidade de Vigo, Grupo QA2, Edificio CC Experimentais, As Lagoas, Marcosende, 36310 Vigo, Spain; (I.L.); (F.P.-P.); (I.d.l.C.); (V.R.)
| | | | | | | | | |
Collapse
|
19
|
Green synthesis of carbon dots for ultrasensitive detection of Cu2+ and oxalate with turn on-off-on pattern in aqueous medium and its application in cellular imaging. J Photochem Photobiol A Chem 2021. [DOI: 10.1016/j.jphotochem.2021.113443] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
20
|
Algar WR, Massey M, Rees K, Higgins R, Krause KD, Darwish GH, Peveler WJ, Xiao Z, Tsai HY, Gupta R, Lix K, Tran MV, Kim H. Photoluminescent Nanoparticles for Chemical and Biological Analysis and Imaging. Chem Rev 2021; 121:9243-9358. [PMID: 34282906 DOI: 10.1021/acs.chemrev.0c01176] [Citation(s) in RCA: 123] [Impact Index Per Article: 41.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Research related to the development and application of luminescent nanoparticles (LNPs) for chemical and biological analysis and imaging is flourishing. Novel materials and new applications continue to be reported after two decades of research. This review provides a comprehensive and heuristic overview of this field. It is targeted to both newcomers and experts who are interested in a critical assessment of LNP materials, their properties, strengths and weaknesses, and prospective applications. Numerous LNP materials are cataloged by fundamental descriptions of their chemical identities and physical morphology, quantitative photoluminescence (PL) properties, PL mechanisms, and surface chemistry. These materials include various semiconductor quantum dots, carbon nanotubes, graphene derivatives, carbon dots, nanodiamonds, luminescent metal nanoclusters, lanthanide-doped upconversion nanoparticles and downshifting nanoparticles, triplet-triplet annihilation nanoparticles, persistent-luminescence nanoparticles, conjugated polymer nanoparticles and semiconducting polymer dots, multi-nanoparticle assemblies, and doped and labeled nanoparticles, including but not limited to those based on polymers and silica. As an exercise in the critical assessment of LNP properties, these materials are ranked by several application-related functional criteria. Additional sections highlight recent examples of advances in chemical and biological analysis, point-of-care diagnostics, and cellular, tissue, and in vivo imaging and theranostics. These examples are drawn from the recent literature and organized by both LNP material and the particular properties that are leveraged to an advantage. Finally, a perspective on what comes next for the field is offered.
Collapse
Affiliation(s)
- W Russ Algar
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, BC V6T 1Z1, Canada
| | - Melissa Massey
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, BC V6T 1Z1, Canada
| | - Kelly Rees
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, BC V6T 1Z1, Canada
| | - Rehan Higgins
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, BC V6T 1Z1, Canada
| | - Katherine D Krause
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, BC V6T 1Z1, Canada
| | - Ghinwa H Darwish
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, BC V6T 1Z1, Canada
| | - William J Peveler
- School of Chemistry, Joseph Black Building, University of Glasgow, Glasgow G12 8QQ, U.K
| | - Zhujun Xiao
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, BC V6T 1Z1, Canada
| | - Hsin-Yun Tsai
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, BC V6T 1Z1, Canada
| | - Rupsa Gupta
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, BC V6T 1Z1, Canada
| | - Kelsi Lix
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, BC V6T 1Z1, Canada
| | - Michael V Tran
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, BC V6T 1Z1, Canada
| | - Hyungki Kim
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, BC V6T 1Z1, Canada
| |
Collapse
|
21
|
Metal–organic frameworks (MOFs) based electrochemical biosensors for early cancer diagnosis in vitro. Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2021.213948] [Citation(s) in RCA: 54] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
22
|
Khalid MA, Zhao Y, Yang Y, Liu X, Garrone E, Dai A, Diao G, Carlini R. Fluorescent Polyimide Films Produced with Diatomite and Mesoporous Silica as Promising High-Tech Material. J Inorg Organomet Polym Mater 2021. [DOI: 10.1007/s10904-021-01943-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
23
|
Nocito G, Calabrese G, Forte S, Petralia S, Puglisi C, Campolo M, Esposito E, Conoci S. Carbon Dots as Promising Tools for Cancer Diagnosis and Therapy. Cancers (Basel) 2021; 13:cancers13091991. [PMID: 33919096 PMCID: PMC8122497 DOI: 10.3390/cancers13091991] [Citation(s) in RCA: 51] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2021] [Revised: 04/17/2021] [Accepted: 04/19/2021] [Indexed: 12/24/2022] Open
Abstract
Simple Summary Diagnostic approaches and chemotherapeutic delivery based on nanotechnologies, such as nanoparticles (NPs), could be promising candidates for the new era of cancer research. Recently great attention has been received by carbon-based nanomaterials such as Carbon Dots (CDs), due their variegated physical-chemical properties that makes these systems appealing for multiple use from bioimaging, biosensing, nano-carriers for drug delivery systems to innovative therapeutic agents in photodynamic (PDT) and photothermal therapy (PTT). In this review, we report the last evidence on the application and prospects of CDs as useful nano theranostics tools for cancer diagnosis and therapy. Abstract Carbon Dots (CDs) are the latest members of carbon-based nanomaterials, which since their discovery have attracted notable attention due to their chemical and mechanical properties, brilliant fluorescence, high photostability, and good biocompatibility. Together with the ease and affordable preparation costs, these intrinsic features make CDs the most promising nanomaterials for multiple applications in the biological field, such as bioimaging, biotherapy, and gene/drug delivery. This review will illustrate the most recent applications of CDs in the biomedical field, focusing on their biocompatibility, fluorescence, low cytotoxicity, cellular uptake, and theranostic properties to highlight above all their usefulness as a promising tool for cancer diagnosis and therapy.
Collapse
Affiliation(s)
- Giuseppe Nocito
- Department of Chemistry, Biology, Pharmacy and Environmental Science, University of Messina, 98122 Messina, Italy; (G.N.); (M.C.); (E.E.)
| | - Giovanna Calabrese
- Department of Chemistry, Biology, Pharmacy and Environmental Science, University of Messina, 98122 Messina, Italy; (G.N.); (M.C.); (E.E.)
- Correspondence: (G.C.); (S.C.)
| | - Stefano Forte
- IOM Ricerca, Viagrande, 95029 Catania, Italy; (S.F.); (C.P.)
| | - Salvatore Petralia
- Department of Drug Science and Health, University of Catania, 95125 Catania, Italy;
| | | | - Michela Campolo
- Department of Chemistry, Biology, Pharmacy and Environmental Science, University of Messina, 98122 Messina, Italy; (G.N.); (M.C.); (E.E.)
| | - Emanuela Esposito
- Department of Chemistry, Biology, Pharmacy and Environmental Science, University of Messina, 98122 Messina, Italy; (G.N.); (M.C.); (E.E.)
| | - Sabrina Conoci
- Department of Chemistry, Biology, Pharmacy and Environmental Science, University of Messina, 98122 Messina, Italy; (G.N.); (M.C.); (E.E.)
- Correspondence: (G.C.); (S.C.)
| |
Collapse
|
24
|
Green Sources Derived Carbon Dots for Multifaceted Applications. J Fluoresc 2021; 31:915-932. [PMID: 33786684 DOI: 10.1007/s10895-021-02721-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2021] [Accepted: 03/17/2021] [Indexed: 10/21/2022]
Abstract
For the past decade, the Carbon dots (CDs) a tiny sized carbon nanomaterial are typically much attentive due to their outstanding properties. Nature is a fortune of exciting starting materials that provides many inexpensive and renewable resources which have received the topmost attention of researchers because of non-hazardous and eco-friendly nature that can be used to prepare green CDs by top-down and bottom-up synthesis including hydrothermal carbonization, microwave synthesis, and pyrolysis due to its simple synthetic process, speedy reactions and clear-cut end steps. Compared to chemically derived CDs, green CDs are varied by their properties such as less toxicity, high water dispersibility, superior biocompatibility, good photostability, bright fluorescence, and ease of modification. These nanomaterials are a promising material for sensor and biological fields, especially in electrochemical sensing of toxic and trace elements in ecosystems, metal sensing, diagnosis of diseases through bio-sensing, and detection of cancerous cells by in-vitro and in-vivo bio-imaging applications. In this review, the various synthetic routes, fluorescent mechanisms, and applications of CDs from discovery to the present are briefly discussed. Herein, the latest developments on the synthesis of CDs derived from green carbon materials and their promising applications in sensing, catalysis and bio-imaging were summarized. Moreover, some challenging problems, as well as upcoming perspectives of this powerful and tremendous material, are also discussed.
Collapse
|
25
|
Zhang J, Wang F, Li D, Yan J, Wei J, Wang X, Zhang J, Wang Z. Defect induced luminescence from surface modified calcium fluoride nanoparticles for in-situ temperature monitoring of lubricating oil. APPLIED NANOSCIENCE 2021. [DOI: 10.1007/s13204-020-01654-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
|
26
|
Bendicho C, Lavilla I, Pena-Pereira F, de la Calle I, Romero V. Nanomaterial-Integrated Cellulose Platforms for Optical Sensing of Trace Metals and Anionic Species in the Environment. SENSORS (BASEL, SWITZERLAND) 2021; 21:E604. [PMID: 33467146 PMCID: PMC7830103 DOI: 10.3390/s21020604] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 01/12/2021] [Accepted: 01/13/2021] [Indexed: 12/18/2022]
Abstract
The development of disposable sensors that can be easily adapted to every analytical problem is currently a hot topic that is revolutionizing many areas of science and technology. The need for decentralized analytical measurements at real time is increasing for solving problems in areas such as environment pollution, medical diagnostic, food quality assurance, etc., requiring fast action. Despite some current limitations of these devices, such as insufficient detection capability at (ultra)trace level and risk of interferent effects due to matrix, they allow low-cost analysis, portability, low sample consumption, and fast response. In the last years, development of paper-based analytical devices has undergone a dramatic increase for on-site detection of toxic metal ions and other pollutants. Along with the great availability of cellulose substrates, the immobilization of receptors providing enhanced recognition ability, such as a variety of nanomaterials, has driven the design of novel sensing approaches. This review is aimed at describing and discussing the different possibilities arisen with the use of different nanoreceptors (e.g., plasmonic nanoparticles, quantum dots, carbon-based fluorescent nanoparticles, etc.) immobilized onto cellulose-based substrates for trace element detection, their advantages and shortcomings.
Collapse
Affiliation(s)
- Carlos Bendicho
- Centro de Investigación Mariña, Universidade de Vigo, Departamento de Química Analítica y Alimentaria, Grupo QA2, 36310 Vigo, Spain; (I.L.); (F.P.-P.); (I.d.l.C.); (V.R.)
| | | | | | | | | |
Collapse
|
27
|
Alexandre MR, Costa AI, Berberan-Santos MN, Prata JV. Finding Value in Wastewaters from the Cork Industry: Carbon Dots Synthesis and Fluorescence for Hemeprotein Detection. Molecules 2020; 25:E2320. [PMID: 32429224 PMCID: PMC7287723 DOI: 10.3390/molecules25102320] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 05/10/2020] [Accepted: 05/11/2020] [Indexed: 11/17/2022] Open
Abstract
Valorisation of industrial low-value waste residues was preconized. Hence, carbon dots (C-dots) were synthesized from wastewaters of the cork industry-an abundant and affordable, but environmentally-problematic industrial effluent. The carbon nanomaterials were structurally and morphologically characterised, and their photophysical properties were analysed by an ensemble of spectroscopy techniques. Afterwards, they were successfully applied as highly-sensitive fluorescence probes for the direct detection of haemproteins. Haemoglobin, cytochrome c and myoglobin were selected as specific targets owing to their relevant roles in living organisms, wherein their deficiencies or surpluses are associated with several medical conditions. For all of them, remarkable responses were achieved, allowing their detection at nanomolar levels. Steady-state and time-resolved fluorescence, ground-state UV-Vis absorption and electronic circular dichroism techniques were used to investigate the probable mechanisms behind the fluorescence turn-off of C-dots. Extensive experimental evidence points to a static quenching mechanism. Likewise, resonance energy transfer and collisional quenching have been discarded as excited-state deactivating mechanisms. It was additionally found that an oxidative, photoinduced electron transfer occurs for cytochrome c, the most electron-deficient protein. Besides, C-dots prepared from citric acid/ethylenediamine were comparatively assayed for protein detection and the differences between the two types of nanomaterials highlighted.
Collapse
Affiliation(s)
- Marta R. Alexandre
- Departamento de Engenharia Química, Instituto Superior de Engenharia de Lisboa, Instituto Politécnico de Lisboa, R. Conselheiro Emídio Navarro, 1, 1959-007 Lisboa, Portugal; (M.R.A.); (A.I.C.)
| | - Alexandra I. Costa
- Departamento de Engenharia Química, Instituto Superior de Engenharia de Lisboa, Instituto Politécnico de Lisboa, R. Conselheiro Emídio Navarro, 1, 1959-007 Lisboa, Portugal; (M.R.A.); (A.I.C.)
- Centro de Química-Vila Real, Universidade de Trás-os-Montes e Alto Douro, 5000-801 Vila Real, Portugal
| | - Mário N. Berberan-Santos
- Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal;
| | - José V. Prata
- Departamento de Engenharia Química, Instituto Superior de Engenharia de Lisboa, Instituto Politécnico de Lisboa, R. Conselheiro Emídio Navarro, 1, 1959-007 Lisboa, Portugal; (M.R.A.); (A.I.C.)
- Centro de Química-Vila Real, Universidade de Trás-os-Montes e Alto Douro, 5000-801 Vila Real, Portugal
| |
Collapse
|
28
|
Zhao X, Li J, Liu D, Yang M, Wang W, Zhu S, Yang B. Self-Enhanced Carbonized Polymer Dots for Selective Visualization of Lysosomes and Real-Time Apoptosis Monitoring. iScience 2020; 23:100982. [PMID: 32234664 PMCID: PMC7113624 DOI: 10.1016/j.isci.2020.100982] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Revised: 02/23/2020] [Accepted: 03/07/2020] [Indexed: 11/29/2022] Open
Abstract
Protons are highly related to cell viability during physiological and pathological processes. Developing new probes to monitor the pH variation could be extremely helpful to understand the viability of cells and the cell death study. Carbonized polymer dots (CPDs) are superior biocompatible and have been widely applied in bioimaging field. Herein, a new type of extreme-pH suitable CPDs was prepared from citric acid and o-phenylenediamine (CA/oPD-CPDs). Due to the co-existence of hydrophilic and hydrophobic groups, CA/oPD-CPDs tend to aggregate in neutral condition with a dramatic decrease of fluorescence, but disperse well in both acidic and alkaline conditions with brighter emission. This specialty enables them to selectively illuminate lysosomes in cells. Moreover, CA/oPD-CPDs in the cytoplasm could serve as a sustained probe to record intracellular pH variation during apoptosis. Furthermore, CA/oPD-CPDs present a continuous fluorescence increase upon 2-h laser irradiation in living cells, underscoring this imaging system for long-term biological recording.
Collapse
Affiliation(s)
- Xiaohuan Zhao
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, Jilin 130012, P. R. China
| | - Jing Li
- The Scientific Research Center, China-Japan Union Hospital, Jilin University, Changchun, Jilin 130033, P. R. China
| | - Dongning Liu
- Department of Periodontology, Stomatology Hospital, Jilin University, Changchun, Jilin 130021, P. R. China
| | - Mingxi Yang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, Jilin 130012, P. R. China
| | - Wenjing Wang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, Jilin 130012, P. R. China
| | - Shoujun Zhu
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, Jilin 130012, P. R. China; Key Laboratory of Organ Regeneration & Transplantation of the Ministry of Education, The First Hospital of Jilin University, Changchun, Jilin 130061, P.R. China
| | - Bai Yang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, Jilin 130012, P. R. China.
| |
Collapse
|
29
|
Anjali Devi JS, Aparna RS, Anjana RR, Vijila NS, Jayakrishna J, George S. Amplified luminescence quenching effect upon binding of nitrogen doped carbon nanodots to transition metal ions. Photochem Photobiol Sci 2020; 19:207-216. [PMID: 31960873 DOI: 10.1039/c9pp00420c] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
There is a significant drive to identify a unified emission mechanism hidden behind carbon nanodots (CDs) to attain reliable control over their photoluminescence properties. This issue is addressed here by investigating the fluorescence response of citric acid and urea-based nitrogen doped carbon nanodots (NCDs) towards transition metal ions in solutions of different polarities/viscosities/hydrogen bonding strengths. The photoluminescence from NCDs upon excitation at 400 nm is quenched by metal ions such as chromium(vi), ruthenium(iii) and iron(iii) in two different polar solvents, protic water and aprotic dimethylsulphoxide (DMSO). This amplified luminescence quenching in polar solutions showed significant static quenching contributions. The quenching phenomenon highly depends on the excitation wavelength and solvent environment. The fluorescence quenching sequence reveals that pyridinic nitrogen-bases have a dominant influence on J-like emissive aggregates of NCDs. Similarly, oxygen-containing functional groups play a significant role in constructing H-aggregates of NCDs. The most intense emission is contributed by the J-like assembly of H-aggregates.
Collapse
Affiliation(s)
- J S Anjali Devi
- Department of Chemistry, School of Physical and Mathematical Sciences, Research Centre, University of Kerala, Kariavattom Campus, Thiruvananthapuram-695581, Kerala, India.
| | | | | | | | | | | |
Collapse
|
30
|
Yang W, Zhang G, Ni J, Lin Z. Metal-enhanced fluorometric formaldehyde assay based on the use of in-situ grown silver nanoparticles on silica-encapsulated carbon dots. Mikrochim Acta 2020; 187:137. [DOI: 10.1007/s00604-019-4105-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Accepted: 12/30/2019] [Indexed: 10/25/2022]
|
31
|
|
32
|
Yue X, Zhou Z, Wu Y, Jie M, Li Y, Guo H, Bai Y. A green carbon dots-based fluorescent sensor for selective and visual detection of nitrite triggered by the nitrite–thiol reaction. NEW J CHEM 2020. [DOI: 10.1039/d0nj01025a] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Selective and visual detection of nitrite is realized through the inner-filter effect triggered by the nitrite–thiol reaction based on green carbon dots.
Collapse
Affiliation(s)
- Xiaoyue Yue
- College of Food and Biological Engineering
- Zhengzhou University of Light Industry
- Zhengzhou 450001
- P. R. China
- Henan Key Laboratory of Cold Chain Food Quality and Safety Control
| | - Zijun Zhou
- College of Food and Biological Engineering
- Zhengzhou University of Light Industry
- Zhengzhou 450001
- P. R. China
| | - Yongmei Wu
- College of Food and Biological Engineering
- Zhengzhou University of Light Industry
- Zhengzhou 450001
- P. R. China
- Henan Key Laboratory of Cold Chain Food Quality and Safety Control
| | - Mingsha Jie
- College of Food and Biological Engineering
- Zhengzhou University of Light Industry
- Zhengzhou 450001
- P. R. China
- Henan Key Laboratory of Cold Chain Food Quality and Safety Control
| | - Yan Li
- College of Food and Biological Engineering
- Zhengzhou University of Light Industry
- Zhengzhou 450001
- P. R. China
| | - Haobin Guo
- College of Food and Biological Engineering
- Zhengzhou University of Light Industry
- Zhengzhou 450001
- P. R. China
| | - Yanhong Bai
- College of Food and Biological Engineering
- Zhengzhou University of Light Industry
- Zhengzhou 450001
- P. R. China
- Henan Key Laboratory of Cold Chain Food Quality and Safety Control
| |
Collapse
|
33
|
Hu R, Su J, Wang Q, Chen M, Jiao Y, Chen L, Dong B, Fu F, Dong Y. Carbon-based dot nanoclusters with enhanced roles of defect states in the fluorescence and singlet oxygen generation. NEW J CHEM 2020. [DOI: 10.1039/d0nj02421j] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Carbon-based dot nanoclusters for red emission and high yield singlet oxygen generation are reported for the first time.
Collapse
Affiliation(s)
- Rongjing Hu
- MOE Key Laboratory for Analytical Science of Food Safety and Biology
- Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety
- College of Chemistry, Fuzhou University
- Fuzhou
- China
| | - Juanxia Su
- MOE Key Laboratory for Analytical Science of Food Safety and Biology
- Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety
- College of Chemistry, Fuzhou University
- Fuzhou
- China
| | - Qian Wang
- MOE Key Laboratory for Analytical Science of Food Safety and Biology
- Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety
- College of Chemistry, Fuzhou University
- Fuzhou
- China
| | - Mingming Chen
- MOE Key Laboratory for Analytical Science of Food Safety and Biology
- Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety
- College of Chemistry, Fuzhou University
- Fuzhou
- China
| | - Yajie Jiao
- MOE Key Laboratory for Analytical Science of Food Safety and Biology
- Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety
- College of Chemistry, Fuzhou University
- Fuzhou
- China
| | - Lichan Chen
- College of Chemical Engineering
- Huaqiao University
- Xiamen
- China
| | - Binhua Dong
- Fujian Provincial Maternity and Children's Hospital
- Affiliated Hospital of Fujian Medical University
- Fuzhou
- China
| | - Fengfu Fu
- MOE Key Laboratory for Analytical Science of Food Safety and Biology
- Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety
- College of Chemistry, Fuzhou University
- Fuzhou
- China
| | - Yongqiang Dong
- MOE Key Laboratory for Analytical Science of Food Safety and Biology
- Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety
- College of Chemistry, Fuzhou University
- Fuzhou
- China
| |
Collapse
|
34
|
Ghiasi B, Mehdipour G, Safari N, Behboudi H, Hashemi M, Omidi M, Sefidbakht Y, Yadegari A, Hamblin MR. Theranostic applications of stimulus-responsive systems based on carbon dots. INT J POLYM MATER PO 2019; 70:117-130. [PMID: 33967355 PMCID: PMC8101985 DOI: 10.1080/00914037.2019.1695207] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Accepted: 11/09/2019] [Indexed: 12/29/2022]
Abstract
Over recent years, many different nanoparticle-based drug delivery systems (NDDSs) have been developed. Recently the development of stimulus-responsive NDDSs has come into sharper focus. Carbon dots (CDs) possess outstanding features such as useful optical properties, good biocompatibility, and the ability for easy surface modification. Appropriate surface modification can allow these NDDSs to respond to various chemical or physical stimuli that are characteristic of their target cells or tissue (frequently malignant cells or tumors). The present review covers recent developments of CDs in NDDSs with a particular focus on internal stimulus response capability that allows simultaneous imaging and therapeutic delivery (theranostics). Relevant stimuli associated with tumor cells and tumors include pH levels, redox potential, and different enzymatic activities can be used to activate the CDs at the desired sites.
Collapse
Affiliation(s)
- Behrad Ghiasi
- Protein Research Center, Shahid Beheshti University, Tehran, Iran
| | - Golnaz Mehdipour
- Protein Research Center, Shahid Beheshti University, Tehran, Iran
| | - Nooshin Safari
- Protein Research Center, Shahid Beheshti University, Tehran, Iran
| | | | - Mohadeseh Hashemi
- Protein Research Center, Shahid Beheshti University, Tehran, Iran
- Biomedical Engineering Department, The University of Texas at Austin, Austin, TX, USA
| | - Meisam Omidi
- School of Dentistry, Marquette University, Milwaukee, WI, USA
| | - Yahya Sefidbakht
- Protein Research Center, Shahid Beheshti University, Tehran, Iran
| | - Amir Yadegari
- School of Dentistry, Marquette University, Milwaukee, WI, USA
| | - Michael R. Hamblin
- Massachusetts General Hospital, Wellman Center for Photomedicine, Boston, MA, USA
- Department of Dermatology, Harvard Medical School, Boston, MA, USA
- Laser Research Centre, Faculty of Health Science, University of Johannesburg, Doornfontein, South Africa
| |
Collapse
|
35
|
Wang R, Wu H, Chen R, Chi Y. Strong Electrochemiluminescence Emission from Oxidized Multiwalled Carbon Nanotubes. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2019; 15:e1901550. [PMID: 31115974 DOI: 10.1002/smll.201901550] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Revised: 04/29/2019] [Indexed: 06/09/2023]
Abstract
Carbon nanotubes (CNTs) as well-known nanomaterials are extensively studied and widely applied in various fields. Nitric acid (HNO3 ) is often used to treat CNTs for purification purposes and preparing oxidized CNTs for various applications. However, too little attention is paid to investigating the effect of HNO3 treatment on the optical properties of CNTs. In this work, it is observed for the first time that HNO3 -oxidized multiwalled carbon nanotubes (ox-MWCNTs) have strong electrochemiluminescence (ECL) activity, which enables ox-MWCNTs to become new and good ECL carbon nanomaterials after carbon quantum dots (CQDs) and graphene quantum dots (GQDs). Various characterization technologies, such as transmission electron microscope (TEM), X-ray photoelectron spectroscopy (XPS), and Raman spectroscopy, are used to reveal the relationship between ECL activity and surface states. The ECL behaviors of ox-MWCNTs are investigated in detail and a possible ECL mechanism is proposed. Finally, the new ECL nanomaterials of ox-MWCNTs are envisioned to have promising applications in sensitive ECL sensing and in the study of CNT-based catalysts.
Collapse
Affiliation(s)
- Ruina Wang
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, and College of Chemistry, Fuzhou University, Fuzhou, Fujian, 350108, P. R. China
| | - Haishan Wu
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, and College of Chemistry, Fuzhou University, Fuzhou, Fujian, 350108, P. R. China
| | - Rui Chen
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, and College of Chemistry, Fuzhou University, Fuzhou, Fujian, 350108, P. R. China
| | - Yuwu Chi
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, and College of Chemistry, Fuzhou University, Fuzhou, Fujian, 350108, P. R. China
| |
Collapse
|
36
|
Zhu Y, Wang J, Zhu X, Wang J, Zhou L, Li J, Mei T, Qian J, Wei L, Wang X. Carbon dot-based inverse opal hydrogels with photoluminescence: dual-mode sensing of solvents and metal ions. Analyst 2019; 144:5802-5809. [PMID: 31465037 DOI: 10.1039/c9an01287g] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
A dual-mode sensing platform, involving fluorescence and reflectance modes, has been demonstrated for highly sensitive and selective detection of solvents and metal ions based on carbon dot-based inverse opal hydrogels (CD-IOHs). In this work, CD-IOHs have been first synthesized via the typical templating technique. Two kinds of CDs, including solvent and Cu(ii) ion sensitive CDs, have been incorporated into the matrix of IOHs during the co-polymerization of acrylic acid (AA) and 2-hydroxyethyl methacrylate (HEMA). The CD-IOHs not only appear green under daylight but also exhibit stable photoluminescence (PL) under UV light owing to the stop-band effect of photonic crystals and the quantum effect of CDs, respectively. By using these two optical phenomena, for solvent sensing, the CD-IOHs change their colors from green, yellow, and red to a semitransparent state and show good linear sensing with the ethanol content varying from 0 to 45% in reflectance mode, while their PL intensities exhibit a nonlinear detection trend: first an increase and then a decrease with the ethanol content in fluorescence mode. Remarkably, as for metal ion sensing, the CD-IOHs have high selectivity for Cu(ii) ions via the specific PL quenching effect of Cu(ii) ion sensitive CDs. Furthermore, the CD-IOHs show good linear detection in both modes and a wide linear detection range from 0.1 μM to 7 mM. Thus, high selectivity, colorimetric detection, a broad linear detection range, and dual-mode sensing can be realized using the CD-IOHs.
Collapse
Affiliation(s)
- Yuhua Zhu
- Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Key Laboratory for the Green Preparation and Application of Functional Materials, Ministry of Education, Hubei Key Laboratory of Polymer Materials, School of Materials Science and Engineering, Hubei University, Wuhan 430062, P. R. China.
| | - Jianying Wang
- Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Key Laboratory for the Green Preparation and Application of Functional Materials, Ministry of Education, Hubei Key Laboratory of Polymer Materials, School of Materials Science and Engineering, Hubei University, Wuhan 430062, P. R. China.
| | - Xiang Zhu
- Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Key Laboratory for the Green Preparation and Application of Functional Materials, Ministry of Education, Hubei Key Laboratory of Polymer Materials, School of Materials Science and Engineering, Hubei University, Wuhan 430062, P. R. China.
| | - Jun Wang
- Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Key Laboratory for the Green Preparation and Application of Functional Materials, Ministry of Education, Hubei Key Laboratory of Polymer Materials, School of Materials Science and Engineering, Hubei University, Wuhan 430062, P. R. China.
| | - Lijie Zhou
- Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Key Laboratory for the Green Preparation and Application of Functional Materials, Ministry of Education, Hubei Key Laboratory of Polymer Materials, School of Materials Science and Engineering, Hubei University, Wuhan 430062, P. R. China.
| | - Jinhua Li
- Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Key Laboratory for the Green Preparation and Application of Functional Materials, Ministry of Education, Hubei Key Laboratory of Polymer Materials, School of Materials Science and Engineering, Hubei University, Wuhan 430062, P. R. China.
| | - Tao Mei
- Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Key Laboratory for the Green Preparation and Application of Functional Materials, Ministry of Education, Hubei Key Laboratory of Polymer Materials, School of Materials Science and Engineering, Hubei University, Wuhan 430062, P. R. China.
| | - Jingwen Qian
- Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Key Laboratory for the Green Preparation and Application of Functional Materials, Ministry of Education, Hubei Key Laboratory of Polymer Materials, School of Materials Science and Engineering, Hubei University, Wuhan 430062, P. R. China.
| | - Lai Wei
- Wuhan Drug Solubilization and Delivery Technology Research Center, School of Environment and Biochemical Engineering, Wuhan Vocational College of Software and Engineering, Wuhan 430205, P. R. China
| | - Xianbao Wang
- Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Key Laboratory for the Green Preparation and Application of Functional Materials, Ministry of Education, Hubei Key Laboratory of Polymer Materials, School of Materials Science and Engineering, Hubei University, Wuhan 430062, P. R. China.
| |
Collapse
|
37
|
Li X, Ge F, Li X, Zhou X, Qian J, Fu G, Shi L, Xu Y. Rapid and large-scale production of carbon dots by salt-assisted electrochemical exfoliation of graphite rods. J Electroanal Chem (Lausanne) 2019. [DOI: 10.1016/j.jelechem.2019.113390] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
38
|
Sahiner N, Suner SS, Sahiner M, Silan C. Nitrogen and Sulfur Doped Carbon Dots from Amino Acids for Potential Biomedical Applications. J Fluoresc 2019; 29:1191-1200. [PMID: 31502060 DOI: 10.1007/s10895-019-02431-y] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Accepted: 08/27/2019] [Indexed: 11/28/2022]
Abstract
Nitrogen (N-) and sulfur (S-) doped carbon dots (CDs) were synthesized in a single step in a few min, 1-4 min via microwave technique from five different types of amino acids viz. Arginine (A), Lysine (L), Histidine (H), Cysteine (C), and Methionine (M). These amino acid derived N- and/or S- doped CDs were found to be in spherical shapes with 5-20 nm particle size range determined by Transition Electron Microscope (TEM) images and Dynamic Light Scattering (DLS) measurements. Thermal degradation, functional groups, and surface potential of the CDs were determined by Thermogravimetric Analysis (TGA), FT-IR spectroscopy, and zeta potential measurements, respectively. Although the zeta potential value of Cysteine derived CD (C-CD) was measured as -7.45±1.32 mV, the zeta potential values of A-CD, L-CD, H-CD, and M-CD particles were measured as +2.84±0.67, +2.61±1.0, +4.10±1.50 and+2.20±0.60 mV, respectively. Amongst the CDs, C- CDs was found to possess the highest quantum yield, 89%. Moreover, the blood compatibility test of CDs, determined with hemolysis and blood clotting tests was shown that CDs at 0.25 mg/mL concentration, CDs has less than 5% hemolysis ratio and higher than 50% blood clotting indexes. Furthermore, A-CD was modified with polyethyleneimine (PEI) and was found that the zeta potential values was increased to +34.41±4.17 mV (from +2.84±0.67 mV) inducing antimicrobial capability to these materials. Minimum Inhibition Concentration (MIC) of A-CD dots was found as 2.5 mg/mL whereas the PEI modified A-CDs, A-CD-PEI was found as 1 mg/mL against Escherichia coli ATCC 8739 (gram -) and Staphylococcus aureus ATCC 6538 (gram +) bacteria strains signifying the tunability of CDs.
Collapse
Affiliation(s)
- Nurettin Sahiner
- Faculty of Sciences and Arts, Chemistry Department, Canakkale Onsekiz Mart University, Canakkale, Turkey. .,Nanoscience and Technology Research and Application Center (NANORAC), Terzioglu Campus, 17100, Canakkale, Turkey. .,Department of Ophthalmology, Morsani School of Medicine, University of South Florida, 12901, Bruce B Downs Blvd., MDC 21, Tampa, FL, 33612, USA.
| | - Selin S Suner
- Faculty of Sciences and Arts, Chemistry Department, Canakkale Onsekiz Mart University, Canakkale, Turkey
| | - Mehtap Sahiner
- Fashion Design, Canakkale Applied Science, Canakkale Onsekiz Mart University, Terzioglu Campus, 17100, Canakkale, Turkey
| | - Coskun Silan
- School of Medicine, Department of Pharmacology, Canakkale Onsekiz Mart University, Terzioglu Campus, 17100, Canakkale, Turkey
| |
Collapse
|
39
|
Anjali Devi JS, Aparna RS, Anjana RR, Nebu J, Anju SM, George S. Solvent Effects: A Signature of J- and H-Aggregate of Carbon Nanodots in Polar Solvents. J Phys Chem A 2019; 123:7420-7429. [PMID: 31373812 DOI: 10.1021/acs.jpca.9b04568] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The secret behind excitation-dependent/-independent photoluminescence of carbon nanodots (CDs) is not yet revealed completely. To address this issue, a detailed investigation on solvent polarity-dependent optical properties of citric acid-urea co-derived nitrogen-doped carbon nanodots (NCDs) was carried out. The interpretation on UV-visible spectral data reveals the presence of H-aggregates formed through hydrogen bonding. In addition, dipole-dipole interaction-mediated J-aggregates are clearly evident. The broad and intense excitation band of NCDs is mostly contributed by highly emissive J-like self-assembly of H-aggregates in polar solvents. Time-resolved fluorescence spectra of NCDs show triexponential decay kinetics. The three lifetime components correspond to long-lived H-aggregates, short-lived J-aggregates, and JH-aggregates of intermediate lifetime. Moreover, fluorescence of NCD is influenced by concentration and storage time. Accordingly, mismatch in spectral shapes of excitation and absorption spectra of NCD can be successfully correlated to aggregate species of NCDs that exist even in very dilute solutions.
Collapse
Affiliation(s)
- J S Anjali Devi
- Department of Chemistry, School of Physical and Mathematical Sciences , University of Kerala , Kariavattom Campus, Thiruvananthapuram 695581 , Kerala , India
| | - R S Aparna
- Department of Chemistry, School of Physical and Mathematical Sciences , University of Kerala , Kariavattom Campus, Thiruvananthapuram 695581 , Kerala , India
| | - R R Anjana
- Department of Chemistry, School of Physical and Mathematical Sciences , University of Kerala , Kariavattom Campus, Thiruvananthapuram 695581 , Kerala , India
| | - John Nebu
- Department of Chemistry, School of Physical and Mathematical Sciences , University of Kerala , Kariavattom Campus, Thiruvananthapuram 695581 , Kerala , India
| | - S Madanan Anju
- Department of Chemistry, School of Physical and Mathematical Sciences , University of Kerala , Kariavattom Campus, Thiruvananthapuram 695581 , Kerala , India
| | - Sony George
- Department of Chemistry, School of Physical and Mathematical Sciences , University of Kerala , Kariavattom Campus, Thiruvananthapuram 695581 , Kerala , India
| |
Collapse
|
40
|
Yoo D, Park Y, Cheon B, Park MH. Carbon Dots as an Effective Fluorescent Sensing Platform for Metal Ion Detection. NANOSCALE RESEARCH LETTERS 2019; 14:272. [PMID: 31410663 PMCID: PMC6692426 DOI: 10.1186/s11671-019-3088-6] [Citation(s) in RCA: 117] [Impact Index Per Article: 23.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Accepted: 07/16/2019] [Indexed: 05/14/2023]
Abstract
Fluorescent carbon dots (CDs) including carbon quantum dots (CQDs) and graphene quantum dots (GQDs) have drawn great interest because of their low cost and low toxicity, and they represent a new class of carbon materials prepared by simple synthetic routes. In particular, the optical properties of CDs can be easily tuned by the surface passivation of the organic layer and functionalization of the CDs. Based on the advantages of these carbon materials, CQDs and GQDs have been applied in various fields as nanoplatforms for sensing, imaging, and delivery. In this review, we discuss several synthetic methods for preparing CQDs and GQDs, as well as their physical properties, and further discuss the progress in CD research with an emphasis on their application in heavy metal sensing.
Collapse
Affiliation(s)
- Donggeon Yoo
- Nanobiomaterials Research Institute, Sahmyook University, Seoul, 01795 Korea
| | - Yuri Park
- Department of Convergence Science, Sahmyook University, Seoul, 01795 Korea
- Department of Chemistry and Life Science, Sahmyook University, Seoul, 01795 Korea
| | - Banyoon Cheon
- Nanobiomaterials Research Institute, Sahmyook University, Seoul, 01795 Korea
| | - Myoung-Hwan Park
- Nanobiomaterials Research Institute, Sahmyook University, Seoul, 01795 Korea
- Department of Convergence Science, Sahmyook University, Seoul, 01795 Korea
- Department of Chemistry and Life Science, Sahmyook University, Seoul, 01795 Korea
| |
Collapse
|
41
|
Mu Z, Hua J, Feng S, Yang Y. A ratiometric fluorescence and light scattering sensing platform based on Cu-doped carbon dots for tryptophan and Fe(III). SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2019; 219:248-256. [PMID: 31048254 DOI: 10.1016/j.saa.2019.04.065] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Revised: 04/15/2019] [Accepted: 04/23/2019] [Indexed: 06/09/2023]
Abstract
A new Cu-doped carbon dots (Cu-CDs) were synthesized rapidly and simply via one-step thermolysis of Na2[Cu(EDTA)] and ascorbic acid (AA) at 250°C for 2h with a high quantum yield of 9.8%. The Cu-CDs exhibits two signals of fluorescence at 396nm and second-order scattering (SOS) at 617nm under a single excitation wavelength of 308nm, and can be obviously enhanced by tryptophan (Trp) or Fe(III) leading to the ratiometric fluorescence and SOS response with a good linear wider range of 0.5-250μM and 0.1-50μM, respectively. This sensing system exhibits good selectivity and sensitivity toward Trp and Fe(III) over other analytes with a low detection limit of 275nM and 46nM, respectively. Furthermore, the proposed sensing system displays a prospective application for quantitative assay of Trp and Fe(III) in practical sample.
Collapse
Affiliation(s)
- Zhao Mu
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Yunnan Province 650500, China
| | - Jianhao Hua
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Yunnan Province 650500, China
| | - Shouai Feng
- Technology Centre of China Tobacco Guangxi Industrial Co., LTD, 530001 Nanning, Guangxi Province, China.
| | - Yaling Yang
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Yunnan Province 650500, China.
| |
Collapse
|
42
|
Ma X, Lin S, Dang Y, Dai Y, Zhang X, Xia F. Carbon dots as an "on-off-on" fluorescent probe for detection of Cu(II) ion, ascorbic acid, and acid phosphatase. Anal Bioanal Chem 2019; 411:6645-6653. [PMID: 31372699 DOI: 10.1007/s00216-019-02038-z] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Revised: 06/19/2019] [Accepted: 07/17/2019] [Indexed: 12/12/2022]
Abstract
Carbon dot (CD)-based fluorescent probes have been widely exploited; however, multi-component detection using CDs without tedious surface modification is always a challenging task. Here, we develop a convenient and simple CD-based "on-off-on" fluorescent probe for detection of copper(II) ion (Cu2+), ascorbic acid (AA), and acid phosphatase (ACP). Cu2+ leads to the fluorescence quenching of CDs. The limit of detection (LOD) for Cu2+ is 2.4 μM. When AA is added into the CDs + Cu2+ solution, Cu2+ is reduced by AA to Cu+, causing the fluorescence recovery of CDs. The fluorescent intensity linearly correlates with the concentration of AA in the range of 100-2800 μM with LOD of 60 μM. Besides, the probe has potential application for detection of AA in real samples such as VC tablets, orange juice, and fresh orange. The probe can also indirectly detect ACP that enzymatically hydrolyzes ascorbic acid-phosphate (AAP) to produce AA. This work expands the application of CDs in the multi-component detection and provides a facile fluorescent probe for detection of AA in real samples. Graphical abstract.
Collapse
Affiliation(s)
- Xin Ma
- Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan, 430074, Hubei, China
| | - Shijun Lin
- Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan, 430074, Hubei, China
| | - Yunfei Dang
- Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan, 430074, Hubei, China
| | - Yu Dai
- Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan, 430074, Hubei, China.
| | - Xiaojin Zhang
- Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan, 430074, Hubei, China.
| | - Fan Xia
- Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan, 430074, Hubei, China.
| |
Collapse
|
43
|
Zhao X, Tang Q, Zhu S, Bu W, Yang M, Liu X, Meng Y, Yu W, Sun H, Yang B. Controllable acidophilic dual-emission fluorescent carbonized polymer dots for selective imaging of bacteria. NANOSCALE 2019; 11:9526-9532. [PMID: 31049503 DOI: 10.1039/c9nr01118h] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Fluorescent materials can be powerful contrast agents in photoelectric devices and for bioimaging. As emerging fluorescent materials, carbonized polymer dots (CPDs) with high quantum yields (QYs), long-wavelength emission and multiple functions are highly desired. Despite great progress in the synthetic methods and QYs of CPDs, multiple emission of CPDs is challenging. Therefore, we developed CPDs with dual-emission fluorescence in terms of inherent blue and red emission. In addition, CPDs with sole blue emission (B-CPDs) and red emission (R-CPDs) were synthesized, respectively, by regulating the reaction conditions to control the quantitative structure and emission centers. The absolute QY of R-CPDs in water was 24.33%. These three types of CPDs with dual/sole emission could be used in optoelectronic and bioimaging applications. With different CPDs coated on a commercially available gallium nitride light-emitting diode chip as a color-conversion layer, LEDs with blue, yellow, and red emission were achieved. Benefiting from the different emission intensities and emission peaks of R/B-CPDs in different pH conditions, they were used (without further modification) to distinguish between Porphyromonas gingivalis, Streptococcus mutans, Escherichia coli and Staphylococcus aureus in dental plaque biofilms (the first time this has been demonstrated). These findings could enable a new development direction of CPDs based on the design of multi-emission centers.
Collapse
Affiliation(s)
- Xiaohuan Zhao
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, P. R. China.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Shi X, Wei W, Fu Z, Gao W, Zhang C, Zhao Q, Deng F, Lu X. Review on carbon dots in food safety applications. Talanta 2019; 194:809-821. [DOI: 10.1016/j.talanta.2018.11.005] [Citation(s) in RCA: 69] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Revised: 10/24/2018] [Accepted: 11/04/2018] [Indexed: 12/15/2022]
|
45
|
Wang J, Zhu Y, Wang L. Synthesis and Applications of Red-Emissive Carbon Dots. CHEM REC 2019; 19:2083-2094. [DOI: 10.1002/tcr.201800172] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Accepted: 01/24/2019] [Indexed: 11/09/2022]
Affiliation(s)
- Jianying Wang
- Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Key Laboratory for the Green Preparation and Application of Functional Materials, Ministry of Education, Hubei Key Laboratory of Polymer Materials, School of Materials Science and Engineering; Hubei University; Wuhan 430062 China
| | - Yuhua Zhu
- Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Key Laboratory for the Green Preparation and Application of Functional Materials, Ministry of Education, Hubei Key Laboratory of Polymer Materials, School of Materials Science and Engineering; Hubei University; Wuhan 430062 China
| | - Lei Wang
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry & Chemical Engineering; Harbin Institute of Technology; Harbin 150001 China
| |
Collapse
|
46
|
Devi JSA, Aparna RS, Aswathy B, Nebu J, Aswathy AO, George S. Understanding the Citric Acid-Urea Co-Directed Microwave Assisted Synthesis and Ferric Ion Modulation of Fluorescent Nitrogen Doped Carbon Dots: A Turn On Assay for Ascorbic Acid. ChemistrySelect 2019. [DOI: 10.1002/slct.201803726] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Affiliation(s)
- J. S. Anjali Devi
- Department of Chemistry; School of Physical and Mathematical sciences; University of Kerala; Kariavattom campus; Thiruvananthapuram- 695581, Kerala India
| | - R. S. Aparna
- Department of Chemistry; School of Physical and Mathematical sciences; University of Kerala; Kariavattom campus; Thiruvananthapuram- 695581, Kerala India
| | - B. Aswathy
- Department of Chemistry; School of Physical and Mathematical sciences; University of Kerala; Kariavattom campus; Thiruvananthapuram- 695581, Kerala India
| | - John Nebu
- Department of Chemistry; School of Physical and Mathematical sciences; University of Kerala; Kariavattom campus; Thiruvananthapuram- 695581, Kerala India
| | - A. O. Aswathy
- Department of Chemistry; School of Physical and Mathematical sciences; University of Kerala; Kariavattom campus; Thiruvananthapuram- 695581, Kerala India
| | - Sony George
- Department of Chemistry; School of Physical and Mathematical sciences; University of Kerala; Kariavattom campus; Thiruvananthapuram- 695581, Kerala India
| |
Collapse
|
47
|
Zhou D, Huang H, Wang Y, Wang Y, Hu Z, Li X. A yellow-emissive carbon nanodot-based ratiometric fluorescent nanosensor for visualization of exogenous and endogenous hydroxyl radicals in the mitochondria of live cells. J Mater Chem B 2019. [DOI: 10.1039/c9tb00289h] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
A ratiometric fluorescent nanosensor with high sensitivity was developed for visualization of hydroxyl radicals in the mitochondria of live cells.
Collapse
Affiliation(s)
- Danling Zhou
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials
- College of Materials Science and Engineering
- Donghua University
- Shanghai 201620
- China
| | - Hong Huang
- College of Biological
- Chemical Sciences and Engineering
- Jiaxing University
- Jiaxing 314001
- China
| | - Yangang Wang
- College of Biological
- Chemical Sciences and Engineering
- Jiaxing University
- Jiaxing 314001
- China
| | - Yan Wang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials
- College of Materials Science and Engineering
- Donghua University
- Shanghai 201620
- China
| | - Zuming Hu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials
- College of Materials Science and Engineering
- Donghua University
- Shanghai 201620
- China
| | - Xi Li
- College of Biological
- Chemical Sciences and Engineering
- Jiaxing University
- Jiaxing 314001
- China
| |
Collapse
|
48
|
Raji K, Ramanan V, Ramamurthy P. Facile and green synthesis of highly fluorescent nitrogen-doped carbon dots from jackfruit seeds and its applications towards the fluorimetric detection of Au3+ ions in aqueous medium and in in vitro multicolor cell imaging. NEW J CHEM 2019. [DOI: 10.1039/c9nj02590a] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
N-CDs are synthesized by an outright green method and employed as a selective fluorescent probe for Au3+ ions and is also used as a reducing agent to synthesize AuNPs.
Collapse
Affiliation(s)
- Kaviyarasan Raji
- National Centre for Ultrafast Processes
- University of Madras
- Chennai – 600113
- India
| | - Vadivel Ramanan
- National Centre for Ultrafast Processes
- University of Madras
- Chennai – 600113
- India
| | - Perumal Ramamurthy
- National Centre for Ultrafast Processes
- University of Madras
- Chennai – 600113
- India
| |
Collapse
|
49
|
Wang DM, Lin KL, Huang CZ. Carbon dots-involved chemiluminescence: Recent advances and developments. LUMINESCENCE 2018; 34:4-22. [DOI: 10.1002/bio.3570] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Revised: 09/25/2018] [Accepted: 09/27/2018] [Indexed: 02/03/2023]
Affiliation(s)
- Dong Mei Wang
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering; Southwest University; Chongqing P. R. China
| | - Ke Li Lin
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering; Southwest University; Chongqing P. R. China
| | - Cheng Zhi Huang
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering; Southwest University; Chongqing P. R. China
- Chongqing Key Laboratory of Biomedical Analysis, Chongqing Science and Technology Commission, College of Pharmaceutical Sciences; Southwest University; Chongqing P. R. China
| |
Collapse
|
50
|
Chen X, Luan Y, Wang N, Zhou Z, Ni X, Cao Y, Zhang G, Lai Y, Yang W. Ratiometric fluorescence nanosensors based on core-shell structured carbon/CdTe quantum dots and surface molecularly imprinted polymers for the detection of sulfadiazine. J Sep Sci 2018; 41:4394-4401. [PMID: 30307113 DOI: 10.1002/jssc.201800866] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2018] [Revised: 09/26/2018] [Accepted: 10/01/2018] [Indexed: 12/24/2022]
Abstract
Sulfadiazine is an environmental pollutant derived from abuse of antibiotics. Its content in environmental water is closely related to human health. Thus, a novel dual-emission surface molecularly imprinted nanosensor is designed for the specific adsorption and detection of sulfadiazine. In the system, blue emissive carbon quantum dots wrapped with silica served as the internal reference signal for eliminating background interference, while red emissive thioglycolic acid modified CdTe quantum dots (CdTe QDs), which are low dimensional semiconductor materials by the combination of cadmium and tellurium with excellent optical properties, were encapsulated in the imprinted layer to offer recognition signal. The fluorescence of CdTe quantum dots was quenched and the fluorescence quenching degree of carbon quantum dots was inconspicuous with the increase of concentration of sulfadiazine, thereby reflecting the color change. The detection of sulfadiazine was successfully achieved in a concentration range of 0.25-20 μmol/L with detection limit of 0.042 μmol/L and nanosensors had specific recognition for sulfadiazine over its analogues. Compared to single-emission fluorescence sensors, ratiometric fluorescence nanosensors had wider linear range and higher detection accuracy. Furthermore, the nanosensors were also successfully applied for the determination of sulfadiazine in real water and milk samples with acceptable recoveries. The study provides a feasible method for the detection of sulfadiazine and a reference for the detection of sulfonamides.
Collapse
Affiliation(s)
- Xiaoqiang Chen
- Institute of Polymer Materials, School of Materials Science and Engineering, Jiangsu University, Zhenjiang, China
| | - Yu Luan
- Zhenjiang Food and Drug Supervision and Inspection Center, Zhenjiang, China
| | - Ningwei Wang
- Entry-Exit Inspection Quarantine Bureau, Zhenjiang, China
| | - Zhiping Zhou
- Institute of Polymer Materials, School of Materials Science and Engineering, Jiangsu University, Zhenjiang, China
| | - Xiaoni Ni
- Zhenjiang Food and Drug Supervision and Inspection Center, Zhenjiang, China
| | - Yunfei Cao
- Zhenjiang Food and Drug Supervision and Inspection Center, Zhenjiang, China
| | - GuangShe Zhang
- Institute of Polymer Materials, School of Materials Science and Engineering, Jiangsu University, Zhenjiang, China
| | - Yufeng Lai
- Institute of Polymer Materials, School of Materials Science and Engineering, Jiangsu University, Zhenjiang, China
| | - Wenming Yang
- Institute of Polymer Materials, School of Materials Science and Engineering, Jiangsu University, Zhenjiang, China
| |
Collapse
|