1
|
Desai N, Chavda V, Singh TRR, Thorat ND, Vora LK. Cancer Nanovaccines: Nanomaterials and Clinical Perspectives. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2401631. [PMID: 38693099 DOI: 10.1002/smll.202401631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 03/30/2024] [Indexed: 05/03/2024]
Abstract
Cancer nanovaccines represent a promising frontier in cancer immunotherapy, utilizing nanotechnology to augment traditional vaccine efficacy. This review comprehensively examines the current state-of-the-art in cancer nanovaccine development, elucidating innovative strategies and technologies employed in their design. It explores both preclinical and clinical advancements, emphasizing key studies demonstrating their potential to elicit robust anti-tumor immune responses. The study encompasses various facets, including integrating biomaterial-based nanocarriers for antigen delivery, adjuvant selection, and the impact of nanoscale properties on vaccine performance. Detailed insights into the complex interplay between the tumor microenvironment and nanovaccine responses are provided, highlighting challenges and opportunities in optimizing therapeutic outcomes. Additionally, the study presents a thorough analysis of ongoing clinical trials, presenting a snapshot of the current clinical landscape. By curating the latest scientific findings and clinical developments, this study aims to serve as a comprehensive resource for researchers and clinicians engaged in advancing cancer immunotherapy. Integrating nanotechnology into vaccine design holds immense promise for revolutionizing cancer treatment paradigms, and this review provides a timely update on the evolving landscape of cancer nanovaccines.
Collapse
Affiliation(s)
- Nimeet Desai
- Department of Biomedical Engineering, Indian Institute of Technology Hyderabad, Kandi, Telangana, 502285, India
| | - Vivek Chavda
- Department of Pharmaceutics and Pharmaceutical Technology, L M College of Pharmacy, Ahmedabad, 380009, India
| | | | - Nanasaheb D Thorat
- Limerick Digital Cancer Research Centre (LDCRC), University of Limerick, Castletroy, Limerick, V94T9PX, Ireland
- Department of Physics, Bernal Institute, Castletroy, Limerick, V94T9PX, Ireland
- Nuffield Department of Women's & Reproductive Health, Medical Science Division, John Radcliffe Hospital, University of Oxford, Oxford, OX3 9DU, UK
| | - Lalitkumar K Vora
- School of Pharmacy, Queen's University Belfast, 97 Lisburn Road, Belfast, BT9 7BL, UK
| |
Collapse
|
2
|
Guerassimoff L, Ferrere M, Bossion A, Nicolas J. Stimuli-sensitive polymer prodrug nanocarriers by reversible-deactivation radical polymerization. Chem Soc Rev 2024; 53:6511-6567. [PMID: 38775004 PMCID: PMC11181997 DOI: 10.1039/d2cs01060g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Indexed: 06/18/2024]
Abstract
Polymer prodrugs are based on the covalent linkage of therapeutic molecules to a polymer structure which avoids the problems and limitations commonly encountered with traditional drug-loaded nanocarriers in which drugs are just physically entrapped (e.g., burst release, poor drug loadings). In the past few years, reversible-deactivation radical polymerization (RDRP) techniques have been extensively used to design tailor-made polymer prodrug nanocarriers. This synthesis strategy has received a lot of attention due to the possibility of fine tuning their structural parameters (e.g., polymer nature and macromolecular characteristics, linker nature, physico-chemical properties, functionalization, etc.), to achieve optimized drug delivery and therapeutic efficacy. In particular, adjusting the nature of the drug-polymer linker has enabled the easy synthesis of stimuli-responsive polymer prodrugs for efficient spatiotemporal drug release. In this context, this review article will give an overview of the different stimuli-sensitive polymer prodrug structures designed by RDRP techniques, with a strong focus on the synthesis strategies, the macromolecular architectures and in particular the drug-polymer linker, which governs the drug release kinetics and eventually the therapeutic effect. Their biological evaluations will also be discussed.
Collapse
Affiliation(s)
- Léa Guerassimoff
- Université Paris-Saclay, CNRS, Institut Galien Paris-Saclay, 91400, Orsay, France.
| | - Marianne Ferrere
- Université Paris-Saclay, CNRS, Institut Galien Paris-Saclay, 91400, Orsay, France.
| | - Amaury Bossion
- Université Paris-Saclay, CNRS, Institut Galien Paris-Saclay, 91400, Orsay, France.
| | - Julien Nicolas
- Université Paris-Saclay, CNRS, Institut Galien Paris-Saclay, 91400, Orsay, France.
| |
Collapse
|
3
|
Bishnoi S, Jansman MMT, Chen J, Thulstrup PW, Keller SS, Hosta-Rigau L. Enzyme-loaded rod-like microgel shapes: a step towards the creation of shape-specific microreactors for blood detoxification purposes. J Mater Chem B 2024; 12:4736-4747. [PMID: 38660955 DOI: 10.1039/d3tb02905k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
Rapid removal of toxic substances is crucial to restore the normal functions of our body and ensure survival. Due to their high substrate specificity and catalytic efficiency, enzymes are unique candidates to deplete toxic compounds. While enzymes display several limitations including low stability and high immunogenicity, these can be overcome by entrapping them in a diverse range of carriers. The resulting micro/nanoreactors shield the enzymes from their surroundings, preventing their misfolding or denaturation thus allowing them to conduct their function. The micro/nanoreactors must circulate in the blood stream for extended periods of time to ensure complete depletion of the toxic agents. Surprisingly, while it is widely acknowledged that non-spherical carriers exhibit longer residence time in the bloodstream than their spherical counterparts, so far, all the reported micro/nanoreactors have been assembled with a spherical architecture. Herein, we address this important issue by pioneering the first shape-specific microreactors. We use UV-assisted punching to create rod-like microgel shapes with dimensions of 8 μm × 1 μm × 2 μm and demonstrate their biocompatibility by conducting hemolysis and cell viability assays with a macrophage and an endothelial cell line. Upon encapsulation of the model enzyme β-lactamase, the successful fabrication of rod-shaped microreactors is demonstrated by their ability to convert the yellow nitrocefin substrate into its hydrolyzed product.
Collapse
Affiliation(s)
- Shahana Bishnoi
- Department of Health Technology, Centre for Nanomedicine and Theranostics, Technical University of Denmark, Nils Koppels Allé, Building 423, Kgs. Lyngby, 2800, Denmark.
- National Centre for Nano Fabrication and Characterization, Technical University of Denmark, Kgs, Lyngby, 2800, Denmark
| | - Michelle Maria Theresia Jansman
- Department of Health Technology, Centre for Nanomedicine and Theranostics, Technical University of Denmark, Nils Koppels Allé, Building 423, Kgs. Lyngby, 2800, Denmark.
| | - Jiantao Chen
- Department of Health Technology, Centre for Nanomedicine and Theranostics, Technical University of Denmark, Nils Koppels Allé, Building 423, Kgs. Lyngby, 2800, Denmark.
| | - Peter Waaben Thulstrup
- Department of Chemistry, University of Copenhagen, Universitetsparken 5, Copenhagen, 2100, Denmark
| | - Stephan Sylvest Keller
- National Centre for Nano Fabrication and Characterization, Technical University of Denmark, Kgs, Lyngby, 2800, Denmark
| | - Leticia Hosta-Rigau
- Department of Health Technology, Centre for Nanomedicine and Theranostics, Technical University of Denmark, Nils Koppels Allé, Building 423, Kgs. Lyngby, 2800, Denmark.
| |
Collapse
|
4
|
Li ZZ, Zhong NN, Cao LM, Cai ZM, Xiao Y, Wang GR, Liu B, Xu C, Bu LL. Nanoparticles Targeting Lymph Nodes for Cancer Immunotherapy: Strategies and Influencing Factors. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2308731. [PMID: 38327169 DOI: 10.1002/smll.202308731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 01/07/2024] [Indexed: 02/09/2024]
Abstract
Immunotherapy has emerged as a potent strategy in cancer treatment, with many approved drugs and modalities in the development stages. Despite its promise, immunotherapy is not without its limitations, including side effects and suboptimal efficacy. Using nanoparticles (NPs) as delivery vehicles to target immunotherapy to lymph nodes (LNs) can improve the efficacy of immunotherapy drugs and reduce side effects in patients. In this context, this paper reviews the development of LN-targeted immunotherapeutic NP strategies, the mechanisms of NP transport during LN targeting, and their related biosafety risks. NP targeting of LNs involves either passive targeting, influenced by NP physical properties, or active targeting, facilitated by affinity ligands on NP surfaces, while alternative methods, such as intranodal injection and high endothelial venule (HEV) targeting, have uncertain clinical applicability and require further research and validation. LN targeting of NPs for immunotherapy can reduce side effects and increase biocompatibility, but risks such as toxicity, organ accumulation, and oxidative stress remain, although strategies such as biodegradable biomacromolecules, polyethylene glycol (PEG) coating, and impurity addition can mitigate these risks. Additionally, this work concludes with a future-oriented discussion, offering critical insights into the field.
Collapse
Affiliation(s)
- Zi-Zhan Li
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, #237 Luoyu Road, Wuhan, 430079, China
| | - Nian-Nian Zhong
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, #237 Luoyu Road, Wuhan, 430079, China
| | - Lei-Ming Cao
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, #237 Luoyu Road, Wuhan, 430079, China
| | - Ze-Min Cai
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, #237 Luoyu Road, Wuhan, 430079, China
| | - Yao Xiao
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, #237 Luoyu Road, Wuhan, 430079, China
| | - Guang-Rui Wang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, #237 Luoyu Road, Wuhan, 430079, China
| | - Bing Liu
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, Department of Oral & Maxillofacial - Head Neck Oncology, School & Hospital of Stomatology, Wuhan University, #237 Luoyu Road, Wuhan, 430079, China
| | - Chun Xu
- School of Dentistry, The University of Queensland, 288 Herston Road, Brisbane, 4066, Australia
| | - Lin-Lin Bu
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, Department of Oral & Maxillofacial - Head Neck Oncology, School & Hospital of Stomatology, Wuhan University, #237 Luoyu Road, Wuhan, 430079, China
| |
Collapse
|
5
|
Huang F, Liu C, Zhao Z, Wang L, Zhang J, Ågren H, Widengren J, Liu H. Morphology controlled synthesis of Fe 3+-doped upconversion nanomaterials. RSC Adv 2024; 14:4990-5000. [PMID: 38332798 PMCID: PMC10848240 DOI: 10.1039/d3ra07908b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Accepted: 01/31/2024] [Indexed: 02/10/2024] Open
Abstract
This work details the synthesis of paramagnetic upconversion nanoparticles doped with Fe3+ in various morphologies via the thermal decomposition method, followed by comprehensive characterization of their structures, optical properties and magnetism using diverse analytical techniques. Our findings demonstrate that by precisely modulating the ratio of oleic acid to octadecene in the solvent, one can successfully obtain hexagonal nanodiscs with a consistent and well-defined morphology. Further adjustments in the oleic acid to octadecene ratio, coupled with fine-tuning of the Na+/F- ratio, led to the production of small-sized nanorods with uniform morphology. Significantly, all Fe3+-doped nanoparticles displayed pronounced paramagnetism, with magnetic susceptibility measurements at 1 T and room temperature of 0.15 emu g-1 and 0.14 emu g-1 for the nanodiscs and nanorods, respectively. To further enhance their magnetic properties, we replaced the Y-matrix with a Gd-matrix, and by fine-tuning the oleic acid/octadecene and Na+/F- ratios, we achieved nanoparticles with uniform morphology. The magnetic susceptibility was 0.82 emu g-1 at 1 T and room temperature. Simultaneously, we could control the nanoparticle size by altering the synthesis temperature. These upconversion nanostructures, characterized by both paramagnetic properties and regular morphology, represent promising dual-mode nanoprobe candidates for optical biological imaging and magnetic resonance imaging.
Collapse
Affiliation(s)
- Fuhua Huang
- Hunan Provincial Key Laboratory of Environmental Catalysis & Waste Recycling, College of Materials and Chemical Engineering, Hunan Institute of Engineering Xiangtan 411104 P. R. China
- Henan Center for Outstanding Overseas Scientists, Henan University KaiFeng 475004 P. R. China
- College of Chemistry and Molecular Sciences, Henan University KaiFeng Henan 475004 P. R. China
- Henan Key Laboratory of Protection and Safety Energy Storage of Light Metal Materials, Henan University KaiFeng Henan 475004 P. R. China
| | - Cong Liu
- Henan Center for Outstanding Overseas Scientists, Henan University KaiFeng 475004 P. R. China
- College of Chemistry and Molecular Sciences, Henan University KaiFeng Henan 475004 P. R. China
- Henan Key Laboratory of Protection and Safety Energy Storage of Light Metal Materials, Henan University KaiFeng Henan 475004 P. R. China
| | - Zhuoya Zhao
- Henan Center for Outstanding Overseas Scientists, Henan University KaiFeng 475004 P. R. China
- College of Chemistry and Molecular Sciences, Henan University KaiFeng Henan 475004 P. R. China
- Henan Key Laboratory of Protection and Safety Energy Storage of Light Metal Materials, Henan University KaiFeng Henan 475004 P. R. China
| | - Li Wang
- Henan Center for Outstanding Overseas Scientists, Henan University KaiFeng 475004 P. R. China
- College of Chemistry and Molecular Sciences, Henan University KaiFeng Henan 475004 P. R. China
- Henan Key Laboratory of Protection and Safety Energy Storage of Light Metal Materials, Henan University KaiFeng Henan 475004 P. R. China
| | - Jinglai Zhang
- Henan Center for Outstanding Overseas Scientists, Henan University KaiFeng 475004 P. R. China
- College of Chemistry and Molecular Sciences, Henan University KaiFeng Henan 475004 P. R. China
- Henan Key Laboratory of Protection and Safety Energy Storage of Light Metal Materials, Henan University KaiFeng Henan 475004 P. R. China
| | - Hans Ågren
- Henan Center for Outstanding Overseas Scientists, Henan University KaiFeng 475004 P. R. China
- College of Chemistry and Molecular Sciences, Henan University KaiFeng Henan 475004 P. R. China
- Henan Key Laboratory of Protection and Safety Energy Storage of Light Metal Materials, Henan University KaiFeng Henan 475004 P. R. China
| | - Jerker Widengren
- Department of Applied Physics, KTH Royal Institute of Technology S-10691 Stockholm Sweden
| | - Haichun Liu
- Department of Applied Physics, KTH Royal Institute of Technology S-10691 Stockholm Sweden
| |
Collapse
|
6
|
Mateus D, Sebastião AI, Frasco MF, Carrascal MA, Falcão A, Gomes CM, Neves B, Sales MGF, Cruz MT. Artificial Dendritic Cells: A New Era of Promising Antitumor Immunotherapy. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2303940. [PMID: 37469192 DOI: 10.1002/smll.202303940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 07/03/2023] [Indexed: 07/21/2023]
Abstract
The accelerated development of antitumor immunotherapies in recent years has brought immunomodulation into the spotlight. These include immunotherapeutic treatments with dendritic cell (DC)-based vaccines which can elicit tumor-specific immune responses and prolong survival. However, this personalized treatment has several drawbacks, including being costly, labor-intensive, and time consuming. This has sparked interest in producing artificial dendritic cells (aDCs) to open up the possibility of standardized "off-the-shelf" protocols and circumvent the cumbersome and expensive personalized medicine. aDCs take advantage of materials that can be designed and tailored for specific clinical applications. Here, an overview of the immunobiology underlying antigen presentation by DCs is provided in an attempt to select the key features to be mimicked and/or improved through the development of aDCs. The inherent properties of aDCs that greatly impact their performance in vivo and, consequently, the fate of the triggered immune response are also outlined.
Collapse
Affiliation(s)
- Daniela Mateus
- Faculty of Pharmacy of the University of Coimbra, Coimbra, 3000-548, Portugal
- Center for Neuroscience and Cell Biology-CNC, University of Coimbra, Coimbra, 3004-504, Portugal
- BioMark@UC/CEB - LABBELS Department of Chemical Engineering, Faculty of Sciences and Technology, University of Coimbra, Coimbra, 3030-790, Portugal
| | - Ana I Sebastião
- Faculty of Pharmacy of the University of Coimbra, Coimbra, 3000-548, Portugal
- Center for Neuroscience and Cell Biology-CNC, University of Coimbra, Coimbra, 3004-504, Portugal
| | - Manuela F Frasco
- BioMark@UC/CEB - LABBELS Department of Chemical Engineering, Faculty of Sciences and Technology, University of Coimbra, Coimbra, 3030-790, Portugal
| | | | - Amílcar Falcão
- Faculty of Pharmacy of the University of Coimbra, Coimbra, 3000-548, Portugal
- Coimbra Institute for Biomedical Imaging and Translational Research, CIBIT, University of Coimbra, Coimbra, 3000-548, Portugal
| | - Célia M Gomes
- Coimbra Institute for Clinical and Biomedical Research, iCBR, Faculty of Medicine, University of Coimbra, Coimbra, 3000-548, Portugal
- Center for Innovation in Biomedicine and Biotechnology, CIBB, University of Coimbra, Coimbra, 3000-548, Portugal
| | - Bruno Neves
- Department of Medical Sciences and Institute of Biomedicine, iBiMED, University of Aveiro, Aveiro, 3810-193, Portugal
| | - Maria G F Sales
- BioMark@UC/CEB - LABBELS Department of Chemical Engineering, Faculty of Sciences and Technology, University of Coimbra, Coimbra, 3030-790, Portugal
| | - Maria T Cruz
- Faculty of Pharmacy of the University of Coimbra, Coimbra, 3000-548, Portugal
- Center for Neuroscience and Cell Biology-CNC, University of Coimbra, Coimbra, 3004-504, Portugal
| |
Collapse
|
7
|
Salinas-Soto CA, Choe Y, Hur SM, Ramírez-Hernández A. Exploring conformations of comb-like polymers with varying grafting density in dilute solutions. J Chem Phys 2023; 159:114901. [PMID: 37712792 DOI: 10.1063/5.0160824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Accepted: 08/31/2023] [Indexed: 09/16/2023] Open
Abstract
Comb-like polymers have shown potential as advanced materials for a diverse palette of applications due to the tunability of their polymer architecture. To date, however, it still remains a challenge to understand how the conformational properties of these polymers arise from the interplay of their architectural parameters. In this work, extensive simulations were performed using dissipative particle dynamics to investigate the effect of grafting density, backbone length, and sidechain length on the conformations of comb-like polymers immersed in a good solvent. To quantify the effect of these architectural parameters on polymer conformations, we computed the asphericity, radius of gyration, and backbone and sidechain end-to-end distances. Bond-bond correlation functions and effective Kuhn lengths were computed to quantify the topological stiffness induced by sidechain-sidechain interactions. Simulation results reveal that the effective Kuhn length increases as grafting density and sidechain length increase, in agreement with previous experimental and theoretical studies. This increase in stiffness results in comb-like polymers adopting extended conformations as grafting density and sidechain length increase. Simulation results regarding the radius of gyration of comb-like polymers as a function of grafting density are compared with scaling theory predictions based on a free energy proposed by Morozova and Lodge [ACS Macro Lett. 6, 1274-1279 (2017)] and scaling arguments by Tang et al. [Macromolecules 55, 8668-8675 (2022)].
Collapse
Affiliation(s)
- Carlos A Salinas-Soto
- Department of Biomedical Engineering and Chemical Engineering, The University of Texas at San Antonio, San Antonio, Texas 78249, USA
- Department of Physics and Astronomy, The University of Texas at San Antonio, San Antonio, Texas 78249, USA
| | - Yeojin Choe
- Department of Polymer Engineering, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Su-Mi Hur
- Department of Polymer Engineering, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Abelardo Ramírez-Hernández
- Department of Biomedical Engineering and Chemical Engineering, The University of Texas at San Antonio, San Antonio, Texas 78249, USA
- Department of Physics and Astronomy, The University of Texas at San Antonio, San Antonio, Texas 78249, USA
| |
Collapse
|
8
|
Yu B, Lang X, Wang X, Ding L, Han M, Guo Y, Dong Z. Effects of different conformations of polylysine on the anti-tumor efficacy of methotrexate nanoparticles. Biomed Pharmacother 2023; 162:114662. [PMID: 37037095 DOI: 10.1016/j.biopha.2023.114662] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 04/02/2023] [Accepted: 04/03/2023] [Indexed: 04/12/2023] Open
Abstract
Drug delivery systems require that carrier materials have good biocompatibility, degradability, and constructability. Poly(amino acids), a substance with a distinctive secondary structure, not only have the basic features of the carrier materials but also have several reactive functional groups in the side chain, which can be employed as drug carriers to deliver anticancer drugs. The conformation of isomers of drug carriers has some influence on the preparation, morphology, and efficacy of nanoparticles. In this study, two isomers of polylysine, including ε-polylysine (ε-PL) and α-polylysine (α-PL), were used as drug carriers to entrap methotrexate (MTX) and construct nano-drug delivery systems. ε-PL/MTX nanoparticles with the morphology of helical nanorods presented a small particle size (115.0 nm), and relative high drug loading content (57.8 %). The anticancer effect of ε-PL/MTX nanoparticles was 1.3-fold and 2.6-fold stronger than that of α-PL/MTX nanoparticles in vivo and in vitro, respectively. ε-PL is an ideal drug carrier with potential clinical application prospects.
Collapse
Affiliation(s)
- Bo Yu
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, No. 151, Malianwa North Road, Haidian District, Beijing 100193, China
| | - Xiaoxue Lang
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, No. 151, Malianwa North Road, Haidian District, Beijing 100193, China
| | - Xiangtao Wang
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, No. 151, Malianwa North Road, Haidian District, Beijing 100193, China
| | - Lijuan Ding
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, No. 151, Malianwa North Road, Haidian District, Beijing 100193, China
| | - Meihua Han
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, No. 151, Malianwa North Road, Haidian District, Beijing 100193, China
| | - Yifei Guo
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, No. 151, Malianwa North Road, Haidian District, Beijing 100193, China; Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China; Key Laboratory of New Drug Discovery Based on Classic Chinese Medicine Prescription, Chinese Academy of Medical Sciences, No. 151, Malianwa North Road, Haidian District, Beijing 100193, China; Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, No. 151, Malianwa North Road, Haidian District, Beijing 100193, China.
| | - Zhengqi Dong
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, No. 151, Malianwa North Road, Haidian District, Beijing 100193, China; Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China; Key Laboratory of New Drug Discovery Based on Classic Chinese Medicine Prescription, Chinese Academy of Medical Sciences, No. 151, Malianwa North Road, Haidian District, Beijing 100193, China; Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, No. 151, Malianwa North Road, Haidian District, Beijing 100193, China.
| |
Collapse
|
9
|
Kim TY, Hur SM, Ramírez-Hernández A. Effect of Block Sequence on the Solution Self-Assembly of Symmetric ABCBA Pentablock Polymers in a Selective Solvent. J Phys Chem B 2023; 127:2575-2586. [PMID: 36917777 DOI: 10.1021/acs.jpcb.2c07930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/15/2023]
Abstract
Solution self-assembly of multiblock polymers offers a platform to create complex functional self-assembled nanostructures. However, a complete understanding of the effect of the different single-molecule-level parameters and solution conditions on the self-assembled morphology is still lacking. In this work, we have used dissipative particle dynamics to investigate the solution self-assembly of symmetric ABCBA linear pentablock polymers in a selective solvent and examined the effect of the block sequence, composition, and polymer concentration on the final morphology and polymer conformations. We confirmed that block sequence has an effect on the self-assembled morphologies, and it has a strong influence on polymer conformations that give place to physical gels for the sequence where the solvophilic block is located in the middle of the macromolecule. Our results are summarized in terms of morphology diagrams in the composition-concentration parameter space.
Collapse
Affiliation(s)
- Tae-Yi Kim
- Department of Biomedical Engineering and Chemical Engineering, The University of Texas at San Antonio, San Antonio, Texas 78249, United States
- Department of Polymer Engineering, Graduate School, Chonnam National University, Gwangju 61186, South Korea
| | - Su-Mi Hur
- Department of Polymer Engineering, Graduate School, Chonnam National University, Gwangju 61186, South Korea
| | - Abelardo Ramírez-Hernández
- Department of Biomedical Engineering and Chemical Engineering, The University of Texas at San Antonio, San Antonio, Texas 78249, United States
- Department of Physics and Astronomy, The University of Texas at San Antonio, San Antonio, Texas 78249, United States
| |
Collapse
|
10
|
Menon D, Singh R, Joshi KB, Gupta S, Bhatia D. Designer, Programmable DNA-peptide hybrid materials with emergent properties to probe and modulate biological systems. Chembiochem 2023; 24:e202200580. [PMID: 36468492 DOI: 10.1002/cbic.202200580] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 12/04/2022] [Accepted: 12/05/2022] [Indexed: 12/07/2022]
Abstract
The chemistry of DNA endows it with certain functional properties that facilitate the generation of self-assembled nanostructures, offering precise control over their geometry and morphology, that can be exploited for advanced biological applications. Despite the structural promise of these materials, their applications are limited owing to lack of functional capability to interact favourably with biological systems, which has been achieved by functional proteins or peptides. Herein, we outline a strategy for functionalizing DNA structures with short-peptides, leading to the formation of DNA-peptide hybrid materials. This proposition offers the opportunity to leverage the unique advantages of each of these bio-molecules, that have far reaching emergent properties in terms of better cellular interactions and uptake, better stability in biological media, an acceptable and programmable immune response and high bioactive molecule loading capacities. We discuss the synthetic strategies for the formation of these materials, namely, solid-phase functionalization and solution-coupling functionalization. We then proceed to highlight selected biological applications of these materials in the domains of cell instruction & molecular recognition, gene delivery, drug delivery and bone & tissue regeneration. We conclude with discussions shedding light on the challenges that these materials pose and offer our insights on future directions of peptide-DNA research for targeted biomedical applications.
Collapse
Affiliation(s)
- Dhruv Menon
- Cavendish Laboratory, Department of Physics, University of Cambridge, Cambridge, CB3 0HE, United Kingdom
| | - Ramesh Singh
- Biological Engineering Discipline, Indian Institute of Technology, Gandhinagar, 382355, India
| | - Kashti B Joshi
- Department of Chemistry, Dr. Harisingh Gour Vishwavidyalaya (A Central University), Sagar, Madhya Pradesh, India
| | - Sharad Gupta
- Biological Engineering Discipline, Indian Institute of Technology, Gandhinagar, 382355, India
| | - Dhiraj Bhatia
- Biological Engineering Discipline, Indian Institute of Technology, Gandhinagar, 382355, India
| |
Collapse
|
11
|
Khanuja HK, Dureja H. Recent Patents and Potential Applications of Homogenisation Techniques in Drug Delivery Systems. RECENT PATENTS ON NANOTECHNOLOGY 2023; 17:33-50. [PMID: 34825646 DOI: 10.2174/1872210515666210719120203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 03/08/2021] [Accepted: 04/08/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND The term homogenise means "to force or provide coalesce". Homogenisation is a process to attain homogenous particle size. The objective of the homogenisation process is to use fluid force to split the fragments or tiny particles contained in the fluids into very small dimensions and form a sustainable dispersion suitable for further production. METHODS The databases were collected through Scopus, google patent, science web, google scholar, PubMed on the concept of homogenisation. The data obtained were systematically investigated. RESULTS The present study focus on the use of the homogenisation in drug delivery system. The aim of homogenisation process is to achieve the particle size in micro-and nano- range as it affects the different parameters in the formulation and biopharmaceutical profile of the drug. The particle size reduction plays a key role in influencing drug dissolution and absorption. The reduced particle size enhances the stability and therapeutic efficacy of the drug. Homogenization technology ensures to achieve effective, clinically efficient and targeted drug delivery with the minimal side effect. CONCLUSION Homogenization technology has been shown to be an efficient and easy method of size reduction to increase solubility and bioavailability, stability of drug carriers. This article gives an overview of the process attributes affecting the homogenization process, the patenting of homogeniser types, design, the geometry of valves and nozzles and its role in drug delivery.
Collapse
Affiliation(s)
- Harpreet Kaur Khanuja
- Department of Pharmaceutical Sciences, Maharshi Dayanand University, Rohtak-124001, India
| | - Harish Dureja
- Department of Pharmaceutical Sciences, Maharshi Dayanand University, Rohtak-124001, India
| |
Collapse
|
12
|
Non-spherical Polymeric Nanocarriers for Therapeutics: The Effect of Shape on Biological Systems and Drug Delivery Properties. Pharmaceutics 2022; 15:pharmaceutics15010032. [PMID: 36678661 PMCID: PMC9865764 DOI: 10.3390/pharmaceutics15010032] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 12/07/2022] [Accepted: 12/09/2022] [Indexed: 12/25/2022] Open
Abstract
This review aims to highlight the importance of particle shape in the design of polymeric nanocarriers for drug delivery systems, along with their size, surface chemistry, density, and rigidity. Current manufacturing methods used to obtain non-spherical polymeric nanocarriers such as filomicelles or nanoworms, nanorods and nanodisks, are firstly described. Then, their interactions with biological barriers are presented, including how shape affects nanoparticle clearance, their biodistribution and targeting. Finally, their drug delivery properties and their therapeutic efficacy, both in vitro and in vivo, are discussed and compared with the characteristics of their spherical counterparts.
Collapse
|
13
|
Street STG, Chrenek J, Harniman RL, Letwin K, Mantell JM, Borucu U, Willerth SM, Manners I. Length-Controlled Nanofiber Micelleplexes as Efficient Nucleic Acid Delivery Vehicles. J Am Chem Soc 2022; 144:19799-19812. [PMID: 36260789 DOI: 10.1021/jacs.2c06695] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Micelleplexes show great promise as effective polymeric delivery systems for nucleic acids. Although studies have shown that spherical micelleplexes can exhibit superior cellular transfection to polyplexes, to date there has been no report on the effects of micelleplex morphology on cellular transfection. In this work, we prepared precision, length-tunable poly(fluorenetrimethylenecarbonate)-b-poly(2-(dimethylamino)ethyl methacrylate) (PFTMC16-b-PDMAEMA131) nanofiber micelleplexes and compared their properties and transfection activity to those of the equivalent nanosphere micelleplexes and polyplexes. We studied the DNA complexation process in detail via a range of techniques including cryo-transmission electron microscopy, atomic force microscopy, dynamic light scattering, and ζ-potential measurements, thereby examining how nanofiber micelleplexes form, as well the key differences that exist compared to nanosphere micelleplexes and polyplexes in terms of DNA loading and colloidal stability. The effects of particle morphology and nanofiber length on the transfection and cell viability of U-87 MG glioblastoma cells with a luciferase plasmid were explored, revealing that short nanofiber micelleplexes (length < ca. 100 nm) were the most effective delivery vehicle examined, outperforming nanosphere micelleplexes, polyplexes, and longer nanofiber micelleplexes as well as the Lipofectamine 2000 control. This study highlights the potential importance of 1D micelleplex morphologies for achieving optimal transfection activity and provides a fundamental platform for the future development of more effective polymeric nucleic acid delivery vehicles.
Collapse
Affiliation(s)
- Steven T G Street
- School of Chemistry, University of Bristol, Bristol BS8 1TS, U.K.,Department of Chemistry, University of Victoria, Victoria, BC V8W 3V6, Canada.,Centre for Advanced Materials and Related Technology (CAMTEC), University of Victoria, 3800 Finnerty Rd, Victoria, BC, V8P 5C2, Canada
| | - Josie Chrenek
- Department of Mechanical Engineering, Division of Medical Sciences, University of Victoria, Victoria, BC V8W 2Y2, Canada.,School of Biomedical Engineering, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | | | - Keiran Letwin
- Department of Mechanical Engineering, Division of Medical Sciences, University of Victoria, Victoria, BC V8W 2Y2, Canada.,School of Biomedical Engineering, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Judith M Mantell
- Wolfson Bioimaging Facility, Faculty of Life Sciences, University of Bristol, Bristol BS8 1TD, U.K
| | - Ufuk Borucu
- School of Biochemistry, University of Bristol, Bristol BS8 1TD, U.K.,GW4 Facility for High-Resolution Electron Cryo-Microscopy, 24 Tyndall Ave, Bristol BS8 1TQ, U.K
| | - Stephanie M Willerth
- Centre for Advanced Materials and Related Technology (CAMTEC), University of Victoria, 3800 Finnerty Rd, Victoria, BC, V8P 5C2, Canada.,Department of Mechanical Engineering, Division of Medical Sciences, University of Victoria, Victoria, BC V8W 2Y2, Canada.,School of Biomedical Engineering, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Ian Manners
- Department of Chemistry, University of Victoria, Victoria, BC V8W 3V6, Canada.,Centre for Advanced Materials and Related Technology (CAMTEC), University of Victoria, 3800 Finnerty Rd, Victoria, BC, V8P 5C2, Canada
| |
Collapse
|
14
|
Gold nanoparticles for skin drug delivery. Int J Pharm 2022; 625:122122. [PMID: 35987319 DOI: 10.1016/j.ijpharm.2022.122122] [Citation(s) in RCA: 43] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 08/02/2022] [Accepted: 08/13/2022] [Indexed: 02/01/2023]
Abstract
Nanoparticle-based drug carriers are being pursued intensely to overcome the skin barrier and improve even hydrophilic or macromolecular drug delivery into or across the skin efficiently. Over the past few years, the application of gold nanoparticles as a novel kind of drug carrier for skin drug delivery has attracted increasing attention because of their unique properties and versatility. In this review, we summarized the possible factors contributing to the penetration behaviors of gold nanoparticles, including size, surface chemistry, and shape. Drug loading, release, and penetration patterns were captured towards implicating the design of gold nanoparticles for dermal or transdermal drug delivery. Physical methods applicable for future enhancing the delivery efficacy of GNPs were also presented, which mainly included microneedles and iontophoresis. As a promising "drug", the inherent activities of GNPs were finally discussed, especially regarding their application in the treatment of skin disease. Thus, this paper provided a comprehensive review of the use of gold nanoparticles for skin drug delivery, which would help the design of multifunctional systems for skin drug delivery based on gold nanoparticles.
Collapse
|
15
|
Xie S, Mo C, Cao W, Xie S, Li S, Zhang Z, Li X. Bacteria-propelled microtubular motors for efficient penetration and targeting delivery of thrombolytic agents. Acta Biomater 2022; 142:49-59. [PMID: 35158079 DOI: 10.1016/j.actbio.2022.02.008] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 01/12/2022] [Accepted: 02/07/2022] [Indexed: 11/01/2022]
Abstract
Effective thrombolysis is critical to rapidly rebuild blood flow for thrombosis patients. Drug delivery systems have been developed to address inadequate pharmacokinetics of thrombolytic agents, but challenges still remain in the timely removal of blood clots regarding the dense fibrin networks. Herein, rod-shaped tubular micromotors were developed to achieve efficient penetration and thorough destruction of thrombi. By using electrospun fiber fragments as the template, urokinase (uPA)-loaded polydopamine (PDA) microtubes with surface decorated fucoidan (FuPDAuPA) were prepared at the aspect ratio of around 2. One E. coli Nissle 1917 (EcN) was assembled into one microtube to construct a FuPDAuPA@EcN hybrid micromotor through PDA adhesion and L-aspartate induction. The pharmacokinetic analysis indicates that the encapsulation of uPA into micromotors extends the half-life from 0.4 to 5.6 h and increases the bioavailability over 10 times. EcN-propelled motion elevates adsorption capacities of FuPDAuPA@EcN for more than four times compared with that of FuPDAuPA. The fucoidan-mediated targeting causes 2-fold higher thrombolysis capacity in vitro and over 10-fold higher uPA accumulation in thrombi in vivo. In the treatment of venous thrombi at mouse hindlimbs, intravenous administration of FuPDAuPA@EcN completely removed blood clots with almost full recovery of blood flows and apparently alleviated tail bleeding. It should be noted that FuPDAuPA@EcN treatment at a reduced uPA dose caused no significant difference in the blood flow rate compared with those of FuPDAuPA. The synergistic action of fucoidan-induced targeting and EcN-driven motion provides a prerequisite for promoting thrombolytic efficacy and reducing uPA dose and bleeding side effect. STATEMENT OF SIGNIFICANCE: The standard treatment to thrombosis patient is intravenous infusion of thrombolytic agents, but the associated bleeding complications and impairment of normal haemostasis greatly offset the therapeutic benefits. Drug delivery systems have been developed to address the limitations of inadequate pharmacokinetics of thrombolytic agents, but challenges still exist in less efficient penetration into dense networks for thorough destruction of thrombi. Up to now only few attempts have been made to construct nano-/micromotors for combating thrombosis and there is no single case that antithrombosis is assisted by bacteria or cells-propelled motors. Herein, bacteria-propelled microtubes were developed to carry urokinase for efficient penetration into blood clots and effective thrombolysis. The synergistic action of bacteria-driven motion and specific ligand-induced targeting holds a promising treatment strategy for life-threatening cardiovascular diseases such as thrombosis and atherosclerosis.
Collapse
|
16
|
Street STG, He Y, Harniman RL, Garcia-Hernandez JD, Manners I. Precision polymer nanofibers with a responsive polyelectrolyte corona designed as a modular, functionalizable nanomedicine platform. Polym Chem 2022. [DOI: 10.1039/d2py00152g] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We describe the development of a modular, functionalizable platform for biocompatible core-shell block copolymer nanofibers of controlled length (22 nm – 1.3 μm) and low dispersity produced via living crystallization-driven...
Collapse
|
17
|
Parkin H, Garcia-Hernandez JD, Street STG, Hof R, Manners I. Uniform, Length-Tunable Antibacterial 1D Diblock Copolymer Nanofibers. Polym Chem 2022. [DOI: 10.1039/d2py00262k] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The rapid increase in antibiotic resistant strains of bacteria has led to an urgent need to develop new methods of treating bacterial infections. Antibacterial polymeric nanoparticles are of interest for...
Collapse
|
18
|
Cao W, Liu Y, Ran P, He J, Xie S, Weng J, Li X. Ultrasound-Propelled Janus Rod-Shaped Micromotors for Site-Specific Sonodynamic Thrombolysis. ACS APPLIED MATERIALS & INTERFACES 2021; 13:58411-58421. [PMID: 34846117 DOI: 10.1021/acsami.1c19288] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Antithrombosis therapy is confronted with short half-lives of thrombolytic agents, limited therapeutic effects, and bleeding complications. Drug delivery systems of thrombolytic agents face challenges in effective penetration into thrombi, which are characterized by well-organized fibrin filled with abundant activated platelets. Herein, Janus rod (JR)-shaped micromotors are constructed by side-by-side electrospinning and cryosection, possessing advantages in controlling the Janus structure and aspect ratio of microrods. Silicon phthalocyanine (Pc) and CaO2 nanoparticles (NPs) are loaded into the separate sides of JRs, and Arg-Gly-Asp (RGD) peptides are grafted on the surface to obtain Pc/Ca@r-JRs for the sonodynamic therapy (SDT) of thrombosis without using any thrombolytic agents. Decomposition of CaO2 NPs ejects O2 bubbles from one side of JRs, and ultrasonication of O2 bubbles produces the cavitation effect, both generating mechanical force to drive the thrombus penetration. The integration of ultrasonication-propelled motion and RGD mediation effectively increases the targeting capabilities of r-JRs to activated platelets. In addition to mechanical thrombolysis, ultrasonication of the released Pc produces 1O2 to destruct fibrin networks of clots. In vitro thrombolysis of whole blood clots shows that ultrasonication of Pc/Ca@r-JRs has a significantly higher thrombolysis rate (73.6%) than those without propelled motion or RGD-mediated clot targeting. In a lower limb thrombosis model, intravenous administration of Pc/Ca@r-JRs indicates 3.4-fold higher accumulations at the clot site than those of JRs, and ultrasonication-propelled motion further increases thrombus retention 2.1 times. Treatment with Pc/Ca@r-JRs and ultrasonication fully removes thrombi and significantly prolongs tail bleeding time. Thus, this study has achieved precise and prompt thrombolysis through selective targeting to clots, efficient penetration into dense networks of thrombi, and SDT-executed thrombolysis.
Collapse
Affiliation(s)
- Wenxiong Cao
- Key Laboratory of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, P. R. China
| | - Yuan Liu
- Key Laboratory of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, P. R. China
| | - Pan Ran
- Key Laboratory of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, P. R. China
| | - Jie He
- Key Laboratory of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, P. R. China
| | - Shuang Xie
- Key Laboratory of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, P. R. China
| | - Jie Weng
- Key Laboratory of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, P. R. China
| | - Xiaohong Li
- Key Laboratory of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, P. R. China
| |
Collapse
|
19
|
Development of a Polysaccharide-Based Hydrogel Drug Delivery System (DDS): An Update. Gels 2021; 7:gels7040153. [PMID: 34698125 PMCID: PMC8544468 DOI: 10.3390/gels7040153] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 09/02/2021] [Accepted: 09/14/2021] [Indexed: 12/28/2022] Open
Abstract
Delivering a drug to the target site with minimal-to-no off-target cytotoxicity is the major determinant for the success of disease therapy. While the therapeutic efficacy and cytotoxicity of the drug play the main roles, the use of a suitable drug delivery system (DDS) is important to protect the drug along the administration route and release it at the desired target site. Polysaccharides have been extensively studied as a biomaterial for DDS development due to their high biocompatibility. More usefully, polysaccharides can be crosslinked with various molecules such as micro/nanoparticles and hydrogels to form a modified DDS. According to IUPAC, hydrogel is defined as the structure and processing of sols, gels, networks and inorganic–organic hybrids. This 3D network which often consists of a hydrophilic polymer can drastically improve the physical and chemical properties of DDS to increase the biodegradability and bioavailability of the carrier drugs. The advancement of nanotechnology also allows the construction of hydrogel DDS with enhanced functionalities such as stimuli-responsiveness, target specificity, sustained drug release, and therapeutic efficacy. This review provides a current update on the use of hydrogel DDS derived from polysaccharide-based materials in delivering various therapeutic molecules and drugs. We also highlighted the factors that affect the efficacy of these DDS and the current challenges of developing them for clinical use.
Collapse
|
20
|
Jarai BM, Stillman Z, Fromen CA. Hydrogel nanoparticle degradation influences the activation and survival of primary macrophages. J Mater Chem B 2021; 9:7246-7257. [PMID: 34226910 PMCID: PMC8446340 DOI: 10.1039/d1tb00982f] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The effect of nanoparticle (NP) internalization on cell fate has emerged as an important consideration for nanomedicine design, as macrophages and other phagocytes are the primary clearance mechanisms of administered NP formulations. Pro-survival signaling is thought to be concurrent with phagocytosis and recent work has shown increased macrophage survival following lysosomal processing of internalized NPs. These observations have opened the door to explorations of NP physiochemical properties aimed at tuning the NP-driven macrophage survival at the lysosomal synapse. Here, we report that NP-induced macrophage survival and activation is strongly dependent on NP degradation rate using a series of thiol-containing poly(ethylene glycol) diacrylate-based NPs of equivalent size and zeta potential. Rapidly degrading, high thiol-containing NPs allowed for dramatic enhancement of cell longevity that was concurrent with macrophage stimulation after 2 weeks in ex vivo culture. While equivalent NP internalization resulted in suppressed caspase activity across the NP series, macrophage activation was correlated with increasing thiol content, leading to increased lysosomal activity and a robust pro-survival phenotype. Our results provide insight on tuning NP physiochemical properties as design handles for maximizing ex vivo macrophage longevity, which has implications for improving macrophage-based immune assays, biomanufacturing, and cell therapies.
Collapse
Affiliation(s)
- Bader M Jarai
- Department of Chemical and Biomolecular Engineering, University of Delaware, 150 Academy St., Newark, DE 19716, USA.
| | - Zachary Stillman
- Department of Chemical and Biomolecular Engineering, University of Delaware, 150 Academy St., Newark, DE 19716, USA.
| | - Catherine A Fromen
- Department of Chemical and Biomolecular Engineering, University of Delaware, 150 Academy St., Newark, DE 19716, USA.
| |
Collapse
|
21
|
Balakrishnan B. Role of Nanoscale Delivery Systems in Tissue Engineering. CURRENT PATHOBIOLOGY REPORTS 2021. [DOI: 10.1007/s40139-021-00225-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
22
|
Schlick T, Portillo-Ledesma S, Myers CG, Beljak L, Chen J, Dakhel S, Darling D, Ghosh S, Hall J, Jan M, Liang E, Saju S, Vohr M, Wu C, Xu Y, Xue E. Biomolecular Modeling and Simulation: A Prospering Multidisciplinary Field. Annu Rev Biophys 2021; 50:267-301. [PMID: 33606945 PMCID: PMC8105287 DOI: 10.1146/annurev-biophys-091720-102019] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
We reassess progress in the field of biomolecular modeling and simulation, following up on our perspective published in 2011. By reviewing metrics for the field's productivity and providing examples of success, we underscore the productive phase of the field, whose short-term expectations were overestimated and long-term effects underestimated. Such successes include prediction of structures and mechanisms; generation of new insights into biomolecular activity; and thriving collaborations between modeling and experimentation, including experiments driven by modeling. We also discuss the impact of field exercises and web games on the field's progress. Overall, we note tremendous success by the biomolecular modeling community in utilization of computer power; improvement in force fields; and development and application of new algorithms, notably machine learning and artificial intelligence. The combined advances are enhancing the accuracy andscope of modeling and simulation, establishing an exemplary discipline where experiment and theory or simulations are full partners.
Collapse
Affiliation(s)
- Tamar Schlick
- Department of Chemistry, New York University, New York, New York 10003, USA;
- Courant Institute of Mathematical Sciences, New York University, New York, New York 10012, USA
- New York University-East China Normal University Center for Computational Chemistry, New York University Shanghai, Shanghai 200122, China
| | | | - Christopher G Myers
- Department of Chemistry, New York University, New York, New York 10003, USA;
| | - Lauren Beljak
- College of Arts and Science, New York University, New York, New York 10003, USA
| | - Justin Chen
- College of Arts and Science, New York University, New York, New York 10003, USA
| | - Sami Dakhel
- College of Arts and Science, New York University, New York, New York 10003, USA
| | - Daniel Darling
- College of Arts and Science, New York University, New York, New York 10003, USA
| | - Sayak Ghosh
- College of Arts and Science, New York University, New York, New York 10003, USA
| | - Joseph Hall
- College of Arts and Science, New York University, New York, New York 10003, USA
| | - Mikaeel Jan
- College of Arts and Science, New York University, New York, New York 10003, USA
| | - Emily Liang
- College of Arts and Science, New York University, New York, New York 10003, USA
| | - Sera Saju
- College of Arts and Science, New York University, New York, New York 10003, USA
| | - Mackenzie Vohr
- College of Arts and Science, New York University, New York, New York 10003, USA
| | - Chris Wu
- College of Arts and Science, New York University, New York, New York 10003, USA
| | - Yifan Xu
- College of Arts and Science, New York University, New York, New York 10003, USA
| | - Eva Xue
- College of Arts and Science, New York University, New York, New York 10003, USA
| |
Collapse
|
23
|
Kumar R, Santa Chalarca CF, Bockman MR, Bruggen CV, Grimme CJ, Dalal RJ, Hanson MG, Hexum JK, Reineke TM. Polymeric Delivery of Therapeutic Nucleic Acids. Chem Rev 2021; 121:11527-11652. [PMID: 33939409 DOI: 10.1021/acs.chemrev.0c00997] [Citation(s) in RCA: 162] [Impact Index Per Article: 54.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The advent of genome editing has transformed the therapeutic landscape for several debilitating diseases, and the clinical outlook for gene therapeutics has never been more promising. The therapeutic potential of nucleic acids has been limited by a reliance on engineered viral vectors for delivery. Chemically defined polymers can remediate technological, regulatory, and clinical challenges associated with viral modes of gene delivery. Because of their scalability, versatility, and exquisite tunability, polymers are ideal biomaterial platforms for delivering nucleic acid payloads efficiently while minimizing immune response and cellular toxicity. While polymeric gene delivery has progressed significantly in the past four decades, clinical translation of polymeric vehicles faces several formidable challenges. The aim of our Account is to illustrate diverse concepts in designing polymeric vectors towards meeting therapeutic goals of in vivo and ex vivo gene therapy. Here, we highlight several classes of polymers employed in gene delivery and summarize the recent work on understanding the contributions of chemical and architectural design parameters. We touch upon characterization methods used to visualize and understand events transpiring at the interfaces between polymer, nucleic acids, and the physiological environment. We conclude that interdisciplinary approaches and methodologies motivated by fundamental questions are key to designing high-performing polymeric vehicles for gene therapy.
Collapse
Affiliation(s)
- Ramya Kumar
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | | | - Matthew R Bockman
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Craig Van Bruggen
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Christian J Grimme
- Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Rishad J Dalal
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Mckenna G Hanson
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Joseph K Hexum
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Theresa M Reineke
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| |
Collapse
|
24
|
Hu H, Yang C, Li M, Shao D, Mao HQ, Leong KW. Flash Technology-Based Self-Assembly in Nanoformulation: From Fabrication to Biomedical Applications. MATERIALS TODAY (KIDLINGTON, ENGLAND) 2021; 42:99-116. [PMID: 34421329 PMCID: PMC8375602 DOI: 10.1016/j.mattod.2020.08.019] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Advances in nanoformulation have driven progress in biomedicine by producing nanoscale tools for biosensing, imaging, and drug delivery. Flash-based technology, the combination of rapid mixing technique with the self-assembly of macromolecules, is a new engine for the translational nanomedicine. Here, we review the state-of-the-art in flash-based self-assembly including theoretical and experimental principles, mixing device design, and applications. We highlight the fields of flash nanocomplexation (FNC) and flash nanoprecipitation (FNP), with an emphasis on biomedical applications of FNC, and discuss challenges and future directions for flash-based nanoformulation in biomedicine.
Collapse
Affiliation(s)
- Hanze Hu
- Department of Biomedical Engineering, Columbia University, New York, NY 10027, USA
| | - Chao Yang
- Department of Biomedical Engineering, Columbia University, New York, NY 10027, USA
- Institutes of Life Sciences, School of Biomedical Sciences and Engineering, Guangzhou International Campus, National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou, Guangdong 510630, China
| | - Mingqiang Li
- Laboratory of Biomaterials and Translational Medicine, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, 510630, China
| | - Dan Shao
- Institutes of Life Sciences, School of Biomedical Sciences and Engineering, Guangzhou International Campus, National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou, Guangdong 510630, China
| | - Hai-Quan Mao
- Department of Materials Science and Engineering, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Kam W. Leong
- Department of Biomedical Engineering, Columbia University, New York, NY 10027, USA
- Department of Systems Biology, Columbia University Medical Center, New York, NY 10032, USA
| |
Collapse
|
25
|
Xu S, Corrigan N, Boyer C. Forced gradient copolymerisation: a simplified approach for polymerisation-induced self-assembly. Polym Chem 2021. [DOI: 10.1039/d0py00889c] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
In this work, a novel and versatile gradient copolymerisation approach to simplify polymeric nanoparticle synthesis through polymerisation-induced self-assembly (PISA) is reported.
Collapse
Affiliation(s)
- Sihao Xu
- Centre for Advanced Macromolecular Design and Australian Centre for NanoMedicine
- School of Chemical Engineering
- The University of New South Wales
- Sydney
- Australia
| | - Nathaniel Corrigan
- Centre for Advanced Macromolecular Design and Australian Centre for NanoMedicine
- School of Chemical Engineering
- The University of New South Wales
- Sydney
- Australia
| | - Cyrille Boyer
- Centre for Advanced Macromolecular Design and Australian Centre for NanoMedicine
- School of Chemical Engineering
- The University of New South Wales
- Sydney
- Australia
| |
Collapse
|
26
|
Amgoth C, Dharmapuri G, Patra S, Wasnik K, Gupta P, Kalle AM, Paik P. 'Plate‐like‐coral' polymer particles with dendritic structure and porous channels: Effective delivery of anti‐cancer drugs. J Appl Polym Sci 2020. [DOI: 10.1002/app.50386] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Chander Amgoth
- School of Engineering Sciences and Technology University of Hyderabad Hyderabad India
| | - Gangappa Dharmapuri
- Department of Animal Biology School of Life Sciences, University of Hyderabad Hyderabad India
| | - Sukanya Patra
- School of Biomedical Engineering Indian Institute of Technology (IIT) Varanasi India
| | - Kirti Wasnik
- School of Biomedical Engineering Indian Institute of Technology (IIT) Varanasi India
| | - Premshankar Gupta
- School of Biomedical Engineering Indian Institute of Technology (IIT) Varanasi India
| | - Arunasree M. Kalle
- Department of Animal Biology School of Life Sciences, University of Hyderabad Hyderabad India
| | - Pradip Paik
- School of Engineering Sciences and Technology University of Hyderabad Hyderabad India
- School of Biomedical Engineering Indian Institute of Technology (IIT) Varanasi India
| |
Collapse
|
27
|
Finbloom JA, Sousa F, Stevens MM, Desai TA. Engineering the drug carrier biointerface to overcome biological barriers to drug delivery. Adv Drug Deliv Rev 2020; 167:89-108. [PMID: 32535139 PMCID: PMC10822675 DOI: 10.1016/j.addr.2020.06.007] [Citation(s) in RCA: 80] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 06/04/2020] [Accepted: 06/05/2020] [Indexed: 02/06/2023]
Abstract
Micro and nanoscale drug carriers must navigate through a plethora of dynamic biological systems prior to reaching their tissue or disease targets. The biological obstacles to drug delivery come in many forms and include tissue barriers, mucus and bacterial biofilm hydrogels, the immune system, and cellular uptake and intracellular trafficking. The biointerface of drug carriers influences how these carriers navigate and overcome biological barriers for successful drug delivery. In this review, we examine how key material design parameters lead to dynamic biointerfaces and improved drug delivery across biological barriers. We provide a brief overview of approaches used to engineer key physicochemical properties of drug carriers, such as morphology, surface chemistry, and topography, as well as the development of dynamic responsive materials for barrier navigation. We then discuss essential biological barriers and how biointerface engineering can enable drug carriers to better navigate and overcome these barriers to drug delivery.
Collapse
Affiliation(s)
- Joel A Finbloom
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, CA, USA
| | - Flávia Sousa
- Department of Materials, Department of Bioengineering and Institute of Biomedical Engineering, Imperial College London, London SW7 2AZ, United Kingdom
| | - Molly M Stevens
- Department of Materials, Department of Bioengineering and Institute of Biomedical Engineering, Imperial College London, London SW7 2AZ, United Kingdom
| | - Tejal A Desai
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, CA, USA.
| |
Collapse
|
28
|
Visaveliya NR, Köhler JM. Emerging Structural and Interfacial Features of Particulate Polymers at the Nanoscale. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2020; 36:13125-13143. [PMID: 33112618 DOI: 10.1021/acs.langmuir.0c02566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Particulate polymers at the nanoscale are exceedingly promising for diversified functional applications ranging from biomedical and energy to sensing, labeling, and catalysis. Tailored structural features (i.e., size, shape, morphology, internal softness, interior cross-linking, etc.) determine polymer nanoparticles' impact on the cargo loading capacity and controlled/sustained release, possibility of endocytosis, degradability, and photostability. The designed interfacial features, however (i.e., stimuli-responsive surfaces, wrinkling, surface porosity, shell-layer swellability, layer-by-layer surface functionalization, surface charge, etc.), regulate nanoparticles' interfacial interactions, controlled assembly, movement and collision, and compatibility with the surroundings (e.g., solvent and biological environments). These features define nanoparticles' overall properties/functions on the basis of homogeneity, stability, interfacial tension, and minimization of the surface energy barrier. Lowering of the resultant outcomes is directly influenced by inhomogeneity in the structural and interfacial design through the structure-function relationship. Therefore, a key requirement is to produce well-defined polymer nanoparticles with controlled characteristics. Polymers are amorphous, flexible, and soft, and hence controlling their structural/interfacial features through the single-step process is a challenge. The microfluidics reaction strategy is very promising because of its wide range of advantages such as efficient reactant mixing and fast phase transfer. Overall, this feature article highlights the state-of-the-art synthetic features of polymer nanoparticles with perspectives on their advanced applications.
Collapse
Affiliation(s)
- Nikunjkumar R Visaveliya
- Department of Physical Chemistry and Microreaction Technology, Technical University of Ilmenau, 98693 Ilmenau, Germany
- Department of Chemistry and Biochemistry, The City College of The City University of New York, New York, New York 10031, United States
| | - J Michael Köhler
- Department of Physical Chemistry and Microreaction Technology, Technical University of Ilmenau, 98693 Ilmenau, Germany
| |
Collapse
|
29
|
Nezhadi S, Saadat E, Handali S, Dorkoosh F. Nanomedicine and chemotherapeutics drug delivery: challenges and opportunities. J Drug Target 2020; 29:185-198. [PMID: 32772739 DOI: 10.1080/1061186x.2020.1808000] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Cancer is considered as one of the biggest threats to humans worldwide. Researchers suggest that tumour is not just a single mass, it comprises cancerous cells surrounded by noncancerous cells such as immune cells, adipocytes and cancer stem cells (CSCs) in the extracellular matrix (ECM) containing distinct components such as proteins, glycoproteins and enzymes; thus tumour microenvironment (TME) is partially complex. Multiple interactions happen in the dynamic microenvironment (ME) lead to an acidic, hypoxic and stiff ME that is considered as one of the major contributors to cancer progression and metastasis. Furthermore, TME involves in drug resistance mechanisms and affects enhanced permeability and retention (EPR) in tumours. In such a scenario, the first step to accomplish satisfying results is the identification and recognition of this ME. Then designing proper drug delivery systems can perform selectively towards cancerous cells. In this way, several targeting and stimuli/enzyme responsive drug delivery systems have been designed. More importantly, it is necessary to design a drug delivery system that can penetrate deeper into the tumours, efficiently and selectively. Various drug delivery systems such as exosomes and size-switchable nanocarriers (NCs) could decrease side effects and increase tumour treatment results by selective accumulation in tumours. In this review, TME features, current drug delivery approaches, challenges and promising strategies towards cancer treatment are discussed.
Collapse
Affiliation(s)
- Sepideh Nezhadi
- Department of Pharmaceutics, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Ir an
| | | | - Somayeh Handali
- Medical Biomaterial Research Center (MBRC), Tehran University of Medical Sciences, Tehran, Iran
| | - Farid Dorkoosh
- Department of Pharmaceutics, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Ir an.,Medical Biomaterial Research Center (MBRC), Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
30
|
Liang Y, Fu X, Du C, Xia H, Lai Y, Sun Y. Enzyme/pH-triggered anticancer drug delivery of chondroitin sulfate modified doxorubicin nanocrystal. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2020; 48:1114-1124. [DOI: 10.1080/21691401.2020.1813741] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Yan Liang
- Department of Pharmaceutics, School of Pharmacy, Qingdao University, Qingdao, China
| | - Xiaoheng Fu
- Department of Clinical laboratory, No.971 Hospital of the People’s Liberation Army Navy, Qingdao, China
| | - Chen Du
- Department of Pharmaceutics, School of Pharmacy, Qingdao University, Qingdao, China
| | - Haoran Xia
- Department of Pharmaceutics, School of Pharmacy, Qingdao University, Qingdao, China
| | - Yusi Lai
- Department of Marketing, Sichuan Kelun Pharmaceutical Co., Ltd, Chengdu, China
| | - Yong Sun
- Department of Pharmaceutics, School of Pharmacy, Qingdao University, Qingdao, China
| |
Collapse
|
31
|
Taking advantage of cellular uptake of ferritin nanocages for targeted drug delivery. J Control Release 2020; 325:176-190. [DOI: 10.1016/j.jconrel.2020.06.026] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 06/22/2020] [Accepted: 06/23/2020] [Indexed: 12/16/2022]
|
32
|
Street STG, He Y, Jin XH, Hodgson L, Verkade P, Manners I. Cellular uptake and targeting of low dispersity, dual emissive, segmented block copolymer nanofibers. Chem Sci 2020; 11:8394-8408. [PMID: 34094184 PMCID: PMC8162143 DOI: 10.1039/d0sc02593c] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Accepted: 07/03/2020] [Indexed: 11/21/2022] Open
Abstract
Polymer-based nanoparticles show substantial promise in the treatment and diagnosis of cancer and other diseases. Herein we report an exploration of the cellular uptake of tailored, low dispersity segmented 1D nanoparticles which were prepared from an amphiphilic block copolymer, poly(dihexylfluorene)-b-poly(ethyleneglycol) (PDHF13-b-PEG227), with a crystallizable PDHF core-forming block and a 'stealth' PEG corona-forming block with different end-group functionalities. Segmented C-B-A-B-C pentablock 1D nanofibers with varied spatially-defined coronal chemistries and a selected length (95 nm) were prepared using the living crystallization-driven self-assembly (CDSA) seeded-growth method. As the blue fluorescence of PDHF is often subject to environment-related quenching, a far-red BODIPY (BD) fluorophore was attached to the PEG end-group of the coronal B segments to provide additional tracking capability. Folic acid (FA) was also incorporated as a targeting group in the terminal C segments. These dual-emissive pentablock nanofibers exhibited uptake into >97% of folate receptor positive HeLa cells by flow cytometry. In the absence of FA, no significant uptake was detected and nanofibers with either FA or BD coronal groups showed no significant toxicity. Correlative light and electron microscopy (CLEM) studies revealed receptor-mediated endocytosis as an uptake pathway, with subsequent localization to the perinuclear region. A significant proportion of the nanofibers also appeared to interact with the cell membrane in an end-on fashion, which was coupled with fluorescence quenching of the PDHF core. These results provide new insights into the cellular uptake of polymer-based nanofibers and suggest their potential use in targeted therapies and diagnostics.
Collapse
Affiliation(s)
- Steven T G Street
- School of Chemistry, University of Bristol Bristol BS8 1TS UK
- Department of Chemistry, University of Victoria Victoria BC V8W 3V6 Canada
| | - Yunxiang He
- School of Chemistry, University of Bristol Bristol BS8 1TS UK
| | - Xu-Hui Jin
- School of Chemistry, University of Bristol Bristol BS8 1TS UK
- School of Chemistry and Chemical Engineering, Beijing Institute of Technology Beijing China
| | - Lorna Hodgson
- School of Biochemistry, University of Bristol Bristol BS8 1TD UK
| | - Paul Verkade
- School of Biochemistry, University of Bristol Bristol BS8 1TD UK
| | - Ian Manners
- School of Chemistry, University of Bristol Bristol BS8 1TS UK
- Department of Chemistry, University of Victoria Victoria BC V8W 3V6 Canada
| |
Collapse
|
33
|
Choi JS, Park JS. Design and evaluation of the anticancer activity of paclitaxel-loaded anisotropic-poly(lactic-co-glycolic acid) nanoparticles with PEGylated chitosan surface modifications. Int J Biol Macromol 2020; 162:1064-1075. [PMID: 32599249 DOI: 10.1016/j.ijbiomac.2020.06.237] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 06/24/2020] [Accepted: 06/24/2020] [Indexed: 12/18/2022]
Abstract
This study aimed to evaluate the anticancer activity of paclitaxel-loaded poly(lactic-co-glycolic acid) (PLGA) nanoparticles (PNPs) based on their shapes and surface modifications in breast cancer cells. We hypothesized that anisotropic-PNPs (AT-PNPs) with PEGylated chitosan (CP) surface modifications and high aspect ratios exhibit higher anticancer activity than PNPs and AT-PNPs with CP surface modifications and low aspect ratios. Six types of PNPs and AT-PNPs with different shapes and surface modifications were successfully prepared. The cellular uptake and cytotoxicity of the AT-PNPs were higher than those of the PNPs, while the cellular uptake and cytotoxicity of the PNPs and AT-PNPs with CP were higher than those of the uncoated PNPs and AT-PNPs. Moreover, all the particles remained stable for 4 months. In conclusion, this study primarily described the preparation of CP-AT-PNPs, and the CP-AT-PNPs2 developed herein are expected to demonstrate promising anticancer effects in animal experiments and clinical studies.
Collapse
Affiliation(s)
- Jin-Seok Choi
- College of Pharmacy and Institute of Drug Research and Development, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon 34134, South Korea; Department of Medical Management, Chodang University, 380 Muan-ro, Muan-eup, Muan-gun, Jeollanam-do 58530, South Korea
| | - Jeong-Sook Park
- College of Pharmacy and Institute of Drug Research and Development, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon 34134, South Korea.
| |
Collapse
|
34
|
Quality by design (QbD) approach in processing polymeric nanoparticles loading anticancer drugs by high pressure homogenizer. Heliyon 2020; 6:e03846. [PMID: 32373744 PMCID: PMC7193322 DOI: 10.1016/j.heliyon.2020.e03846] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Revised: 04/11/2020] [Accepted: 04/21/2020] [Indexed: 01/04/2023] Open
Abstract
Polymeric nanoparticles prepared using high pressure homogenizer (HPH) present some unique challenges during manufacturing which can be better understood by application of quality by design (QbD) approaches. The present review highlights the ways to identify the critical material attributes which includes the anticancer drugs, polymers, surfactants, solvent system and dispersion system. A comprehensive understanding of the critical processing parameters like pressure and number of cycles during the working of HPH used in putting forward the critical quality attributes such as size, shape, surface charge or droplet stabilization. Such QbD approach will involve development of an effective control strategy for would ensure safe encapsulation of anticancer drugs for successful product development. Proper addressing of the issues related to scaling-up would lead to successful commercialization of the nano-sized formulations loaded with anticancer drugs.
Collapse
|
35
|
Demazeau M, Gibot L, Mingotaud AF, Vicendo P, Roux C, Lonetti B. Rational design of block copolymer self-assemblies in photodynamic therapy. BEILSTEIN JOURNAL OF NANOTECHNOLOGY 2020; 11:180-212. [PMID: 32082960 PMCID: PMC7006492 DOI: 10.3762/bjnano.11.15] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Accepted: 12/04/2019] [Indexed: 05/10/2023]
Abstract
Photodynamic therapy is a technique already used in ophthalmology or oncology. It is based on the local production of reactive oxygen species through an energy transfer from an excited photosensitizer to oxygen present in the biological tissue. This review first presents an update, mainly covering the last five years, regarding the block copolymers used as nanovectors for the delivery of the photosensitizer. In particular, we describe the chemical nature and structure of the block copolymers showing a very large range of existing systems, spanning from natural polymers such as proteins or polysaccharides to synthetic ones such as polyesters or polyacrylates. A second part focuses on important parameters for their design and the improvement of their efficiency. Finally, particular attention has been paid to the question of nanocarrier internalization and interaction with membranes (both biomimetic and cellular), and the importance of intracellular targeting has been addressed.
Collapse
Affiliation(s)
- Maxime Demazeau
- Laboratoire des IMRCP, Université de Toulouse, CNRS UMR 5623, Université Toulouse III - Paul Sabatier, 118 route de Narbonne, 31062, Toulouse, France
| | - Laure Gibot
- Laboratoire des IMRCP, Université de Toulouse, CNRS UMR 5623, Université Toulouse III - Paul Sabatier, 118 route de Narbonne, 31062, Toulouse, France
| | - Anne-Françoise Mingotaud
- Laboratoire des IMRCP, Université de Toulouse, CNRS UMR 5623, Université Toulouse III - Paul Sabatier, 118 route de Narbonne, 31062, Toulouse, France
| | - Patricia Vicendo
- Laboratoire des IMRCP, Université de Toulouse, CNRS UMR 5623, Université Toulouse III - Paul Sabatier, 118 route de Narbonne, 31062, Toulouse, France
| | - Clément Roux
- Laboratoire des IMRCP, Université de Toulouse, CNRS UMR 5623, Université Toulouse III - Paul Sabatier, 118 route de Narbonne, 31062, Toulouse, France
| | - Barbara Lonetti
- Laboratoire des IMRCP, Université de Toulouse, CNRS UMR 5623, Université Toulouse III - Paul Sabatier, 118 route de Narbonne, 31062, Toulouse, France
| |
Collapse
|
36
|
|
37
|
Wu J, Ma G. Biomimic strategies for modulating the interaction between particle adjuvants and antigen-presenting cells. Biomater Sci 2020; 8:2366-2375. [DOI: 10.1039/c9bm02098e] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The design strategies of particle adjuvants by mimicking natural pathogens to strengthen their interaction with antigen-presenting cells.
Collapse
Affiliation(s)
- Jie Wu
- State Key Laboratory of Biochemical Engineering
- Institute of Process Engineering
- Chinese Academy of Sciences
- Beijing 100190
- P.R. China
| | - Guanghui Ma
- State Key Laboratory of Biochemical Engineering
- Institute of Process Engineering
- Chinese Academy of Sciences
- Beijing 100190
- P.R. China
| |
Collapse
|
38
|
Ke X, Howard GP, Tang H, Cheng B, Saung MT, Santos JL, Mao HQ. Physical and chemical profiles of nanoparticles for lymphatic targeting. Adv Drug Deliv Rev 2019; 151-152:72-93. [PMID: 31626825 DOI: 10.1016/j.addr.2019.09.005] [Citation(s) in RCA: 67] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Revised: 09/03/2019] [Accepted: 09/24/2019] [Indexed: 12/14/2022]
Abstract
Nanoparticles (NPs) have been gaining prominence as delivery vehicles for modulating immune responses to improve treatments against cancer and autoimmune diseases, enhancing tissue regeneration capacity, and potentiating vaccination efficacy. Various engineering approaches have been extensively explored to control the NP physical and chemical properties including particle size, shape, surface charge, hydrophobicity, rigidity and surface targeting ligands to modulate immune responses. This review examines a specific set of physical and chemical characteristics of NPs that enable efficient delivery targeted to secondary lymphoid tissues, specifically the lymph nodes and immune cells. A critical analysis of the structure-property-function relationship will facilitate further efforts to engineer new NPs with unique functionalities, identify novel utilities, and improve the clinical translation of NP formulations for immunotherapy.
Collapse
|
39
|
Tang W, Su Y, Huang Y, Yu Y, Chen H, Chu I. Polymers dynamics of the nonfluoro, nano‐brush repelling agent with self‐stratifying property in water‐based coatings. J Appl Polym Sci 2019. [DOI: 10.1002/app.48003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Wei‐Cheng Tang
- Chemical Engineering DepartmentNational Tsing Hua University Hsinchu, Taiwan, R.O.C
- Material and Chemical Research LaboratoriesIndustrial Technology Research Institute Hsinchu, Taiwan, R.O.C
| | - Yi‐Che Su
- Material and Chemical Research LaboratoriesIndustrial Technology Research Institute Hsinchu, Taiwan, R.O.C
| | - Yun‐Shan Huang
- Material and Chemical Research LaboratoriesIndustrial Technology Research Institute Hsinchu, Taiwan, R.O.C
| | - Ya‐Tin Yu
- Material and Chemical Research LaboratoriesIndustrial Technology Research Institute Hsinchu, Taiwan, R.O.C
| | - Hsin‐Lung Chen
- Chemical Engineering DepartmentNational Tsing Hua University Hsinchu, Taiwan, R.O.C
| | - I‐Ming Chu
- Chemical Engineering DepartmentNational Tsing Hua University Hsinchu, Taiwan, R.O.C
| |
Collapse
|
40
|
Hu Y, He Z, Hao Y, Gong L, Pang M, Howard GP, Ahn HH, Brummet M, Chen K, Liu HW, Ke X, Zhu J, Anderson CF, Cui H, Ullman CG, Carrington CA, Pomper MG, Seo JH, Mittal R, Minn I, Mao HQ. Kinetic Control in Assembly of Plasmid DNA/Polycation Complex Nanoparticles. ACS NANO 2019; 13:10161-10178. [PMID: 31503450 DOI: 10.1021/acsnano.9b03334.s004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Polyelectrolyte complex (PEC) nanoparticles assembled from plasmid DNA (pDNA) and polycations such as linear polyethylenimine (lPEI) represent a major nonviral delivery vehicle for gene therapy tested thus far. Efforts to control the size, shape, and surface properties of pDNA/polycation nanoparticles have been primarily focused on fine-tuning the molecular structures of the polycationic carriers and on assembly conditions such as medium polarity, pH, and temperature. However, reproducible production of these nanoparticles hinges on the ability to control the assembly kinetics, given the nonequilibrium nature of the assembly process and nanoparticle composition. Here we adopt a kinetically controlled mixing process, termed flash nanocomplexation (FNC), that accelerates the mixing of pDNA solution with polycation lPEI solution to match the PEC assembly kinetics through turbulent mixing in a microchamber. This achieves explicit control of the kinetic conditions for pDNA/lPEI nanoparticle assembly, as demonstrated by the tunability of nanoparticle size, composition, and pDNA payload. Through a combined experimental and simulation approach, we prepared pDNA/lPEI nanoparticles having an average of 1.3 to 21.8 copies of pDNA per nanoparticle and average size of 35 to 130 nm in a more uniform and scalable manner than bulk mixing methods. Using these nanoparticles with defined compositions and sizes, we showed the correlation of pDNA payload and nanoparticle formulation composition with the transfection efficiencies and toxicity in vivo. These nanoparticles exhibited long-term stability at -20 °C for at least 9 months in a lyophilized formulation, validating scalable manufacture of an off-the-shelf nanoparticle product with well-defined characteristics as a gene medicine.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | - Christopher G Ullman
- Cancer Targeting Systems , Chesterford Research Park , Cambridge , CB10 1XL , U.K
| | | | | | | | | | | | | |
Collapse
|
41
|
Hu Y, He Z, Hao Y, Liu HW, Gong L, Howard G, Ahn HH, Brummet M, Ke X, Anderson C, Seo JH, Zhu J, Chen K, Pang Wan Rion M, Cui H, Ullman CG, Carrington CA, Pomper MG, Mittal R, Minn I, Mao HQ. Kinetic Control in Assembly of Plasmid DNA/Polycation Complex Nanoparticles. ACS NANO 2019; 13:10161-10178. [PMID: 31503450 PMCID: PMC7293580 DOI: 10.1021/acsnano.9b03334] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
Polyelectrolyte complex (PEC) nanoparticles assembled from plasmid DNA (pDNA) and polycations such as linear polyethylenimine (lPEI) represent a major nonviral delivery vehicle for gene therapy tested thus far. Efforts to control the size, shape, and surface properties of pDNA/polycation nanoparticles have been primarily focused on fine-tuning the molecular structures of the polycationic carriers and on assembly conditions such as medium polarity, pH, and temperature. However, reproducible production of these nanoparticles hinges on the ability to control the assembly kinetics, given the nonequilibrium nature of the assembly process and nanoparticle composition. Here we adopt a kinetically controlled mixing process, termed flash nanocomplexation (FNC), that accelerates the mixing of pDNA solution with polycation lPEI solution to match the PEC assembly kinetics through turbulent mixing in a microchamber. This achieves explicit control of the kinetic conditions for pDNA/lPEI nanoparticle assembly, as demonstrated by the tunability of nanoparticle size, composition, and pDNA payload. Through a combined experimental and simulation approach, we prepared pDNA/lPEI nanoparticles having an average of 1.3 to 21.8 copies of pDNA per nanoparticle and average size of 35 to 130 nm in a more uniform and scalable manner than bulk mixing methods. Using these nanoparticles with defined compositions and sizes, we showed the correlation of pDNA payload and nanoparticle formulation composition with the transfection efficiencies and toxicity in vivo. These nanoparticles exhibited long-term stability at -20 °C for at least 9 months in a lyophilized formulation, validating scalable manufacture of an off-the-shelf nanoparticle product with well-defined characteristics as a gene medicine.
Collapse
Affiliation(s)
- Yizong Hu
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
- Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Zhiyu He
- Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, MD 21218, USA
- Department of Materials Science and Engineering, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Yue Hao
- Department of Mechanical Engineering, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Heng-wen Liu
- Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, MD 21218, USA
- Department of Materials Science and Engineering, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Like Gong
- Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, MD 21218, USA
- Department of Materials Science and Engineering, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Gregory Howard
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
- Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Hye-Hyun Ahn
- Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Mary Brummet
- Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Xiyu Ke
- Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, MD 21218, USA
- Department of Materials Science and Engineering, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Caleb Anderson
- Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, MD 21218, USA
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Jung-Hee Seo
- Department of Mechanical Engineering, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Jinchang Zhu
- Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, MD 21218, USA
- Department of Materials Science and Engineering, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Kuntao Chen
- Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, MD 21218, USA
- Department of Materials Science and Engineering, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Marion Pang Wan Rion
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
- Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Honggang Cui
- Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, MD 21218, USA
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD 21218, USA
| | | | | | - Martin G. Pomper
- Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
- Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Rajat Mittal
- Department of Mechanical Engineering, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Il Minn
- Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
- Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Hai-Quan Mao
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
- Translational Tissue Engineering Center, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
- Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, MD 21218, USA
- Department of Materials Science and Engineering, Johns Hopkins University, Baltimore, MD 21218, USA
- Correspondence should be addressed to Dr. Hai-Quan Mao: 3400 N. Charles Street, Croft Hall 100, Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, MD, 21218, USA.
| |
Collapse
|
42
|
Wang R, Dai X, Duan S, Zhao N, Xu FJ. A flexible bowl-shaped magnetic assembly for multifunctional gene delivery systems. NANOSCALE 2019; 11:16463-16475. [PMID: 31453620 DOI: 10.1039/c9nr04763h] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
Magnetic assemblies with special morphologies are promising for versatile biomedical applications due to their intriguing properties and performances. In this work, a polycation-functionalized bowl-shaped magnetic assembly (b-MNP-PGEA) was constructed for magnetic resonance imaging (MRI)-guided synergistic cancer therapy. Taking advantage of distinct properties of Fe3O4 nanoparticles, self-assembly concept, morphology control, and appropriate surface functionalization, the as-prepared magnetic assembly with special morphology was expected to work as a multifunctional carrier to realize the combination of magnetofection and photothermal therapy (PTT). The morphology effect of the magnetic assembly on cellular uptake and the subsequent gene transfection were investigated. The feasibility of the magnetic and photothermal carriers for MRI and complementary PTT/gene therapy was also studied. In addition, the excellent in vivo performance of the proposed bowl-shaped multifunctional carriers was demonstrated using a mouse breast cancer model. Interestingly, synergistic effects based on PTT-enhanced gene therapy were achieved. The facile assembly strategy for the development of special bowl-shaped magnetic carriers for synergistic PTT/gene therapy provides a new avenue for the versatile construction of efficient theranostic platforms.
Collapse
Affiliation(s)
- Ranran Wang
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing, 100029, China. and Key Lab of Biomedical Materials of Natural Macromolecules (Beijing University of Chemical Technology), Ministry of Education, Beijing Laboratory of Biomedical Materials, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Xiaoguang Dai
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing, 100029, China. and Key Lab of Biomedical Materials of Natural Macromolecules (Beijing University of Chemical Technology), Ministry of Education, Beijing Laboratory of Biomedical Materials, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Shun Duan
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing, 100029, China. and Key Lab of Biomedical Materials of Natural Macromolecules (Beijing University of Chemical Technology), Ministry of Education, Beijing Laboratory of Biomedical Materials, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Nana Zhao
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing, 100029, China. and Key Lab of Biomedical Materials of Natural Macromolecules (Beijing University of Chemical Technology), Ministry of Education, Beijing Laboratory of Biomedical Materials, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Fu-Jian Xu
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing, 100029, China. and Key Lab of Biomedical Materials of Natural Macromolecules (Beijing University of Chemical Technology), Ministry of Education, Beijing Laboratory of Biomedical Materials, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| |
Collapse
|
43
|
Penfold NJW, Yeow J, Boyer C, Armes SP. Emerging Trends in Polymerization-Induced Self-Assembly. ACS Macro Lett 2019; 8:1029-1054. [PMID: 35619484 DOI: 10.1021/acsmacrolett.9b00464] [Citation(s) in RCA: 344] [Impact Index Per Article: 68.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
In this Perspective, we summarize recent progress in polymerization-induced self-assembly (PISA) for the rational synthesis of block copolymer nanoparticles with various morphologies. Much of the PISA literature has been based on thermally initiated reversible addition-fragmentation chain transfer (RAFT) polymerization. Herein, we pay particular attention to alternative PISA protocols, which allow the preparation of nanoparticles with improved control over copolymer morphology and functionality. For example, initiation based on visible light, redox chemistry, or enzymes enables the incorporation of sensitive monomers and fragile biomolecules into block copolymer nanoparticles. Furthermore, PISA syntheses and postfunctionalization of the resulting nanoparticles (e.g., cross-linking) can be conducted sequentially without intermediate purification by using various external stimuli. Finally, PISA formulations have been optimized via high-throughput polymerization and recently evaluated within flow reactors for facile scale-up syntheses.
Collapse
Affiliation(s)
- Nicholas J. W. Penfold
- Department of Chemistry, The University of Sheffield, Brook Hill, Sheffield, South Yorkshire, S3 7HF, United Kingdom
| | - Jonathan Yeow
- Centre for Advanced Macromolecular Design (CAMD), School of Chemical Engineering, and Australian Centre for NanoMedicine, School of Chemical Engineering, The University of New South Wales, Sydney, New South Wales, 2051, Australia
| | - Cyrille Boyer
- Centre for Advanced Macromolecular Design (CAMD), School of Chemical Engineering, and Australian Centre for NanoMedicine, School of Chemical Engineering, The University of New South Wales, Sydney, New South Wales, 2051, Australia
| | - Steven P. Armes
- Department of Chemistry, The University of Sheffield, Brook Hill, Sheffield, South Yorkshire, S3 7HF, United Kingdom
| |
Collapse
|
44
|
A minimalist's approach for DNA nanoconstructions. Adv Drug Deliv Rev 2019; 147:22-28. [PMID: 30769045 DOI: 10.1016/j.addr.2019.02.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Revised: 01/03/2019] [Accepted: 02/08/2019] [Indexed: 12/21/2022]
Abstract
Structural DNA nanotechnology takes DNA, a biopolymer, far beyond being the molecule that stores and transmits genetic information in biological systems. DNA has been employed as building blocks for the assembly of designed, nanoscaled, supramolecular DNA architectures for applications in biophysics, structure determination, synthetic biology, diagnostics, and drug delivery. Herein, we review a symmetric approach of tile-based DNA self-assembly. This approach allows the construction of DNA nanostructures from minimal numbers of different types of DNA strands based on sequence and structural symmetries. Some examples of the applications of this approach in siRNA delivery are discussed as well.
Collapse
|
45
|
Malfanti A, Mastrotto F, Han Y, Král P, Balasso A, Scomparin A, Pozzi S, Satchi-Fainaro R, Salmaso S, Caliceti P. Novel Oligo-Guanidyl-PEG Carrier Forming Rod-Shaped Polyplexes. Mol Pharm 2019; 16:1678-1693. [PMID: 30860853 DOI: 10.1021/acs.molpharmaceut.9b00014] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
A novel unconventional supramolecular oligo-cationic structure (Agm6-M-PEG-OCH3) has been synthesized to yield high efficiency therapeutic oligonucleotide (ON) delivery. Agm6-M-PEG-OCH3 was obtained by a multistep protocol that included the conjugation of agmatine (Agm) moieties to maltotriose (M), which was further derivatized with one poly(ethylene glycol) (PEG) chain. Gel electrophoresis analysis showed that the 19 base pairs dsDNA model ON completely associates with Agm6-M-PEG-OCH3 at 3 N/P molar ratio, which is in agreement with the in silico molecular predictions. Isothermal titration calorimetry (ITC) analyses showed that the Agm6-M-PEG-OCH3/ON association occurs through a combination of mechanisms depending on the N/P ratios resulting in different nanostructures. Dynamic light scattering (DLS) and transmission electron microscopy (TEM) revealed that the Agm6-M-PEG-OCH3/ON polyplexes have rod-shape structure with a mean diameter of 50-75 nm and aspect ratio depending on the N/P ratio. The polyplexes were stable over time in buffer, while a slight size increase was observed in the presence of serum proteins. Cell culture studies showed that neither Agm6-M-PEG-OCH3 nor polyplexes displayed cytotoxic effects. Cellular uptake depended on the cell line and polyplex composition: cellular internalization was higher in the case of MCF-7 and KB cells compared to MC3T3-E1 cells and polyplexes with smaller aspect ratio were taken-up by cells more efficiently than polyplexes with higher aspect ratio. Finally, preliminary studies showed that our novel carrier efficiently delivered ONs into cells providing gene silencing.
Collapse
Affiliation(s)
- Alessio Malfanti
- Department of Pharmaceutical and Pharmacological Sciences , University of Padova , Via F. Marzolo 5 35131 Padova , Italy
| | - Francesca Mastrotto
- Department of Pharmaceutical and Pharmacological Sciences , University of Padova , Via F. Marzolo 5 35131 Padova , Italy
| | - Yanxiao Han
- Department of Chemistry and Department of Physics , University of Illinois at Chicago , Chicago , Illinois 60607 , United States
| | - Petr Král
- Department of Chemistry and Department of Physics , University of Illinois at Chicago , Chicago , Illinois 60607 , United States.,Department of Biopharmaceutical Sciences , University of Illinois at Chicago , Chicago , Illinois 60612 , United States
| | - Anna Balasso
- Department of Pharmaceutical and Pharmacological Sciences , University of Padova , Via F. Marzolo 5 35131 Padova , Italy
| | - Anna Scomparin
- Department of Physiology and Pharmacology, Sackler School of Medicine , Tel Aviv University 69978 Tel Aviv , Israel.,Department of Drug Science and Technology , University of Turin , Via P. Giuria 9 , 10125 Turin , Italy
| | - Sabina Pozzi
- Department of Physiology and Pharmacology, Sackler School of Medicine , Tel Aviv University 69978 Tel Aviv , Israel
| | - Ronit Satchi-Fainaro
- Department of Physiology and Pharmacology, Sackler School of Medicine , Tel Aviv University 69978 Tel Aviv , Israel
| | - Stefano Salmaso
- Department of Pharmaceutical and Pharmacological Sciences , University of Padova , Via F. Marzolo 5 35131 Padova , Italy
| | - Paolo Caliceti
- Department of Pharmaceutical and Pharmacological Sciences , University of Padova , Via F. Marzolo 5 35131 Padova , Italy
| |
Collapse
|
46
|
Wu Y, Xiao Y, Huang Y, Xu Y, You D, Lu W, Yu J. Rod-Shaped Micelles Based on PHF-g-(PCL-PEG) with pH-Triggered Doxorubicin Release and Enhanced Cellular Uptake. Biomacromolecules 2019; 20:1167-1177. [DOI: 10.1021/acs.biomac.8b01430] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Yanqian Wu
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, PR China
| | - Yi Xiao
- Department of Radiology and Nuclear Medicine, Changzheng Hospital, Naval Medical University, Shanghai 200003, PR China
| | - Yushu Huang
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, PR China
| | - Yanyun Xu
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, PR China
| | - Donglei You
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, PR China
| | - Wei Lu
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, PR China
| | - Jiahui Yu
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, PR China
| |
Collapse
|
47
|
Zhao N, Yan L, Zhao X, Chen X, Li A, Zheng D, Zhou X, Dai X, Xu FJ. Versatile Types of Organic/Inorganic Nanohybrids: From Strategic Design to Biomedical Applications. Chem Rev 2018; 119:1666-1762. [DOI: 10.1021/acs.chemrev.8b00401] [Citation(s) in RCA: 229] [Impact Index Per Article: 38.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Nana Zhao
- State Key Laboratory of Chemical Resource Engineering, Beijing Laboratory of Biomedical Materials, Key Laboratory of Carbon Fiber and Functional Polymers (Beijing University of Chemical Technology), Ministry of Education, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Liemei Yan
- State Key Laboratory of Chemical Resource Engineering, Beijing Laboratory of Biomedical Materials, Key Laboratory of Carbon Fiber and Functional Polymers (Beijing University of Chemical Technology), Ministry of Education, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Xiaoyi Zhao
- State Key Laboratory of Chemical Resource Engineering, Beijing Laboratory of Biomedical Materials, Key Laboratory of Carbon Fiber and Functional Polymers (Beijing University of Chemical Technology), Ministry of Education, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Xinyan Chen
- State Key Laboratory of Chemical Resource Engineering, Beijing Laboratory of Biomedical Materials, Key Laboratory of Carbon Fiber and Functional Polymers (Beijing University of Chemical Technology), Ministry of Education, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Aihua Li
- College of Materials Science and Engineering, Institute for Graphene Applied Technology Innovation, Laboratory of Fiber Materials and Modern Textiles, Growing Base for State Key Laboratory, Collaborative Innovation Center for Marine Biomass Fibers Materials and Textiles of Shandong Province, Qingdao University, Qingdao 266071, China
| | - Di Zheng
- State Key Laboratory of Chemical Resource Engineering, Beijing Laboratory of Biomedical Materials, Key Laboratory of Carbon Fiber and Functional Polymers (Beijing University of Chemical Technology), Ministry of Education, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Xin Zhou
- State Key Laboratory of Chemical Resource Engineering, Beijing Laboratory of Biomedical Materials, Key Laboratory of Carbon Fiber and Functional Polymers (Beijing University of Chemical Technology), Ministry of Education, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Xiaoguang Dai
- State Key Laboratory of Chemical Resource Engineering, Beijing Laboratory of Biomedical Materials, Key Laboratory of Carbon Fiber and Functional Polymers (Beijing University of Chemical Technology), Ministry of Education, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Fu-Jian Xu
- State Key Laboratory of Chemical Resource Engineering, Beijing Laboratory of Biomedical Materials, Key Laboratory of Carbon Fiber and Functional Polymers (Beijing University of Chemical Technology), Ministry of Education, Beijing University of Chemical Technology, Beijing, 100029, China
| |
Collapse
|
48
|
Fouz MF, Dey SK, Mukumoto K, Matyjaszewski K, Armitage BA, Das SR. Accessibility of Densely Localized DNA on Soft Polymer Nanoparticles. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2018; 34:14731-14737. [PMID: 30148639 DOI: 10.1021/acs.langmuir.8b02038] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
The dense localization of DNA on soluble nanoparticles can lead to effects distinct from equivalent amounts of the DNA in solution. However, the specific effect may depend on the nature of the assembly and the nanoparticle core. Here we examine the accessibility of densely packed DNA duplexes that extend from a bottle-brush polymer core. We find that unlike spherical nucleic acids, the DNA duplex bristles on the bottle-brush polymer remain accessible to sequence-specific cleavage by endonucleases. In addition, the hybridized strand of the duplex can be displaced through a toehold-mediated strand exchange even at the polymer interface. These results demonstrate that the DNA on bottle-brush polymer remains sufficiently flexible to allow enzymatic degradation or DNA hybridization.
Collapse
|
49
|
Song Z, Chen X, You X, Huang K, Dhinakar A, Gu Z, Wu J. Self-assembly of peptide amphiphiles for drug delivery: the role of peptide primary and secondary structures. Biomater Sci 2018; 5:2369-2380. [PMID: 29051950 DOI: 10.1039/c7bm00730b] [Citation(s) in RCA: 66] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Peptide amphiphiles (PAs), functionalized with alkyl chains, are capable of self-assembling into various nanostructures. Recently, PAs have been considered as ideal drug carriers due to their good biocompatibility, specific biological functions, and hypotoxicity to normal cells and tissues. Meanwhile, the nanocarriers formed by PAs are able to achieve controlled drug release and enhanced cell uptake in response to the stimulus of the physiological environment or specific biological factors in the location of the lesion. However, the underlying detailed drug delivery mechanism, especially from the aspect of primary and secondary structures of PAs, has not been systematically summarized or discussed. Focusing on the relationship between the primary and secondary structures of PAs and stimuli-responsive drug delivery applications, this review highlights the recent advances, challenges, and opportunities of PA-based functional drug nanocarriers, and their potential pharmaceutical applications are discussed.
Collapse
Affiliation(s)
- Zhenhua Song
- Guangdong Provincial Key Laboratory of Sensor Technology and Biomedical Instrument, School of Engineering, Sun Yat-sen University, Guangzhou, 510006, PR China.
| | | | | | | | | | | | | |
Collapse
|
50
|
Desai P, Venkataramanan A, Schneider R, Jaiswal MK, Carrow JK, Purwada A, Singh A, Gaharwar AK. Self-assembled, ellipsoidal polymeric nanoparticles for intracellular delivery of therapeutics. J Biomed Mater Res A 2018; 106:2048-2058. [PMID: 29577576 PMCID: PMC6093774 DOI: 10.1002/jbm.a.36400] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2017] [Revised: 02/17/2018] [Accepted: 03/15/2018] [Indexed: 02/06/2023]
Abstract
Nanoparticle shape has emerged as a key regulator of nanoparticle transport across physiological barriers, intracellular uptake, and biodistribution. We report a facile approach to synthesize ellipsoidal nanoparticles through self-assembly of poly(glycerol sebacate)-co-poly(ethylene glycol) (PGS-co-PEG). The PGS-PEG nanoparticle system is highly tunable, and the semiaxis length of the nanoparticles can be modulated by changing PGS-PEG molar ratio and incorporating therapeutics. As both PGS and PEG are highly biocompatible, the PGS-co-PEG nanoparticles show high hemo-, immuno-, and cytocompatibility. Our data suggest that PGS-co-PEG nanoparticles have the potential for use in a wide range of biomedical applications including regenerative medicine, stem cell engineering, immune modulation, and cancer therapeutics. © 2018 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 106A: 2048-2058, 2018.
Collapse
Affiliation(s)
- Prachi Desai
- Department of Biomedical Engineering, Texas A&M University, College Station, TX 77843 (USA)
| | - Anjana Venkataramanan
- Department of Biomedical Engineering, Texas A&M University, College Station, TX 77843 (USA)
| | - Rebecca Schneider
- Sibley School of Mechanical and Aerospace Engineering, Cornell University, Ithaca, NY 14853 (USA)
- Robert Frederick Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, NY 14853
| | - Manish K. Jaiswal
- Department of Biomedical Engineering, Texas A&M University, College Station, TX 77843 (USA)
| | - James K. Carrow
- Department of Biomedical Engineering, Texas A&M University, College Station, TX 77843 (USA)
| | - Alberto Purwada
- Sibley School of Mechanical and Aerospace Engineering, Cornell University, Ithaca, NY 14853 (USA)
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY 14853 (USA)
| | - Ankur Singh
- Sibley School of Mechanical and Aerospace Engineering, Cornell University, Ithaca, NY 14853 (USA)
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY 14853 (USA)
| | - Akhilesh K. Gaharwar
- Department of Biomedical Engineering, Texas A&M University, College Station, TX 77843 (USA)
- Department of Materials Science and Engineering, Texas A&M University, College Station, TX 77843 (USA)
- Center for Remote Health Technologies and Systems, Texas A&M University, College Station, TX 77843 (USA)
| |
Collapse
|