1
|
Sun W, Li J, Zhong J, Feng J, Ye Z, Lin Y, Su W, Zhu S, Li Y, Jia W. Exploring the effect of hydroxyapatite nanoparticle shape on red blood cells and blood coagulation. Nanomedicine (Lond) 2024; 19:2301-2314. [PMID: 39310995 PMCID: PMC11487950 DOI: 10.1080/17435889.2024.2396152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Accepted: 08/20/2024] [Indexed: 10/20/2024] Open
Abstract
Aim: In this study, we evaluated the effects of two types of hydroxyapatite (HAP) nanoparticles, sharing the same surface chemistry but differing in shape, on the biological characteristics of plasma, platelets and red blood cells.Materials & methods: Initially, two different shapes (rod-shaped and sphere-shaped) of HAPs were characterized. These HAPs were then co-cultured with plasma and red blood cells to examine their impact on coagulation and hemolysis. The impact of HAPs on white blood cells count in mice were evaluated following gavage and tail vein injection.Results: Sphere-shaped HAP is more likely to adsorb onto platelet surfaces, while rod-shaped HAP is more likely to cause hemolysis. Although there are differences in the in vitro experimental results between sphere-shaped HAP and rod-shaped HAP, both types demonstrate good blood compatibility at a 20 mM concentration. Furthermore, in vivo experiments showed that sphere-shaped nano-HAP induced a more pronounced increase in white blood cell count, suggesting that it may exhibit greater toxicity.Conclusion: While differences exist in the blood compatibility test results between the two HAPs, these differences are minimal, with both results falling within a safe range. Overall, HAP demonstrates excellent blood compatibility.
Collapse
Affiliation(s)
- Weitang Sun
- Institute of Pediatrics, Guangzhou Women & Children’s Medical Center, Guangzhou Medical University, China
| | - Jiali Li
- Center Laboratory, Guangzhou Women & Children’s Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Jingbin Zhong
- Institute of Pediatrics, Guangzhou Women & Children’s Medical Center, Guangzhou Medical University, China
| | - Jieling Feng
- Institute of Pediatrics, Guangzhou Women & Children’s Medical Center, Guangzhou Medical University, China
| | - Zijie Ye
- Institute of Pediatrics, Guangzhou Women & Children’s Medical Center, Guangzhou Medical University, China
| | - Yueling Lin
- Institute of Pediatrics, Guangzhou Women & Children’s Medical Center, Guangzhou Medical University, China
| | - Wenqi Su
- Institute of Pediatrics, Guangzhou Women & Children’s Medical Center, Guangzhou Medical University, China
| | - Shibo Zhu
- Institute of Pediatrics, Guangzhou Women & Children’s Medical Center, Guangzhou Medical University, China
| | - Yinghua Li
- Center Laboratory, Guangzhou Women & Children’s Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Wei Jia
- Institute of Pediatrics, Guangzhou Women & Children’s Medical Center, Guangzhou Medical University, China
| |
Collapse
|
2
|
Shokri M, Kharaziha M, Ahmadi Tafti H, Dalili F, Mehdinavaz Aghdam R, Ghiassi SR, Baghaban Eslaminejad M. Melatonin-loaded mesoporous zinc- and gallium-doped hydroxyapatite nanoparticles to control infection and bone repair. Biomater Sci 2024; 12:4194-4210. [PMID: 38980095 DOI: 10.1039/d4bm00377b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/10/2024]
Abstract
Effective treatment of infected bone defects resulting from multi-drug resistant bacteria (MDR) has emerged as a significant clinical challenge, highlighting the pressing demand for potent antibacterial bone graft substitutes. Mesoporous nanoparticles have been introduced as a promising class of biomaterials offering significant properties for treating bone infections. Herein, we synthesize antibacterial mesoporous hydroxyapatite substituted with zinc and gallium (Zn-Ga:mHA) nanoparticles using a facile sol-gel method. The resulting mesoporous nanoparticles are applied for the controlled release of melatonin (Mel). Zn-Ga:mHA nanoparticles with an average particle size of 36 ± 3 nm and pore size of 10.6 ± 0.4 nm reveal a Mel loading efficiency of 58 ± 1%. Results show that 50% of Mel is released within 20 h and its long-term release is recorded up to 50 h. The Zn-Ga:mHA nanoparticles exhibit highly effective antibacterial performance as reflected by a 19 ± 1% and 8 ± 2% viability reduction in Escherichia coli and Staphylococcus bacteria, respectively. Noticeably, Mel-loaded Zn-Ga:mHA nanoparticles are also cytocompatible and stimulate in vitro osteogenic differentiation of human mesenchymal stem cells (hMSCs) without any osteoinductive factor. In vivo studies in a rabbit skull also show significant regeneration of bone during 14 days. In summary, Mel-loaded Zn-Ga:mHA nanoparticles provide great potential as an antibacterial and osteogenic component in bone substitutes like hydrogels, scaffolds, and coatings.
Collapse
Affiliation(s)
- Mahshid Shokri
- Department of Materials Engineering, Isfahan University of Technology, Isfahan 84156-83111, Iran.
- Cardiovascular Diseases Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Mahshid Kharaziha
- Department of Materials Engineering, Isfahan University of Technology, Isfahan 84156-83111, Iran.
| | - Hossein Ahmadi Tafti
- Cardiovascular Diseases Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Faezeh Dalili
- School of Metallurgy & Materials Engineering, College of Engineering, University of Tehran, Tehran, Iran
| | | | - Seyed Reza Ghiassi
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Islamic Azad University, Garmsar Branch, Garmsar, Iran
| | - Mohamadreza Baghaban Eslaminejad
- Department of Stem Cells and Developmental Biology, Cell Sciences Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| |
Collapse
|
3
|
Akkaya B, Akkaya R. Synthesis, Characterization, and Investigation of Doxorubicin Drug Release Properties of Poly(acrylamide-co-acrylic Acid/Maleic Acid)-Hydroxyapatite Composite Hydrogel. Med Chem 2024; 20:537-545. [PMID: 38279756 DOI: 10.2174/0115734064268726231203164405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 10/19/2023] [Accepted: 10/31/2023] [Indexed: 01/28/2024]
Abstract
BACKGROUND Hydroxyapatite and its derivatives have been used for a lot of applications. One of them is drug release studies. Due to its low adhesion strength and lack of the strength and durability required for load-carrying applications, there is a need to improve the properties of hydroxyapatite. For this aim, the most important factors are increasing pH sensitivity and preventing coagulation. Mixing it with multifunctional polymers is the best solution. OBJECTIVES The main objectives are: 1- preparing poly(acrylamide-co-acrylic acid/maleic acid)- hydroxyapatite (PAm-co-PAA/PMA-HApt), 2- assessment of (PAm-co-PAA/PMA-HApt) and dox-loaded poly(acrylamide-co-acrylic acid/maleic acid) (Dox-(PAm-co-PAA/PMA-HApt)) composite hydrogels, and 3- elucidating the difference in behavior of drug release studies between hydroxyapatite (HApt) and poly(acrylamide-co-acrylic acid/maleic acid) composite hydrogels. METHODS A composite of PAm-co-PAA/PMA-HApt was prepared by direct polymerization of acrylamide-co-acrylic acid/maleic acid in a suspension of HApt. The drug loading and release features of PAm-co-PAA/PMA-HApt and HApt were then investigated for doxorubicin (dox) release. Using Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), scanning electron microscopy (SEM), and thermogravimetric analysis (TG/DTA), this unique composite hydrogel has been physicochemically investigated. Also, a colorimetric assay was used to assess the in vitro biocompatible support and anticancer activity of HApt and the newly developed composite hydrogel XTT (2,3-Bis-(2-Methoxy-4-Nitro-5-Sulfophenyl)-2H-Tetrazolium-5-Carboxanilide) assay. RESULTS According to the results of drug release studies of this new material, it is pH sensitive, and PAm-co-PAA/PMA-HApt demonstrated a faster release than HApt at 37°C in the acidic solution of pH 4.5 than in the neutral solution of pH 7.4. The XTT assay outcomes also demonstrated the biocompatibility of PAm-co-PAA/PMA-HApt and HApt and the cytotoxic effect of dox-loaded PAm-co-PAA/PMA-HApt. CONCLUSION It should be inferred that the drug release profile was improved at pH 4.5 by the newly produced pH-sensitive composite hydrogel.
Collapse
Affiliation(s)
- Birnur Akkaya
- Department of Molecular Biology and Genetics, Faculty of Science, Sivas Cumhuriyet University, Sivas, Turkey
| | - Recep Akkaya
- Department of Biophysics, Faculty of Medicine, Sivas Cumhuriyet University, Sivas, Turkey
| |
Collapse
|
4
|
Lazar G, Nekvapil F, Glamuzina B, Tamaș T, Barbu-Tudoran L, Suciu M, Cinta Pinzaru S. pH-Dependent Behavior of Novel 5-FU Delivery System in Environmental Conditions Comparable to the Gastro-Intestinal Tract. Pharmaceutics 2023; 15:pharmaceutics15031011. [PMID: 36986870 PMCID: PMC10056423 DOI: 10.3390/pharmaceutics15031011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 03/05/2023] [Accepted: 03/16/2023] [Indexed: 03/30/2023] Open
Abstract
A biogenic carrier for 5-fluorouracil (5-FU) loading and subsequent tableting as a new drug formulation for slow release has been proposed using the biomineral from blue crab carapace. Due to its highly ordered 3D porous nanoarchitecture, the biogenic carbonate carrier could achieve increased effectiveness in colorectal cancer cure provided that the formulation would successfully pass through the gastric acid conditions. Following the recently proven viability of the concept by demonstrating the slow release of the drug from the carrier using the highly sensitive SERS technique, here we investigated the 5-FU release from the composite tablet drug in pH conditions replicating the gastric environment. The released drug from the tablet was studied in solutions with three relevant pH values, pH 2, pH 3, and pH 4. The 5-FU SERS spectral signature for each pH value was used to build calibration curves for quantitative SERS analysis. The results suggested a similarly slow-releasing pattern in acid pH environments to that in neutral conditions. Although biogenic calcite dissolution was expected in acid conditions, the X-ray diffraction and Raman spectroscopy showed preservation of calcite mineral along with the monohydrocalcite during acid solution exposure for two hours. The total released amount in a time course of seven hours, however, was lower in acidic pH solutions, with a maximum fraction of ~40% of the total amount of loaded drug, for pH 2, as opposed to ~80% for neutral values. Nonetheless, these results clearly prove that the novel composite drug retains its slow-releasing character in environmental conditions compatible with the gastrointestinal pH and that it is a viable and biocompatible alternative for oral delivery of anticancer drug to reach the lower gastro-intestinal tract.
Collapse
Affiliation(s)
- Geza Lazar
- Biomolecular Physics Department, Faculty of Physics, Babes Bolyai University, Kogalniceanu 1, 400084 Cluj-Napoca, Romania
- Institute for Research, Development and Innovation in Applied Natural Science, Fântânele 30, 400327 Cluj-Napoca, Romania
| | - Fran Nekvapil
- Biomolecular Physics Department, Faculty of Physics, Babes Bolyai University, Kogalniceanu 1, 400084 Cluj-Napoca, Romania
- Institute for Research, Development and Innovation in Applied Natural Science, Fântânele 30, 400327 Cluj-Napoca, Romania
| | - Branko Glamuzina
- Department of Applied Ecology, University of Dubrovnik, Ćira Carića 4, 20 000 Dubrovnik, Croatia
| | - Tudor Tamaș
- Department of Geology, Babeş-Bolyai University, 1 Kogălniceanu, 400084 Cluj-Napoca, Romania
| | - Lucian Barbu-Tudoran
- Electron Microscopy Centre, Babeș-Bolyai University, Clinicilor 5-7, 400006 Cluj-Napoca, Romania
- Advanced Research and Technology Center for Alternative Energy, National Institute for Research and Development of Isotopic and Molecular Technologies, Donat 67-103, 400293 Cluj-Napoca, Romania
| | - Maria Suciu
- Advanced Research and Technology Center for Alternative Energy, National Institute for Research and Development of Isotopic and Molecular Technologies, Donat 67-103, 400293 Cluj-Napoca, Romania
| | - Simona Cinta Pinzaru
- Biomolecular Physics Department, Faculty of Physics, Babes Bolyai University, Kogalniceanu 1, 400084 Cluj-Napoca, Romania
- Institute for Research, Development and Innovation in Applied Natural Science, Fântânele 30, 400327 Cluj-Napoca, Romania
| |
Collapse
|
5
|
Hydroxyapatite Biobased Materials for Treatment and Diagnosis of Cancer. Int J Mol Sci 2022; 23:ijms231911352. [PMID: 36232652 PMCID: PMC9569977 DOI: 10.3390/ijms231911352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 09/19/2022] [Accepted: 09/21/2022] [Indexed: 11/22/2022] Open
Abstract
Great advances in cancer treatment have been undertaken in the last years as a consequence of the development of new antitumoral drugs able to target cancer cells with decreasing side effects and a better understanding of the behavior of neoplastic cells during invasion and metastasis. Specifically, drug delivery systems (DDS) based on the use of hydroxyapatite nanoparticles (HAp NPs) are gaining attention and merit a comprehensive review focused on their potential applications. These are derived from the intrinsic properties of HAp (e.g., biocompatibility and biodegradability), together with the easy functionalization and easy control of porosity, crystallinity and morphology of HAp NPs. The capacity to tailor the properties of DLS based on HAp NPs has well-recognized advantages for the control of both drug loading and release. Furthermore, the functionalization of NPs allows a targeted uptake in tumoral cells while their rapid elimination by the reticuloendothelial system (RES) can be avoided. Advances in HAp NPs involve not only their use as drug nanocarriers but also their employment as nanosystems for magnetic hyperthermia therapy, gene delivery systems, adjuvants for cancer immunotherapy and nanoparticles for cell imaging.
Collapse
|
6
|
Hydroxyapatite Nanoparticles for Improved Cancer Theranostics. J Funct Biomater 2022; 13:jfb13030100. [PMID: 35893468 PMCID: PMC9326646 DOI: 10.3390/jfb13030100] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 07/13/2022] [Accepted: 07/15/2022] [Indexed: 12/12/2022] Open
Abstract
Beyond their well-known applications in bone tissue engineering, hydroxyapatite nanoparticles (HAp NPs) have also been showing great promise for improved cancer therapy. The chemical structure of HAp NPs offers excellent possibilities for loading and delivering a broad range of anticancer drugs in a sustained, prolonged, and targeted manner and thus eliciting lower complications than conventional chemotherapeutic strategies. The incorporation of specific therapeutic elements into the basic composition of HAp NPs is another approach, alone or synergistically with drug release, to provide advanced anticancer effects such as the capability to inhibit the growth and metastasis of cancer cells through activating specific cell signaling pathways. HAp NPs can be easily converted to smart anticancer agents by applying different surface modification treatments to facilitate the targeting and killing of cancer cells without significant adverse effects on normal healthy cells. The applications in cancer diagnosis for magnetic and nuclear in vivo imaging are also promising as the detection of solid tumor cells is now achievable by utilizing superparamagnetic HAp NPs. The ongoing research emphasizes the use of HAp NPs in fabricating three-dimensional scaffolds for the treatment of cancerous tissues or organs, promoting the regeneration of healthy tissue after cancer detection and removal. This review provides a summary of HAp NP applications in cancer theranostics, highlighting the current limitations and the challenges ahead for this field to open new avenues for research.
Collapse
|
7
|
Wan W, Li Z, Wang X, Tian F, Yang J. Surface-Fabrication of Fluorescent Hydroxyapatite for Cancer Cell Imaging and Bio-Printing Applications. BIOSENSORS 2022; 12:bios12060419. [PMID: 35735566 PMCID: PMC9221440 DOI: 10.3390/bios12060419] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 05/30/2022] [Accepted: 06/13/2022] [Indexed: 05/07/2023]
Abstract
Hydroxyapatite (HAP) materials are widely applied as biomedical materials due to their stable performance, low cost, good biocompatibility and biodegradability. Here, a green, fast and efficient strategy was designed to construct a fluorescent nanosystem for cell imaging and drug delivery based on polyethyleneimine (PEI) and functionalized HAP via simple physical adsorption. First, HAP nanorods were functionalized with riboflavin sodium phosphate (HE) to provide them with fluorescence properties based on ligand-exchange process. Next, PEI was attached on the surface of HE-functionalized HAP (HAP-HE@PEI) via electrostatic attraction. The fluorescent HAP-HE@PEI nanosystem could be rapidly taken up by NIH-3T3 fibroblast cells and successfully applied to for cell imaging. Additionally, doxorubicin hydrochloride (DOX) containing HAP-HE@PEI with high loading capacity was prepared, and in-vitro release results show that the maximum release of DOX at pH 5.4 (31.83%) was significantly higher than that at pH 7.2 (9.90%), which can be used as a drug delivery tool for cancer therapy. Finally, HAP-HE@PEI as the 3D inkjet printing ink were printed with GelMA hydrogel, showing a great biocompatible property for 3D cell culture of RAW 264.7 macrophage cells. Altogether, because of the enhanced affinity with the cell membrane of HAP-HE@PEI, this green, fast and efficient strategy may provide a prospective candidate for bio-imaging, drug delivery and bio-printing.
Collapse
Affiliation(s)
- Weimin Wan
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; (W.W.); (Z.L.); (X.W.); (F.T.)
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Ziqi Li
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; (W.W.); (Z.L.); (X.W.); (F.T.)
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
- Tianjin Key Laboratory of Phytochemistry and Pharmaceutical Analysis, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Xi Wang
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; (W.W.); (Z.L.); (X.W.); (F.T.)
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Fei Tian
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; (W.W.); (Z.L.); (X.W.); (F.T.)
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
- Tianjin Key Laboratory of Phytochemistry and Pharmaceutical Analysis, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Jian Yang
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; (W.W.); (Z.L.); (X.W.); (F.T.)
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
- Correspondence:
| |
Collapse
|
8
|
Sobierajska P, Serwotka-Suszczak A, Targonska S, Szymanski D, Marycz K, Wiglusz RJ. Synergistic Effect of Toceranib and Nanohydroxyapatite as a Drug Delivery Platform-Physicochemical Properties and In Vitro Studies on Mastocytoma Cells. Int J Mol Sci 2022; 23:ijms23041944. [PMID: 35216060 PMCID: PMC8875076 DOI: 10.3390/ijms23041944] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 01/27/2022] [Accepted: 01/28/2022] [Indexed: 02/07/2023] Open
Abstract
A new combination of Toceranib (Toc; 5-[(5Z)-(5-Fluoro-2-oxo-1,2-dihydro-3H-indol-3-ylidene)methyl]-2,4-dimethyl-N-[2-(pyrrolidin-1-yl)ethyl]-1H-pyrrole-3-carboxamide) with nanohydroxyapatite (nHAp) was proposed as an antineoplastic drug delivery system. Its physicochemical properties were determined as crystallinity, grain size, morphology, zeta potential and hydrodynamic diameter as well as Toceranib release. The crystalline nanorods of nHAp were synthesised by the co-precipitation method, while the amorphous Toceranib was obtained by its conversion from the crystalline form during nHAp–Toc preparation. The surface interaction between both compounds was confirmed using Fourier-transform infrared spectroscopy (FT-IR), ultraviolet-visible spectroscopy (UV–Vis) and scanning electron microscopy with energy-dispersive X-ray spectroscopy (SEM-EDS). The nHAp–Toc showed a slower and prolonged release of Toceranib. The release behaviour was affected by hydrodynamic size, surface interaction and the medium used (pH). The effectiveness of the proposed platform was tested by comparing the cytotoxicity of the drug combined with nHAp against the drug itself. The compounds were tested on NI-1 mastocytoma cells using the Alamar blue colorimetric technique. The obtained results suggest that the proposed platform shows high efficiency (the calculated IC50 is 4.29 nM), while maintaining the specificity of the drug alone. Performed analyses confirmed that nanohydroxyapatite is a prospective drug carrier and, when Toceranib-loaded, may be an idea worth developing with further research into therapeutic application in the treatment of canine mast cell tumour.
Collapse
Affiliation(s)
- Paulina Sobierajska
- Institute of Low Temperature and Structure Research, Polish Academy of Sciences, Okolna 2, 50-422 Wroclaw, Poland; (S.T.); (D.S.)
- Correspondence: (P.S.); (R.J.W.)
| | - Anna Serwotka-Suszczak
- Department of Experimental Biology, Faculty of Biology and Animal Science, Wroclaw University of Environmental and Life Sciences, C. K. Norwida 27B, 50-375 Wroclaw, Poland; (A.S.-S.); (K.M.)
| | - Sara Targonska
- Institute of Low Temperature and Structure Research, Polish Academy of Sciences, Okolna 2, 50-422 Wroclaw, Poland; (S.T.); (D.S.)
| | - Damian Szymanski
- Institute of Low Temperature and Structure Research, Polish Academy of Sciences, Okolna 2, 50-422 Wroclaw, Poland; (S.T.); (D.S.)
| | - Krzysztof Marycz
- Department of Experimental Biology, Faculty of Biology and Animal Science, Wroclaw University of Environmental and Life Sciences, C. K. Norwida 27B, 50-375 Wroclaw, Poland; (A.S.-S.); (K.M.)
| | - Rafal J. Wiglusz
- Institute of Low Temperature and Structure Research, Polish Academy of Sciences, Okolna 2, 50-422 Wroclaw, Poland; (S.T.); (D.S.)
- Correspondence: (P.S.); (R.J.W.)
| |
Collapse
|
9
|
Kuang Y, Zhai J, Xiao Q, Zhao S, Li C. Polysaccharide/mesoporous silica nanoparticle-based drug delivery systems: A review. Int J Biol Macromol 2021; 193:457-473. [PMID: 34710474 DOI: 10.1016/j.ijbiomac.2021.10.142] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 09/30/2021] [Accepted: 10/19/2021] [Indexed: 11/16/2022]
Abstract
Mesoporous silica nanoparticles (MSNs) have been well-researched in the design and fabrication of advanced drug delivery systems (DDSs) due to their advantages such as good biocompatibility, large specific surface area and pore volume for drug loading, easily surface modification, adjusted size and good thermal/chemical stability. For MSN-based DDSs, gate materials are also necessary. And natural polysaccharides, one kind of the most abundant natural resource, have been widely applied as the "gatekeepers" in MSN-based DDSs. Polysaccharides are cheap and rich in sources with good biocompatibility, and some of them have important biological functions. In this review article, polysaccharides including chitosan, hyaluronic acid, sodium alginate and dextran, et al. are briefly introduced. And the preparation processes and properties such as controlled drug release, cancer targeting and disease diagnosis of functional polysaccharide/MSN-based DDSs are discussed.
Collapse
Affiliation(s)
- Ying Kuang
- Glyn O. Philips Hydrocolloid Research Centre at HUT, Hubei University of Technology, Wuhan, Hubei 430068, China
| | - Junjun Zhai
- Glyn O. Philips Hydrocolloid Research Centre at HUT, Hubei University of Technology, Wuhan, Hubei 430068, China
| | - Qinjian Xiao
- Glyn O. Philips Hydrocolloid Research Centre at HUT, Hubei University of Technology, Wuhan, Hubei 430068, China
| | - Si Zhao
- Glyn O. Philips Hydrocolloid Research Centre at HUT, Hubei University of Technology, Wuhan, Hubei 430068, China
| | - Cao Li
- Ministry-of-Education Key Laboratory for the Green Preparation and Application of Functional Materials, Hubei Key Laboratory of Polymer Materials, Hubei University, Wuhan 430062, China.
| |
Collapse
|
10
|
Hong D, Wu J, Xiao X, Li X, Xu D, Du C. Antimicrobial Peptides-Loaded Hydroxyapatite Microsphere With Different Hierarchical Structures for Enhanced Drug Loading, Sustained Release and Antibacterial Activity. Front Chem 2021; 9:747665. [PMID: 34722458 PMCID: PMC8551960 DOI: 10.3389/fchem.2021.747665] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Accepted: 09/27/2021] [Indexed: 11/13/2022] Open
Abstract
Antimicrobial peptides (AMPs) have great potential for clinical treatment of bacterial infection due to the broad-spectrum and highly effective antibacterial activity. However, the easy degradation and inactivation in vivo has been a major obstacle for their application and an effective delivery system is demanding. The surface physicochemical properties of the carrier, including surface potential, surface polarity, pore structure and morphology, have exerted great effects on the adsorption and release behavior of AMPs. This study investigated the influence of micro/nano carriers with different hierarchical structures on the loading, release and biological behavior of AMPs. Three types of AMPs-loaded hydroxyapatite microspheres (HA/AMPs MSs) with different hierarchical structures (needle-like, rod-like, and flake-like) were developed, which was investigated by the surface morphology, chemical composition and surface potential in detail. The different hierarchical structures of hydroxyapatite microspheres (HA MSs) had noticeable impact on the loading and release behavior of AMPs, and the flake-like HA MSs with hierarchical structure showed the highest loading efficiency and long-lasting release over 9 days. Meanwhile, the stability of AMPs released from HA MSs was effectively maintained. Moreover, the antibacterial test indicated that the flake-like HA/AMPs MSs showed more sustained antibacterial properties among three composites. In view of the excellent biocompatibility and osteogenic property, high loading efficiency and the long-term release properties of HA MSs with hierarchical structure, the HA/AMPs MSs have a great potential in bone tissue engineering.
Collapse
Affiliation(s)
- Dandan Hong
- Department of Biomedical Engineering, School of Materials Science and Engineering, South China University of Technology, Guangzhou, China.,National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou, China.,Key Laboratory of Biomedical Materials and Engineering of the Ministry of Education, and Innovation Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou, China
| | - Jingjing Wu
- Department of Biomedical Engineering, School of Materials Science and Engineering, South China University of Technology, Guangzhou, China.,National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou, China.,Key Laboratory of Biomedical Materials and Engineering of the Ministry of Education, and Innovation Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou, China
| | - Xuemin Xiao
- Department of Biomedical Engineering, School of Materials Science and Engineering, South China University of Technology, Guangzhou, China.,National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou, China.,Key Laboratory of Biomedical Materials and Engineering of the Ministry of Education, and Innovation Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou, China
| | - Xueyang Li
- Department of Biomedical Engineering, School of Materials Science and Engineering, South China University of Technology, Guangzhou, China.,National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou, China.,Key Laboratory of Biomedical Materials and Engineering of the Ministry of Education, and Innovation Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou, China
| | - Dong Xu
- Department of Colorectal Surgery, Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Chang Du
- Department of Biomedical Engineering, School of Materials Science and Engineering, South China University of Technology, Guangzhou, China.,National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou, China.,Key Laboratory of Biomedical Materials and Engineering of the Ministry of Education, and Innovation Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou, China.,Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Guangzhou, China
| |
Collapse
|
11
|
Zhong Y, Dong Y, Chen T, Yang L, Yao M, Zhi Y, Yang H, Zhang J, Bi W. 808 nm NIR Laser-Excited Upconversion Nanoplatform for Combinatory Photodynamic and Chemotherapy with Deep Penetration and Acid Bursting Release Performance. ACS APPLIED BIO MATERIALS 2021; 4:2639-2653. [DOI: 10.1021/acsabm.0c01607] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Affiliation(s)
- Yingtao Zhong
- School of Pharmaceutical Sciences, Health Science Center, Shenzhen University, Shenzhen 518055, China
| | - Yun Dong
- School of Pharmaceutical Sciences, Health Science Center, Shenzhen University, Shenzhen 518055, China
| | - Tie Chen
- School of Pharmaceutical Sciences, Health Science Center, Shenzhen University, Shenzhen 518055, China
| | - Lingzhi Yang
- School of Pharmaceutical Sciences, Health Science Center, Shenzhen University, Shenzhen 518055, China
| | - Min Yao
- School of Pharmaceutical Sciences, Health Science Center, Shenzhen University, Shenzhen 518055, China
| | - Yunshi Zhi
- School of Pharmaceutical Sciences, Health Science Center, Shenzhen University, Shenzhen 518055, China
| | - Haoyi Yang
- School of Pharmaceutical Sciences, Health Science Center, Shenzhen University, Shenzhen 518055, China
| | - Jian Zhang
- School of Pharmaceutical Sciences, Health Science Center, Shenzhen University, Shenzhen 518055, China
| | - Wenchuan Bi
- School of Pharmaceutical Sciences, Health Science Center, Shenzhen University, Shenzhen 518055, China
| |
Collapse
|
12
|
Idrees H, Zaidi SZJ, Sabir A, Khan RU, Zhang X, Hassan SU. A Review of Biodegradable Natural Polymer-Based Nanoparticles for Drug Delivery Applications. NANOMATERIALS (BASEL, SWITZERLAND) 2020; 10:E1970. [PMID: 33027891 PMCID: PMC7600772 DOI: 10.3390/nano10101970] [Citation(s) in RCA: 136] [Impact Index Per Article: 27.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 09/25/2020] [Accepted: 09/28/2020] [Indexed: 01/19/2023]
Abstract
Biodegradable natural polymers have been investigated extensively as the best choice for encapsulation and delivery of drugs. The research has attracted remarkable attention in the pharmaceutical industry. The shortcomings of conventional dosage systems, along with modified and targeted drug delivery methods, are addressed by using polymers with improved bioavailability, biocompatibility, and lower toxicity. Therefore, nanomedicines are now considered to be an innovative type of medication. This review critically examines the use of natural biodegradable polymers and their drug delivery systems for local or targeted and controlled/sustained drug release against fatal diseases.
Collapse
Affiliation(s)
- Humaira Idrees
- Department of Polymer Engineering and Technology, University of the Punjab, Lahore 54590, Pakistan; (A.S.); (R.U.K.)
| | - Syed Zohaib Javaid Zaidi
- Institute of Chemical Engineering and Technology, University of the Punjab, Lahore 54000, Punjab, Pakistan
| | - Aneela Sabir
- Department of Polymer Engineering and Technology, University of the Punjab, Lahore 54590, Pakistan; (A.S.); (R.U.K.)
| | - Rafi Ullah Khan
- Department of Polymer Engineering and Technology, University of the Punjab, Lahore 54590, Pakistan; (A.S.); (R.U.K.)
- Institute of Chemical Engineering and Technology, University of the Punjab, Lahore 54000, Punjab, Pakistan
| | - Xunli Zhang
- Mechanical Engineering, Faculty of Engineering and Physical Sciences, University of Southampton, Southampton SO17 1BJ, UK;
| | - Sammer-ul Hassan
- Mechanical Engineering, Faculty of Engineering and Physical Sciences, University of Southampton, Southampton SO17 1BJ, UK;
| |
Collapse
|
13
|
Ghiasi B, Sefidbakht Y, Mozaffari-Jovin S, Gharehcheloo B, Mehrarya M, Khodadadi A, Rezaei M, Ranaei Siadat SO, Uskoković V. Hydroxyapatite as a biomaterial - a gift that keeps on giving. Drug Dev Ind Pharm 2020; 46:1035-1062. [PMID: 32476496 DOI: 10.1080/03639045.2020.1776321] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The synthetic analogue to biogenic apatite, hydroxyapatite (HA) has a number of physicochemical properties that make it an attractive candidate for diagnosis, treatment of disease and augmentation of biological tissues. Here we describe some of the recent studies on HA, which may provide bases for a number of new medical applications. The content of this review is divided to different medical application modes utilizing HA, including tissue engineering, medical implants, controlled drug delivery, gene therapies, cancer therapies and bioimaging. A number of advantages of HA over other biomaterials emerge from this discourse, including (i) biocompatibility, (ii) bioactivity, (iii) relatively simple synthesis protocols for the fabrication of nanoparticles with specific sizes and shapes, (iv) smart response to environmental stimuli, (v) facile functionalization and surface modification through noncovalent interactions, and (vi) the capacity for being simultaneously loaded with a wide range of therapeutic agents and switched to bioimaging modalities for uses in theranostics. A special section is dedicated to analysis of the safety of particulate HA as a component of parenterally administrable medications. It is concluded that despite the fact that many benefits come with the usage of HA, its deficiencies and potential side effects must be addressed before the translation to the clinical domain is pursued. Although HA has been known in the biomaterials world as the exemplar of safety, this safety proves to be the function of size, morphology, surface ligands and other structural and compositional parameters defining the particles. For this reason, each HA, especially when it comes in a novel structural form, must be treated anew from the safety research angle before being allowed to enter the clinical stage.
Collapse
Affiliation(s)
- Behrad Ghiasi
- Protein Research Center, Shahid Beheshti University, Tehran, Iran
| | - Yahya Sefidbakht
- Protein Research Center, Shahid Beheshti University, Tehran, Iran.,Nanobiotechnology Laboratory, The Faculty of New Technologies Engineering (NTE), Shahid Beheshti University, Tehran, Iran
| | - Sina Mozaffari-Jovin
- Medical Genetics Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.,Department of Medical Genetics, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | | | | | - Arash Khodadadi
- Department of Pharmaceutics, Faculty of Pharmacy, Kerman University of Medical Science, Kerman, Iran
| | - Maryam Rezaei
- Institute of Biochemistry and Biophysics (IBB), Tehran University, Tehran, Iran
| | - Seyed Omid Ranaei Siadat
- Protein Research Center, Shahid Beheshti University, Tehran, Iran.,Nanobiotechnology Laboratory, The Faculty of New Technologies Engineering (NTE), Shahid Beheshti University, Tehran, Iran
| | - Vuk Uskoković
- Department of Mechanical and Aerospace Engineering, University of California, Irvine, CA, USA
| |
Collapse
|
14
|
Wang Z, Chen K, Hua C, Guo X. Conformation Variation and Tunable Protein Adsorption through Combination of Poly(acrylic acid) and Antifouling Poly( N-(2-hydroxyethyl) acrylamide) Diblock on a Particle Surface. Polymers (Basel) 2020; 12:E566. [PMID: 32143509 PMCID: PMC7182850 DOI: 10.3390/polym12030566] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Revised: 02/18/2020] [Accepted: 02/21/2020] [Indexed: 12/16/2022] Open
Abstract
Adsorption and desorption of proteins on biomaterial surfaces play a critical role in numerous biomedical applications. Spherical diblock polymer brushes (polystyrene with photoiniferter (PSV) as the core) with different block sequence, poly(acrylic acid)-b-poly(N-(2-hydroxyethyl) acrylamide) (PSV@PAA-b-PHEAA) and poly(N-(2-hydroxyethyl) acrylamide)-b-poly(acrylic acid) (PSV@PHEAA-b-PAA) were prepared via surface-initiated photoiniferter-mediated polymerization (SI-PIMP) and confirmed by a series of characterizations including TEM, Fourier transform infrared (FTIR) and elemental analysis. Both diblock polymer brushes show typical pH-dependent properties measured by dynamic light scattering (DLS) and Zeta potential. It is interesting to find out that conformation of PSV@PAA-b-PHEAA uniquely change with pH values, which is due to cooperation of electrostatic repulsion and steric hindrance. High-resolution turbidimetric titration was applied to explore the behavior of bovine serum albumin (BSA) binding to diblock polymer brushes, and the protein adsorption could be tuned by the existence of PHEAA as well as apparent PAA density. These studies laid a theoretical foundation for design of diblock polymer brushes and a possible application in biomedical fields.
Collapse
Affiliation(s)
- Zun Wang
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering, East China University of Science and Technology, Shanghai 200237, China; (Z.W.); (C.H.)
| | - Kaimin Chen
- College of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, Shanghai 201620, China
| | - Chen Hua
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering, East China University of Science and Technology, Shanghai 200237, China; (Z.W.); (C.H.)
| | - Xuhong Guo
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering, East China University of Science and Technology, Shanghai 200237, China; (Z.W.); (C.H.)
| |
Collapse
|
15
|
Liu T, Bai R, Zhou H, Wang R, Liu J, Zhao Y, Chen C. The effect of size and surface ligands of iron oxide nanoparticles on blood compatibility. RSC Adv 2020; 10:7559-7569. [PMID: 35492144 PMCID: PMC9049842 DOI: 10.1039/c9ra10969b] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2019] [Accepted: 02/11/2020] [Indexed: 11/21/2022] Open
Abstract
Superparamagnetic iron oxide nanoparticles (SPIONs) have been widely used and have attracted increased attention for their unique physicochemical properties, especially in biomedical sciences as contrast agents following intravenous administration. However, only few studies have systematically reported the blood compatibility of iron oxide nanoparticles with different physicochemical properties such as different sizes and surface ligands. Therefore, we selected three widely used organic ligands (polyacrylic acid, hyaluronic acid, and chitosan) with modified SPIONs at the same size of 5-6 nm, and polyacrylic acid-modified SPIONs with different sizes (5, 10, and 30 nm) at different concentrations to evaluate their haemocompatibility. Our results revealed that SPIONs modified with polyacrylic acid demonstrated size-dependent destruction of red blood cells and complement activation. Interestingly, 5 nm SPIONs prolonged blood clotting time as compared with 10 nm and 30 nm SPIONs in vitro. Compared with polyacrylic acid-modified SPIONs, hyaluronic acid- and chitosan-modified SPIONs least affected red blood cells, platelets, coagulation, and complement activation. Hence, hyaluronic acid- and chitosan-coated SPIONs are more suitable for nanomedicine applications than polyacrylic acid-coated SPIONs. Furthermore, the interaction between SPIONs and blood components strongly correlated with the administered concentration of nanoparticles. These results will provide some experimental information for safe-by-design SPIONs.
Collapse
Affiliation(s)
- Tao Liu
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology Beijing 100190 P. R. China +86-10-62656765 +86 10 8254 5560
- University of Chinese Academy of Sciences Beijing 100049 P. R. China
| | - Ru Bai
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology Beijing 100190 P. R. China +86-10-62656765 +86 10 8254 5560
| | - Huige Zhou
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology Beijing 100190 P. R. China +86-10-62656765 +86 10 8254 5560
| | - Rongqi Wang
- Department of Clinical Laboratory, Beijing Haidian Hospital, Haidian Section of Peking University Third Hospital Beijing 100080 P. R. China
| | - Jing Liu
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology Beijing 100190 P. R. China +86-10-62656765 +86 10 8254 5560
- Faculty of Life Sciences & Medicine, Northwest University (NWU) Xi'an 710069 P. R. China
| | - Yuliang Zhao
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology Beijing 100190 P. R. China +86-10-62656765 +86 10 8254 5560
- University of Chinese Academy of Sciences Beijing 100049 P. R. China
| | - Chunying Chen
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology Beijing 100190 P. R. China +86-10-62656765 +86 10 8254 5560
- University of Chinese Academy of Sciences Beijing 100049 P. R. China
| |
Collapse
|
16
|
Liu ZL, Jia QY, Li XD, Li SP, Shen J, Lin J, Li DX. Synthesis of hollow mesoporous HAp-Au/MTX and its application in drug delivery. Colloids Surf A Physicochem Eng Asp 2020. [DOI: 10.1016/j.colsurfa.2019.124231] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
17
|
AbouAitah K, Stefanek A, Higazy IM, Janczewska M, Swiderska-Sroda A, Chodara A, Wojnarowicz J, Szałaj U, Shahein SA, Aboul-Enein AM, Abou-Elella F, Gierlotka S, Ciach T, Lojkowski W. Effective Targeting of Colon Cancer Cells with Piperine Natural Anticancer Prodrug Using Functionalized Clusters of Hydroxyapatite Nanoparticles. Pharmaceutics 2020; 12:E70. [PMID: 31963155 PMCID: PMC7022489 DOI: 10.3390/pharmaceutics12010070] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2019] [Revised: 12/31/2019] [Accepted: 01/08/2020] [Indexed: 01/03/2023] Open
Abstract
Targeted drug delivery offers great opportunities for treating cancer. Here, we developed a novel anticancer targeted delivery system for piperine (Pip), an alkaloid prodrug derived from black pepper that exhibits anticancer effects. The tailored delivery system comprises aggregated hydroxyapatite nanoparticles (HAPs) functionalized with phosphonate groups (HAP-Ps). Pip was loaded into HAPs and HAP-Ps at pH 7.2 and 9.3 to obtain nanoformulations. The nanoformulations were characterized using several techniques and the release kinetics and anticancer effects investigated in vitro. The Pip loading capacity was >20%. Prolonged release was observed with kinetics dependent on pH, surface modification, and coating. The nanoformulations fully inhibited monolayer HCT116 colon cancer cells compared to Caco2 colon cancer and MCF7 breast cancer cells after 72 h, whereas free Pip had a weaker effect. The nanoformulations inhibited ~60% in HCT116 spheroids compared to free Pip. The Pip-loaded nanoparticles were also coated with gum Arabic and functionalized with folic acid as a targeting ligand. These functionalized nanoformulations had the lowest cytotoxicity towards normal WI-38 fibroblast cells. These preliminary findings suggest that the targeted delivery system comprising HAP aggregates loaded with Pip, coated with gum Arabic, and functionalized with folic acid are a potentially efficient agent against colon cancer.
Collapse
Affiliation(s)
- Khaled AbouAitah
- Laboratory of Nanostructures, Institute of High Pressure Physics, Polish Academy of Sciences, Sokolowska 29/37, 01-142 Warsaw, Poland; (A.S.-S.); (A.C.); (J.W.); (U.S.); (S.G.); (W.L.)
- Medicinal and Aromatic Plants Research Department, Pharmaceutical and Drug Industries Research Division, National Research Centre (NRC), P.C. 12622 Dokki, Giza, Egypt
| | - Agata Stefanek
- Biomedical Engineering Laboratory, Faculty of Chemical and Process Engineering, Warsaw University of Technology, 00-645 Warsaw, Poland; (A.S.); (M.J.); (T.C.)
| | - Iman M. Higazy
- Department of Pharmaceutical Technology, Pharmaceutical and Drug Industries Research Division, National Research Centre (NRC), P.C. 12622 Dokki Giza, Egypt;
| | - Magdalena Janczewska
- Biomedical Engineering Laboratory, Faculty of Chemical and Process Engineering, Warsaw University of Technology, 00-645 Warsaw, Poland; (A.S.); (M.J.); (T.C.)
| | - Anna Swiderska-Sroda
- Laboratory of Nanostructures, Institute of High Pressure Physics, Polish Academy of Sciences, Sokolowska 29/37, 01-142 Warsaw, Poland; (A.S.-S.); (A.C.); (J.W.); (U.S.); (S.G.); (W.L.)
| | - Agnieszka Chodara
- Laboratory of Nanostructures, Institute of High Pressure Physics, Polish Academy of Sciences, Sokolowska 29/37, 01-142 Warsaw, Poland; (A.S.-S.); (A.C.); (J.W.); (U.S.); (S.G.); (W.L.)
- Faculty of Materials Engineering, Warsaw University of Technology, Wołoska 41, 02-507 Warsaw, Poland
| | - Jacek Wojnarowicz
- Laboratory of Nanostructures, Institute of High Pressure Physics, Polish Academy of Sciences, Sokolowska 29/37, 01-142 Warsaw, Poland; (A.S.-S.); (A.C.); (J.W.); (U.S.); (S.G.); (W.L.)
| | - Urszula Szałaj
- Laboratory of Nanostructures, Institute of High Pressure Physics, Polish Academy of Sciences, Sokolowska 29/37, 01-142 Warsaw, Poland; (A.S.-S.); (A.C.); (J.W.); (U.S.); (S.G.); (W.L.)
- Faculty of Materials Engineering, Warsaw University of Technology, Wołoska 41, 02-507 Warsaw, Poland
| | - Samar A. Shahein
- Biochemistry Department, Faculty of Agriculture, Cairo University, P.C. 12613 Giza, Egypt (A.M.A.-E.); (F.A.-E.)
| | - Ahmed M. Aboul-Enein
- Biochemistry Department, Faculty of Agriculture, Cairo University, P.C. 12613 Giza, Egypt (A.M.A.-E.); (F.A.-E.)
| | - Faten Abou-Elella
- Biochemistry Department, Faculty of Agriculture, Cairo University, P.C. 12613 Giza, Egypt (A.M.A.-E.); (F.A.-E.)
| | - Stanislaw Gierlotka
- Laboratory of Nanostructures, Institute of High Pressure Physics, Polish Academy of Sciences, Sokolowska 29/37, 01-142 Warsaw, Poland; (A.S.-S.); (A.C.); (J.W.); (U.S.); (S.G.); (W.L.)
| | - Tomasz Ciach
- Biomedical Engineering Laboratory, Faculty of Chemical and Process Engineering, Warsaw University of Technology, 00-645 Warsaw, Poland; (A.S.); (M.J.); (T.C.)
| | - Witold Lojkowski
- Laboratory of Nanostructures, Institute of High Pressure Physics, Polish Academy of Sciences, Sokolowska 29/37, 01-142 Warsaw, Poland; (A.S.-S.); (A.C.); (J.W.); (U.S.); (S.G.); (W.L.)
| |
Collapse
|
18
|
Iriarte-Mesa C, López YC, Matos-Peralta Y, de la Vega-Hernández K, Antuch M. Gold, Silver and Iron Oxide Nanoparticles: Synthesis and Bionanoconjugation Strategies Aimed at Electrochemical Applications. Top Curr Chem (Cham) 2020; 378:12. [PMID: 31907672 DOI: 10.1007/s41061-019-0275-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Accepted: 12/13/2019] [Indexed: 12/22/2022]
Abstract
Nanomaterials have revolutionized the sensing and biosensing fields, with the development of more sensitive and selective devices for multiple applications. Gold, silver and iron oxide nanoparticles have played a particularly major role in this development. In this review, we provide a general overview of the synthesis and characteristics of gold, silver and iron oxide nanoparticles, along with the main strategies for their surface functionalization with ligands and biomolecules. Finally, different architectures suitable for electrochemical applications are reviewed, as well as their main fabrication procedures. We conclude with some considerations from the authors' perspective regarding the promising use of these materials and the challenges to be faced in the near future.
Collapse
Affiliation(s)
- Claudia Iriarte-Mesa
- Laboratorio de Química Bioinorgánica, Departamento de Química General e Inorgánica, Facultad de Química, Universidad de La Habana, Zapata y G, Vedado, Plaza de la Revolución, 10 400, La Habana, Cuba
| | - Yeisy C López
- Laboratorio de Química Bioinorgánica, Departamento de Química General e Inorgánica, Facultad de Química, Universidad de La Habana, Zapata y G, Vedado, Plaza de la Revolución, 10 400, La Habana, Cuba.,Instituto Politécnico Nacional, Centro de Investigación en Ciencia Aplicada y Tecnología Avanzada, Calzada Legaria 694, Col. Irrigación, 11 500, Ciudad de México, Mexico
| | - Yasser Matos-Peralta
- Laboratorio de Química Bioinorgánica, Departamento de Química General e Inorgánica, Facultad de Química, Universidad de La Habana, Zapata y G, Vedado, Plaza de la Revolución, 10 400, La Habana, Cuba
| | | | - Manuel Antuch
- Unité de Chimie et Procédés, École Nationale Supérieure de Techniques Avancées (ENSTA), Institut Polytechnique de Paris, 828 Boulevard des Maréchaux, 91120, Palaiseau, France.
| |
Collapse
|
19
|
|
20
|
Ren X, Yi Z, Sun Z, Ma X, Chen G, Chen Z, Li X. Natural polysaccharide-incorporated hydroxyapatite as size-changeable, nuclear-targeted nanocarrier for efficient cancer therapy. Biomater Sci 2020; 8:5390-5401. [DOI: 10.1039/d0bm01320j] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/29/2023]
Abstract
Nuclear-targeted, size-changeable polysaccharide hybrid hydroxyapatite nanoparticles were prepared for the delivery of doxorubicin for cancer therapy, showing low toxicity to healthy tissue cells but strong killing effect on tumor cells.
Collapse
Affiliation(s)
- Xiaoxiang Ren
- National Engineering Research Center for Biomaterials
- Sichuan University
- Chengdu 610064
- China
- Department of Biomedical Engineering
| | - Zeng Yi
- National Engineering Research Center for Biomaterials
- Sichuan University
- Chengdu 610064
- China
| | - Zhe Sun
- National Engineering Research Center for Biomaterials
- Sichuan University
- Chengdu 610064
- China
| | - Xiaomin Ma
- National Engineering Research Center for Biomaterials
- Sichuan University
- Chengdu 610064
- China
| | - Guangcan Chen
- National Engineering Research Center for Biomaterials
- Sichuan University
- Chengdu 610064
- China
| | | | - Xudong Li
- National Engineering Research Center for Biomaterials
- Sichuan University
- Chengdu 610064
- China
| |
Collapse
|
21
|
Xiaoyu M, Xiuling D, Chunyu Z, Yi S, Jiangchao Q, Yuan Y, Changsheng L. Polyglutamic acid-coordinated assembly of hydroxyapatite nanoparticles for synergistic tumor-specific therapy. NANOSCALE 2019; 11:15312-15325. [PMID: 31386744 DOI: 10.1039/c9nr03176f] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Nanotechnology offers exciting and innovative therapeutic strategies in the fight against cancer. Nano-scale hydroxyapatite, the inorganic constituent of the hard tissues of humans and animals, is not only an ideal carrier for the delivery of drugs but also exerts selective inhibitory effects on tumor cells. To perform the dual functions, we propose polyglutamic acid-coordinated hydroxyapatite nanoparticles (HA-PGA NP) as both DOX delivery vehicle and sustained calcium flow supplier to achieve a synergistic, tumor-specific therapy in this study. With PGA as the coordinator, the HA-PGA NPs were easily assembled into spherical nano-clusters with low crystallinity. The excellent dispersibility and solubility in the tumor environment endowed the HA-PGA NPs with an improved internalization into the tumor cells, thereby causing a dramatic elevation in the intracellular calcium influx by about 40%, which further induced a cascade of mitochondrial membrane damage, ATP content reduction, and reinforced sensitivity to chemotherapy. After the encapsulation of the model drug DOX, a pH-responsive release profile was achieved via the degradation of the nanoparticles and the deprotonation of PGA in the acidic tumor micro-environment. Consequently, the hybrid system, with the synergistic effects of sustained DOX and calcium overload, exhibited selectively intensified toxicity to tumor cells. The in vivo test further confirmed that the current system exhibited highly selective tumor inhibition and reduced heart toxicity, thus representing an effective anti-tumor platform.
Collapse
Affiliation(s)
- Ma Xiaoyu
- Key Laboratory for Ultrafine Materials of Ministry of Education, East China University of Science and Technology, Shanghai 200237, PR China.
| | | | | | | | | | | | | |
Collapse
|
22
|
Zahiri M, Babaei M, Abnous K, Taghdisi SM, Ramezani M, Alibolandi M. Hybrid nanoreservoirs based on dextran‐capped dendritic mesoporous silica nanoparticles for CD133‐targeted drug delivery. J Cell Physiol 2019; 235:1036-1050. [DOI: 10.1002/jcp.29019] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Accepted: 06/06/2019] [Indexed: 01/01/2023]
Affiliation(s)
- Mahsa Zahiri
- Student Research Committee Mashhad University of Medical Sciences Mashhad Iran
- Department of Pharmaceutical Nanotechnology, School of Pharmacy Mashhad University of Medical Sciences Mashhad Iran
| | - Maryam Babaei
- Pharmaceutical Research Center, Pharmaceutical Technology Institute Mashhad University of Medical Sciences Mashhad Iran
| | - Khalil Abnous
- Pharmaceutical Research Center, Pharmaceutical Technology Institute Mashhad University of Medical Sciences Mashhad Iran
- Department of Medicinal Chemistry, School of Pharmacy Mashhad University of Medical Sciences Mashhad Iran
| | - Seyed Mohammad Taghdisi
- Targeted Drug Delivery Research Center, Pharmaceutical Technology Institute Mashhad University of Medical Sciences Mashhad Iran
| | - Mohammad Ramezani
- Pharmaceutical Research Center, Pharmaceutical Technology Institute Mashhad University of Medical Sciences Mashhad Iran
- Department of Pharmaceutical Biotechnology, School of Pharmacy Mashhad University of Medical Sciences Mashhad Iran
| | - Mona Alibolandi
- Pharmaceutical Research Center, Pharmaceutical Technology Institute Mashhad University of Medical Sciences Mashhad Iran
- Department of Pharmaceutical Biotechnology, School of Pharmacy Mashhad University of Medical Sciences Mashhad Iran
| |
Collapse
|
23
|
Geuli O, Miller M, Leader A, He L, Melamed-Book N, Tshuva EY, Reches M, Mandler D. Electrochemical Triggered Dissolution of Hydroxyapatite/Doxorubicin Nanocarriers. ACS APPLIED BIO MATERIALS 2019; 2:1956-1966. [DOI: 10.1021/acsabm.9b00011] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Ori Geuli
- Institute of Chemistry, The Hebrew University of Jerusalem, Jerusalem 9190401, Israel
| | - Maya Miller
- Institute of Chemistry, The Hebrew University of Jerusalem, Jerusalem 9190401, Israel
| | - Avia Leader
- Institute of Chemistry, The Hebrew University of Jerusalem, Jerusalem 9190401, Israel
| | - Lijie He
- Institute of Chemistry, The Hebrew University of Jerusalem, Jerusalem 9190401, Israel
| | - Naomi Melamed-Book
- The Bio-Imaging Unit, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem 9190401, Israel
| | - Edit Y. Tshuva
- Institute of Chemistry, The Hebrew University of Jerusalem, Jerusalem 9190401, Israel
| | - Meital Reches
- Institute of Chemistry, The Hebrew University of Jerusalem, Jerusalem 9190401, Israel
| | - Daniel Mandler
- Institute of Chemistry, The Hebrew University of Jerusalem, Jerusalem 9190401, Israel
| |
Collapse
|
24
|
Izadi A, Meshkini A, Entezari MH. Mesoporous superparamagnetic hydroxyapatite nanocomposite: A multifunctional platform for synergistic targeted chemo-magnetotherapy. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 101:27-41. [PMID: 31029320 DOI: 10.1016/j.msec.2019.03.066] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2018] [Revised: 03/18/2019] [Accepted: 03/19/2019] [Indexed: 12/18/2022]
Abstract
In the present study, the aim was to develop a magneto-responsive nanocomposite for application in drug delivery by the integration of magnetic nanoparticles into an inorganic architecture, hydroxyapatite. The magnetic mesoporous hydroxyapatite nanocomposites, MMHAPs, were synthesized using a template-free method and fully characterized by XRD, FT-IR, TEM, FE-SEM, VSM, ICP, BET, and UV-Vis spectroscopy. MMHAPs exhibited a rod-like shape with a structure of large mesopores and high surface area. A sample of the nanocomposites with well-defined properties, MMHAP(2), was selected as a carrier for delivery of chemotherapy drug, doxorubicin (Dox). Then, it was coated with polyethylene glycol (P) and folic acid (F), providing aqueous stability and tumor targeting, respectively. The evaluation of drug release profile revealed that the release of drug occurs in a time-staggered manner under low pH conditions, which simulate the internal condition of lysosome. More important, a significant drug release was observed under a static magnetic field (SMF), displaying a magnetically triggered release. According to the toxicity assessment, MMHAP(2) did not show any noticeable toxic effect against the tumor cells (Saos-2) and normal cells (HEK-293) up to 100 μg ml-1 in the presence or absence of SMF. In contrast, the drug-loaded nanocomposite, F.P.D@MMHAP(2), possesses high antitumor efficacy particularly in the presence of SMF. Moreover, it was found that the cellular internalization of F.P.D@MMHAP(2) could be increased by SMF, providing therapeutic efficiency enhancement. The high cytotoxic effect of F.P.D@MMHAP(2) with the help of SMF caused apoptosis in the tumor cells, which was preceded by a disturbance in the intracellular redox state and then caspase activation. Based on the data obtained, F.P.D@MMHAP(2) is a pH- and magneto-responsive platform opening up a new perspective in terms of its exploitation in cancer therapy.
Collapse
Affiliation(s)
- Azadeh Izadi
- Biochemical Research Center, Department of Chemistry, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Azadeh Meshkini
- Biochemical Research Center, Department of Chemistry, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran.
| | - Mohammad H Entezari
- Sonochemical Research Center, Department of Chemistry, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran; Environmental Chemistry Research Center, Department of Chemistry, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran
| |
Collapse
|
25
|
Chai Y, Chen J, Wang T, Chen J, Ma Y, Cheng G, Li C, Zhang Q, Ou L, Li W. Bead-type polystyrene/nano-CaCO 3 (PS/nCaCO 3) composite: a high-performance adsorbent for the removal of interleukin-6. J Mater Chem B 2019; 7:1404-1414. [PMID: 32255011 DOI: 10.1039/c8tb02504e] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A novel nano-CaCO3 (nCaCO3) particle composite-derived polystyrene (PS) resin was successfully synthesized by a suspension polymerization method. The nCaCO3 reinforced PS material (PS/nCaCO3) possessed a structure with abundant mesopores of high porosity, high specific surface area (828.3 m2 g-1) and large pore volume (1.83 cm3 g-1). It was revealed that the incorporation of nCaCO3 into the PS matrix enhanced both the mechanical strength which can prevent the fragmentation and its adsorption capacity for interleukin-6 (IL-6, MW = 24.0 kDa) from human plasma. The adsorption isotherm could be described by the Langmuir model and classified as S-3 type, showing an IL-6 uptake of up to 25.6 ng g-1 at an equilibrium concentration of about 500 ng L-1. The adsorption capacity for IL-6 of PS/nCaCO3 is not only significantly higher than that of PS (without nCaCO3), but also superior to those of currently available adsorbents that are under clinical studies (e.g., CytoSorb™ towards cytokines). In addition, the PS/nCaCO3 adsorbent also had good hemocompatibility and showed no leakage of nCaCO3 in the plasma in a flowing model system. Therefore, the synthesized PS/nCaCO3 nano-composite has a great potential to be used as an efficient adsorbent for the removal of interleukin-6 (IL-6) from blood of inflammatory and auto-immune disease patients through hemoperfusion.
Collapse
Affiliation(s)
- Yamin Chai
- Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Sciences, Nankai University, Tianjin, 300071, China.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Tao J, Fei W, Tang H, Li C, Mu C, Zheng H, Li F, Zhu Z. Angiopep-2-Conjugated "Core-Shell" Hybrid Nanovehicles for Targeted and pH-Triggered Delivery of Arsenic Trioxide into Glioma. Mol Pharm 2019; 16:786-797. [PMID: 30620881 DOI: 10.1021/acs.molpharmaceut.8b01056] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The poor capability of drugs to permeate through the blood-brain barrier (BBB) and further release inside glioma greatly limits the curative effects of glioma chemotherapies. In this study, we prepared angiopep-2-conjugated liposome-silica hybrid nanovehicles for targeted delivery and increased the permeation of arsenic trioxide (ATO) in glioma. Polyacrylic acid (PAA) was grafted on mesoporous silica nanoparticles (MSN) for pH-sensitive release and supporting the lipid membrane. The prepared "core-shell" nanovehicles (ANG-LP-PAA-MSN) were characterized with uniform size, high drug loading efficiency (8.19 ± 0.51%), and superior pH-sensitive release feature. From the experiments, the enhanced targeted delivery of ATO by ANG-LP-PAA-MSN (ANG-LP-PAA-MSN@ATO) was evidenced by the improvement of transport, enhanced cellular uptake, and apoptosis in vitro. In addition, the pharmacokinetic study was creatively carried out through the blood-glioma synchronous microdialysis and revealed that the half-life ( t1/2) of blood and glioma tissue in the ANG-LP-PAA-MSN@ATO treatment group was extended by 1.65 and 2.34 times compared with the ATO solution group (ATO-Sol). The targeting efficiency of ANG-LP-PAA-MSN@ATO (24.96%) was dramatically stronger than that of the ATO-Sol (5.94%). Importantly, ANG-LP-PAA-MSN@ATO had a higher accumulation (4.6 ± 2.6% ID per g) in tumor tissues and showed a better therapeutic efficacy in intracranial C6 glioma bearing rats. Taken together, the blood-glioma synchronous microdialysis was successful used for the pharmacokinetic study and real-time monitoring of drug concentrations in blood and glioma; ANG-LP-PAA-MSN could be a promising targeted drug delivery system for glioma therapy.
Collapse
Affiliation(s)
- Jiaoyang Tao
- College of Pharmaceutical Science , Zhejiang Chinese Medical University , Hangzhou 311402 , China
| | - Weidong Fei
- Department of Pharmacy , Women's Hospital, Zhejiang University School of Medicine , Hangzhou 310006 , China
| | - Hongxia Tang
- College of Pharmaceutical Science , Zhejiang Chinese Medical University , Hangzhou 311402 , China
| | - Chaoqun Li
- College of Pharmaceutical Science , Zhejiang Chinese Medical University , Hangzhou 311402 , China
| | - Chaofeng Mu
- College of Pharmaceutical Science , Zhejiang Chinese Medical University , Hangzhou 311402 , China
| | - Hongyue Zheng
- Libraries of Zhejiang Chinese Medical University , Zhejiang Chinese Medical University , Hangzhou 310053 , China
| | - Fanzhu Li
- College of Pharmaceutical Science , Zhejiang Chinese Medical University , Hangzhou 311402 , China
| | - Zhihong Zhu
- College of Pharmaceutical Science , Zhejiang Chinese Medical University , Hangzhou 311402 , China
| |
Collapse
|
27
|
Ghorbani M, Hamishehkar H. A novel multi stimuli-responsive PEGylated hybrid gold/nanogels for co-delivery of doxorubicin and 6‑mercaptopurine. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2018; 92:599-611. [PMID: 30184786 DOI: 10.1016/j.msec.2018.07.019] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Revised: 06/07/2018] [Accepted: 07/08/2018] [Indexed: 12/20/2022]
|
28
|
Azaroon M, Kiasat AR. β-Cyclodextrin engineered γ-Fe 2O 3@ hydroxyapatite nanocomposite as a novel scaffold for the synthesis of phenacyl derivatives. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2018; 92:356-364. [PMID: 30184761 DOI: 10.1016/j.msec.2018.07.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2017] [Revised: 06/19/2018] [Accepted: 07/02/2018] [Indexed: 02/06/2023]
Abstract
Magnetic hydroxyapatite (HAp) is being widely investigated for various applications in medical engineering and nanocomposite for transformation reaction. The present work describes an efficient procedure for the synthesis of phenacyl derivatives employing a novel, green and magnetically retrievable nanocomposite via the grafting of β-cyclodextrin moieties on the magnetic hydroxyapatite surface, γ-Fe2O3@HAp-CD. The structure and composition of the nanocomposite was performed by different methods and analyzed by Infrared Spectroscopy (FT-IR), Field Emission Scanning Electron Microscopy (FE-SEM), transmission electron microscopy (TEM), Thermo-Gravimetric Analysis (TGA), X-ray diffraction (XRD), energy dispersive X-ray spectroscopy (EDS) and Brunauer Emmett Teller (BET) and vibrating sample magnetometry (VSM). Our results indicate that conjugation with β-CD improves the catalytic activity in the reaction.
Collapse
Affiliation(s)
- Maedeh Azaroon
- Chemistry Department, College of Science, Shahid Chamran University of Ahvaz, Ahvaz, Iran.
| | - Ali Reza Kiasat
- Chemistry Department, College of Science, Shahid Chamran University of Ahvaz, Ahvaz, Iran; Petroleum Geology and Geochemistry Research Centre, (PGGRC), Shahid Chamran University of Ahvaz, Ahvaz, Iran
| |
Collapse
|
29
|
Tsai SW, Huang SS, Yu WX, Hsu YW, Hsu FY. Fabrication and Characteristics of Porous Hydroxyapatite-CaO Composite Nanofibers for Biomedical Applications. NANOMATERIALS 2018; 8:nano8080570. [PMID: 30049960 PMCID: PMC6116209 DOI: 10.3390/nano8080570] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Revised: 07/24/2018] [Accepted: 07/24/2018] [Indexed: 12/11/2022]
Abstract
Hydroxyapatite (HAp), a major inorganic and essential component of normal bone and teeth, is a promising biomaterial due to its excellent biocompatibility, bioactivity, and osteoconductivity. Therefore, synthetic HAp has been widely used as a bone substitute, cell carrier, and delivery carrier of therapeutic genes or drugs. Mesoporous materials have attracted considerable attention due to their relatively high surface area, large pore volume, high porosity, and tunable pore size. Recently, mesoporous HAp has also been successfully synthesized by the traditional template-based process and has been demonstrated to possess better drug-loading and release efficiencies than traditional HAp. It is widely accepted that cell adhesion and most cellular activities, including spreading, migration, proliferation, gene expression, surface antigen display, and cytoskeletal functioning, are sensitive to the topography and molecular composition of the matrix. The native extracellular matrix is a porous, nanofibrous structure. The major focus of this study is the fabrication of porous hydroxyapatite-CaO composite nanofibers (p-HApFs) and the investigation of its drug-release property. In this study, nanofibers were prepared by the sol-gel route and an electrospinning technique to mimic the three-dimensional structure of the natural extracellular matrix. We analyzed the components of fibers using X-ray diffraction and determined the morphology of fibers using scanning and transmission electron microscopy. The average diameter of the nanofibers was approximately 461 ± 186 nm. The N2 adsorption–desorption isotherms were type IV isotherms. Moreover, p-HApFs had better drug-loading efficiency and could retard the burst release of tetracycline and maintain antibacterial activity for a period of 7 days. Hence, p-HApFs have the potential to become a new bone graft material.
Collapse
Affiliation(s)
- Shiao-Wen Tsai
- Graduate Institute of Biomedical Engineering, Chang Gung University, Taoyuan City 33302, Taiwan.
- Department of Orthopedic Surgery, Chang Gung Memorial Hospital, Linkou 33305, Taiwan.
- Department of Periodontics, Chang Gung Memorial Hospital, Taipei 10507, Taiwan.
| | - Sheng-Siang Huang
- Department of Bioscience and Biotechnology, National Taiwan Ocean University, Keelung City 20224, Taiwan.
| | - Wen-Xin Yu
- Department of Bioscience and Biotechnology, National Taiwan Ocean University, Keelung City 20224, Taiwan.
| | - Yu-Wei Hsu
- Department of Bioscience and Biotechnology, National Taiwan Ocean University, Keelung City 20224, Taiwan.
| | - Fu-Yin Hsu
- Department of Bioscience and Biotechnology, National Taiwan Ocean University, Keelung City 20224, Taiwan.
| |
Collapse
|
30
|
Palanikumar L, Kim J, Oh JY, Choi H, Park MH, Kim C, Ryu JH. Hyaluronic Acid-Modified Polymeric Gatekeepers on Biodegradable Mesoporous Silica Nanoparticles for Targeted Cancer Therapy. ACS Biomater Sci Eng 2018; 4:1716-1722. [DOI: 10.1021/acsbiomaterials.8b00218] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- L. Palanikumar
- Department of Chemistry, School of Natural Science, Ulsan National Institute of Science and Technology, Ulsan 44919, Republic of Korea
| | - Jimin Kim
- Department of Chemistry, School of Natural Science, Ulsan National Institute of Science and Technology, Ulsan 44919, Republic of Korea
| | - Jun Yong Oh
- Department of Chemistry, School of Natural Science, Ulsan National Institute of Science and Technology, Ulsan 44919, Republic of Korea
| | - Huyeon Choi
- Department of Chemistry, School of Natural Science, Ulsan National Institute of Science and Technology, Ulsan 44919, Republic of Korea
| | - Myoung-Hwan Park
- Department of Chemistry, Sahmyook University, Seoul 01795, Republic of Korea
| | - Chaekyu Kim
- Department of Chemistry, School of Natural Science, Ulsan National Institute of Science and Technology, Ulsan 44919, Republic of Korea
| | - Ja-Hyoung Ryu
- Department of Chemistry, School of Natural Science, Ulsan National Institute of Science and Technology, Ulsan 44919, Republic of Korea
| |
Collapse
|
31
|
Verma G, Shetake NG, Barick KC, Pandey BN, Hassan PA, Priyadarsini KI. Covalent immobilization of doxorubicin in glycine functionalized hydroxyapatite nanoparticles for pH-responsive release. NEW J CHEM 2018. [DOI: 10.1039/c7nj04706a] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Development and therapeutic evaluation of glycine functionalized hydroxyapatite nanoparticles having a covalently conjugated anticancer drug, doxorubicin hydrochloride.
Collapse
Affiliation(s)
- Gunjan Verma
- Chemistry Division, Bhabha Atomic Research Centre
- Mumbai-400085
- India
| | - Neena G. Shetake
- Radiation Biology and Health Sciences Division, Bhabha Atomic Research Centre
- Mumbai-400085
- India
| | - K. C. Barick
- Chemistry Division, Bhabha Atomic Research Centre
- Mumbai-400085
- India
| | - B. N. Pandey
- Radiation Biology and Health Sciences Division, Bhabha Atomic Research Centre
- Mumbai-400085
- India
| | - P. A. Hassan
- Chemistry Division, Bhabha Atomic Research Centre
- Mumbai-400085
- India
| | | |
Collapse
|
32
|
Song F, Zhang H, Wang S, Liu L, Tan X, Liu S. Atomic-level design of CoOH+–hydroxyapatite@C catalysts for superfast degradation of organics via peroxymonosulfate activation. Chem Commun (Camb) 2018; 54:4919-4922. [DOI: 10.1039/c8cc00946e] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In situ formation of CoOH+–hydroxyapatite@C via ion exchange between Ca and Co realises the simultaneous adsorption of Co2+ and catalytic peroxymonosulfate oxidation for superfast oxidative degradation of organic contaminants.
Collapse
Affiliation(s)
- Feng Song
- School of Chemical Engineering
- Shandong University of Technology
- China
| | - Huayang Zhang
- Department of Chemical Engineering
- Curtin University
- Australia
| | - Shaobin Wang
- Department of Chemical Engineering
- Curtin University
- Australia
| | - Lihong Liu
- Department of Chemical Engineering
- Curtin University
- Australia
| | - Xiaoyao Tan
- School of Environmental and Chemical Engineering
- Tianjin Polytechnic University
- China
| | - Shaomin Liu
- Department of Chemical Engineering
- Curtin University
- Australia
| |
Collapse
|
33
|
Mondal S, Dorozhkin SV, Pal U. Recent progress on fabrication and drug delivery applications of nanostructured hydroxyapatite. WILEY INTERDISCIPLINARY REVIEWS-NANOMEDICINE AND NANOBIOTECHNOLOGY 2017; 10:e1504. [PMID: 29171173 DOI: 10.1002/wnan.1504] [Citation(s) in RCA: 68] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2017] [Revised: 10/01/2017] [Accepted: 10/11/2017] [Indexed: 01/19/2023]
Abstract
Through this brief review, we provide a comprehensive historical background of the development of nanostructured hydroxyapatite (nHAp), and its application potentials for controlled drug delivery, drug conjugation, and other biomedical treatments. Aspects associated with efficient utilization of hydroxyapatite (HAp) nanostructures such as their synthesis, interaction with drug molecules, and other concerns, which need to be resolved before they could be used as a potential drug carrier in body system, are discussed. This review focuses on the evolution of perceptions, practices, and accomplishments in providing improved delivery systems for drugs until date. The pioneering developments that have presaged today's fascinating state of the art drug delivery systems based on HAp and HAp-based composite nanostructures are also discussed. Special emphasis has been given to describe the application and effectiveness of modified HAp as drug carrier agent for different diseases such as bone-related disorders, carriers for antibiotics, anti-inflammatory, carcinogenic drugs, medical imaging, and protein delivery agents. As only a very few published works made comprehensive evaluation of HAp nanostructures for drug delivery applications, we try to cover the three major areas: concepts, practices and achievements, and applications, which have been consolidated and patented for their practical usage. The review covers a broad spectrum of nHAp and HAp modified inorganic drug carriers, emphasizing some of their specific aspects those needed to be considered for future drug delivery applications. This article is categorized under: Implantable Materials and Surgical Technologies > Nanomaterials and Implants Therapeutic Approaches and Drug Discovery > Nanomedicine for Respiratory Disease Nanotechnology Approaches to Biology > Cells at the Nanoscale.
Collapse
Affiliation(s)
- Sudip Mondal
- Instituto de Física, Benemérita Universidad Autónoma de Puebla, Puebla, Mexico
| | | | - Umapada Pal
- Instituto de Física, Benemérita Universidad Autónoma de Puebla, Puebla, Mexico
| |
Collapse
|
34
|
Szcześ A, Hołysz L, Chibowski E. Synthesis of hydroxyapatite for biomedical applications. Adv Colloid Interface Sci 2017; 249:321-330. [PMID: 28457501 DOI: 10.1016/j.cis.2017.04.007] [Citation(s) in RCA: 260] [Impact Index Per Article: 32.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2017] [Revised: 04/13/2017] [Accepted: 04/17/2017] [Indexed: 01/07/2023]
Abstract
The current need for long lasting implants and bone substitutes characterized by biocompatibility, bioactivity and mechanical properties, without the immune rejection is a great challenge for scientists. These bone substitute structures should be prepared for individual patients with all details controlled on the micrometer level. Similarly, nontoxic, biocompatible targeted drug delivery systems which allow controlling the rate and time period of the drug delivery and simultaneously eliminating toxic and side effects on the healthy tissues, are of great interest. Extensive attempts have been made to develop a simple, efficient, and green method to form biofunctional scaffolds and implant coatings possessing the above mentioned significant biocompatibility, bioactivity and mechanical strength. Moreover, that could also serve as drug delivery systems. Hydroxyapatite (HA) which is a major mineral component of vertebrate bones and teeth is an excellent material for these purposes. In this literature review the biologically inspired scaffolds, bone substitutes, implants characterized by mechanical strength and biocompatibility, as well the drug delivery systems, based on hydroxyapatite are discussed.
Collapse
|
35
|
Li F, Xing Q, Han Y, Li Y, Wang W, Perera TSH, Dai H. Ultrasonically assisted preparation of poly(acrylic acid)/calcium phosphate hybrid nanogels as pH-responsive drug carriers. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2017; 80:688-697. [DOI: 10.1016/j.msec.2017.07.022] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2017] [Revised: 06/30/2017] [Accepted: 07/15/2017] [Indexed: 12/20/2022]
|
36
|
Meshkini A, Oveisi H. Methotrexate-F127 conjugated mesoporous zinc hydroxyapatite as an efficient drug delivery system for overcoming chemotherapy resistance in osteosarcoma cells. Colloids Surf B Biointerfaces 2017; 158:319-330. [DOI: 10.1016/j.colsurfb.2017.07.006] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2017] [Revised: 06/30/2017] [Accepted: 07/02/2017] [Indexed: 01/24/2023]
|
37
|
Hu Y, Chen J, Li X, Sun Y, Huang S, Li Y, Liu H, Xu J, Zhong S. Multifunctional halloysite nanotubes for targeted delivery and controlled release of doxorubicin in-vitro and in-vivo studies. NANOTECHNOLOGY 2017; 28:375101. [PMID: 28767041 DOI: 10.1088/1361-6528/aa8393] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
The current state of cancer therapy encourages researchers to develop novel efficient nanocarriers. Halloysite nanotubes (HNTs) are good nanocarrier candidates due to their unique nanoscale (40-80 nm in diamter and 200-500 nm in length) and hollow lumen, as well as good biocompatibility and low cost. In our study, we prepared a type of folate-mediated targeting and redox-triggered anticancer drug delivery system, so that Doxorubicin (DOX) can be specifically transported to tumor sites due to the over-expressed folate-receptors on the surface of cancer cells. Furthermore, it can then be released by the reductive agent glutathione (GSH) in cancer cells where the content of GSH is nearly 103-fold higher than in the extracellular matrix. A series of methods have demonstrated that per-thiol-β-cyclodextrin (β-CD-(SH)7) was successfully combined with HNTs via a redox-responsive disulfide bond, and folic acid-polyethylene glycol-adamantane (FA-PEG-Ad) was immobilized on the HNTs through the strong complexation between β-CD/Ad. In vitro studies indicated that the release rate of DOX raised sharply in dithiothreitol (DTT) reducing environment and the amount of released DOX reached 70% in 10 mM DTT within the first 10 h, while only 40% of DOX was released in phosphate buffer solution (PBS) even after 79 h. Furthermore, the targeted HNTs could be specifically endocytosed by over-expressed folate-receptor cancer cells and significantly accelerate the apoptosis of cancer cells compared to non-targeted HNTs. In vivo studies further verified that the targeted HNTs had the best therapeutic efficacy and no obvious side effects for tumor-bearing nude mice, while free DOX showed damaging effects on normal tissues. In summary, this novel nanocarrier system shows excellent potential for targeted delivery and controlled release of anticancer drugs and provides a potential platform for tumor therapy.
Collapse
|
38
|
Zhou JL, Song F, Tian JF, Nie WC, Wang XL, Wang YZ. Electrostatic wrapping of doxorubicin with curdlan to construct an efficient pH-responsive drug delivery system. NANOTECHNOLOGY 2017; 28:295601. [PMID: 28557808 DOI: 10.1088/1361-6528/aa75b5] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
The development of environmentally responsive drug delivery systems for the treatment of cancer has attracted particular interest in recent years. However, the enhancement of drug loading capacity and realization of pH-responsive drug delivery remain challenging. Herein, we employ carboxymethyl curdlan as a hydrophilic carrier to wrap doxorubicin (DOX) directly via electrostatic interaction. The sizes of the formed nanoparticles can be simply tuned by changing their feeding ratios. In particular, the nanoparticles are highly stable in aqueous solution without size variation. In vitro drug release and cytotoxicity assays illustrate that this delivery system can release DOX differentially under various environmental conditions and transport it into cell nuclei efficiently, with comparable therapeutic effect to the free drug. These results suggest that the carrying of antitumor drugs by polysaccharide via electrostatic interaction is a simple but effective way to construct a pH-dependent drug delivery platform.
Collapse
Affiliation(s)
- Jiang-Ling Zhou
- Center for Degradable and Flame-Retardant Polymeric Materials (ERCPM-MoE), College of Chemistry, State Key Laboratory of Polymer Materials Engineering, National Engineering Laboratory of Eco-Friendly Polymeric Materials (Sichuan), Sichuan University, 29 Wangjiang Road, Chengdu 610064, People's Republic of China
| | | | | | | | | | | |
Collapse
|
39
|
Mesoporous calcium phosphate using casein as a template: Application to bovine serum albumin sorption. Colloids Surf B Biointerfaces 2017; 158:480-487. [PMID: 28735220 DOI: 10.1016/j.colsurfb.2017.07.011] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2016] [Revised: 05/31/2017] [Accepted: 07/05/2017] [Indexed: 12/28/2022]
Abstract
Mesoporous hydroxyapatites were synthesized at room temperature using casein as a template, and key experimental factors, such as casein concentration, pH and extraction of casein in the final solids by washing and thermal treatment, were systematically investigated. The X-Ray Diffraction (XRD) patterns confirmed the synthesis of well-crystallized hydroxyapatite. The N2 adsorption/desorption isotherms were in agreement with the formation of mesoporous hydroxyapatite with a maximum surface area of 106m2g-1. Infrared spectroscopy and thermogravimetry analysis were performed to investigate the extraction of casein in water in the post-synthesis stage. Pure mesoporous hydroxyapatite exhibited good BSA adsorption capacity higher than the one obtained for conventional hydroxyapatite.
Collapse
|
40
|
Wei Y, He Y, Li X, Chen H, Deng X. Cellular Uptake and Delivery-Dependent Effects of Tb 3+-Doped Hydroxyapatite Nanorods. Molecules 2017; 22:E1043. [PMID: 28644388 PMCID: PMC6152145 DOI: 10.3390/molecules22071043] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2017] [Revised: 06/12/2017] [Accepted: 06/21/2017] [Indexed: 11/17/2022] Open
Abstract
With the increasing interest in hydroxyapatite (HA) nanostructures for use in biomedicine, the systematic evaluation of their potential effects on biological systems is becoming critically important. In this work, we report the in vitro cellular uptake, in vivo tissue distributions and toxicity of Tb3+-doped HA (HA-Tb) after short-, intermediate-, and long-term exposure. Transmission electron microscopy analysis indicated that HA-Tb was taken up by cells via vesicle endocytosis. Cell proliferation and cytotoxicity assay, combined with confocal laser scanning microscopy, indicated excellent cell viability with no changes in cell morphology at the examined doses. Three HA-Tb delivery methods (intraperitoneal, intragastric, and intravenous) resulted in similar time-dependent tissue distributions, while intraperitoneal injection produced the highest bioavailability. HA-Tb initially accumulated in livers and intestines of rats (4 h to one day after administration), then became increasingly distributed in the kidney and bladder (seven days), and finally decreased in all tissues after 30 to 90 days. No histopathological abnormalities or lesions related to treatment with HA-Tb were observed. These results suggest that HA-Tb has minimal in vitro and in vivo toxicity, regardless of the delivery mode, time, and dose. The findings provide a foundation for the design and development of HA for biological applications.
Collapse
Affiliation(s)
- Yan Wei
- Department of Geriatric Dentistry, National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing Laboratory of Biomedical Materials, Peking University School and Hospital of Stomatology, Peking University, Beijing 100081, China.
| | - Ying He
- Department of Geriatric Dentistry, National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing Laboratory of Biomedical Materials, Peking University School and Hospital of Stomatology, Peking University, Beijing 100081, China.
| | - Xiyu Li
- Department of Biomedical Engineering, College of Engineering, Peking University, 5 Yiheyuan Road, Haidian District, 100871 Beijing, China.
| | - Haifeng Chen
- Department of Biomedical Engineering, College of Engineering, Peking University, 5 Yiheyuan Road, Haidian District, 100871 Beijing, China.
| | - Xuliang Deng
- Department of Biomedical Engineering, College of Engineering, Peking University, 5 Yiheyuan Road, Haidian District, 100871 Beijing, China.
| |
Collapse
|
41
|
Wang X, Zhang M, Zhang L, Li L, Li S, Wang C, Su Z, Yuan Y, Pan W. Designed Synthesis of Lipid-Coated Polyacrylic Acid/Calcium Phosphate Nanoparticles as Dual pH-Responsive Drug-Delivery Vehicles for Cancer Chemotherapy. Chemistry 2017; 23:6586-6595. [DOI: 10.1002/chem.201700060] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2017] [Indexed: 12/23/2022]
Affiliation(s)
- Xin Wang
- School of Pharmacy; Shenyang Pharmaceutical University; Shenyang 110016 P. R. China
| | - Manjie Zhang
- Faculty of Chemistry; Northeast Normal University; Changchun 130024 P. R. China
| | - Lingyu Zhang
- Faculty of Chemistry; Northeast Normal University; Changchun 130024 P. R. China
| | - Lu Li
- Faculty of Chemistry; Northeast Normal University; Changchun 130024 P. R. China
| | - Shengnan Li
- Faculty of Chemistry; Northeast Normal University; Changchun 130024 P. R. China
| | - Chungang Wang
- Faculty of Chemistry; Northeast Normal University; Changchun 130024 P. R. China
| | - Zhongmin Su
- Faculty of Chemistry; Northeast Normal University; Changchun 130024 P. R. China
| | - Yue Yuan
- School of Pharmacy; Shenyang Pharmaceutical University; Shenyang 110016 P. R. China
| | - Weisan Pan
- School of Pharmacy; Shenyang Pharmaceutical University; Shenyang 110016 P. R. China
| |
Collapse
|
42
|
Zhang M, Liu J, Kuang Y, Li Q, Zheng DW, Song Q, Chen H, Chen X, Xu Y, Li C, Jiang B. Ingenious pH-sensitive dextran/mesoporous silica nanoparticles based drug delivery systems for controlled intracellular drug release. Int J Biol Macromol 2017; 98:691-700. [PMID: 28174081 DOI: 10.1016/j.ijbiomac.2017.01.136] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2016] [Revised: 01/21/2017] [Accepted: 01/31/2017] [Indexed: 10/20/2022]
Abstract
In this work, dextran, a polysaccharide with excellent biocompatibility, is applied as the "gatekeeper" to fabricate the pH-sensitive dextran/mesoporous silica nanoparticles (MSNs) based drug delivery systems for controlled intracellular drug release. Dextran encapsulating on the surface of MSNs is oxidized by NaIO4 to obtain three kinds of dextran dialdehydes (PADs), which are then coupled with MSNs via pH-sensitive hydrazone bond to fabricate three kinds of drug carriers. At pH 7.4, PADs block the pores to prevent premature release of anti-cancer drug doxorubicin hydrochloride (DOX). However, in the weakly acidic intracellular environment (pH∼5.5) the hydrazone can be ruptured; and the drug can be released from the carriers. The drug loading capacity, entrapment efficiency and release rates of the drug carriers can be adjusted by the amount of NaIO4 applied in the oxidation reaction. And from which DOX@MSN-NH-N=C-PAD10 is chosen as the most satisfactory one for the further in vitro cytotoxicity studies and cellular uptake studies. The results demonstrate that DOX@MSN-NH-N=C-PAD10 with an excellent pH-sensitivity can enter HeLa cells to release DOX intracellular due to the weakly acidic pH intracellular and kill the cells. In our opinion, the ingenious pH-sensitive drug delivery systems have application potentials for cancer therapy.
Collapse
Affiliation(s)
- Min Zhang
- Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Key Laboratory for the Green Preparation and Application of Functional Materials of Ministry of Education, Hubei University, Wuhan, Hubei 430062, PR China
| | - Jia Liu
- Center for Tissue Engineering and Regenerative Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, PR China
| | - Ying Kuang
- Glyn O. Philips Hydrocolloid Research Centre at HUT, Hubei University of Technology, Wuhan, Hubei 430068, PR China
| | - Qilin Li
- Center for Tissue Engineering and Regenerative Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, PR China
| | - Di-Wei Zheng
- Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Key Laboratory for the Green Preparation and Application of Functional Materials of Ministry of Education, Hubei University, Wuhan, Hubei 430062, PR China
| | - Qiongfang Song
- Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Key Laboratory for the Green Preparation and Application of Functional Materials of Ministry of Education, Hubei University, Wuhan, Hubei 430062, PR China
| | - Hui Chen
- Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Key Laboratory for the Green Preparation and Application of Functional Materials of Ministry of Education, Hubei University, Wuhan, Hubei 430062, PR China
| | - Xueqin Chen
- Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Key Laboratory for the Green Preparation and Application of Functional Materials of Ministry of Education, Hubei University, Wuhan, Hubei 430062, PR China
| | - Yanglin Xu
- Hubei Research Institute of Products Quality Supervision and Inspection, Wuhan, Hubei 430061, PR China
| | - Cao Li
- Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Key Laboratory for the Green Preparation and Application of Functional Materials of Ministry of Education, Hubei University, Wuhan, Hubei 430062, PR China.
| | - Bingbing Jiang
- Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Key Laboratory for the Green Preparation and Application of Functional Materials of Ministry of Education, Hubei University, Wuhan, Hubei 430062, PR China.
| |
Collapse
|
43
|
Zhou H, Yang M, Hou S, Deng L. Mesoporous hydroxyapatite nanoparticles hydrothermally synthesized in aqueous solution with hexametaphosphate and tea polyphenols. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2017; 71:439-445. [DOI: 10.1016/j.msec.2016.10.040] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2016] [Revised: 09/20/2016] [Accepted: 10/18/2016] [Indexed: 10/20/2022]
|
44
|
Gisbert-Garzarán M, Manzano M, Vallet-Regí M. pH-Responsive Mesoporous Silica and Carbon Nanoparticles for Drug Delivery. Bioengineering (Basel) 2017; 4:E3. [PMID: 28952481 PMCID: PMC5590444 DOI: 10.3390/bioengineering4010003] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Revised: 01/12/2017] [Accepted: 01/16/2017] [Indexed: 01/09/2023] Open
Abstract
The application of nanotechnology to medicine constitutes a major field of research nowadays. In particular, the use of mesoporous silica and carbon nanoparticles has attracted the attention of numerous researchers due to their unique properties, especially when applied to cancer treatment. Many strategies based on stimuli-responsive nanocarriers have been developed to control the drug release and avoid premature release. Here, we focus on the use of the subtle changes of pH between healthy and diseased areas along the body to trigger the release of the cargo. In this review, different approximations of pH-responsive systems are considered: those based on the use of the host-guest interactions between the nanocarriers and the drugs, those based on the hydrolysis of acid-labile bonds and those based on supramolecular structures acting as pore capping agents.
Collapse
Affiliation(s)
- Miguel Gisbert-Garzarán
- Departamento de Química Inorgánica y Bioinorgánica, Facultad de Farmacia, Universidad Complutense de Madrid, Instituto de Investigación Sanitaria Hospital 12 de Octubre i+12, Plaza Ramón y Cajal s/n, E-28040 Madrid, Spain.
- Networking Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Madrid 28029, Spain.
| | - Miguel Manzano
- Departamento de Química Inorgánica y Bioinorgánica, Facultad de Farmacia, Universidad Complutense de Madrid, Instituto de Investigación Sanitaria Hospital 12 de Octubre i+12, Plaza Ramón y Cajal s/n, E-28040 Madrid, Spain.
- Networking Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Madrid 28029, Spain.
| | - María Vallet-Regí
- Departamento de Química Inorgánica y Bioinorgánica, Facultad de Farmacia, Universidad Complutense de Madrid, Instituto de Investigación Sanitaria Hospital 12 de Octubre i+12, Plaza Ramón y Cajal s/n, E-28040 Madrid, Spain.
- Networking Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Madrid 28029, Spain.
| |
Collapse
|
45
|
Alem M, Tarlani A, Aghabozorg HR. Synthesis of nanostructured alumina with ultrahigh pore volume for pH-dependent release of curcumin. RSC Adv 2017. [DOI: 10.1039/c7ra03231e] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Versatile new high porous alumina supports were synthesized by double templates. They gave different release state for curcumin drug. The release of (insoluble) curcumin reached to 80% in SGF. The new formulation enhanced the SH-SY5Y cells survival.
Collapse
Affiliation(s)
- Masoumeh Alem
- Faculty of Chemistry
- Tehran North Branch
- Islamic Azad University
- Tehran
- Iran
| | - Aliakbar Tarlani
- Chemistry & Chemical Engineering Research Center of Iran (CCERCI)
- Tehran
- Iran
| | | |
Collapse
|
46
|
Chen S, Bian Q, Wang P, Zheng X, Lv L, Dang Z, Wang G. Photo, pH and redox multi-responsive nanogels for drug delivery and fluorescence cell imaging. Polym Chem 2017; 8:6150-6157. [DOI: 10.1039/c7py01424d] [Citation(s) in RCA: 79] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
Abstract
A light, pH and redox triple-responsive spiropyran-based nanogel is prepared and applied for the efficient delivery of anticancer drugs and fluorescence cell imaging for the strong emission of merocyanine photoisomers.
Collapse
Affiliation(s)
- Shuo Chen
- Department of Materials Science and Engineering
- University of Science and Technology Beijing
- Beijing 100083
- China
- Department of Polymer Science and Engineering
| | - Qing Bian
- Department of Materials Science and Engineering
- University of Science and Technology Beijing
- Beijing 100083
- China
| | - Panjun Wang
- Department of Materials Science and Engineering
- University of Science and Technology Beijing
- Beijing 100083
- China
| | - Xuewei Zheng
- Department of Materials Science and Engineering
- University of Science and Technology Beijing
- Beijing 100083
- China
| | - Le Lv
- Department of Biological Science and Engineering
- University of Science and Technology Beijing
- Beijing 100083
- China
| | - Zhimin Dang
- Department of Polymer Science and Engineering
- University of Science and Technology Beijing
- Beijing 100083
- China
| | - Guojie Wang
- Department of Materials Science and Engineering
- University of Science and Technology Beijing
- Beijing 100083
- China
| |
Collapse
|
47
|
Agrawal S, Kelkar M, De A, Kulkarni AR, Gandhi MN. Surfactant free novel one-minute microwave synthesis, characterization and cell toxicity study of mesoporous strontium hydroxyapatite nanorods. RSC Adv 2016. [DOI: 10.1039/c6ra21708g] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
Abstract
Synthesis of mesoporous strontium hydroxyapatite (SrHAp) nanorods was carried out in microwave without using any capping agent or surfactant.
Collapse
Affiliation(s)
- Shital Agrawal
- Centre for Research in Nanotechnology and Science
- Indian Institute of Technology Bombay
- Mumbai 400076
- India
| | - Madhura Kelkar
- Molecular Functional Imaging Lab
- Advanced Centre for Treatment, Research and Education in Cancer
- Tata Memorial Centre
- Mumbai 410210
- India
| | - Abhijit De
- Molecular Functional Imaging Lab
- Advanced Centre for Treatment, Research and Education in Cancer
- Tata Memorial Centre
- Mumbai 410210
- India
| | - A. R. Kulkarni
- Department of Metallurgical Engineering and Materials Science
- Indian Institute of Technology Bombay
- Mumbai 400076
- India
| | - M. N. Gandhi
- Centre for Research in Nanotechnology and Science
- Indian Institute of Technology Bombay
- Mumbai 400076
- India
| |
Collapse
|
48
|
Verma G, Barick KC, Shetake NG, Pandey BN, Hassan PA. Citrate-functionalized hydroxyapatite nanoparticles for pH-responsive drug delivery. RSC Adv 2016. [DOI: 10.1039/c6ra10659e] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Development of biocompatible citrate-functionalized hydroxyapatite nanoparticles for pH responsive delivery of doxorubicin.
Collapse
Affiliation(s)
- Gunjan Verma
- Chemistry Division
- Bhabha Atomic Research Centre
- Mumbai-400085
- India
| | - K. C. Barick
- Chemistry Division
- Bhabha Atomic Research Centre
- Mumbai-400085
- India
| | - Neena G. Shetake
- Radiation Biology and Health Sciences Division
- Bhabha Atomic Research Centre
- Mumbai-400085
- India
| | - B. N. Pandey
- Radiation Biology and Health Sciences Division
- Bhabha Atomic Research Centre
- Mumbai-400085
- India
| | - P. A. Hassan
- Chemistry Division
- Bhabha Atomic Research Centre
- Mumbai-400085
- India
| |
Collapse
|