1
|
Heremans J, Ballet S, Martin C. The versatility of peptide hydrogels: From self-assembly to drug delivery applications. J Pept Sci 2025; 31:e3662. [PMID: 39561971 DOI: 10.1002/psc.3662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 10/19/2024] [Accepted: 10/21/2024] [Indexed: 11/21/2024]
Abstract
Pharmaceuticals often suffer from limitations such as low solubility, low stability, and short half-life. To address these challenges and reduce the need for frequent drug administrations, a more efficient delivery is required. In this context, the development of controlled drug delivery systems, acting as a protective depot for the drug, has expanded significantly over the last decades. Among these, injectable hydrogels have emerged as a promising platform, especially in view of the rise of biologicals as therapeutics. Hydrogels are functional, solid-like biomaterials, composed of cross-linked hydrophilic polymers and high water content. Their physical properties, which closely mimic the extracellular matrix, make them suitable for various biomedical applications. This review discusses the different types of hydrogel systems and their self-assembly process, with an emphasis on peptide-based hydrogels. Due to their structural and functional diversity, biocompatibility, synthetic accessibility, and tunability, peptides are regarded as promising and versatile building blocks. A comprehensive overview of the variety of peptide hydrogels is outlined, with β-sheet forming sequences being highlighted. Key factors to consider when using peptide hydrogels as a controlled drug delivery system are reviewed, along with a discussion of the main drug release mechanisms and the emerging trend towards affinity-based systems to further refine drug release profiles.
Collapse
Affiliation(s)
- Julie Heremans
- Research Group of Organic Chemistry, Vrije Universiteit Brussel, Brussels, Belgium
| | - Steven Ballet
- Research Group of Organic Chemistry, Vrije Universiteit Brussel, Brussels, Belgium
| | - Charlotte Martin
- Research Group of Organic Chemistry, Vrije Universiteit Brussel, Brussels, Belgium
| |
Collapse
|
2
|
Mondal B, Hansda B, Mondal T, Pal P, Basu K, Banerjee A. Long Stability of Atomically Precise Red Emissive Copper Nanoclusters within the Gel and Their Use As a Potential Catalyst and Fluorescent Ink. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:21876-21883. [PMID: 39365915 DOI: 10.1021/acs.langmuir.4c03210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/06/2024]
Abstract
Herein, an amphiphile-based hydrogel (with 5% DMF) containing natural amino acid residue has been used to prepare and stabilize red-emitting CuNCs for several months. Though different methods have been attempted, amphiphile and 4-mercaptobenzoic acid (4-MBA)-containing hydrogels are pinpointed to be the base medium to stabilize this new Cu-cluster. From a MALDI-TOF MS analysis it was found that it is a Cu8-atom cluster stabilized by three 4-MBA ligands. Copper acetate monohydrate (Cu(CH3COO)2·H2O) has been used as a copper precursor, and l-ascorbic acid has been used as a reducing agent. FEG-TEM analysis shows that the Cu cluster has an average size of 2.83 nm. Interestingly, these clusters can be used as a fluorescent ink with a visibility of the solid state under a UV-lamp with an excitation of 365 nm. This envisaged applying these CuNCs for anticounterfeiting. These Cu-clusters show an excitation of 420 nm with an emission of 620 nm, as is evident from the fluorescence spectroscopic analysis. Based on our knowledge, this is the first example of making and consequently stabilizing Cu-clusters using hydrogel as a template for a few months. Moreover, these CuNCs can also be used as a catalyst for the reduction of nitro derivatives to their amine derivatives in aqueous medium.
Collapse
Affiliation(s)
- Biplab Mondal
- School of Biological Sciences, Indian Association for the Cultivation of Science, 2A and 2B Raja S. C. Mullick Road, Jadavpur, Kolkata-700032, India
| | - Biswanath Hansda
- School of Biological Sciences, Indian Association for the Cultivation of Science, 2A and 2B Raja S. C. Mullick Road, Jadavpur, Kolkata-700032, India
| | - Tanushree Mondal
- School of Biological Sciences, Indian Association for the Cultivation of Science, 2A and 2B Raja S. C. Mullick Road, Jadavpur, Kolkata-700032, India
| | - Poulami Pal
- Department of Chemistry, Visva-Bharati, Shantiniketan-731235, West Bengal, India
| | - Kingshuk Basu
- School of Biological Sciences, Indian Association for the Cultivation of Science, 2A and 2B Raja S. C. Mullick Road, Jadavpur, Kolkata-700032, India
| | - Arindam Banerjee
- School of Biological Sciences, Indian Association for the Cultivation of Science, 2A and 2B Raja S. C. Mullick Road, Jadavpur, Kolkata-700032, India
| |
Collapse
|
3
|
Wang H, Mills J, Sun B, Cui H. Therapeutic Supramolecular Polymers: Designs and Applications. Prog Polym Sci 2024; 148:101769. [PMID: 38188703 PMCID: PMC10769153 DOI: 10.1016/j.progpolymsci.2023.101769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2024]
Abstract
The self-assembly of low-molecular-weight building motifs into supramolecular polymers has unlocked a new realm of materials with distinct properties and tremendous potential for advancing medical practices. Leveraging the reversible and dynamic nature of non-covalent interactions, these supramolecular polymers exhibit inherent responsiveness to their microenvironment, physiological cues, and biomolecular signals, making them uniquely suited for diverse biomedical applications. In this review, we intend to explore the principles of design, synthesis methodologies, and strategic developments that underlie the creation of supramolecular polymers as carriers for therapeutics, contributing to the treatment and prevention of a spectrum of human diseases. We delve into the principles underlying monomer design, emphasizing the pivotal role of non-covalent interactions, directionality, and reversibility. Moreover, we explore the intricate balance between thermodynamics and kinetics in supramolecular polymerization, illuminating strategies for achieving controlled sizes and distributions. Categorically, we examine their exciting biomedical applications: individual polymers as discrete carriers for therapeutics, delving into their interactions with cells, and in vivo dynamics; and supramolecular polymeric hydrogels as injectable depots, with a focus on their roles in cancer immunotherapy, sustained drug release, and regenerative medicine. As the field continues to burgeon, harnessing the unique attributes of therapeutic supramolecular polymers holds the promise of transformative impacts across the biomedical landscape.
Collapse
Affiliation(s)
- Han Wang
- Department of Chemical and Biomolecular Engineering, The Johns Hopkins University, Baltimore, MD 21218, USA
- Institute for NanoBiotechnology, The Johns Hopkins University, Baltimore, MD 21218, USA
| | - Jason Mills
- Department of Chemical and Biomolecular Engineering, The Johns Hopkins University, Baltimore, MD 21218, USA
- Institute for NanoBiotechnology, The Johns Hopkins University, Baltimore, MD 21218, USA
| | - Boran Sun
- Department of Chemical and Biomolecular Engineering, The Johns Hopkins University, Baltimore, MD 21218, USA
- Institute for NanoBiotechnology, The Johns Hopkins University, Baltimore, MD 21218, USA
| | - Honggang Cui
- Department of Chemical and Biomolecular Engineering, The Johns Hopkins University, Baltimore, MD 21218, USA
- Institute for NanoBiotechnology, The Johns Hopkins University, Baltimore, MD 21218, USA
- Department of Materials Science and Engineering, The Johns Hopkins University, Baltimore, MD 21218, USA
- Department of Oncology and Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Center for Nanomedicine, The Wilmer Eye Institute, The Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| |
Collapse
|
4
|
Hansda B, Mondal B, Hazra S, Das KS, Castelletto V, Hamley IW, Banerjee A. Effect of molar ratio and concentration on the rheological properties of two-component supramolecular hydrogels: tuning of the morphological and drug releasing behaviour. SOFT MATTER 2023; 19:8264-8273. [PMID: 37869972 DOI: 10.1039/d3sm00883e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/24/2023]
Abstract
Self-assembled supramolecular hydrogels offer great potential as biomaterials and drug delivery systems. Specifically, peptide-based multicomponent hydrogels are promising materials due to their advantage that their mechanical and physical properties can be tuned to enhance their functionalities and broaden their applications. Herein, we report two-component assembly and formation of hydrogels containing inexpensive complementary anionic, BUVV-OH (A), and cationic, KFFC12 (B), peptide amphiphiles. Individually, neither of these components formed a hydrogel, while mixtures with compositions 1 : 1, 1 : 2, and 2 : 1 (molar ratio) as A : B show hydrogel formation (Milli-Q water, at pH = 6.79). These hydrogels displayed a good shear-thinning behaviour with different mechanical stabilities and nano-fibrous network structures. The 1 : 1 hydrogel shows good cell viability for human embryonic kidney (HEK-293) cells and CHO cells indicating its non-cytotoxicity. The biocompatible, thixotropic 1 : 1 hydrogel with a nanofiber network structure shows the highest mechanical strength with a storage modulus of 3.4 × 103 Pa. The hydrogel is able to encapsulate drugs including antibiotics amoxicillin and rifampicin, and anticancer drug doxorubicin, and it exhibits sustainable release of 76%, 70%, and 81% respectively in vitro after 3 days. The other two mixtures (composition 1 : 2 and 2 : 1) are unable to form a hydrogel when they are loaded with these drugs. Interestingly, it is noticed that with an increase in concentration, the mechanical strength of a 1 : 1 hydrogel is significantly enhanced, showing potential that may act as a scaffold for tissue engineering. The two-component gel offers tunable mechanical properties, thixotropy, injectability, and biocompatibility and has great potential as a scaffold for sustained drug release and tissue engineering.
Collapse
Affiliation(s)
- Biswanath Hansda
- School of Biological Sciences, Indian Association for the Cultivation of Science, 2A & 2B Raja S. C. Mullick Road, Jadavpur, Kolkata-700032, India.
| | - Biplab Mondal
- School of Biological Sciences, Indian Association for the Cultivation of Science, 2A & 2B Raja S. C. Mullick Road, Jadavpur, Kolkata-700032, India.
| | - Soumyajit Hazra
- School of Biological Sciences, Indian Association for the Cultivation of Science, 2A & 2B Raja S. C. Mullick Road, Jadavpur, Kolkata-700032, India.
| | - Krishna Sundar Das
- School of Chemical Sciences, Indian Association for the Cultivation of Science, 2A & 2B Raja S. C. Mullick Road, Jadavpur, Kolkata-700032, India
| | | | - Ian W Hamley
- Department of Chemistry, University of Reading, Reading RG6 6AD, UK
| | - Arindam Banerjee
- School of Biological Sciences, Indian Association for the Cultivation of Science, 2A & 2B Raja S. C. Mullick Road, Jadavpur, Kolkata-700032, India.
| |
Collapse
|
5
|
Chawla V, Sharma S, Singh Y. Yttrium Oxide Nanoparticle-Loaded, Self-Assembled Peptide Gel with Antibacterial, Anti-Inflammatory, and Proangiogenic Properties for Wound Healing. ACS Biomater Sci Eng 2023; 9:2647-2662. [PMID: 37097124 DOI: 10.1021/acsbiomaterials.3c00134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/26/2023]
Abstract
Chronic wounds are a major healthcare challenge owing to their complex healing mechanism and number of impediments to the healing process, like infections, unregulated inflammation, impaired cellular functions, poor angiogenesis, and enhanced protease activity. Current topical care strategies, such as surgical debridement, absorption of exudates, drug-loaded hydrogels for infection and inflammation management, and exogenous supply of growth factors for angiogenesis and cell proliferation, slow the progression of wounds and reduce patient suffering but suffer from low overall cure rates. Therefore, we have developed a proteolytically stable, multifunctional nanoparticle loaded-peptide gel with inherent anti-inflammatory, antibacterial, and pro-angiogenic properties to provide a favorable wound healing milieu by restoring impaired cellular functions. We have fabricated a self-assembled, lauric acid-peptide conjugate gel, LA-LLys-DPhe-LLys-NH2, loaded with yttrium oxide (Y2O3) nanoparticles (NLG). Gel formed a nanofibrous structure, and nanoparticles were passively entrapped within the network. The surface morphology, stability, viscoelastic, and self-healing characteristics of gels were characterized. It showed a high stability against degradation by proteolytic enzymes and highly potent antibacterial activities against E. coli and S. aureus due to the presence of positively charged side chains of lysine in the peptide chain. It also exhibited an excellent antioxidant activity as well as ability to stimulate cell proliferation in murine fibroblast (L929) cells and human umbilical vein endothelial cells (HUVECs). The incorporation of nanoparticles promoted angiogenesis by upregulating pro-angiogenic genes, vascular endothelial growth factor (VEGF), fibroblast growth factor (FGF2), and epidermal growth factor (EGFR), and the gel caused complete wound closure in cells. In summary, the Y2O3 nanoparticle-loaded lauric acid-peptide conjugate gel is able to elicit the desired tissue regeneration responses and, therefore, has a strong potential as a matrix for the treatment of chronic wounds.
Collapse
Affiliation(s)
- Vatan Chawla
- Department of Chemistry, Indian Institute of Technology Ropar, Rupnagar, Punjab 140001, India
| | - Sakshi Sharma
- Department of Chemistry, Indian Institute of Technology Ropar, Rupnagar, Punjab 140001, India
| | - Yashveer Singh
- Department of Chemistry, Indian Institute of Technology Ropar, Rupnagar, Punjab 140001, India
| |
Collapse
|
6
|
Monroe MK, Wang H, Anderson CF, Qin M, Thio CL, Flexner C, Cui H. Antiviral supramolecular polymeric hydrogels by self-assembly of tenofovir-bearing peptide amphiphiles. Biomater Sci 2023; 11:489-498. [PMID: 36449365 PMCID: PMC9894536 DOI: 10.1039/d2bm01649d] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
The development of long-acting antiviral therapeutic delivery systems is crucial to improve the current treatment and prevention of HIV and chronic HBV. We report here on the conjugation of tenofovir (TFV), an FDA approved nucleotide reverse transcriptase inhibitor (NRTI), to rationally designed peptide amphiphiles (PAs), to construct antiviral prodrug hydrogelators (TFV-PAs). The resultant conjugates can self-assemble into one-dimensional nanostructures in aqueous environments and consequently undergo rapid gelation upon injection into 1× PBS solution to create a drug depot. The TFV-PA designs containing two or three valines could attain instantaneous gelation, with one displaying sustained release for more than 28 days in vitro. Our studies suggest that minor changes in peptide design can result in differences in supramolecular morphology and structural stability, which impacted in vitro gelation and release. We envision the use of this system as an important delivery platform for the sustained, linear release of TFV at rates that can be precisely tuned to attain therapeutically relevant TFV plasma concentrations.
Collapse
Affiliation(s)
- Maya K Monroe
- Department of Chemical and Biomolecular Engineering, The Johns Hopkins University, Baltimore, MD 21218, USA.
- Institute for NanoBioTechnology, The Johns Hopkins University, Baltimore, MD 21218, USA
| | - Han Wang
- Department of Chemical and Biomolecular Engineering, The Johns Hopkins University, Baltimore, MD 21218, USA.
- Institute for NanoBioTechnology, The Johns Hopkins University, Baltimore, MD 21218, USA
| | - Caleb F Anderson
- Department of Chemical and Biomolecular Engineering, The Johns Hopkins University, Baltimore, MD 21218, USA.
- Institute for NanoBioTechnology, The Johns Hopkins University, Baltimore, MD 21218, USA
| | - Meng Qin
- Department of Chemical and Biomolecular Engineering, The Johns Hopkins University, Baltimore, MD 21218, USA.
- Institute for NanoBioTechnology, The Johns Hopkins University, Baltimore, MD 21218, USA
| | - Chloe L Thio
- Department of Medicine, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Charles Flexner
- Divisions of Clinical Pharmacology and Infectious Diseases, The Johns Hopkins University School of Medicine and Bloomberg School of Public Health, Baltimore, MD 21205, USA
| | - Honggang Cui
- Department of Chemical and Biomolecular Engineering, The Johns Hopkins University, Baltimore, MD 21218, USA.
- Institute for NanoBioTechnology, The Johns Hopkins University, Baltimore, MD 21218, USA
- Department of Materials Science and Engineering, The Johns Hopkins University, Baltimore, MD 21218, USA
- Department of Oncology and Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Center for Nanomedicine, The Wilmer Eye Institute, The Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| |
Collapse
|
7
|
Sperle K, Pochan DJ, Langhans SA. 3D Hydrogel Cultures for High-Throughput Drug Discovery. Methods Mol Biol 2023; 2614:369-381. [PMID: 36587136 PMCID: PMC10786336 DOI: 10.1007/978-1-0716-2914-7_22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Our increased understanding of how a cell's microenvironment influences its behavior has fueled an interest in three-dimensional (3D) cell cultures for drug discovery. Particularly, scaffold-based 3D cultures are expected to recapitulate in vivo tissue stiffness and extracellular matrix composition more accurately than standard two-dimensional (2D) monolayer cultures. Here we present a 3D hydrogel cell culture setup suitable for automated screening with standard high-throughput screening (HTS) liquid handling equipment commonly found in a drug discovery laboratory. Further, we describe the steps required to validate the assay system for compound screening.
Collapse
Affiliation(s)
- Karen Sperle
- Nemours Biomedical Research, Nemours Children's Hospital - Delaware, Wilmington, DE, USA
| | - Darrin J Pochan
- Department of Materials Science and Engineering, University of Delaware, Newark, DE, USA
| | - Sigrid A Langhans
- Nemours Biomedical Research, Nemours Children's Hospital - Delaware, Wilmington, DE, USA.
| |
Collapse
|
8
|
Cheng C, Sun Q, Wang X, He B, Jiang T. Enzyme-manipulated hydrogelation of small molecules for biomedical applications. Acta Biomater 2022; 151:88-105. [PMID: 35970483 DOI: 10.1016/j.actbio.2022.08.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 07/26/2022] [Accepted: 08/08/2022] [Indexed: 11/26/2022]
Abstract
Enzyme-manipulated hydrogelation based on self-assembly of small molecules is an attractive methodology for development of functional biomaterials. Upon the catalysis of enzymes, small-molecular precursors are converted into assemblable building blocks, which arrange into high-ordered nanofibers via non-covalent interactions at the molecular level, and further trap water to form hydrogels at the macroscopic level. Such approach has numerous advantages of region- and enantioselectivity, and mild reaction conditions for encapsulation of biomedications or cells that are fragile to environmental change. In addition to the common applications as drug reservoirs or cell scaffolds, the utilization of endogenous enzymes as stimuli to initiate self-assembly in the living cells and tissue is considered as an intelligent spatiotemporally controllable hydrogelation strategy for biomedical applications. The enzyme-instructed in situ self-assembly and hydrogelation can modulate the cell behavior, and even present therapeutic bioactivities, which provides a new perspective in the field of disease treatment. In this review, we categorize distinct enzymatic stimuli and elaborate substrate design, catalytic characteristics, and mechanisms of self-assembly and hydrogelation. The biomedical applications in drug delivery, tissue engineering, bioimaging, and in situ gelation-produced bioactivity are outlined. Advantages and limitations regarding the state-of-the-art enzyme-driven hydrogelation technologies and future perspectives are also discussed. STATEMENT OF SIGNIFICANCE: Hydrogel is a semi-solid soft material containing a large amount of water. Due to the features of adjustable flexibility, extremely porous architecture, and the high similarity of structure to natural extracellular matrices, the hydrogel has broad application prospects in biomedicine. In recent 20 years, enzyme-manipulated hydrogelation based on self-assembly of small molecules has developed rapidly as an attractive methodology for the construction of functional biomaterials. Upon the catalysis of enzymes, small-molecular precursors are converted into assemblable building blocks, which arrange into high-ordered nanofibers via non-covalent interactions at the molecular level, and further trap water to form hydrogels at the macroscopic level. This review summarized the characteristics of enzymatic hydrogel, as well as the traditional application and emerging prospect of enzyme-instructed self-assembly and hydrogelation.
Collapse
Affiliation(s)
- Cheng Cheng
- School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing 211816, China
| | - Qingyun Sun
- School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing 211816, China
| | - Xiuping Wang
- School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing 211816, China
| | - Bingfang He
- School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing 211816, China.
| | - Tianyue Jiang
- School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing 211816, China.
| |
Collapse
|
9
|
Edwards SD, Hou S, Brown JM, Boudreau RD, Lee Y, Kim YJ, Jeong KJ. Fast-Curing Injectable Microporous Hydrogel for In Situ Cell Encapsulation. ACS APPLIED BIO MATERIALS 2022; 5:2786-2794. [PMID: 35576622 DOI: 10.1021/acsabm.2c00214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Seth D. Edwards
- Department of Chemical Engineering, University of New Hampshire, Durham, New Hampshire 03824, United States
| | - Shujie Hou
- Department of Chemical Engineering, University of New Hampshire, Durham, New Hampshire 03824, United States
| | - Jason M. Brown
- Department of Chemical Engineering, University of New Hampshire, Durham, New Hampshire 03824, United States
| | - Ryann D. Boudreau
- Department of Chemical Engineering, University of New Hampshire, Durham, New Hampshire 03824, United States
| | - Yuhan Lee
- Engineering in Medicine, Department of Medicine, Center for Regenerative Therapeutics, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts 02115, United States
| | - Young Jo Kim
- Department of Chemical Engineering, University of New Hampshire, Durham, New Hampshire 03824, United States
| | - Kyung Jae Jeong
- Department of Chemical Engineering, University of New Hampshire, Durham, New Hampshire 03824, United States
| |
Collapse
|
10
|
Xu H, Yang J, Tu M, Weng J, Xie M, Zhou Z, Zhou P, Wang L, Chen C, Wang Z. Vincristine Promotes Transdifferentiation of Fibroblasts Into Myofibroblasts via P38 and ERK Signal Pathways. Front Pharmacol 2022; 13:901000. [PMID: 35614948 PMCID: PMC9124770 DOI: 10.3389/fphar.2022.901000] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 04/06/2022] [Indexed: 11/13/2022] Open
Abstract
Background: Vincristine (VCR) is used in the clinic as an anti-tumor drug. VCR can cause pulmonary fibrosis (PF), leading to respiratory failure. The transformation of fibroblasts into myofibroblasts may play a key role in PF. The present study attempted to reveal the molecular mechanism of VCR-induced PF and the possible involvement of the mitogen-activated protein kinase (MAPK) signaling pathway.Methods: Human embryonic lung fibroblasts (HELFs) were treated with different concentrations of VCR. Inhibitors of extracellular signal-regulated kinase 1/2 (ERK1/2) and p38 MAPK were added to HELFs. Cell proliferation state was assessed using cell counting kit-8 and by directly counting the number of cells. The expressions of vimentin and α-smooth muscle actin (α-SMA) were investigated using western blot and immunofluorescence analyses. Activation of ERK and P38 was estimated by the expression of phosphorylated p38 MAPK (p-p38), p38 MAPK, phosphorylated ERK1/2 (p-ERK1/2) and ERK1/2 using western blot analysis. Enzyme-linked immunosorbent assay was used to estimate the level of collagen I in cell culture supernatants.Results: Results showed that VCR promoted cellular proliferation, secretion of collagen I and the expression of vimentin and α-SMA. High expression of p-p38 and p-ERK1/2 was associated with the activation of the MAPK signaling pathway. MAPK inhibitors SB203580 and PD98059 suppressed the expression of the above proteins.Conclusion: Our study revealed that VCR could promote the differentiation of fibroblasts into myofibroblasts by regulating the MAPK signal pathway, which may be a promising way to treat VCR-induced PF.
Collapse
Affiliation(s)
- Hui Xu
- Department of General Practice, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Jingwen Yang
- Department of Geriatric Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Mengyun Tu
- Department of Clinical Laboratory, Hangzhou TCM Hospital Affiliated to Zhejiang Chinese Medical University, Hangzhou, China
| | - Jie Weng
- Department of General Practice, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Mengying Xie
- Department of General Practice, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Zhiliang Zhou
- Department of General Practice, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Peisen Zhou
- Department of Emergency Medicine, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Liang Wang
- Department of Public Health, Robbins College of Health and Human Sciences, Baylor University, Waco, TX, United States
| | - Chan Chen
- Department of Geriatric Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
- Institute of Bioscaffold Transplantation and Immunology, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, China
- *Correspondence: Zhiyi Wang, ; Chan Chen,
| | - Zhiyi Wang
- Department of General Practice, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
- Institute of Hypoxia Medicine, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, China
- *Correspondence: Zhiyi Wang, ; Chan Chen,
| |
Collapse
|
11
|
Gharehnazifam Z, Dolatabadi R, Baniassadi M, Shahsavari H, Kajbafzadeh AM, Abrinia K, Gharehnazifam K, Baghani M. Multiphysics modeling and experiments on ultrasound-triggered drug delivery from silk fibroin hydrogel for Wilms tumor. Int J Pharm 2022; 621:121787. [DOI: 10.1016/j.ijpharm.2022.121787] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 04/18/2022] [Accepted: 04/26/2022] [Indexed: 12/30/2022]
|
12
|
Gray VP, Amelung CD, Duti IJ, Laudermilch EG, Letteri RA, Lampe KJ. Biomaterials via peptide assembly: Design, characterization, and application in tissue engineering. Acta Biomater 2022; 140:43-75. [PMID: 34710626 PMCID: PMC8829437 DOI: 10.1016/j.actbio.2021.10.030] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 09/23/2021] [Accepted: 10/20/2021] [Indexed: 12/16/2022]
Abstract
A core challenge in biomaterials, with both fundamental significance and technological relevance, concerns the rational design of bioactive microenvironments. Designed properly, peptides can undergo supramolecular assembly into dynamic, physical hydrogels that mimic the mechanical, topological, and biochemical features of native tissue microenvironments. The relatively facile, inexpensive, and automatable preparation of peptides, coupled with low batch-to-batch variability, motivates the expanded use of assembling peptide hydrogels for biomedical applications. Integral to realizing dynamic peptide assemblies as functional biomaterials for tissue engineering is an understanding of the molecular and macroscopic features that govern assembly, morphology, and biological interactions. In this review, we first discuss the design of assembling peptides, including primary structure (sequence), secondary structure (e.g., α-helix and β-sheets), and molecular interactions that facilitate assembly into multiscale materials with desired properties. Next, we describe characterization tools for elucidating molecular structure and interactions, morphology, bulk properties, and biological functionality. Understanding of these characterization methods enables researchers to access a variety of approaches in this ever-expanding field. Finally, we discuss the biological properties and applications of peptide-based biomaterials for engineering several important tissues. By connecting molecular features and mechanisms of assembling peptides to the material and biological properties, we aim to guide the design and characterization of peptide-based biomaterials for tissue engineering and regenerative medicine. STATEMENT OF SIGNIFICANCE: Engineering peptide-based biomaterials that mimic the topological and mechanical properties of natural extracellular matrices provide excellent opportunities to direct cell behavior for regenerative medicine and tissue engineering. Here we review the molecular-scale features of assembling peptides that result in biomaterials that exhibit a variety of relevant extracellular matrix-mimetic properties and promote beneficial cell-biomaterial interactions. Aiming to inspire and guide researchers approaching this challenge from both the peptide biomaterial design and tissue engineering perspectives, we also present characterization tools for understanding the connection between peptide structure and properties and highlight the use of peptide-based biomaterials in neural, orthopedic, cardiac, muscular, and immune engineering applications.
Collapse
Affiliation(s)
- Vincent P Gray
- Department of Chemical Engineering, University of Virginia, Charlottesville, VA, 22903, United States
| | - Connor D Amelung
- Department of Biomedical Engineering, University of Virginia, Charlottesville, VA, 22903, United States
| | - Israt Jahan Duti
- Department of Chemical Engineering, University of Virginia, Charlottesville, VA, 22903, United States
| | - Emma G Laudermilch
- Department of Chemical Engineering, University of Virginia, Charlottesville, VA, 22903, United States
| | - Rachel A Letteri
- Department of Chemical Engineering, University of Virginia, Charlottesville, VA, 22903, United States.
| | - Kyle J Lampe
- Department of Chemical Engineering, University of Virginia, Charlottesville, VA, 22903, United States; Department of Biomedical Engineering, University of Virginia, Charlottesville, VA, 22903, United States.
| |
Collapse
|
13
|
Kozlik P, Sirc J, Cocarta AI, Bosakova Z. A novel highly sensitive UHPLC-MS/MS method for monitoring vincristine in plasma and vitreous humor samples with potential application in retinoblastoma therapy. Microchem J 2022. [DOI: 10.1016/j.microc.2022.107337] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
14
|
Nambiar M, Schneider JP. Peptide hydrogels for affinity-controlled release of therapeutic cargo: Current and potential strategies. J Pept Sci 2022; 28:e3377. [PMID: 34747114 PMCID: PMC8678354 DOI: 10.1002/psc.3377] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Revised: 09/13/2021] [Accepted: 09/22/2021] [Indexed: 01/03/2023]
Abstract
The development of devices for the precise and controlled delivery of therapeutics has grown rapidly over the last few decades. Drug delivery materials must provide a depot with delivery profiles that satisfy pharmacodynamic and pharmacokinetic requirements resulting in clinical benefit. Therapeutic efficacy can be limited due to short half-life and poor stability. Thus, to compensate for this, frequent administration and high doses are often required to achieve therapeutic effect, which in turn increases potential side effects and systemic toxicity. This can potentially be mitigated by using materials that can deliver drugs at controlled rates, and material design principles that allow this are continuously evolving. Affinity-based release strategies incorporate a myriad of reversible interactions into a gel network, which have affinities for the therapeutic of interest. Reversible binding to the gel network impacts the release profile of the drug. Such affinity-based interactions can be modulated to control the release profile to meet pharmacokinetic benchmarks. Much work has been done developing affinity-based control in the context of polymer-based materials. However, this strategy has not been widely implemented in peptide-based hydrogels. Herein, we present recent advances in the use of affinity-controlled peptide gel release systems and their associated mechanisms for applications in drug delivery.
Collapse
Affiliation(s)
- Monessha Nambiar
- Chemical Biology Laboratory, Center for Cancer Research, National Cancer Institute-Frederick, National Institutes of Health, Frederick, Maryland 21702, United States
| | - Joel P. Schneider
- Chemical Biology Laboratory, Center for Cancer Research, National Cancer Institute-Frederick, National Institutes of Health, Frederick, Maryland 21702, United States
| |
Collapse
|
15
|
Halder M, Bhatia Y, Singh Y. Self-assembled di- and tripeptide gels for the passive entrapment and pH-responsive, sustained release of an antidiabetic drug, glimepiride. Biomater Sci 2022; 10:2248-2262. [DOI: 10.1039/d2bm00344a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Diabetes is a global epidemic that poses a severe challenge to public health. The characteristic features of this disease are hyperglycemia and deterioration of the function of pancreatic β-cells, which...
Collapse
|
16
|
Computational analysis of vincristine loaded silk fibroin hydrogel for sustained drug delivery applications: Multiphysics modeling and experiments. Int J Pharm 2021; 609:121184. [PMID: 34648880 DOI: 10.1016/j.ijpharm.2021.121184] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 10/05/2021] [Accepted: 10/08/2021] [Indexed: 11/21/2022]
Abstract
In this paper, silk fibroin hydrogel is used as a drug carrier for vincristine. To optimize drug delivery, a multi-physics model is proposed that couples the deformation and diffusion fields. We applied inverse analysis and general continuum mechanics to define material parameters and mechanical properties. To examine the mass transport and chemical behavior, an affinity-based diffusion and degradation of a drug-loaded polymer matrix is employed. Some experiments are carried out to examine the capability of the presented model. After preparing the vincristine loaded silk hydrogel syringes, they were injected into PBS and enzyme solutions to monitor the drug release rate for 40 days. Obtained results from the computational simulation and laboratory tests showed that the silk fibroin hydrogel was deswelled after about 40 days in enzyme solution. Degradation led to faster and higher doses of vincristine drug release in comparison to the case of PBS solution. Results revealed that more than 80% of the drug was released in the first 5 days in the enzyme solution, but in PBS solution only 10% of the drug was released during 40 days. The model predictions of deswelling behavior and drug release rate were in good agreement with those of experimental results. Therefore, it can be employed as a reliable tool for further predictions.
Collapse
|
17
|
Correa S, Grosskopf AK, Lopez Hernandez H, Chan D, Yu AC, Stapleton LM, Appel EA. Translational Applications of Hydrogels. Chem Rev 2021; 121:11385-11457. [PMID: 33938724 PMCID: PMC8461619 DOI: 10.1021/acs.chemrev.0c01177] [Citation(s) in RCA: 403] [Impact Index Per Article: 100.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Indexed: 12/17/2022]
Abstract
Advances in hydrogel technology have unlocked unique and valuable capabilities that are being applied to a diverse set of translational applications. Hydrogels perform functions relevant to a range of biomedical purposes-they can deliver drugs or cells, regenerate hard and soft tissues, adhere to wet tissues, prevent bleeding, provide contrast during imaging, protect tissues or organs during radiotherapy, and improve the biocompatibility of medical implants. These capabilities make hydrogels useful for many distinct and pressing diseases and medical conditions and even for less conventional areas such as environmental engineering. In this review, we cover the major capabilities of hydrogels, with a focus on the novel benefits of injectable hydrogels, and how they relate to translational applications in medicine and the environment. We pay close attention to how the development of contemporary hydrogels requires extensive interdisciplinary collaboration to accomplish highly specific and complex biological tasks that range from cancer immunotherapy to tissue engineering to vaccination. We complement our discussion of preclinical and clinical development of hydrogels with mechanical design considerations needed for scaling injectable hydrogel technologies for clinical application. We anticipate that readers will gain a more complete picture of the expansive possibilities for hydrogels to make practical and impactful differences across numerous fields and biomedical applications.
Collapse
Affiliation(s)
- Santiago Correa
- Materials
Science & Engineering, Stanford University, Stanford, California 94305, United States
| | - Abigail K. Grosskopf
- Chemical
Engineering, Stanford University, Stanford, California 94305, United States
| | - Hector Lopez Hernandez
- Materials
Science & Engineering, Stanford University, Stanford, California 94305, United States
| | - Doreen Chan
- Chemistry, Stanford University, Stanford, California 94305, United States
| | - Anthony C. Yu
- Materials
Science & Engineering, Stanford University, Stanford, California 94305, United States
| | | | - Eric A. Appel
- Materials
Science & Engineering, Stanford University, Stanford, California 94305, United States
- Bioengineering, Stanford University, Stanford, California 94305, United States
- Pediatric
Endocrinology, Stanford University School
of Medicine, Stanford, California 94305, United States
- ChEM-H Institute, Stanford
University, Stanford, California 94305, United States
- Woods
Institute for the Environment, Stanford
University, Stanford, California 94305, United States
| |
Collapse
|
18
|
Liu C, Ma Y, Guo S, He B, Jiang T. Topical delivery of chemotherapeutic drugs using nano-hybrid hydrogels to inhibit post-surgical tumour recurrence. Biomater Sci 2021; 9:4356-4363. [PMID: 34127987 DOI: 10.1039/d0bm01766c] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Residual microtumours after surgical resection leading to tumour relapse is one of the major challenges for cancer therapy. Herein, we developed a nano-hybrid oligopeptide hydrogel for topical delivery of a chemotherapeutic drug, docetaxel (DTX), to inhibit the post-surgical tumour recurrence. This nano-hybrid hydrogel (DTX-CTs/Gel) was prepared by encapsulating DTX in cell-penetrating peptide-modified transfersomes followed by embedment in an oligopeptide hydrogel. The obtained DTX-CTs/Gel showed paintable and injectable properties, and could support prolonged retention at the administrated sites after topical administration. DTX-CTs released from the hydrogel presented high skin and tumour penetration capabilities, and increased the accumulation of DTX in the cancer cells leading to enhanced cell death. We showed that the topical delivery of DTX using DTX-CTs/Gel efficiently slowed down the tumour relapse in post-surgical mouse melanoma and breast tumour models.
Collapse
Affiliation(s)
- Chendan Liu
- School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing 211816, China.
| | - Yudi Ma
- School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing 211816, China.
| | - Song Guo
- Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Chinese Medicine, Nanjing 210029, China
| | - Bingfang He
- School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing 211816, China.
| | - Tianyue Jiang
- School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing 211816, China.
| |
Collapse
|
19
|
Cai Y, Zheng C, Xiong F, Ran W, Zhai Y, Zhu HH, Wang H, Li Y, Zhang P. Recent Progress in the Design and Application of Supramolecular Peptide Hydrogels in Cancer Therapy. Adv Healthc Mater 2021; 10:e2001239. [PMID: 32935937 DOI: 10.1002/adhm.202001239] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 09/04/2020] [Indexed: 12/15/2022]
Abstract
Supramolecular peptide hydrogel (SPH) is a class of biomaterials self-assembled from peptide-based gelators through non-covalent interactions. Among many of its biomedical applications, the potential of SPH in cancer therapy has been vastly explored in the past decade, taking advantage of its good biocompatibility, multifunctionality, and injectability. SPHs can exert localized cancer therapy and induce systemic anticancer immunity to prevent tumor recurrence, depending on the design of SPH. This review first gives a brief introduction to SPH and then outlines the major types of peptide-based gelators that have been developed so far. The methodologies to tune the physicochemical properties and biological activities are summarized. The recent advances of SPH in cancer therapy as carriers, prodrugs, or drugs are highlighted. Finally, the clinical translation potential and main challenges in this field are also discussed.
Collapse
Affiliation(s)
- Ying Cai
- State Key Laboratory of Drug Research and Center of Pharmaceutics Shanghai Institute of Materia Medica Chinese Academy of Sciences Shanghai 201203 China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Chao Zheng
- State Key Laboratory of Drug Research and Center of Pharmaceutics Shanghai Institute of Materia Medica Chinese Academy of Sciences Shanghai 201203 China
- China State Institute of Pharmaceutical Industry Shanghai 200040 China
| | - Fengqin Xiong
- State Key Laboratory of Drug Research and Center of Pharmaceutics Shanghai Institute of Materia Medica Chinese Academy of Sciences Shanghai 201203 China
- China State Institute of Pharmaceutical Industry Shanghai 200040 China
| | - Wei Ran
- State Key Laboratory of Drug Research and Center of Pharmaceutics Shanghai Institute of Materia Medica Chinese Academy of Sciences Shanghai 201203 China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Yihui Zhai
- State Key Laboratory of Drug Research and Center of Pharmaceutics Shanghai Institute of Materia Medica Chinese Academy of Sciences Shanghai 201203 China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Helen H. Zhu
- State Key Laboratory of Oncogenes and Related Genes Renji‐Med‐X Stem Cell Research Center Department of Urology Ren Ji Hospital School of Medicine and School of Biomedical Engineering Shanghai Jiao Tong University Shanghai 200127 China
| | - Hao Wang
- China State Institute of Pharmaceutical Industry Shanghai 200040 China
| | - Yaping Li
- State Key Laboratory of Drug Research and Center of Pharmaceutics Shanghai Institute of Materia Medica Chinese Academy of Sciences Shanghai 201203 China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Pengcheng Zhang
- State Key Laboratory of Drug Research and Center of Pharmaceutics Shanghai Institute of Materia Medica Chinese Academy of Sciences Shanghai 201203 China
- University of Chinese Academy of Sciences Beijing 100049 China
- Yantai Key Laboratory of Nanomedicine and Advanced Preparations Yantai Institute of Materia Medica Shandong 264000 China
| |
Collapse
|
20
|
Liu X, Sun X, Liang G. Peptide-based supramolecular hydrogels for bioimaging applications. Biomater Sci 2021; 9:315-327. [DOI: 10.1039/d0bm01020k] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Peptide-based supramolecular hydrogels have unique merits in bioimaging applications.
Collapse
Affiliation(s)
- Xiaoyang Liu
- State Key Laboratory of Bioelectronics
- School of Biological Science and Medical Engineering
- Southeast University
- Nanjing
- China
| | - Xianbao Sun
- State Key Laboratory of Bioelectronics
- School of Biological Science and Medical Engineering
- Southeast University
- Nanjing
- China
| | - Gaolin Liang
- State Key Laboratory of Bioelectronics
- School of Biological Science and Medical Engineering
- Southeast University
- Nanjing
- China
| |
Collapse
|
21
|
Kumar S, Bajaj A. Advances in self-assembled injectable hydrogels for cancer therapy. Biomater Sci 2020; 8:2055-2073. [PMID: 32129390 DOI: 10.1039/d0bm00146e] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Non-specific toxicity of chemotherapeutics and evolution of malignant tumors against them are major challenges for existing cancer chemotherapeutic regimens. Engineering of nanomaterials has attempted to minimize the toxicity of anticancer drugs, but systemic delivery of these nanomaterials still imposes many hurdles in their clinical use like burst release of chemotherapeutics and toxicity and immunogenicity associated with excipients of nanomaterials. However, there has been a surge in the development of natural and synthetic nanomaterials to deliver anticancer agents to the diseased (tumor) site as it can minimize the systemic circulation of anticancer drugs and reduce the toxicity-related challenges. Therefore, localized drug delivery is considered as the most effective way to deliver therapeutics but is further challenged by poor biodegradability, high immunogenicity, poor drug entrapment efficacy and inability to maintain sustained release of anticancer agents at the tumor site. This review maps out recent advancements in engineering of low molecular weight hydrogels derived from amino acid, fatty acyl, steroidal lipid and drug conjugated amphiphilic scaffolds. We have summarized the efforts for the development of molecular hydrogels in terms of biocompatibility, therapeutic potential and challenges associated with existing molecular hydrogels for cancer therapy.
Collapse
Affiliation(s)
- Sandeep Kumar
- Laboratory of Nanotechnology and Chemical Biology, Regional Centre for Biotechnology, NCR Biotech Science Cluster, 3rd Milestone, Faridabad-Gurgaon Expressway, Faridabad-121001, Haryana, India. and Manipal Academy of Higher Education, Manipal-576104, Karnataka, India
| | - Avinash Bajaj
- Laboratory of Nanotechnology and Chemical Biology, Regional Centre for Biotechnology, NCR Biotech Science Cluster, 3rd Milestone, Faridabad-Gurgaon Expressway, Faridabad-121001, Haryana, India.
| |
Collapse
|
22
|
Mondal B, Bairagi D, Nandi N, Hansda B, Das KS, Edwards-Gayle CJC, Castelletto V, Hamley IW, Banerjee A. Peptide-Based Gel in Environmental Remediation: Removal of Toxic Organic Dyes and Hazardous Pb 2+ and Cd 2+ Ions from Wastewater and Oil Spill Recovery. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2020; 36:12942-12953. [PMID: 33078952 DOI: 10.1021/acs.langmuir.0c02205] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
A dipeptide-based synthetic amphiphile bearing a myristyl chain has been found to form hydrogels in the pH range 6.9-8.5 and organogels in various organic solvents including petroleum ether, diesel, kerosene, and petrol. These organogels and hydrogels have been thoroughly studied and characterized by different techniques including high-resolution transmission electron microscopy, X-ray diffraction, Fourier-transform infrared spectroscopy, and rheology. It has been found that the xerogel obtained from the peptide gelator can trap various toxic organic dyes from wastewater efficiently. Moreover, the hydrogel has been used to remove toxic heavy metal ions Pb2+ and Cd2+ from wastewater. Dye adsorption kinetics has been studied, and it has been fitted by using the Freundlich isotherm equation. Interestingly, the gelator amphiphilic peptide gels fuel oil, kerosene, diesel, and petrol in a biphasic mixture of salt water and oil within a few seconds. This indicates that these gels not only may find application in oil spill recovery but also can be used to remove toxic organic dyes and hazardous toxic metal ions from wastewater. Moreover, the gelator can be recycled several times without significant loss of activity, suggesting the sustainability of this new gelator. This holds future promise for environmental remediation by using peptide-based gelators.
Collapse
Affiliation(s)
- Biplab Mondal
- School of Biological Sciences, Indian Association for the Cultivation of Science, 2A & 2B Raja S. C. Mullick Road, Jadavpur, Kolkata 700032, India
| | - Dipayan Bairagi
- School of Biological Sciences, Indian Association for the Cultivation of Science, 2A & 2B Raja S. C. Mullick Road, Jadavpur, Kolkata 700032, India
| | - Nibedita Nandi
- School of Biological Sciences, Indian Association for the Cultivation of Science, 2A & 2B Raja S. C. Mullick Road, Jadavpur, Kolkata 700032, India
| | - Biswanath Hansda
- School of Biological Sciences, Indian Association for the Cultivation of Science, 2A & 2B Raja S. C. Mullick Road, Jadavpur, Kolkata 700032, India
| | - Krishna Sundar Das
- School of Chemical Sciences, Indian Association for the Cultivation of Science, 2A & 2B Raja S. C. Mullick Road, Jadavpur, Kolkata 700032, India
| | | | - Valeria Castelletto
- Department of Chemistry, University of Reading, White Knights, Reading RG6 6AD, U.K
| | - Ian W Hamley
- Department of Chemistry, University of Reading, White Knights, Reading RG6 6AD, U.K
| | - Arindam Banerjee
- School of Biological Sciences, Indian Association for the Cultivation of Science, 2A & 2B Raja S. C. Mullick Road, Jadavpur, Kolkata 700032, India
| |
Collapse
|
23
|
Ding X, Zhao H, Li Y, Lee AL, Li Z, Fu M, Li C, Yang YY, Yuan P. Synthetic peptide hydrogels as 3D scaffolds for tissue engineering. Adv Drug Deliv Rev 2020; 160:78-104. [PMID: 33091503 DOI: 10.1016/j.addr.2020.10.005] [Citation(s) in RCA: 71] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2020] [Revised: 09/25/2020] [Accepted: 10/13/2020] [Indexed: 12/13/2022]
Abstract
The regeneration of tissues and organs poses an immense challenge due to the extreme complexity in the research work involved. Despite the tissue engineering approach being considered as a promising strategy for more than two decades, a key issue impeding its progress is the lack of ideal scaffold materials. Nature-inspired synthetic peptide hydrogels are inherently biocompatible, and its high resemblance to extracellular matrix makes peptide hydrogels suitable 3D scaffold materials. This review covers the important aspects of peptide hydrogels as 3D scaffolds, including mechanical properties, biodegradability and bioactivity, and the current approaches in creating matrices with optimized features. Many of these scaffolds contain peptide sequences that are widely reported for tissue repair and regeneration and these peptide sequences will also be discussed. Furthermore, 3D biofabrication strategies of synthetic peptide hydrogels and the recent advances of peptide hydrogels in tissue engineering will also be described to reflect the current trend in the field. In the final section, we will present the future outlook in the design and development of peptide-based hydrogels for translational tissue engineering applications.
Collapse
Affiliation(s)
- Xin Ding
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen 518107, China.
| | - Huimin Zhao
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen 518107, China
| | - Yuzhen Li
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen 518107, China
| | - Ashlynn Lingzhi Lee
- Institute of Bioengineering and Nanotechnology, 31 Biopolis Way, The Nanos, Singapore 138669, Singapore
| | - Zongshao Li
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen 518107, China
| | - Mengjing Fu
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen 518107, China
| | - Chengnan Li
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen 518107, China
| | - Yi Yan Yang
- Institute of Bioengineering and Nanotechnology, 31 Biopolis Way, The Nanos, Singapore 138669, Singapore.
| | - Peiyan Yuan
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen 518107, China.
| |
Collapse
|
24
|
Peng F, Zhang W, Qiu F. Self-assembling Peptides in Current Nanomedicine: Versatile Nanomaterials for Drug Delivery. Curr Med Chem 2020; 27:4855-4881. [PMID: 31309877 DOI: 10.2174/0929867326666190712154021] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2019] [Revised: 05/27/2019] [Accepted: 06/11/2019] [Indexed: 02/08/2023]
Abstract
BACKGROUND The development of modern nanomedicine greatly depends on the involvement of novel materials as drug delivery system. In order to maximize the therapeutic effects of drugs and minimize their side effects, a number of natural or synthetic materials have been widely investigated for drug delivery. Among these materials, biomimetic self-assembling peptides (SAPs) have received more attention in recent years. Considering the rapidly growing number of SAPs designed for drug delivery, a summary of how SAPs-based drug delivery systems were designed, would be beneficial. METHOD We outlined research works on different SAPs that have been investigated as carriers for different drugs, focusing on the design of SAPs nanomaterials and how they were used for drug delivery in different strategies. RESULTS Based on the principle rules of chemical complementarity and structural compatibility, SAPs such as ionic self-complementary peptide, peptide amphiphile and surfactant-like peptide could be designed. Determined by the features of peptide materials and the drugs to be delivered, different strategies such as hydrogel embedding, hydrophobic interaction, electrostatic interaction, covalent conjugation or the combination of them could be employed to fabricate SAPs-drug complex, which could achieve slow release, targeted or environment-responsive delivery of drugs. Furthermore, some SAPs could also be combined with other types of materials for drug delivery, or even act as drug by themselves. CONCLUSION Various types of SAPs have been designed and used for drug delivery following various strategies, suggesting that SAPs as a category of versatile nanomaterials have promising potential in the field of nanomedicine.
Collapse
Affiliation(s)
- Fei Peng
- Laboratory of Anaesthesia and Critical Care Medicine, Translational Neuroscience Centre, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Wensheng Zhang
- Laboratory of Anaesthesia and Critical Care Medicine, Translational Neuroscience Centre, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Feng Qiu
- Laboratory of Anaesthesia and Critical Care Medicine, Translational Neuroscience Centre, West China Hospital, Sichuan University, Chengdu, 610041, China
| |
Collapse
|
25
|
Wychowaniec J, Smith AM, Ligorio C, Mykhaylyk OO, Miller AF, Saiani A. Role of Sheet-Edge Interactions in β-sheet Self-Assembling Peptide Hydrogels. Biomacromolecules 2020; 21:2285-2297. [PMID: 32275138 PMCID: PMC7304824 DOI: 10.1021/acs.biomac.0c00229] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2020] [Revised: 04/08/2020] [Indexed: 12/11/2022]
Abstract
Hydrogels' hydrated fibrillar nature makes them the material of choice for the design and engineering of 3D scaffolds for cell culture, tissue engineering, and drug-delivery applications. One particular class of hydrogels which has been the focus of significant research is self-assembling peptide hydrogels. In the present work, we were interested in exploring how fiber-fiber edge interactions affect the self-assembly and gelation properties of amphipathic peptides. For this purpose, we investigated two β-sheet-forming peptides, FEFKFEFK (F8) and KFEFKFEFKK (KF8K), the latter one having the fiber edges covered by lysine residues. Our results showed that the addition of the two lysine residues did not affect the ability of the peptides to form β-sheet-rich fibers, provided that the overall charge carried by the two peptides was kept constant. However, it did significantly reduce edge-driven hydrophobic fiber-fiber associative interactions, resulting in reduced tendency for KF8K fibers to associate/aggregate laterally and form large fiber bundles and consequently network cross-links. This effect resulted in the formation of hydrogels with lower moduli but faster dynamics. As a result, KF8K fibers could be aligned only under high shear and at high concentration while F8 hydrogel fibers were found to align readily at low shear and low concentration. In addition, F8 hydrogels were found to fragment at high concentration because of the high aggregation state stabilizing the fiber bundles, resulting in fiber breakage rather than disentanglement and alignment.
Collapse
Affiliation(s)
- Jacek
K. Wychowaniec
- School
of Materials, The University of Manchester, Oxford Road, M13 9PL Manchester, U.K.
- Manchester
Institute of Biotechnology, The University
of Manchester, Oxford
Road, M13 9PL Manchester, U.K.
| | - Andrew M. Smith
- School
of Materials, The University of Manchester, Oxford Road, M13 9PL Manchester, U.K.
- Manchester
Institute of Biotechnology, The University
of Manchester, Oxford
Road, M13 9PL Manchester, U.K.
| | - Cosimo Ligorio
- School
of Materials, The University of Manchester, Oxford Road, M13 9PL Manchester, U.K.
- Manchester
Institute of Biotechnology, The University
of Manchester, Oxford
Road, M13 9PL Manchester, U.K.
| | - Oleksandr O. Mykhaylyk
- Soft
Matter Analytical Laboratory, Dainton Building, Department of Chemistry, The University of Sheffield, Sheffield S3 7HF, U.K.
| | - Aline F. Miller
- Manchester
Institute of Biotechnology, The University
of Manchester, Oxford
Road, M13 9PL Manchester, U.K.
- School
of Chemical Engineering and Analytical Science, The University of Manchester, Oxford Road, M13 9PL Manchester, U.K.
| | - Alberto Saiani
- School
of Materials, The University of Manchester, Oxford Road, M13 9PL Manchester, U.K.
- Manchester
Institute of Biotechnology, The University
of Manchester, Oxford
Road, M13 9PL Manchester, U.K.
| |
Collapse
|
26
|
Mondal S, Das S, Nandi AK. A review on recent advances in polymer and peptide hydrogels. SOFT MATTER 2020; 16:1404-1454. [PMID: 31984400 DOI: 10.1039/c9sm02127b] [Citation(s) in RCA: 198] [Impact Index Per Article: 39.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
In this review, we focus on the very recent developments on the use of the stimuli responsive properties of polymer hydrogels for targeted drug delivery, tissue engineering, and biosensing utilizing their different optoelectronic properties. Besides, the stimuli-responsive hydrogels, the conducting polymer hydrogels are discussed, with specific attention to the energy generation and storage behavior of the xerogel derived from the hydrogel. The electronic and ionic conducting gels have been discussed that have applications in various electronic devices, e.g., organic field effect transistors, soft robotics, ionic skins, and sensors. The properties of polymer hybrid gels containing carbon nanomaterials have been exemplified here giving attention to applications in supercapacitors, dye sensitized solar cells, photocurrent switching, etc. Recent trends in the properties and applications of some natural polymer gels to produce thermal and acoustic insulating materials, drug delivery vehicles, self-healing material, tissue engineering, etc., are discussed. Besides the polymer gels, peptide gels of different dipeptides, tripeptides, oligopeptides, polypeptides, cyclic peptides, etc., are discussed, giving attention mainly to biosensing, bioimaging, and drug delivery applications. The properties of peptide-based hybrid hydrogels with polymers, nanoparticles, nucleotides, fullerene, etc., are discussed, giving specific attention to drug delivery, cell culture, bio-sensing, and bioimaging properties. Thus, the present review delineates, in short, the preparation, properties, and applications of different polymer and peptide hydrogels prepared in the past few years.
Collapse
Affiliation(s)
- Sanjoy Mondal
- Polymer Science Unit, School of Materials Sciences, Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700032, India.
| | | | | |
Collapse
|
27
|
Chetia M, Debnath S, Chowdhury S, Chatterjee S. Self-assembly and multifunctionality of peptide organogels: oil spill recovery, dye absorption and synthesis of conducting biomaterials. RSC Adv 2020; 10:5220-5233. [PMID: 35498311 PMCID: PMC9049182 DOI: 10.1039/c9ra10395c] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Accepted: 01/19/2020] [Indexed: 02/03/2023] Open
Abstract
The self-assembly of a series of low molecular weight gelator dipeptides containing para amino benzoic acid has been studied in mechanistic detail. All four dipeptides form phase selective, thermoreversible, rigid gels in a large range of organic solvents and fuels such as petrol, diesel, and kerosene. The mechanism of self-assembly has been dissected in detail using several experimental techniques. Self-assembly is driven mainly by aromatic and hydrophobic interactions. Hydrogen bonding groups, though present, seem to make a trivial contribution towards the self-assembly process. Phase selective gelation abilities in fuels in the presence of acidic, basic and saline conditions, together with the easy recovery of fuels from the organogels, render the peptides potential candidates for addressing oil-spill recovery. Being electron rich systems, these organogelators can absorb cationic dyes with >90% efficiency from wastewater. Finally, conducting biomaterials have been synthesized by the insertion of reduced graphene oxide into the organogels. Such small peptide based gelator molecules, being economically viable and easy to prepare, in addition to being multifunctional, are a hot area of research in the field of materials chemistry.
Collapse
Affiliation(s)
- Monikha Chetia
- Department of Chemistry, Indian Institute of Technology, Guwahati Guwahati Assam India 781039 +91-361-2583310
| | - Swapna Debnath
- Department of Chemistry, Indian Institute of Technology, Guwahati Guwahati Assam India 781039 +91-361-2583310
| | - Sumit Chowdhury
- Department of Chemistry, Indian Institute of Technology, Guwahati Guwahati Assam India 781039 +91-361-2583310
| | - Sunanda Chatterjee
- Department of Chemistry, Indian Institute of Technology, Guwahati Guwahati Assam India 781039 +91-361-2583310
| |
Collapse
|
28
|
Hou M, Liu W, Zhang L, Zhang L, Xu Z, Cao Y, Kang Y, Xue P. Responsive agarose hydrogel incorporated with natural humic acid and MnO2nanoparticles for effective relief of tumor hypoxia and enhanced photo-induced tumor therapy. Biomater Sci 2020; 8:353-369. [DOI: 10.1039/c9bm01472a] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
In spite of widespread applications of nano-photosensitizers, poor tumor penetration and severe hypoxia in the tumor microenvironment (TME) always result in an undesirable therapeutic outcome of photodynamic therapy (PDT).
Collapse
Affiliation(s)
- Mengmeng Hou
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry (Southwest University)
- Ministry of Education
- School of Materials and Energy
- Southwest University
- Chongqing 400715
| | - Weiwei Liu
- Chongqing Key Laboratory of Ultrasound Molecular Imaging
- Institute of Ultrasound Imaging
- Second Affiliated Hospital
- Chongqing Medical University
- Chongqing
| | - Lei Zhang
- Institute of Sericulture and System Biology
- Southwest University
- Chongqing 400716
- China
| | - Leiyang Zhang
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry (Southwest University)
- Ministry of Education
- School of Materials and Energy
- Southwest University
- Chongqing 400715
| | - Zhigang Xu
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry (Southwest University)
- Ministry of Education
- School of Materials and Energy
- Southwest University
- Chongqing 400715
| | - Yang Cao
- Chongqing Key Laboratory of Ultrasound Molecular Imaging
- Institute of Ultrasound Imaging
- Second Affiliated Hospital
- Chongqing Medical University
- Chongqing
| | - Yuejun Kang
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry (Southwest University)
- Ministry of Education
- School of Materials and Energy
- Southwest University
- Chongqing 400715
| | - Peng Xue
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry (Southwest University)
- Ministry of Education
- School of Materials and Energy
- Southwest University
- Chongqing 400715
| |
Collapse
|
29
|
Anderson CF, Chakroun RW, Su H, Mitrut RE, Cui H. Interface-Enrichment-Induced Instability and Drug-Loading-Enhanced Stability in Inhalable Delivery of Supramolecular Filaments. ACS NANO 2019; 13:12957-12968. [PMID: 31651153 PMCID: PMC7043235 DOI: 10.1021/acsnano.9b05556] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Filamentous microorganisms traveling in aerosol particles display enhanced deposition and retention in the lungs. Inspired by this shape-related biological effect, we report here on the use of supramolecular filaments as potential inhalable drug carriers within aerosols via jet nebulization. We found that the peptide design and supramolecular stability play a crucial role in the interfacial stability and aerosolization properties of the supramolecular filaments. Monomeric units with a positively charged C-terminus produced filaments with reduced aerosol stability, promoting morphological changes after nebulization. Conversely, having a neutral or negatively charged terminus yielded filaments with enhanced stability, where supramolecular integrity is maintained with only reduced length. Our results suggest that molecular enrichment at the air-liquid interface during nebulization is the primary factor to deplete the monomeric peptide amphiphiles in solution, accounting for the observed morphological disruption/transitions. Importantly, encapsulation of drugs and dyes within filaments notably stabilize their supramolecular structure during nebulization, and the loaded filaments exhibit a linear release profile from a nebulizer device. We envision the use of this supramolecular carrier system as an effective platform for the inhalation-based treatment of many lung diseases.
Collapse
Affiliation(s)
- Caleb F. Anderson
- Department of Chemical and Biomolecular Engineering and Institute for NanoBioTechnology, Johns Hopkins University, 3400 North Charles Street, Baltimore, Maryland 21218, United States
| | - Rami W. Chakroun
- Department of Chemical and Biomolecular Engineering and Institute for NanoBioTechnology, Johns Hopkins University, 3400 North Charles Street, Baltimore, Maryland 21218, United States
| | - Hao Su
- Department of Chemical and Biomolecular Engineering and Institute for NanoBioTechnology, Johns Hopkins University, 3400 North Charles Street, Baltimore, Maryland 21218, United States
| | - Roxana E. Mitrut
- Department of Chemical and Biomolecular Engineering and Institute for NanoBioTechnology, Johns Hopkins University, 3400 North Charles Street, Baltimore, Maryland 21218, United States
| | - Honggang Cui
- Department of Chemical and Biomolecular Engineering and Institute for NanoBioTechnology, Johns Hopkins University, 3400 North Charles Street, Baltimore, Maryland 21218, United States
- Department of Oncology and Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, United States
- Center for Nanomedicine, The Wilmer Eye Institute, Johns Hopkins University School of Medicine, 400 North Broadway, Baltimore, Maryland 21231, United States
| |
Collapse
|
30
|
García-Sánchez D, Fernández D, Rodríguez-Rey JC, Pérez-Campo FM. Enhancing survival, engraftment, and osteogenic potential of mesenchymal stem cells. World J Stem Cells 2019; 11:748-763. [PMID: 31692976 PMCID: PMC6828596 DOI: 10.4252/wjsc.v11.i10.748] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Revised: 07/15/2019] [Accepted: 07/29/2019] [Indexed: 02/06/2023] Open
Abstract
Mesenchymal stem cells (MSCs) are promising candidates for bone regeneration therapies due to their plasticity and easiness of sourcing. MSC-based treatments are generally considered a safe procedure, however, the long-term results obtained up to now are far from satisfactory. The main causes of these therapeutic limitations are inefficient homing, engraftment, and osteogenic differentiation. Many studies have proposed modifications to improve MSC engraftment and osteogenic differentiation of the transplanted cells. Several strategies are aimed to improve cell resistance to the hostile microenvironment found in the recipient tissue and increase cell survival after transplantation. These strategies could range from a simple modification of the culture conditions, known as cell-preconditioning, to the genetic modification of the cells to avoid cellular senescence. Many efforts have also been done in order to enhance the osteogenic potential of the transplanted cells and induce bone formation, mainly by the use of bioactive or biomimetic scaffolds, although alternative approaches will also be discussed. This review aims to summarize several of the most recent approaches, providing an up-to-date view of the main developments in MSC-based regenerative techniques.
Collapse
Affiliation(s)
- Daniel García-Sánchez
- Department of Molecular Biology, Faculty of Medicine, University of Cantabria, Cantabria 39011, Spain
| | - Darío Fernández
- Laboratorio de Biología Celular y Molecular, Facultad de Odontología, Universidad Nacional del Nordeste, Corrientes W3400, Argentina
| | - José C Rodríguez-Rey
- Department of Molecular Biology, Faculty of Medicine, University of Cantabria, Cantabria 39011, Spain
| | - Flor M Pérez-Campo
- Department of Molecular Biology, Faculty of Medicine, University of Cantabria, Cantabria 39011, Spain.
| |
Collapse
|
31
|
Meng C, Wei W, Wang Y, Zhang K, Zhang T, Tang Y, Tang F. Study of the interaction between self-assembling peptide and mangiferin and in vitro release of mangiferin from in situ hydrogel. Int J Nanomedicine 2019; 14:7447-7460. [PMID: 31686816 PMCID: PMC6751768 DOI: 10.2147/ijn.s208267] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Accepted: 07/31/2019] [Indexed: 11/23/2022] Open
Abstract
OBJECTIVE This study aimed to investigate the interaction between the ion-complementary self-assembling peptide RADA16-I and the hydrophobic drug mangiferin (MA), and the potential of the self-assembling peptide to be exploited as a drug carrier of MA. METHODS The RADA16-I-MA suspension was prepared by magnetic stirring, followed by fluorescence spectrophotometry, particle size determination, rheological properties analysis, and in vitro release assay to characterize the interaction between RADA16-I and MA. Then, the effects of in situ MA-loaded hydrogel on the proliferation of KYSE 30 and DLD-1 tumor cells and the toxic effect of the hydrogel on 293T renal epithelial cells were studied by the Cell Counting Kit 8 method. RESULTS The RADA16-I-MA suspension was formed in water under magnetic stirring; the in situ hydrogel was formed when the suspension was added to PBS. The particle size in the RADA16-I-MA suspension was around 300-600 nm with an average size of 492 nm. Within 24 h, the cumulative release of MA from the RADA16-I-MA hydrogel was about 80%. The release rate of MA from the hydrogel was dependent on the concentration of RADA16-I and the release can be fitted with a first-order kinetic equation. The results suggested that the self-assembling peptide can stabilize MA in water to form a relatively stable suspension; the results also indicated that controlled release of MA from the RADA16-I-MA in situ hydrogel formed from the RADA16-I-MA suspension can be achieved by adjusting the concentration of the peptide in suspension. The cell viability studies showed that the RADA16-I-MA in situ hydrogel not only can maintain or enhance the intrinsic proliferation inhibition effects of MA on tumor cells, but also can reduce the toxicity of MA to normal cells. CONCLUSION The self-assembling peptide RADA16-I can be a potential candidate for constructing a delivery system of the hydrophobic drug MA.
Collapse
Affiliation(s)
- Cui Meng
- Department of Clinical Pharmacy, School of Pharmacy, Zunyi Medical University, Zunyi563006, People’s Republic of China
- The Key Laboratory of Clinical Pharmacy in Zunyi City, Zunyi563006, People’s Republic of China
- Department of Pharmacy, The First Hospital Affiliated to Zunyi Medical University, Zunyi563003, People’s Republic of China
| | - Weipeng Wei
- Department of Clinical Pharmacy, School of Pharmacy, Zunyi Medical University, Zunyi563006, People’s Republic of China
- The Key Laboratory of Clinical Pharmacy in Zunyi City, Zunyi563006, People’s Republic of China
| | - Yuhe Wang
- Department of Clinical Pharmacy, School of Pharmacy, Zunyi Medical University, Zunyi563006, People’s Republic of China
- Department of Pharmacy, The First Hospital Affiliated to Zunyi Medical University, Zunyi563003, People’s Republic of China
| | - Kunqin Zhang
- Department of Clinical Pharmacy, School of Pharmacy, Zunyi Medical University, Zunyi563006, People’s Republic of China
- The Key Laboratory of Clinical Pharmacy in Zunyi City, Zunyi563006, People’s Republic of China
| | - Ting Zhang
- Department of Clinical Pharmacy, School of Pharmacy, Zunyi Medical University, Zunyi563006, People’s Republic of China
- The Key Laboratory of Clinical Pharmacy in Zunyi City, Zunyi563006, People’s Republic of China
| | - Yunyan Tang
- Department of Clinical Pharmacy, School of Pharmacy, Zunyi Medical University, Zunyi563006, People’s Republic of China
- The Key Laboratory of Clinical Pharmacy in Zunyi City, Zunyi563006, People’s Republic of China
| | - Fushan Tang
- Department of Clinical Pharmacy, School of Pharmacy, Zunyi Medical University, Zunyi563006, People’s Republic of China
- The Key Laboratory of Clinical Pharmacy in Zunyi City, Zunyi563006, People’s Republic of China
| |
Collapse
|
32
|
Bairagi D, Biswas P, Basu K, Hazra S, Hermida-Merino D, Sinha DK, Hamley IW, Banerjee A. Self-Assembling Peptide-Based Hydrogel: Regulation of Mechanical Stiffness and Thermal Stability and 3D Cell Culture of Fibroblasts. ACS APPLIED BIO MATERIALS 2019; 2:5235-5244. [DOI: 10.1021/acsabm.9b00424] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
- Dipayan Bairagi
- School of Biological Sciences, Indian Association for the Cultivation of Science, 2A & 2B Raja S. C. Mullick Road, Jadavpur, Kolkata 700032, India
| | - Parijat Biswas
- School of Biological Sciences, Indian Association for the Cultivation of Science, 2A & 2B Raja S. C. Mullick Road, Jadavpur, Kolkata 700032, India
| | - Kingshuk Basu
- School of Biological Sciences, Indian Association for the Cultivation of Science, 2A & 2B Raja S. C. Mullick Road, Jadavpur, Kolkata 700032, India
| | - Soumyajit Hazra
- School of Biological Sciences, Indian Association for the Cultivation of Science, 2A & 2B Raja S. C. Mullick Road, Jadavpur, Kolkata 700032, India
| | | | - Deepak Kumar Sinha
- School of Biological Sciences, Indian Association for the Cultivation of Science, 2A & 2B Raja S. C. Mullick Road, Jadavpur, Kolkata 700032, India
| | - Ian W. Hamley
- Department of Chemistry, University of Reading, Whiteknights, Reading RG6, 6AD, United Kingdom
| | - Arindam Banerjee
- School of Biological Sciences, Indian Association for the Cultivation of Science, 2A & 2B Raja S. C. Mullick Road, Jadavpur, Kolkata 700032, India
| |
Collapse
|
33
|
Hou F, Xi B, Wang X, Yang Y, Zhao H, Li W, Qin J, He Y. Self-healing hydrogel with cross-linking induced thermo-response regulated light emission property. Colloids Surf B Biointerfaces 2019; 183:110441. [PMID: 31445357 DOI: 10.1016/j.colsurfb.2019.110441] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Revised: 08/08/2019] [Accepted: 08/15/2019] [Indexed: 12/22/2022]
Abstract
With increasing attention paid to smart materials, self-healing hydrogels with thermo-responses have been greatly developed in the past several years. At the same time, fluorescent or light emitting polymers have been studied for use as bioimaging tools and drug delivery vehicles. In this research, thermo-responsive self-healing hydrogels with aggregation-induced emission (AIE) property were prepared from tetraphenylethylene (TPE) containing TPE-poly(N,N-dimethylacrylamide-stat-Diacetone acrylamide) [TPE-P(DMA-stat-DAA)] cross-linked by diacylhydrazide. In addition to self-healing based on reversible acylhydrazone bond, the copolymer and hydrogels showed thermo-responses. The lower critical solution temperature (LCST) of the hydrogels was regulated to body temperature. Based on the AIE property of the TPE unit, the hydrogels showed an enhanced light emitting property above the LCST, which was regulated by temperature change. The in vitro cytotoxicity experiment showed that the hydrogels are not toxic, and the DOX release rate can be enhanced by low pH values, which endowed this kind of thermo-responsive light emitting hydrogel with great potential for applications in bio-diagnosis, drug delivery, artificial organs with light sensitive detection, etc.
Collapse
Affiliation(s)
- Fangjie Hou
- Pharmaceutical College, Hebei University of Chinese Medicine, Shijiazhuang City, Hebei Province 050200, China
| | - Baozhong Xi
- Pharmaceutical College, Hebei University of Chinese Medicine, Shijiazhuang City, Hebei Province 050200, China
| | - Xuemeng Wang
- College of Chemistry and Environmental Science, Hebei University, 180 East Wusi Road, Baoding 071002, China
| | - Yan Yang
- Pharmaceutical College, Hebei University of Chinese Medicine, Shijiazhuang City, Hebei Province 050200, China
| | - Haifeng Zhao
- Pharmaceutical College, Hebei University of Chinese Medicine, Shijiazhuang City, Hebei Province 050200, China
| | - Wenjuan Li
- College of Medical, Hebei University, Baoding 071002, China
| | - Jianglei Qin
- College of Chemistry and Environmental Science, Hebei University, 180 East Wusi Road, Baoding 071002, China
| | - Yingna He
- Pharmaceutical College, Hebei University of Chinese Medicine, Shijiazhuang City, Hebei Province 050200, China; Hebei Key Laboratory of Chinese Medicine Research on Cardio-Cerebrovascular Disease, Shijiazhuang City, Hebei Province 050200, China.
| |
Collapse
|
34
|
Worthington P, Drake KM, Li Z, Napper AD, Pochan DJ, Langhans SA. Implementation of a High-Throughput Pilot Screen in Peptide Hydrogel-Based Three-Dimensional Cell Cultures. SLAS DISCOVERY : ADVANCING LIFE SCIENCES R & D 2019; 24:714-723. [PMID: 31039326 PMCID: PMC7277073 DOI: 10.1177/2472555219844570] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Cell-based high-throughput drug screening (HTS) is a common starting point for the drug discovery and development process. Currently, there is a push to combine complex cell culture systems with HTS to provide more clinically applicable results. However, there are mechanistic requirements inherent to HTS as well as material limitations that make this integration challenging. Here, we used the peptide-based shear-thinning hydrogel MAX8 tagged with the RGDS sequence to create a synthetic extracellular scaffold to culture cells in three dimensions and showed a preliminary implementation of the scaffold within an automated HTS setup using a pilot drug screen targeting medulloblastoma, a pediatric brain cancer. A total of 2202 compounds were screened in the 384-well format against cells encapsulated in the hydrogel as well as cells growing on traditional two-dimensional (2D) plastic. Eighty-two compounds passed the first round of screening at a single point of concentration. Sixteen-point dose-response was done on those 82 compounds, of which 17 compounds were validated. Three-dimensional (3D) cell-based HTS could be a powerful screening tool that allows researchers to finely tune the cell microenvironment, getting more clinically applicable data as a result. Here, we have shown the successful integration of a peptide-based hydrogel into the high-throughput format.
Collapse
Affiliation(s)
- Peter Worthington
- Nemours Center for Cancer Research, Alfred I duPont Hospital of Children, Wilmington, DE 19803, USA
- Department of Biomedical Engineering, University of Delaware, Newark, DE 19716, USA
| | - Katherine M. Drake
- Nemours Center for Cancer Research, Alfred I duPont Hospital of Children, Wilmington, DE 19803, USA
| | - Zhiqin Li
- Nemours Center for Cancer Research, Alfred I duPont Hospital of Children, Wilmington, DE 19803, USA
| | - Andrew D. Napper
- Nemours Center for Cancer Research, Alfred I duPont Hospital of Children, Wilmington, DE 19803, USA
| | - Darrin J. Pochan
- Department of Materials Science and Engineering and Delaware Biotechnology Institute, University of Delaware, Newark, DE 19716, USA
| | - Sigrid A. Langhans
- Nemours Center for Cancer Research, Alfred I duPont Hospital of Children, Wilmington, DE 19803, USA
| |
Collapse
|
35
|
Silicified collagen materials: Modulation of the in vitro and in vivo response. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 99:47-56. [DOI: 10.1016/j.msec.2019.01.086] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Revised: 12/11/2018] [Accepted: 01/19/2019] [Indexed: 12/13/2022]
|
36
|
Fukunaga K, Tsutsumi H, Mihara H. Self-Assembling Peptides as Building Blocks of Functional Materials for Biomedical Applications. BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN 2019. [DOI: 10.1246/bcsj.20180293] [Citation(s) in RCA: 77] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Kazuto Fukunaga
- School of Life Science and Technology, Tokyo Institute of Technology, Nagatsuta-cho 4259 B-40, Midori-ku, Yokohama, Kanagawa 226-8501, Japan
| | - Hiroshi Tsutsumi
- School of Life Science and Technology, Tokyo Institute of Technology, Nagatsuta-cho 4259 B-40, Midori-ku, Yokohama, Kanagawa 226-8501, Japan
| | - Hisakazu Mihara
- School of Life Science and Technology, Tokyo Institute of Technology, Nagatsuta-cho 4259 B-40, Midori-ku, Yokohama, Kanagawa 226-8501, Japan
| |
Collapse
|
37
|
Zheng X, Wu F, Lin X, Shen L, Feng Y. Developments in drug delivery of bioactive alkaloids derived from traditional Chinese medicine. Drug Deliv 2018; 25:398-416. [PMID: 29378456 PMCID: PMC6058676 DOI: 10.1080/10717544.2018.1431980] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Revised: 01/13/2018] [Accepted: 01/20/2018] [Indexed: 12/19/2022] Open
Abstract
The bioactive alkaloids (e.g. vincristine, hydroxycamptothecin, ligustrazine, and so on) from traditional Chinese medicine (TCM) have exerted potent efficacies (e.g. anti-tumor, anti-inflammation, immunosuppression, etc.). However, a series of undesirable physicochemical properties (like low solubility and weak stability) and baneful pharmacokinetic (PK) profiles (e.g. low bioavailability, short half time, rapid clearance, etc.) have severely restricted their applications in clinic. In addition, some side effects (like cumulative toxicities caused by high-frequency administration and their own toxicities) have recently been reported and also confined their clinical uses. Therefore, developments in drug delivery of such alkaloids are of significance in improving their drug-like properties and, thus, treatment efficiencies in clinic. Strategies, including (i) specific delivery via liposomes; (ii) sustained delivery via nanoparticles, gels, and emulsions; and (iii) transdermal delivery via ethosomes, solid lipid nanoparticles, and penetrating enhancers, have been reported to improve the pharmacokinetic and physicochemical characters of problematic TCM alkaloids, decline their adverse effects, and thus, boost their curative efficacies. In this review, the recent reports in this field were comprehensively summarized with the aim of providing an informative reference for relevant readers.
Collapse
Affiliation(s)
- Xiao Zheng
- College of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, PR China
- Engineering Research Center of Modern Preparation Technology of TCM of Ministry of Education, Shanghai University of Traditional Chinese Medicine, Shanghai, PR China
| | - Fei Wu
- Engineering Research Center of Modern Preparation Technology of TCM of Ministry of Education, Shanghai University of Traditional Chinese Medicine, Shanghai, PR China
| | - Xiao Lin
- College of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, PR China
| | - Lan Shen
- College of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, PR China
| | - Yi Feng
- Engineering Research Center of Modern Preparation Technology of TCM of Ministry of Education, Shanghai University of Traditional Chinese Medicine, Shanghai, PR China
| |
Collapse
|
38
|
Dragulska SA, Chen Y, Wlodarczyk MT, Poursharifi M, Dottino P, Ulijn RV, Martignetti JA, Mieszawska AJ. Tripeptide-Stabilized Oil-in-Water Nanoemulsion of an Oleic Acids-Platinum(II) Conjugate as an Anticancer Nanomedicine. Bioconjug Chem 2018; 29:2514-2519. [PMID: 30001618 DOI: 10.1021/acs.bioconjchem.8b00409] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We report a nanoemulsion (NE) which is stabilized by self-assembling tripeptide lysine-tyrosine-phenylalanine (KYF) and encapsulates an oleic acids-platinum conjugate formed using simple Pt (II) coordination chemistry. The KYF-Pt-NE is evaluated both in cultured ovarian cancer cells and in an in vivo preclinical cancer model and shows pH dependent Pt (II) release, which is low at physiological pH and enhanced at tumoral pH. The biological activity of KYF-Pt-NE, evaluated in multiple ovarian cancer cell lines, is significantly higher when compared to the analogous Pt (II) complex used in the clinic. Concurrently, the KYF-Pt-NE platform shows good compatibility with the immune system. Preliminary in vivo testing of KYF-Pt-NE with tumor bearing mice indicates efficient Pt (II) delivery to the tumor. Together, these results demonstrate the potential of peptide-stabilized nanoemulsions, specifically KYF-Pt-NE as an effective nanomedicine against cancer.
Collapse
Affiliation(s)
- Sylwia A Dragulska
- Department of Chemistry , Brooklyn College, The City University of New York , 2900 Bedford Avenue , Brooklyn , New York 11210 , United States
| | | | - Marek T Wlodarczyk
- Department of Chemistry , Brooklyn College, The City University of New York , 2900 Bedford Avenue , Brooklyn , New York 11210 , United States.,Ph.D. Program in Chemistry , The Graduate Center of the City University of New York , New York , New York 10016 , United States
| | - Mina Poursharifi
- Department of Chemistry , Brooklyn College, The City University of New York , 2900 Bedford Avenue , Brooklyn , New York 11210 , United States.,Ph.D. Program in Chemistry , The Graduate Center of the City University of New York , New York , New York 10016 , United States
| | | | - Rein V Ulijn
- Ph.D. Program in Chemistry , The Graduate Center of the City University of New York , New York , New York 10016 , United States.,Department of Chemistry , Hunter College, The City University of New York , 695 Park Avenue , New York , New York 10065 , United States.,Advanced Science Research Center (ASRC) , The Graduate Center of the City University of New York , 85 St. Nicolas Terrace , New York , New York 10031 , United States
| | - John A Martignetti
- Rudy L. Ruggles Research Institute , Western Connecticut Health Network , 131 West Street , Danbury , Connecticut 06810 , United States
| | - Aneta J Mieszawska
- Department of Chemistry , Brooklyn College, The City University of New York , 2900 Bedford Avenue , Brooklyn , New York 11210 , United States.,Ph.D. Program in Chemistry , The Graduate Center of the City University of New York , New York , New York 10016 , United States
| |
Collapse
|
39
|
Yamada Y, Chowdhury A, Schneider JP, Stetler-Stevenson WG. Macromolecule-Network Electrostatics Controlling Delivery of the Biotherapeutic Cell Modulator TIMP-2. Biomacromolecules 2018; 19:1285-1293. [PMID: 29505725 PMCID: PMC6329387 DOI: 10.1021/acs.biomac.8b00107] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Tissue inhibitor of metalloproteinase 2 (TIMP-2) is an endogenous 22 kDa proteinase inhibitor, demonstrating antitumorigenic, antimetastatic and antiangiogenic activities in vitro and in vivo. Recombinant TIMP-2 is currently undergoing preclinical testing in multiple, murine tumor models. Here we report the development of an inert, injectable peptide hydrogel matrix enabling encapsulation and sustained release of TIMP-2. We studied the TIMP-2 release profile from four β-hairpin peptide gels of varying net electrostatic charge. A negatively charged peptide gel (designated AcVES3) enabling encapsulation of 4 mg/mL of TIMP-2, without effects on rheological properties, facilitated the slow sustained release (0.9%/d) of TIMP-2 over 28 d. Released TIMP-2 is structurally intact and maintains the ability to inhibit MMP activity, as well as suppress lung cancer cell proliferation in vitro. These findings suggest that the AcVES3 hydrogel will be useful as an injectable vehicle for systemic delivery of TIMP-2 in vivo for ongoing preclinical development.
Collapse
Affiliation(s)
- Yuji Yamada
- Chemical Biology Laboratory, National Cancer Institute, National Institutes of Health, Frederick, Maryland 21701, United States
| | - Ananda Chowdhury
- Radiation Oncology Branch, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892, United States
| | - Joel P. Schneider
- Chemical Biology Laboratory, National Cancer Institute, National Institutes of Health, Frederick, Maryland 21701, United States
| | - William G. Stetler-Stevenson
- Radiation Oncology Branch, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892, United States
| |
Collapse
|
40
|
Cinar G, Ozdemir A, Hamsici S, Gunay G, Dana A, Tekinay AB, Guler MO. Local delivery of doxorubicin through supramolecular peptide amphiphile nanofiber gels. Biomater Sci 2018; 5:67-76. [PMID: 27819087 DOI: 10.1039/c6bm00656f] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Peptide amphiphiles (PAs) self-assemble into supramolecular nanofiber gels that provide a suitable environment for encapsulation of both hydrophobic and hydrophilic molecules. The PA gels have significant advantages for controlled delivery applications due to their high capacity to retain water, biocompatibility, and biodegradability. In this study, we demonstrate injectable supramolecular PA nanofiber gels for drug delivery applications. Doxorubicin (Dox), as a widely used chemotherapeutic drug for breast cancer treatment, was encapsulated within the PA gels prepared at different concentrations. Physical and chemical properties of the gels were characterized, and slow release of the Dox molecules through the supramolecular PA nanofiber gels was studied. In addition, the diffusion constants of the drug molecules within the PA nanofiber gels were estimated using fluorescence recovery after the photobleaching (FRAP) method. The PA nanofiber gels did not show any cytotoxicity and the encapsulation strategy enhanced the activity of drug molecules on cellular viability through prolonged release compared to direct administration under in vitro conditions. Moreover, the local in vivo injection of the Dox encapsulated PA nanofiber gels (Dox/PA) to the tumor site demonstrated the lowest tumor growth rate compared to the direct Dox injection and increased the apoptotic cells within the tumor tissue for local drug release through the PA nanofiber gels under in vivo conditions.
Collapse
Affiliation(s)
- Goksu Cinar
- Institute of Materials Science and Nanotechnology, National Nanotechnology Research Center (UNAM), Bilkent University, Ankara, 06800, Turkey.
| | - Ayse Ozdemir
- Institute of Materials Science and Nanotechnology, National Nanotechnology Research Center (UNAM), Bilkent University, Ankara, 06800, Turkey.
| | - Seren Hamsici
- Institute of Materials Science and Nanotechnology, National Nanotechnology Research Center (UNAM), Bilkent University, Ankara, 06800, Turkey.
| | - Gokhan Gunay
- Institute of Materials Science and Nanotechnology, National Nanotechnology Research Center (UNAM), Bilkent University, Ankara, 06800, Turkey.
| | - Aykutlu Dana
- Institute of Materials Science and Nanotechnology, National Nanotechnology Research Center (UNAM), Bilkent University, Ankara, 06800, Turkey.
| | - Ayse B Tekinay
- Institute of Materials Science and Nanotechnology, National Nanotechnology Research Center (UNAM), Bilkent University, Ankara, 06800, Turkey.
| | - Mustafa O Guler
- Institute of Materials Science and Nanotechnology, National Nanotechnology Research Center (UNAM), Bilkent University, Ankara, 06800, Turkey.
| |
Collapse
|
41
|
Abstract
Over the last century, there has been a dramatic change in the nature of therapeutic, biologically active molecules available to treat disease. Therapies have evolved from extracted natural products towards rationally designed biomolecules, including small molecules, engineered proteins and nucleic acids. The use of potent drugs which target specific organs, cells or biochemical pathways, necessitates new tools which can enable controlled delivery and dosing of these therapeutics to their biological targets. Here, we review the miniaturisation of drug delivery systems from the macro to nano-scale, focussing on controlled dosing and controlled targeting as two key parameters in drug delivery device design. We describe how the miniaturisation of these devices enables the move from repeated, systemic dosing, to on-demand, targeted delivery of therapeutic drugs and highlight areas of focus for the future.
Collapse
Affiliation(s)
- Derfogail Delcassian
- a David H. Koch Institute for Integrative Cancer Research , Massachusetts Institute of Technology , Cambridge , MA , USA.,b Department of Anaesthesiology , Boston Children's Hospital, Harvard Medical School , Boston , MA , USA.,c Division of Regenerative Medicine and Cellular Therapies, School of Pharmacy , University of Nottingham , Nottingham , UK
| | - Asha K Patel
- a David H. Koch Institute for Integrative Cancer Research , Massachusetts Institute of Technology , Cambridge , MA , USA.,d Division of Cancer and Stem Cells, School of Medicine, and Division of Advanced Materials and Healthcare Technologies, School of Pharmacy , University of Nottingham , Nottingham , UK
| | - Abel B Cortinas
- a David H. Koch Institute for Integrative Cancer Research , Massachusetts Institute of Technology , Cambridge , MA , USA.,e Department of Chemical Engineering , Massachusetts Institute of Technology , Cambridge , MA , USA
| | - Robert Langer
- a David H. Koch Institute for Integrative Cancer Research , Massachusetts Institute of Technology , Cambridge , MA , USA.,e Department of Chemical Engineering , Massachusetts Institute of Technology , Cambridge , MA , USA.,f Institute for Medical Engineering and Science , Massachusetts Institute of Technology , Cambridge , MA , USA.,g Media Lab , Massachusetts Institute of Technology , Cambridge , MA , USA
| |
Collapse
|
42
|
Paul S, Gayen K, Nandi N, Banerjee A. Carbon nanodot-induced gelation of a histidine-based amphiphile: application as a fluorescent ink, and modulation of gel stiffness. Chem Commun (Camb) 2018; 54:4341-4344. [DOI: 10.1039/c7cc09824c] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
This study demonstrates carbon dots induced hydrogelation of an amino acid based amphiphile and the potential use of this gel as a fluorescent ink.
Collapse
Affiliation(s)
- Subir Paul
- Department of Biological Chemistry
- Indian Association for the Cultivation of Science
- Kolkata
- India
| | - Kousik Gayen
- Department of Biological Chemistry
- Indian Association for the Cultivation of Science
- Kolkata
- India
| | - Nibedita Nandi
- Department of Biological Chemistry
- Indian Association for the Cultivation of Science
- Kolkata
- India
| | - Arindam Banerjee
- Department of Biological Chemistry
- Indian Association for the Cultivation of Science
- Kolkata
- India
| |
Collapse
|
43
|
Lin YA, Kang M, Chen WC, Ou YC, Cheetham AG, Wu PH, Wirtz D, Loverde SM, Cui H. Isomeric control of the mechanical properties of supramolecular filament hydrogels. Biomater Sci 2018; 6:216-224. [DOI: 10.1039/c7bm00722a] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Supramolecular filament hydrogels are an emerging class of biomaterials that hold great promise for regenerative medicine, tissue engineering, and drug delivery. The use of isomeric hydrocarbons in the peptide design enables fine-tuning of the mechanical properties of their supramolecular filament hydrogels without altering their network structures.
Collapse
Affiliation(s)
- Yi-An Lin
- Department of Chemical & Biomolecular Engineering
- Johns Hopkins University
- Baltimore
- USA
- Institute for NanoBiotechnology
| | - Myungshim Kang
- Department of Chemistry and Biochemistry
- The City University of New York
- College of Staten Island
- Staten Island
- USA
| | - Wei-Chiang Chen
- Department of Chemical & Biomolecular Engineering
- Johns Hopkins University
- Baltimore
- USA
- Institute for NanoBiotechnology
| | - Yu-Chuan Ou
- Department of Chemical & Biomolecular Engineering
- Johns Hopkins University
- Baltimore
- USA
| | - Andrew G. Cheetham
- Department of Chemical & Biomolecular Engineering
- Johns Hopkins University
- Baltimore
- USA
- Institute for NanoBiotechnology
| | - Pei-Hsun Wu
- Department of Chemical & Biomolecular Engineering
- Johns Hopkins University
- Baltimore
- USA
- Institute for NanoBiotechnology
| | - Denis Wirtz
- Department of Chemical & Biomolecular Engineering
- Johns Hopkins University
- Baltimore
- USA
- Institute for NanoBiotechnology
| | - Sharon M. Loverde
- Department of Chemistry and Biochemistry
- The City University of New York
- College of Staten Island
- Staten Island
- USA
| | - Honggang Cui
- Department of Chemical & Biomolecular Engineering
- Johns Hopkins University
- Baltimore
- USA
- Institute for NanoBiotechnology
| |
Collapse
|
44
|
Aydin D, Kizilel S. P2X7 receptor antagonist delivery vehicle based on photocrosslinked amphiphilic hybrid gels. RSC Adv 2018; 8:18216-18226. [PMID: 35541129 PMCID: PMC9080578 DOI: 10.1039/c8ra01460d] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2018] [Accepted: 05/11/2018] [Indexed: 12/27/2022] Open
Abstract
We report here a method for the synthesis of a unique hybrid gel system for the sustained delivery of P2X7 receptor (P2X7R) antagonist. P2X7R has been reported as a key mediator in inflammatory processes and controlled delivery of this molecule would be critical for the treatment of inflammatory arthritis. The hybrid gel designed here for the sustained delivery of P2X7R antagonists is based on crosslinked hydrophobic styrene-butadiene-styrene (SBS) polymer as a continuous network, where hydrogel particles prepared with hydrophilic poly(ethylene glycol) (PEG) were embedded into this system. PEG hydrogel particle-incorporated SBS gels were characterized through electron microscopy, water contact angle observations, and strong mechanical properties were confirmed through nanoindentation measurements. The release of P2X7R antagonist from these hybrid hydrogel-elastomer system demonstrated a sustained drug release profile up to 28 days at physiological pH, which was not observed in earlier reports. We obtained drug release percentages ranging from 49.72% to 93.04% which indicated the tunability of release through SBS crosslinking and hydrophilic/hydrophobic nature of SBS. This tunability is significant to achieve simultaneous improvements in drug efficacy with reduced side effects. CellTiter-Glo luminescence measurements using human kidney cells revealed that these networks are non-toxic and highly biocompatible with percent cell viabilities of higher than 85%. The approach presented here with crosslinked, amphiphilic and elastic SBS gel systems is not only promising for extended release of P2X7R antagonist but could also allow for incorporation of different molecules so that simultaneous/sequential and extended release profiles for therapeutic molecules could be achieved. We report here a method for the synthesis of a unique hybrid gel system for the sustained delivery of P2X7 receptor (P2X7R) antagonist.![]()
Collapse
Affiliation(s)
- Derya Aydin
- Department of Chemical and Biological Engineering
- Koc University
- Sariyer
- Turkey
| | - Seda Kizilel
- Department of Chemical and Biological Engineering
- Koc University
- Sariyer
- Turkey
| |
Collapse
|
45
|
Basu K, Nandi N, Mondal B, Dehsorkhi A, Hamley IW, Banerjee A. Peptide-based ambidextrous bifunctional gelator: applications in oil spill recovery and removal of toxic organic dyes for waste water management. Interface Focus 2017; 7:20160128. [PMID: 29147552 DOI: 10.1098/rsfs.2016.0128] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
A low molecular weight peptide-based ambidextrous gelator molecule has been discovered for efficient control of water pollution. The gelator molecules can gel various organic solvents with diverse polarity, e.g. n-hexane, n-octane, petroleum ether, petrol, diesel, aromatic solvents like chlorobenzene, toluene, benzene, o-xylene and even aqueous phosphate buffer of pH 7.5. These gels have been thoroughly characterized using various techniques including field emission scanning electron microscopy, Fourier transform infrared spectroscopy, X-ray powder diffraction analysis, small angle X-ray scattering and rheological experiments. Interestingly, hydrogel obtained from the gelator molecule has been found to absorb toxic organic dyes (both cationic and anionic dyes) from dye-contaminated water. The gelator molecule can be reused for several cycles, indicating its possible future use in waste water management. Moreover, this gelator can selectively gel petrol, diesel, pump oil from an oil-water mixture in the presence of a carrier solvent, ethyl acetate, suggesting its efficient application for oil spill recovery. These results indicate that the peptide-based ambidextrous gelator produces soft materials (gels) with dual function: (i) removal of toxic organic dyes in waste water treatment and (ii) oil spill recovery.
Collapse
Affiliation(s)
- Kingshuk Basu
- Department of Biological Chemistry, Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700032, India
| | - Nibedita Nandi
- Department of Biological Chemistry, Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700032, India
| | - Biplab Mondal
- Department of Biological Chemistry, Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700032, India
| | - Ashkan Dehsorkhi
- Department of Chemistry, University of Reading, Whiteknights, Reading RG6 6AD, UK
| | - Ian W Hamley
- Department of Chemistry, University of Reading, Whiteknights, Reading RG6 6AD, UK
| | - Arindam Banerjee
- Department of Biological Chemistry, Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700032, India
| |
Collapse
|
46
|
Su H, Wang Y, Anderson CF, Koo JM, Wang H, Cui H. Recent progress in exploiting small molecule peptides as supramolecular hydrogelators. CHINESE JOURNAL OF POLYMER SCIENCE 2017. [DOI: 10.1007/s10118-017-1998-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
47
|
Worthington P, Drake KM, Li Z, Napper AD, Pochan DJ, Langhans SA. Beta-hairpin hydrogels as scaffolds for high-throughput drug discovery in three-dimensional cell culture. Anal Biochem 2017; 535:25-34. [PMID: 28757092 DOI: 10.1016/j.ab.2017.07.024] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2017] [Revised: 07/07/2017] [Accepted: 07/25/2017] [Indexed: 11/28/2022]
Abstract
Automated cell-based high-throughput screening (HTS) is a powerful tool in drug discovery, and it is increasingly being recognized that three-dimensional (3D) models, which more closely mimic in vivo-like conditions, are desirable screening platforms. One limitation hampering the development of 3D HTS is the lack of suitable 3D culture scaffolds that can readily be incorporated into existing HTS infrastructure. We now show that β-hairpin peptide hydrogels can serve as a 3D cell culture platform that is compatible with HTS. MAX8 β-hairpin peptides can physically assemble into a hydrogel with defined porosity, permeability and mechanical stability with encapsulated cells. Most importantly, the hydrogels can then be injected under shear-flow and immediately reheal into a hydrogel with the same properties exhibited prior to injection. The post-injection hydrogels are cell culture compatible at physiological conditions. Using standard HTS equipment and medulloblastoma pediatric brain tumor cells as a model system, we show that automatic distribution of cell-peptide mixtures into 384-well assay plates results in evenly dispensed, viable MAX8-cell constructs suitable for commercially available cell viability assays. Since MAX8 peptides can be functionalized to mimic the microenvironment of cells from a variety of origins, MAX8 peptide gels should have broad applicability for 3D HTS drug discovery.
Collapse
Affiliation(s)
- Peter Worthington
- Nemours Center for Childhood Cancer Research, Alfred I. duPont Hospital for Children, Wilmington, DE 19803, USA; Department of Biomedical Engineering, University of Delaware, Newark, DE 19716, USA.
| | - Katherine M Drake
- Nemours Center for Childhood Cancer Research, Alfred I. duPont Hospital for Children, Wilmington, DE 19803, USA.
| | - Zhiqin Li
- Nemours Center for Childhood Cancer Research, Alfred I. duPont Hospital for Children, Wilmington, DE 19803, USA.
| | - Andrew D Napper
- Nemours Center for Childhood Cancer Research, Alfred I. duPont Hospital for Children, Wilmington, DE 19803, USA.
| | - Darrin J Pochan
- Department of Materials Science and Engineering and Delaware Biotechnology Institute, University of Delaware, Newark, DE 19716, USA.
| | - Sigrid A Langhans
- Nemours Center for Childhood Cancer Research, Alfred I. duPont Hospital for Children, Wilmington, DE 19803, USA.
| |
Collapse
|
48
|
Chen Z, Xing L, Fan Q, Cheetham AG, Lin R, Holt B, Chen L, Xiao Y, Cui H. Drug-Bearing Supramolecular Filament Hydrogels as Anti-Inflammatory Agents. Theranostics 2017; 7:2003-2014. [PMID: 28656057 PMCID: PMC5485419 DOI: 10.7150/thno.19404] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2017] [Accepted: 03/03/2017] [Indexed: 01/08/2023] Open
Abstract
We report here on the covalent conversion of the anti-inflammatory agent ketoprofen into self-assembling prodrugs that enable the effective purification of ketoprofen enantiomers, the improved selectivity and potency of ketoprofen, as well as the formation of one-component drug-bearing supramolecular hydrogels. We found that the ketoprofen hydrogelator could exhibit much-enhanced selectivity for cyclooxygenase 2 (COX-2) over COX-1, reduce the concentration of inflammatory cytokines (IL-1 and TNFα), and induce apoptosis in fibroblast-like synoviocytes while maintaining biocompatibility with healthy chondrocytes. In addition, these anti-inflammatory agent-containing hydrogels demonstrated the ability to retain the therapeutic within a joint cavity after intra-articular injection, exhibiting a slow, steady release into the plasma. We believe that upon further optimization these drug-based injectable supramolecular hydrogels could provide the basis for a local treatment strategy for rheumatoid arthritis and similar conditions.
Collapse
Affiliation(s)
- Zhipeng Chen
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, Nanjing 210023, China
- Department of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
- Department of Chemical and Biomolecular Engineering and Institute for NanoBioTechnology, The Johns Hopkins University, Baltimore, MD 21218, USA
| | - Lei Xing
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
| | - Qin Fan
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, Nanjing 210023, China
- Department of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Andrew G. Cheetham
- Department of Chemical and Biomolecular Engineering and Institute for NanoBioTechnology, The Johns Hopkins University, Baltimore, MD 21218, USA
| | - Ran Lin
- Department of Chemical and Biomolecular Engineering and Institute for NanoBioTechnology, The Johns Hopkins University, Baltimore, MD 21218, USA
| | - Barbara Holt
- Department of Chemical and Biomolecular Engineering and Institute for NanoBioTechnology, The Johns Hopkins University, Baltimore, MD 21218, USA
| | - Liwen Chen
- Department of Chemical and Biomolecular Engineering and Institute for NanoBioTechnology, The Johns Hopkins University, Baltimore, MD 21218, USA
| | - Yanyu Xiao
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
| | - Honggang Cui
- Department of Chemical and Biomolecular Engineering and Institute for NanoBioTechnology, The Johns Hopkins University, Baltimore, MD 21218, USA
- Department of Oncology and Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Center for Nanomedicine, The Wilmer Eye Institute, Johns Hopkins University School of Medicine, 400 North Broadway, Baltimore, MD 21231, USA
| |
Collapse
|
49
|
Worthington P, Langhans S, Pochan D. β-hairpin peptide hydrogels for package delivery. Adv Drug Deliv Rev 2017; 110-111:127-136. [PMID: 28257999 PMCID: PMC8628845 DOI: 10.1016/j.addr.2017.02.002] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2016] [Revised: 02/15/2017] [Accepted: 02/24/2017] [Indexed: 11/16/2022]
Abstract
The underlying challenge of drug delivery is the safe, controlled transport of a supply of therapeutic agent to its intended location at its effective dose. New and expanding solutions to payload delivery are being discovered in the field of hydrogels. Hydrogels are highly hydrated polymer networks that vary greatly depending on the underlying molecular structure. The subgroup of hydrogels that will be the focus of this chapter is the β-hairpin peptide hydrogel. These peptide-based materials are formed through a molecular self-assembly mechanism that only occurs after desired triggering of intramolecular peptide folding. Once folded, the β-hairpins assemble intermolecularly into a nanofibrillar network. The physical properties of the hydrogel network and its peptide foundation result in advantageous material properties which can be used for multiple biomedical applications including drug delivery. As a shear thinning solid that is easily injectable, cytocompatible, customizable, and well characterized, β-hairpin hydrogels are an exciting candidate as a drug delivery vehicle.
Collapse
Affiliation(s)
- Peter Worthington
- Department of Biomedical Engineering, Delaware Biotechnology Institute, University of Delaware, Newark, DE, USA; Nemours Center for Childhood Cancer Research, Alfred I. duPont Hospital for Children, Wilmington, DE, USA
| | - Sigrid Langhans
- Nemours Center for Childhood Cancer Research, Alfred I. duPont Hospital for Children, Wilmington, DE, USA
| | - Darrin Pochan
- Department of Materials Science and Engineering, Delaware Biotechnology Institute, University of Delaware, Newark, DE, USA.
| |
Collapse
|
50
|
Foster AA, Marquardt LM, Heilshorn SC. The Diverse Roles of Hydrogel Mechanics in Injectable Stem Cell Transplantation. Curr Opin Chem Eng 2017; 15:15-23. [PMID: 29085771 PMCID: PMC5659597 DOI: 10.1016/j.coche.2016.11.003] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Stem cell delivery by local injection has tremendous potential as a regenerative therapy but has seen limited clinical success. Several mechanical challenges hinder therapeutic efficacy throughout all stages of cell transplantation, including mechanical forces during injection and loss of mechanical support post-injection. Recent studies have begun exploring the use of biomaterials, in particular hydrogels, to enhance stem cell transplantation by addressing the often-conflicting mechanical requirements associated with each stage of the transplantation process. This review explores recent biomaterial approaches to improve the therapeutic efficacy of stem cells delivered through local injection, with a focus on strategies that specifically address the mechanical challenges that result in cell death and/or limit therapeutic function throughout the stages of transplantation.
Collapse
Affiliation(s)
- Abbygail A Foster
- Department of Materials Science and Engineering, Stanford University, Stanford, CA 94305
| | - Laura M Marquardt
- Department of Materials Science and Engineering, Stanford University, Stanford, CA 94305
| | - Sarah C Heilshorn
- Department of Materials Science and Engineering, Stanford University, Stanford, CA 94305
| |
Collapse
|