1
|
Hou F, Sun S, Abdullah SW, Tang Y, Li X, Guo H. The application of nanoparticles in point-of-care testing (POCT) immunoassays. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2023; 15:2154-2180. [PMID: 37114768 DOI: 10.1039/d3ay00182b] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
The Covid-19 pandemic has led to greater recognition of the importance of the fast and timely detection of pathogens. Recent advances in point-of-care testing (POCT) technology have shown promising results for rapid diagnosis. Immunoassays are among the most extensive POCT assays, in which specific labels are used to indicate and amplify the immune signal. Nanoparticles (NPs) are above the rest because of their versatile properties. Much work has been devoted to NPs to find more efficient immunoassays. Herein, we comprehensively describe NP-based immunoassays with a focus on particle species and their specific applications. This review describes immunoassays along with key concepts surrounding their preparation and bioconjugation to show their defining role in immunosensors. The specific mechanisms, microfluidic immunoassays, electrochemical immunoassays (ELCAs), immunochromatographic assays (ICAs), enzyme-linked immunosorbent assays (ELISA), and microarrays are covered herein. For each mechanism, a working explanation of the appropriate background theory and formalism is articulated before examining the biosensing and related point-of-care (POC) utility. Given their maturity, some specific applications using different nanomaterials are discussed in more detail. Finally, we outline future challenges and perspectives to give a brief guideline for the development of appropriate platforms.
Collapse
Affiliation(s)
- Fengping Hou
- State Key Laboratory of Veterinary Etiological Biology, OIE/China National Foot-and-Mouth Disease Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Xujiaping 1, Lanzhou 730046, Gansu, P. R. China.
- Lanzhou Institute of Biological Products Co., Ltd (LIBP), Subsidiary Company of China National Biotec Group Company Limited (CNBG), 730046 Lanzhou, China.
| | - Shiqi Sun
- State Key Laboratory of Veterinary Etiological Biology, OIE/China National Foot-and-Mouth Disease Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Xujiaping 1, Lanzhou 730046, Gansu, P. R. China.
| | - Sahibzada Waheed Abdullah
- State Key Laboratory of Veterinary Etiological Biology, OIE/China National Foot-and-Mouth Disease Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Xujiaping 1, Lanzhou 730046, Gansu, P. R. China.
| | - Yu Tang
- State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, Gansu, P. R. China
| | - Xiongxiong Li
- Lanzhou Institute of Biological Products Co., Ltd (LIBP), Subsidiary Company of China National Biotec Group Company Limited (CNBG), 730046 Lanzhou, China.
| | - Huichen Guo
- State Key Laboratory of Veterinary Etiological Biology, OIE/China National Foot-and-Mouth Disease Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Xujiaping 1, Lanzhou 730046, Gansu, P. R. China.
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730000, P. R. China
| |
Collapse
|
2
|
Lou D, Fan L, Jiang T, Zhang Y. Advances in nanoparticle‐based lateral flow immunoassay for point‐of‐care testing. VIEW 2022. [DOI: 10.1002/viw.20200125] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Affiliation(s)
- Doudou Lou
- Jiangsu Institute for Food and Drug Control 17 Kangwen Road Nanjing P. R. China
| | - Lin Fan
- School of Geographic and Biologic Information Nanjing University of Posts and Telecommunications Nanjing P. R. China
| | - Tao Jiang
- Army of Reserve Infantry Division in Heilongjiang Province Harbin Heilongjiang Province P. R. China
| | - Yu Zhang
- State Key Laboratory of Bioelectronics Jiangsu Key Laboratory for Biomaterials and Devices School of Biological Science and Medical Engineering & Collaborative Innovation Center of Suzhou Nano Science and Technology Southeast University Nanjing P. R. China
| |
Collapse
|
3
|
He M, Shang N, Zhu Q, Xu J. Paper-based upconversion fluorescence aptasensor for the quantitative detection of immunoglobulin E in human serum. Anal Chim Acta 2020; 1143:93-100. [PMID: 33384135 DOI: 10.1016/j.aca.2020.11.036] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 11/09/2020] [Accepted: 11/23/2020] [Indexed: 10/22/2022]
Abstract
Immunoglobulin E (IgE), a biomarker of allergic diseases, plays a critical role in allergic mechanism. Because of its low abundance in serum, the demand of developing sensitive, selective and simple methods for IgE detection is still very urgent. Paper-based analytical devices using upconversion nanoparticles (UCNPs) as the label can be promising point-of-care test (POCT) methods in rapid diagnosis, owing to their NIR-excitation and visible light emission nature, which can avoid the interference of autofluorescence and scattering light from biological samples and paper substrates. In this work, we proposed a paper-based analytical device for the sensitive, selective and accurate detection of total immunoglobulin E (IgE) in human serum. The assay was based on resonance energy transfer between UCNPs and organic dye tetramethylrhodamine (TAMRA), and IgE aptamer with stem-loop structure was used as the recognizing probe. The existence of IgE change the conformation of IgE aptamer, enlarge the distance between donor and acceptor, and block the energy transfer process. Thus, the luminescence of UCNPs recovered with an IgE concentration independent manner. A linear calibration was obtained in the range of 0.5-50 IU/mL, with a detection limit of 0.13 IU/mL. The results of our method were well correlated with that of commercial ELISA kit (20 human serum samples). This work suggests promising prospect of the paper-based UC-LRET analytical devices in real samples and may promote the application of paper-based analytical devices in clinical diagnosis.
Collapse
Affiliation(s)
- Mengyuan He
- College of Chemistry and Chemical Engineering, Xinyang Normal University, Xinyang, 464000, China.
| | - Ning Shang
- College of Chemistry and Chemical Engineering, Xinyang Normal University, Xinyang, 464000, China
| | - Qianru Zhu
- College of Chemistry and Chemical Engineering, Xinyang Normal University, Xinyang, 464000, China
| | - Jing Xu
- College of Chemistry and Chemical Engineering, Xinyang Normal University, Xinyang, 464000, China
| |
Collapse
|
4
|
Gao W, Zhang Q, Su Y, Huang P, Lu X, Gong Q, Chen W, Xu R, Tian R. Multiomic analysis of a dried single-drop plasma sample using an integrated mass spectrometry approach. Analyst 2020; 145:6441-6446. [PMID: 32785396 DOI: 10.1039/d0an01149e] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
An easy-to-use and fast approach was developed for integrated proteomic and metabolic profiling in a dried single-drop plasma sample. Plasma collection, room temperature storage, and sample preparation for both proteins and metabolites were seamlessly integrated in one spintip device. MS-based multiomic profiling using the same nano LC-MS system identified more than 150 proteins and 160 metabolites from the 1 μL plasma sample in 6 hours. Further combination with micro-flow LC and targeted MS made it a promising approach for the fast profiling of molecular biomarkers with high sensitivity and accuracy.
Collapse
Affiliation(s)
- Weina Gao
- Department of Chemistry, Southern University of Science and Technology, Shenzhen 518055, China.
| | | | | | | | | | | | | | | | | |
Collapse
|
5
|
Wei D, Zhang X, Chen B, Zeng K. Using bimetallic Au@Pt nanozymes as a visual tag and as an enzyme mimic in enhanced sensitive lateral-flow immunoassays: Application for the detection of streptomycin. Anal Chim Acta 2020; 1126:106-113. [PMID: 32736714 DOI: 10.1016/j.aca.2020.06.009] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 05/22/2020] [Accepted: 06/04/2020] [Indexed: 10/24/2022]
Abstract
Because of the advantages of simplicity, cost-effectiveness and visibility, lateral-flow immunoassays (LFAs) have been widely used in the food safety field. However, the low sensitivity of LFAs needs to be solved. Nanozymes have amazing potential for application in biosensors due to their excellent and abundant enzyme-like characteristics. In this study, an Au@Pt nanozyme synthesized by a one-step method showed the higher affinity with TMB/H2O2 and higher catalytic efficiency than that of horseradish peroxidase (HRP). For the detection of streptomycin (STR), a typical aminoglycoside antibiotic, a novel LFA based on Au@Pt as a visual tag and an enhanced LFA based on the enzyme-like activity of Au@Pt by addition of the chromogenic substrate 3-amino-9-ethyl-carbazole (AEC) were established and compared with conventional LFA based on AuNPs. The qualitative limit of detection (LOD) was 1 ng mL-1 for the LFA based on Au@Pt as the visual tag and 0.1 ng mL-1 for the enhanced LFA based on the activity of Au@Pt, in comparison to 8 ng mL-1 for LFA based on AuNPs. Furthermore, the level of streptomycin in milk samples from Zhenjiang City was successfully evaluated by the novel LFA based on Au@Pt nanozyme. These results suggest that LFAs based on nanozymes are a promising and effective tool for food safety.
Collapse
Affiliation(s)
- Dali Wei
- School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, Jiangsu, 212013, China; College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China
| | - Xuyun Zhang
- School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, Jiangsu, 212013, China
| | - Bin Chen
- School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, Jiangsu, 212013, China
| | - Kun Zeng
- School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, Jiangsu, 212013, China.
| |
Collapse
|
6
|
Wu Q, Song Q, Wang X, Yao L, Xu J, Lu J, Liu G, Chen W. Simultaneous Detection of Multiple β-Adrenergic Agonists with 2-Directional Lateral Flow Strip Platform. ANAL SCI 2020; 36:653-657. [PMID: 31656246 DOI: 10.2116/analsci.19p218] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2019] [Accepted: 10/15/2019] [Indexed: 08/09/2023]
Abstract
Clenbuterol (CL), salbutamol (SAL) and ractopamine (RAC) are the three common β-adrenergic agonists, which are the main hazards in food safety and affect human health through the food chain. A convenient and efficient method is urgently required to perform on-site detection of multiple β-adrenergic agonists to avoid frequent poisoning incidents. In this paper, a 2-directional lateral flow strip technique (2-directional LFS) is developed for rapid and simultaneous detection of CL, SAL and RAC with single sampling. Compared to the conventional lateral flow strip, this 2-directional LFS technique can realize simultaneous detection of three or more target analytes without any change of intrinsic simplicity of LFS. Furthermore, this 2-directional LFS can effectively avoid the potential intrinsic cross-reactivity among the reagents to analogues. Under the optimized conditions, CL, SAL and RAC were all successfully determined with satisfactory results in both buffer and urine samples with the detection limit as low as 0.5 ng/mL. This 2-directional LFS technique can revolutionize the commercial single-analyte LFS products and can effectively widen the applications of the classic LFS in various fields.
Collapse
Affiliation(s)
- Qian Wu
- Engineering Research Center of Bio-process, MOE, School of Food Science & Engineering, Hefei University of Technology, Hefei, 230009, China
| | - Qing Song
- Engineering Research Center of Bio-process, MOE, School of Food Science & Engineering, Hefei University of Technology, Hefei, 230009, China
| | - Xinxin Wang
- Engineering Research Center of Bio-process, MOE, School of Food Science & Engineering, Hefei University of Technology, Hefei, 230009, China
| | - Li Yao
- Engineering Research Center of Bio-process, MOE, School of Food Science & Engineering, Hefei University of Technology, Hefei, 230009, China
| | - Jianguo Xu
- Engineering Research Center of Bio-process, MOE, School of Food Science & Engineering, Hefei University of Technology, Hefei, 230009, China
| | - Jianfeng Lu
- Engineering Research Center of Bio-process, MOE, School of Food Science & Engineering, Hefei University of Technology, Hefei, 230009, China
| | - Guodong Liu
- Research Center for Biomedical and Health Science, School of Life and Health, Anhui Science & Technology University, Fengyang, 233100, China.
| | - Wei Chen
- Engineering Research Center of Bio-process, MOE, School of Food Science & Engineering, Hefei University of Technology, Hefei, 230009, China.
- Research Center for Biomedical and Health Science, School of Life and Health, Anhui Science & Technology University, Fengyang, 233100, China.
| |
Collapse
|
7
|
Gao Y, Zhu Z, Xi X, Cao T, Wen W, Zhang X, Wang S. An aptamer-based hook-effect-recognizable three-line lateral flow biosensor for rapid detection of thrombin. Biosens Bioelectron 2019; 133:177-182. [PMID: 30928736 DOI: 10.1016/j.bios.2019.03.036] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2019] [Revised: 03/10/2019] [Accepted: 03/18/2019] [Indexed: 12/11/2022]
Abstract
In this paper, a three-line LFB was successfully developed by adding a thrombin line to a conventional two-line LFB for the detection of thrombin in a wide range of human serum. We introduced a thrombin line between the test line and the control line. The concentration of thrombin in the sample was quantitatively related to the signal formation on the three lines of the LFB. We can make use of signal on three lines to quantitative determinate the thrombin by data processing. The detection range of thrombin concentrations measured in 10 min was 1 nM to 100 μM and the LOD was 0.85 nM. Our approach paves way for rapid and sensitive thrombin detection and a superior device for testing in a wide range of physiological concentrations, which also can be used in other hook-effect-limited aptamers or antibodies based sandwich LFBs, and has a high accuracy even within the range of the hook-effect.
Collapse
Affiliation(s)
- Ya Gao
- Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Hubei University, Wuhan 430062, China; Ministry-of-Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, College of Chemistry and Chemical Engineering, Hubei University, Wuhan 430062, China
| | - Ziyu Zhu
- Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Hubei University, Wuhan 430062, China; Ministry-of-Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, College of Chemistry and Chemical Engineering, Hubei University, Wuhan 430062, China
| | - Xiaoxue Xi
- Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Hubei University, Wuhan 430062, China; Ministry-of-Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, College of Chemistry and Chemical Engineering, Hubei University, Wuhan 430062, China
| | - Tingwei Cao
- Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Hubei University, Wuhan 430062, China; Ministry-of-Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, College of Chemistry and Chemical Engineering, Hubei University, Wuhan 430062, China
| | - Wei Wen
- Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Hubei University, Wuhan 430062, China; Ministry-of-Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, College of Chemistry and Chemical Engineering, Hubei University, Wuhan 430062, China
| | - Xiuhua Zhang
- Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Hubei University, Wuhan 430062, China; Ministry-of-Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, College of Chemistry and Chemical Engineering, Hubei University, Wuhan 430062, China
| | - Shengfu Wang
- Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Hubei University, Wuhan 430062, China; Ministry-of-Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, College of Chemistry and Chemical Engineering, Hubei University, Wuhan 430062, China.
| |
Collapse
|
8
|
Applying strand displacement amplification to quantum dots-based fluorescent lateral flow assay strips for HIV-DNA detection. Biosens Bioelectron 2018; 105:211-217. [PMID: 29412945 DOI: 10.1016/j.bios.2018.01.039] [Citation(s) in RCA: 84] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2017] [Revised: 01/01/2018] [Accepted: 01/18/2018] [Indexed: 12/11/2022]
Abstract
Up to now, the colloidal gold labeling immunochromatographic test strip is a mature and applicable technology. However, different from the conventional gold nanoparticle, quantum dot (QD) possesses larger specific surface area and better biocompatibility. So, as a novel nanomaterial, QD is capable of assembling more biomolecule which could enhance the sensitivity and accuracy of strips by rationality. Besides, strand displacement amplification was drawn into our test strips in this paper, this assumption made HIV-DNA recycling many times and converting it to plentiful QD-dsDNA (double-stranded deoxyribonucleic acid), where after these nano-structures would be captured by test zone. Meanwhile, the suggested scheme eliminated the hook effect owing to the target drop out of the incorporation on test zone, and any nucleotide sequence or substance which has aptamers can work as the target, such as carcinoembryonic antigen or mycotoxin. This assay realized the detection limit of as low as 0.76 pM (S/N = 3) and the detection range of 1 pM to 10 nM. In the end, we made use of this fluorescent lateral flow assay strips with great reproducibility for detecting HIV-DNA in human serum, that attested this method could be applied to practical application prospectively.
Collapse
|
9
|
Chen J, Chen S, Li F. DNA Probes for Implementation of Multiple Molecular Computations Using a Lateral Flow Strip Biosensor as the Sensing Platform. Anal Chem 2018; 90:10311-10317. [DOI: 10.1021/acs.analchem.8b02103] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Junhua Chen
- Guangdong Key Laboratory of Integrated Agro-Environmental Pollution Control and Management, Guangdong Institute of Eco-Environmental Science & Technology, Guangzhou 510650, China
| | - Shu Chen
- Guangdong Key Laboratory of Integrated Agro-Environmental Pollution Control and Management, Guangdong Institute of Eco-Environmental Science & Technology, Guangzhou 510650, China
| | - Fengling Li
- Guangdong Key Laboratory of Integrated Agro-Environmental Pollution Control and Management, Guangdong Institute of Eco-Environmental Science & Technology, Guangzhou 510650, China
| |
Collapse
|
10
|
Gao Y, Deng X, Wen W, Zhang X, Wang S. Ultrasensitive paper based nucleic acid detection realized by three-dimensional DNA-AuNPs network amplification. Biosens Bioelectron 2016; 92:529-535. [PMID: 27836603 DOI: 10.1016/j.bios.2016.10.068] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2016] [Revised: 10/20/2016] [Accepted: 10/24/2016] [Indexed: 10/20/2022]
Abstract
A novel three-dimensional DNA-AuNPs network structure amplification strategy was employed to design a lateral flow biosensor by introducing streptavidin coated gold nanoparticles (Au-SA) in this paper. They act as amplification probes which aggregate numerous gold nanoparticles (AuNPs) on test line by forming a three-dimensional DNA-AuNPs network structure in the presence of target. Sensitive detection of nucleic acid with point-of-care analysis is significant for infectious agent, early diagnosis and treatment of genetic diseases. The use of these particles in rapid ultrasensitive point of care (POC) lateral flow assays lead to a linear range from 0.1pM to 250nM with a limit of detection of 0.01 pM without polymerase chain reaction (PCR). The proposed method could increase the sensitivity by 4 orders of magnitudes than traditional sandwich assays labeled with AuNPs. Furthermore, the assay owns good reproducibility and stability, which will prove practical diagnostic applications.
Collapse
Affiliation(s)
- Ya Gao
- Ministry-of-Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, College of Chemistry and Chemical Engineering, Hubei University, Wuhan 430062, China
| | - Xilei Deng
- Ministry-of-Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, College of Chemistry and Chemical Engineering, Hubei University, Wuhan 430062, China
| | - Wei Wen
- Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Hubei University, Wuhan 430062, China; Ministry-of-Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, College of Chemistry and Chemical Engineering, Hubei University, Wuhan 430062, China
| | - Xiuhua Zhang
- Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Hubei University, Wuhan 430062, China; Ministry-of-Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, College of Chemistry and Chemical Engineering, Hubei University, Wuhan 430062, China
| | - Shengfu Wang
- Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Hubei University, Wuhan 430062, China; Ministry-of-Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, College of Chemistry and Chemical Engineering, Hubei University, Wuhan 430062, China.
| |
Collapse
|
11
|
Ma B, Song YZ, Niu JC, Wu ZY. Highly efficient sample stacking by enhanced field amplification on a simple paper device. LAB ON A CHIP 2016; 16:3460-3465. [PMID: 27528399 DOI: 10.1039/c6lc00633g] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
We present a novel electrokinetic stacking (ES) method based on field amplification on a simple paper device for sample preconcentration. With voltage application, charged probe ions in a solution of lower conductivity stack and form a narrow band at the boundary between the sample and the background electrolyte of higher conductivity. The stacking band appears quickly and stabilizes in a few minutes. With this ES method, three orders of magnitude signal improvement was successfully achieved for both a fluorescein probe and a double-stranded DNA within 300 s. This enhanced stacking efficiency is attributed to a focusing effect due to the balance between electromigration and counter electroosmotic flow. We also applied this ES method to other low-cost fiber substrates such as cloth and thread. Such a simple and highly efficient ES method will find wide applications in the development of sensitive paper-based analytical devices (PADs), especially for low-cost point-of-care testing (POCT).
Collapse
Affiliation(s)
- Biao Ma
- Research Center for Analytical Sciences, Chemistry Department, College of Sciences, Northeastern University, Shenyang 110819, PR China.
| | | | | | | |
Collapse
|
12
|
Qin C, Wen W, Zhang X, Gu H, Wang S. Visual detection of thrombin using a strip biosensor through aptamer-cleavage reaction with enzyme catalytic amplification. Analyst 2016; 140:7710-7. [PMID: 26451394 DOI: 10.1039/c5an01712b] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
A new class of strip biosensors has been established based on well-distributed thrombin aptamer-linked gold nanoparticle aggregates, which will undergo a cracking reaction when the target recognizes its homologous aptamer. Combining the aptamer-cleavage reaction with the enzyme catalytic amplification system, our proposed lateral flow strip biosensor (LFB) is capable of visually detecting 6.4 pM of thrombin without instrumentation within 12 minutes. Under the optimal conditions, the quantitative detection of thrombin by a portable strip reader exhibited a linear relationship between the peak area and the concentration of thrombin in the range of 6.4 pM-500 nM with a detection limit of 4.9 pM, which is three orders of magnitude lower than that of the aptamer-functionalized gold nanoparticle-based LFB (2.5 nM, Xu et al., Anal. Chem., 2009, 81, 669-675). As the aptamers have no special requirements and the gold nanoparticles can also be replaced by other metallic nanoparticles, this method for strip sensing is expected to be generally applicable in point of care testing, home testing, medical diagnostics, clinical diagnosis, and environmental monitoring.
Collapse
Affiliation(s)
- Chunyan Qin
- Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules & College of Chemistry and Chemical Engineering, Hubei University, Wuhan 430062, PR China.
| | - Wei Wen
- Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules & College of Chemistry and Chemical Engineering, Hubei University, Wuhan 430062, PR China.
| | - Xiuhua Zhang
- Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules & College of Chemistry and Chemical Engineering, Hubei University, Wuhan 430062, PR China.
| | - Haoshuang Gu
- Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules & College of Chemistry and Chemical Engineering, Hubei University, Wuhan 430062, PR China.
| | - Shengfu Wang
- Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules & College of Chemistry and Chemical Engineering, Hubei University, Wuhan 430062, PR China.
| |
Collapse
|
13
|
Kim JE, Choi JH, Colas M, Kim DH, Lee H. Gold-based hybrid nanomaterials for biosensing and molecular diagnostic applications. Biosens Bioelectron 2016; 80:543-559. [DOI: 10.1016/j.bios.2016.02.015] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2015] [Revised: 01/23/2016] [Accepted: 02/06/2016] [Indexed: 10/22/2022]
|
14
|
Qin C, Gao Y, Wen W, Zhang X, Wang S. Visual multiple recognition of protein biomarkers based on an array of aptamer modified gold nanoparticles in biocomputing to strip biosensor logic operations. Biosens Bioelectron 2015; 79:522-30. [PMID: 26749095 DOI: 10.1016/j.bios.2015.12.096] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2015] [Revised: 12/25/2015] [Accepted: 12/26/2015] [Indexed: 11/25/2022]
Abstract
We developed a strip biosensors array based on aptamer-modified gold nanoparticles as receptors and combined the protein-aptamer binding reaction with the streptavidin-biotin interaction as well as the sandwich format. We found that a series of protein receptors obtained a distinct response pattern to each target protein. Three proteins have been well distinguished with the naked eyes and a portable reader without mutual interference, accompanying with lower limit of detection and wider linear range. A complete set of four elementary logic gates (AND, OR, INH, and NAND) and eight combinative logic gates (AND-OR; AND-INH; OR-INH; INH-NAND; AND-OR-INH; AND-INH-NAND; OR-INH-NAND; AND-OR-INH-NAND) are thoroughly realized using this array, which could eventually be applicable to the keypad-lock system with enhanced complexity in the near future. Moreover, this array shows excellent linear relationships, anti-interference capability, real human serum samples applicability, long-term storage stability and reproducibility. All indicate that this design has very good prospects for development.
Collapse
Affiliation(s)
- Chunyan Qin
- Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules & College of Chemistry and Chemical Engineering, Hubei University, Wuhan 430062, PR China
| | - Ya Gao
- Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules & College of Chemistry and Chemical Engineering, Hubei University, Wuhan 430062, PR China
| | - Wei Wen
- Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules & College of Chemistry and Chemical Engineering, Hubei University, Wuhan 430062, PR China
| | - Xiuhua Zhang
- Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules & College of Chemistry and Chemical Engineering, Hubei University, Wuhan 430062, PR China
| | - Shengfu Wang
- Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules & College of Chemistry and Chemical Engineering, Hubei University, Wuhan 430062, PR China.
| |
Collapse
|