1
|
Zhang F, Li C, Yang D, Liu B, Zhou Y, Zhou Z, Zhong H, Wang Z, Chen D. Label-Free and Sequence-Independent Isothermal Amplification Strategy for the Simultaneous Detection of Genomic 5-Methylcytosine and 5-Hydroxymethylcytosine. Anal Chem 2025; 97:3063-3073. [PMID: 39869504 DOI: 10.1021/acs.analchem.4c06200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2025]
Abstract
5-Methylcytosine (5mC) and 5-hydroxymethylcytosine (5hmC) are crucial epigenetic modifications in eukaryotic genomic DNA that regulate gene expression and are associated with the occurrence of various cancers. Here, we combined bisulfite conversion with 4-acetamido-2,2,6,6-tetramethyl-1-oxopiperridinium tetrafluoroborate (ACT+BF4-, TCI) oxidation to develop a label-free and sequence-independent isothermal amplification (BTIA) assay for a genome-wide 5mC and 5hmC analysis. The BTIA strategy can distinguish 5mC and 5hmC signatures from other bases with high sensitivity and good specificity, avoiding sophisticated chemical modifications and expensive protein labeling. Moreover, the utilization of terminal deoxynucleotidyl transferase (TdT) enables the proposed strategy to detect global 5mC and 5hmC without sequence dependence. With only 78 ng of input of genomic DNA, global 5mC and 5hmC levels were accurately quantified in cells (including cancer cells of A549, T47D, and K562 and normal cells of HEK-293T, CHO, and NRK-52E) and clinical whole blood samples (including healthy control, precancerous cervical cancer, and confirmed cervical cancer) within 18 h. The detection results suggested that 5mC was highly expressed in cancer cells. More importantly, a significant increase in 5mC was observed in precancerous cervical cancer and further upregulation in confirmed cervical cancer, suggesting a correlation between 5mC and cancer occurrence and development. However, 5hmC showed the reverse result in these tested cells and clinical samples. Collectively, the BTIA strategy can be easily performed on the ordinary heating apparatus in almost all research and medical laboratories, showing a significant application in the early screening of cervical cancer in the clinic.
Collapse
Affiliation(s)
- Feng Zhang
- School of Pharmaceutical Sciences, Guizhou University, Guiyang 550025, China
| | - Chengpeng Li
- School of Pharmaceutical Sciences, Guizhou University, Guiyang 550025, China
| | - Di Yang
- School of Pharmaceutical Sciences, Guizhou University, Guiyang 550025, China
| | - Bingqian Liu
- School of Pharmaceutical Sciences, Guizhou University, Guiyang 550025, China
| | - Yue Zhou
- School of Pharmaceutical Sciences, Guizhou University, Guiyang 550025, China
| | - Zhixu Zhou
- School of Pharmaceutical Sciences, Guizhou University, Guiyang 550025, China
| | - Hang Zhong
- School of Pharmaceutical Sciences, Guizhou University, Guiyang 550025, China
| | - Zhenchao Wang
- School of Pharmaceutical Sciences, Guizhou University, Guiyang 550025, China
| | - Danping Chen
- School of Pharmaceutical Sciences, Guizhou University, Guiyang 550025, China
| |
Collapse
|
2
|
Lu Z, Ye Z, Li P, Jiang Y, Han S, Ma L. An MSRE-Assisted Glycerol-Enhanced RPA-CRISPR/Cas12a Method for Methylation Detection. BIOSENSORS 2024; 14:608. [PMID: 39727873 DOI: 10.3390/bios14120608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Revised: 12/05/2024] [Accepted: 12/10/2024] [Indexed: 12/28/2024]
Abstract
BACKGROUND Nasopharyngeal carcinoma (NPC) is a malignant tumor with high prevalence in southern China. Aberrant DNA methylation, as a hallmark of cancer, is extensively present in NPC, the detection of which facilitates early diagnosis and prognostic improvement of NPC. Conventional methylation detection methods relying on bisulfite conversion have limitations such as time-consuming, complex processes and sample degradation; thus, a more rapid and efficient method is needed. METHODS We propose a novel DNA methylation assay based on methylation-sensitive restriction endonuclease (MSRE) HhaI digestion and Glycerol-enhanced recombinase polymerase amplification (RPA)-CRISPR/Cas12a detection (HGRC). MSRE has a fast digestion rate, and HhaI specifically cleaves unmethylated DNA at a specific locus, leaving the methylated target intact to trigger the downstream RPA-Cas12a detection step, generating a fluorescence signal. Moreover, the detection step was supplemented with glycerol for the separation of Cas12a-containing components and RPA- and template-containing components, which avoids over-consumption of the template and, thus, enhances the amplification efficiency and detection sensitivity. RESULTS The HGRC method exhibits excellent performance in the detection of a CNE2-specific methylation locus with a (limit of detection) LOD of 100 aM and a linear range of 100 aM to 100 fM. It also responds well to different methylation levels and is capable of distinguishing methylation levels as low as 0.1%. Moreover, this method can distinguish NPC cells from normal cells by detecting methylation in cellular genomes. This method provides a rapid and sensitive approach for NPC detection and also holds good application prospects for other cancers and diseases featuring DNA methylation as a biomarker.
Collapse
Affiliation(s)
- Zhiquan Lu
- Precision Medicine and Healthcare Research Center, Tsinghua-Berkeley Shenzhen Institute (TBSI), Tsinghua Shenzhen International Graduate School, Tsinghua University, University Town of Shenzhen, Nanshan District, Shenzhen 518055, China
| | - Zilu Ye
- Institute of Biopharmaceutical and Health Engineering, Tsinghua Shenzhen International Graduate School, Tsinghua University, University Town of Shenzhen, Nanshan District, Shenzhen 518055, China
| | - Ping Li
- Institute of Biomedical Health Technology and Engineering, Shenzhen Bay Laboratory, Shenzhen 518132, China
| | - Yike Jiang
- Institute of Biomedical Health Technology and Engineering, Shenzhen Bay Laboratory, Shenzhen 518132, China
| | - Sanyang Han
- Institute of Biopharmaceutical and Health Engineering, Tsinghua Shenzhen International Graduate School, Tsinghua University, University Town of Shenzhen, Nanshan District, Shenzhen 518055, China
| | - Lan Ma
- Precision Medicine and Healthcare Research Center, Tsinghua-Berkeley Shenzhen Institute (TBSI), Tsinghua Shenzhen International Graduate School, Tsinghua University, University Town of Shenzhen, Nanshan District, Shenzhen 518055, China
- Institute of Biopharmaceutical and Health Engineering, Tsinghua Shenzhen International Graduate School, Tsinghua University, University Town of Shenzhen, Nanshan District, Shenzhen 518055, China
- Institute of Biomedical Health Technology and Engineering, Shenzhen Bay Laboratory, Shenzhen 518132, China
| |
Collapse
|
3
|
Lyu N, Potluri PR, Rajendran VK, Wang Y, Sunna A. Multiplex detection of bacterial pathogens by PCR/SERS assay. Analyst 2024; 149:2898-2904. [PMID: 38572620 DOI: 10.1039/d4an00037d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2024]
Abstract
Bacterial infections are a leading cause of death globally. The detection of DNA sequences correlated to the causative pathogen has become a vital tool in medical diagnostics. In practice, PCR-based assays for the simultaneous detection of multiple pathogens currently rely on probe-based quantitative strategies that require expensive equipment but have limited sensitivity or multiplexing capabilities. Hence, novel approaches to address the limitations of the current gold standard methods are still in high demand. In this study, we propose a simple multiplex PCR/SERS assay for the simultaneous detection of four bacterial pathogens, namely P. aeruginosa, S. aureus, S. epidermidis, and M. smegmatis. Wherein, specific primers for amplifying each target gDNA were applied, followed by applying SERS nanotags functionalized with complementary DNA probes and Raman reporters for specific identification of the target bacterial pathogens. The PCR/SERS assay showed high specificity and sensitivity for genotyping bacterial pathogen gDNA, whereby as few as 100 copies of the target gDNA could be detected. With high sensitivity and the convenience of standard PCR amplification, the proposed assay shows great potential for the sensitive detection of multiple pathogen infections to aid clinical decision-making.
Collapse
Affiliation(s)
- Nana Lyu
- School of Natural Sciences, Macquarie University, Sydney, NSW 2109, Australia.
| | - Phani Rekha Potluri
- School of Natural Sciences, Macquarie University, Sydney, NSW 2109, Australia.
| | | | - Yuling Wang
- School of Natural Sciences, Macquarie University, Sydney, NSW 2109, Australia.
- Biomolecular Discovery Research Centre, Macquarie University, NSW 2109, Australia
| | - Anwar Sunna
- School of Natural Sciences, Macquarie University, Sydney, NSW 2109, Australia.
- Biomolecular Discovery Research Centre, Macquarie University, NSW 2109, Australia
| |
Collapse
|
4
|
Zhang H, Liu L, Li M. Mini-review of DNA Methylation Detection Techniques and Their Potential Applications in Disease Diagnosis, Prognosis, and Treatment. ACS Sens 2024; 9:1089-1103. [PMID: 38365574 DOI: 10.1021/acssensors.3c02328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/18/2024]
Abstract
DNA methylation is the dominant epigenetic mechanism for regulating gene expression in mammals, playing crucial roles in development, differentiation, and tissue homeostasis. Aberrations in DNA methylation are closely associated with the potential onset of various diseases. Consequently, numerous DNA methylation detection techniques have been successively developed. These methods not only facilitate the exploration of disease mechanisms but also hold significant promise for the development of diagnostic and prognostic strategies. In this Perspective, we present a comprehensive overview of commonly employed DNA methylation detection techniques as well as biosensing based on their underlying analytical techniques. For its medical applications, we begin by examining the pathogenesis of different diseases and then proceed to discuss how relevant technologies are applied in the context of these specific medical conditions. Additionally, we briefly discuss the current limitations of these techniques and highlight future challenges in advancing methylation detection and analysis methodologies.
Collapse
Affiliation(s)
- Huaming Zhang
- Institute for Advanced Materials, School of Materials Science and Engineering, Jiangsu University, Zhenjiang 212013, China
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
| | - Lei Liu
- Institute for Advanced Materials, School of Materials Science and Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Min Li
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
5
|
Choi N, Schlücker S. Convergence of Surface-Enhanced Raman Scattering with Molecular Diagnostics: A Perspective on Future Directions. ACS NANO 2024; 18:5998-6007. [PMID: 38345242 DOI: 10.1021/acsnano.3c11370] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/28/2024]
Abstract
Molecular diagnostics (MD) is widely employed in multiple scientific disciplines, such as oncology, pathogen detection, forensic investigations, and the pharmaceutical industry. Techniques such as polymerase chain reaction (PCR) revolutionized the rapid and accurate identification of nucleic acids (DNA, RNA). More recently, CRISPR and its CRISPR-associated protein (Cas) have been a ground-breaking discovery that is the latest revolution in molecular biology, including MD. Surface-enhanced Raman scattering (SERS) is a very attractive alternative to fluorescence as the currently most widely used optical readout in MD. In this Perspective, milestones in the development of MD, SERS-PCR, and next-generation approaches to MD, such as Specific High-Sensitivity Enzymatic Reporter UnLOCKing (SHERLOCK) and DNA Endonuclease-Targeted CRISPR Trans Reporter (DETECTR), are briefly summarized. Our perspective on the future convergence of SERS with MD is focused on SERS-based CRISPR/Cas (SERS-CRISPR) since we anticipate many promising applications in this rapidly emerging field. We predict that major future developments will exploit the advantages of real-time monitoring with the superior brightness, photostability, and spectral multiplexing potential of SERS nanotags in an automated workflow for rapid assays under isothermal, amplification-free conditions.
Collapse
Affiliation(s)
- Namhyun Choi
- Physical Chemistry I, Department of Chemistry, and Center of Nanointegration Duisburg-Essen (CENIDE) & Center of Medical Biotechnology (ZMB), University of Duisburg-Essen (UDE), 45141 Essen, Germany
| | - Sebastian Schlücker
- Physical Chemistry I, Department of Chemistry, and Center of Nanointegration Duisburg-Essen (CENIDE) & Center of Medical Biotechnology (ZMB), University of Duisburg-Essen (UDE), 45141 Essen, Germany
| |
Collapse
|
6
|
Issatayeva A, Farnesi E, Cialla-May D, Schmitt M, Rizzi FMA, Milanese D, Selleri S, Cucinotta A. SERS-based methods for the detection of genomic biomarkers of cancer. Talanta 2024; 267:125198. [PMID: 37722343 DOI: 10.1016/j.talanta.2023.125198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 09/05/2023] [Accepted: 09/10/2023] [Indexed: 09/20/2023]
Abstract
Genomic biomarkers of cancer are based on changes in nucleic acids, which include abnormal expression levels of some miRNAs, point mutations in DNA sequences, and altered levels of DNA methylation. The presence of tumor-related nucleic acids in body fluids (blood, saliva, or urine) makes it possible to achieve a non-invasive early-stage cancer diagnosis. Currently existing techniques for the discovery of nucleic acids require complex, time-consuming, costly assays and have limited multiplexing abilities. Surface-enhanced Raman spectroscopy (SERS) is a vibrational spectroscopy technique that is able to provide molecular specificity combined with trace sensitivity. SERS has gained research attention as a tool for the detection of nucleic acids because of its promising potential: label-free SERS can decrease the complexity of assays currently used with fluorescence-based detection due to the absence of the label, while labeled SERS may outperform the gold standard in terms of the multiplexing ability. The first papers about SERS-based methods for the measurement of genomic biomarkers were written in 2008, and since then, more than 150 papers have been published. The aim of this paper is to review and evaluate the proposed SERS-based methods in terms of their level of development and their potential for liquid biopsy application, as well as to contribute to their further evolution by attracting research attention to the field. This goal will be reached by grouping, on the basis of their experimental protocol, all the published manuscripts on the topic and evaluating each group in terms of its limit of detection and applicability to real body fluids. Thus, the methods are classified according to their working principles into five main groups, including capture-based, displacement-based, sandwich-based, enzyme-assisted, and specialized protocols.
Collapse
Affiliation(s)
- Aizhan Issatayeva
- Department of Engineering and Architecture, University of Parma, Parco Area delle Scienze 181/a, 43124, Parma, Italy.
| | - Edoardo Farnesi
- Institute of Physical Chemistry (IPC) and Abbe Center of Photonics (ACP), Friedrich Schiller University Jena, Member of the Leibniz Centre for Photonics in Infection Research (LPI), Helmholtzweg 4, 07743, Jena, Germany; Leibniz Institute of Photonic Technology, Member of Leibniz Health Technologies, Member of the Leibniz Centre for Photonics in Infection Research (LPI), Albert-Einstein-Straße 9, 07745, Jena, Germany
| | - Dana Cialla-May
- Institute of Physical Chemistry (IPC) and Abbe Center of Photonics (ACP), Friedrich Schiller University Jena, Member of the Leibniz Centre for Photonics in Infection Research (LPI), Helmholtzweg 4, 07743, Jena, Germany; Leibniz Institute of Photonic Technology, Member of Leibniz Health Technologies, Member of the Leibniz Centre for Photonics in Infection Research (LPI), Albert-Einstein-Straße 9, 07745, Jena, Germany
| | - Michael Schmitt
- Institute of Physical Chemistry (IPC) and Abbe Center of Photonics (ACP), Friedrich Schiller University Jena, Member of the Leibniz Centre for Photonics in Infection Research (LPI), Helmholtzweg 4, 07743, Jena, Germany
| | | | - Daniel Milanese
- Department of Engineering and Architecture, University of Parma, Parco Area delle Scienze 181/a, 43124, Parma, Italy
| | - Stefano Selleri
- Department of Engineering and Architecture, University of Parma, Parco Area delle Scienze 181/a, 43124, Parma, Italy
| | - Annamaria Cucinotta
- Department of Engineering and Architecture, University of Parma, Parco Area delle Scienze 181/a, 43124, Parma, Italy
| |
Collapse
|
7
|
Ishwar D, Venkatakrishnan K, Tan B, Haldavnekar R. DNA Methylation Signatures of Tumor-Associated Natural Killer Cells with Self-Functionalized Nanosensor Enable Colorectal Cancer Diagnosis. NANO LETTERS 2023; 23:4142-4151. [PMID: 37134017 DOI: 10.1021/acs.nanolett.2c04914] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Natural killer (NK) cells undergo multiple DNA genomic alterations, especially methylation-based modifications that affect activation and function. Several epigenetic modifier markers have been targeted for immunotherapy to date, but the possibility of cancer diagnosis using NK cell's DNA has been overlooked. Here, we investigated the potential use of NK cell DNA genome modifications as markers for the diagnosis of colorectal cancer (CRC) and validated their efficacy in CRC patients. Using Raman spectroscopy as the detection methodology, we identified CRC-specific methylation signatures by comparing CRC-interacted NK cells to healthy circulating NK cells. Subsequently, we identified methylation-dependent alterations in these NK cell populations. These markers were then utilized by a machine learning algorithm to develop a diagnostic model with predictive capabilities. The diagnostic prediction model accurately differentiated CRC patients from normal controls. Our findings demonstrated the utility of NK DNA markers in the diagnosis of CRC.
Collapse
Affiliation(s)
- Deeptha Ishwar
- Institute for Biomedical Engineering, Science and Technology (I BEST), Partnership between Toronto Metropolitan University and St. Michael's Hospital, Toronto, Ontario M5B 1W8, Canada
- Ultrashort Laser Nanomanufacturing Research Facility, Faculty of Engineering and Architectural Sciences, Toronto Metropolitan University, 350 Victoria Street, Toronto, Ontario M5B 2K3, Canada
- Nano Characterization Laboratory, Faculty of Engineering and Architectural Sciences, Toronto Metropolitan University, 350 Victoria Street, Toronto, Ontario M5B 2K3, Canada
- Nano-Bio Interface Facility, Faculty of Engineering and Architectural Sciences, Toronto Metropolitan University, 350 Victoria Street, Toronto, Ontario M5B 2K3, Canada
| | - Krishnan Venkatakrishnan
- Institute for Biomedical Engineering, Science and Technology (I BEST), Partnership between Toronto Metropolitan University and St. Michael's Hospital, Toronto, Ontario M5B 1W8, Canada
- Ultrashort Laser Nanomanufacturing Research Facility, Faculty of Engineering and Architectural Sciences, Toronto Metropolitan University, 350 Victoria Street, Toronto, Ontario M5B 2K3, Canada
- Nano-Bio Interface Facility, Faculty of Engineering and Architectural Sciences, Toronto Metropolitan University, 350 Victoria Street, Toronto, Ontario M5B 2K3, Canada
- Keenan Research Center for Biomedical Science, Unity Health Toronto, Toronto, Ontario M5B 1W8, Canada
| | - Bo Tan
- Institute for Biomedical Engineering, Science and Technology (I BEST), Partnership between Toronto Metropolitan University and St. Michael's Hospital, Toronto, Ontario M5B 1W8, Canada
- Nano Characterization Laboratory, Faculty of Engineering and Architectural Sciences, Toronto Metropolitan University, 350 Victoria Street, Toronto, Ontario M5B 2K3, Canada
- Keenan Research Center for Biomedical Science, Unity Health Toronto, Toronto, Ontario M5B 1W8, Canada
| | - Rupa Haldavnekar
- Institute for Biomedical Engineering, Science and Technology (I BEST), Partnership between Toronto Metropolitan University and St. Michael's Hospital, Toronto, Ontario M5B 1W8, Canada
- Ultrashort Laser Nanomanufacturing Research Facility, Faculty of Engineering and Architectural Sciences, Toronto Metropolitan University, 350 Victoria Street, Toronto, Ontario M5B 2K3, Canada
- Nano Characterization Laboratory, Faculty of Engineering and Architectural Sciences, Toronto Metropolitan University, 350 Victoria Street, Toronto, Ontario M5B 2K3, Canada
- Nano-Bio Interface Facility, Faculty of Engineering and Architectural Sciences, Toronto Metropolitan University, 350 Victoria Street, Toronto, Ontario M5B 2K3, Canada
| |
Collapse
|
8
|
Methylation-sensitive transcription-enhanced single-molecule biosensing of DNA methylation in cancer cells and tissues. Anal Chim Acta 2023; 1251:340996. [PMID: 36925287 DOI: 10.1016/j.aca.2023.340996] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Accepted: 02/21/2023] [Indexed: 02/24/2023]
Abstract
As a major epigenetic modification, DNA methylation participates in diverse cellular functions and emerges as a promising biomarker for disease diagnosis and monitoring. Herein, we developed a methylation-sensitive transcription-enhanced single-molecule biosensor to detect DNA methylation in human cells and tissues. In this biosensor, a rationally designed transcription machine is split into two parts including a promoter sequence (probe-P) for initiating transcription and a template sequence (probe-T) for RNA synthesis. The presence of specific DNA methylation leads to the formation of full-length transcription machine through sequence-specific ligation of probe-P and probe-T, initiating the synthesis of abundant ssRNA transcripts. The resultant ssRNAs can activate CRISPR/Cas12a to catalyze cyclic cleavage of fluorophore- and quencher-dual labeled signal probes, resulting in the recovery of the fluorophore signal that can be quantified by single-molecule detection. Taking advantages of the high-fidelity ligation of split transcription machine and the high efficiency of transcription- and CRISPR/Cas12a cleavage-mediated dual signal amplification, this single-molecule biosensor achieves a low detection limit of 337 aM and high selectivity. Moreover, it can distinguish 0.01% methylation level, and even accurately detect genomic DNA methylation in single cell and clinical samples, providing a powerful tool for epigenetic researches and clinical diagnostics.
Collapse
|
9
|
Lu D, Chen Y, Ke L, Wu W, Yuan L, Feng S, Huang Z, Lu Y, Wang J. Machine learning-assisted global DNA methylation fingerprint analysis for differentiating early-stage lung cancer from benign lung diseases. Biosens Bioelectron 2023; 235:115235. [PMID: 37178511 DOI: 10.1016/j.bios.2023.115235] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 03/10/2023] [Accepted: 03/14/2023] [Indexed: 03/17/2023]
Abstract
DNA methylation plays a critical role in the development of human tumors. However, routine characterization of DNA methylation can be time-consuming and labor-intensive. We herein describe a sensitive, simple surface-enhanced Raman spectroscopy (SERS) approach for identifying the DNA methylation pattern in early-stage lung cancer (LC) patients. By comparing SERS spectra of methylated DNA bases or sequences with their counterparts, we identified a reliable spectral marker of cytosine methylation. To move toward clinical applications, we applied our SERS strategy to detect the methylation patterns of genomic DNA (gDNA) extracted from cell line models as well as formalin-fixed paraffin-embedded tissues of early-stage LC and benign lung diseases (BLD) patients. In a clinical cohort of 106 individuals, our results showed distinct methylation patterns in gDNA between early-stage LC (n = 65) and BLD patients (n = 41), suggesting cancer-induced DNA methylation alterations. Combined with partial least square discriminant analysis, early-stage LC and BLD patients were differentiated with an area under the curve (AUC) value of 0.85. We believe that the SERS profiling of DNA methylation alterations, together with machine learning could potentially offer a promising new route toward the early detection of LC.
Collapse
|
10
|
Ultrasensitive photoelectrochemical biosensor for DNA 5-methylcytosine analysis based on co-sensitization strategy combined with bridged DNA nanoprobe. Talanta 2023; 254:124140. [PMID: 36463802 DOI: 10.1016/j.talanta.2022.124140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 11/19/2022] [Accepted: 11/25/2022] [Indexed: 11/29/2022]
Abstract
Altered DNA methylation in the form of 5-methylcytosine (5-mC) patterns is correlated with disease diagnosis, prognosis, and treatment response. Therefore, accurate analysis of 5-mC is of great significance for the diagnosis of diseases. Here, an efficient enhanced photoelectrochemical (PEC) biosensor was designed for the quantitative analysis of DNA 5-mC based on a cascaded energy level aligned co-sensitization strategy coupling with the bridged DNA nanoprobe (BDN). Firstly, Au nanoparticle/graphite phase carbon nitride/titanium dioxide (AuNPs/g-C3N4@TiO2) nanocomposite was synthesized through in situ growth of AuNPs on g-C3N4@TiO2 surface as a matrix to provide a stable background signal. Next, BDN with a high mass transfer rate synthesized from a pair of DNA tetrahedral as nanomechanical handles was used as a capture probe to bind to the target sequence. The polydopamine nanosphere was applied to load with CdTe QDs (PDANS-CdTe QDs) as a photocurrent label of 5-mC antibodies. When the 5-mC existed, a large number of PDANS-Ab-CdTe QDs were introduced to the electrode surface, the formed CdTe QDs/AuNPs/g-C3N4@TiO2 co-sensitive structure could effectively enhance the electron transfer capability and photocurrent response rate due to the effective cascade energy level arrangement, leading to a significantly enhanced photocurrent signal. The proposed PEC biosensor manifested a wide range from 10-17 M to 10-7 M and a detection limit of 2.2 aM. Meanwhile, the excellent performance indicated the practicability of the designed strategy, thus being capable of the clinical diagnosis of 5-mC.
Collapse
|
11
|
Yu S, Cao S, He S, Zhang K. Locus-Specific Detection of DNA Methylation: The Advance, Challenge, and Perspective of CRISPR-Cas Assisted Biosensors. SMALL METHODS 2023; 7:e2201624. [PMID: 36609885 DOI: 10.1002/smtd.202201624] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Indexed: 06/17/2023]
Abstract
Deoxyribonucleic acid (DNA) methylation is one of the epigenetic characteristics that result in heritable and revisable phenotype changes but without sequence changes in DNA. Aberrant methylation occurring at a specific locus was reported to be associated with cancers, insulin resistance, obesity, Alzheimer's disease, Parkinson's disease, etc. Therefore, locus-specific DNA methylation can serve as a valuable biomarker for disease diagnosis and therapy. Recently, Clustered regularly interspaced short palindromic repeats (CRISPR)-Cas systems are applied to develop biosensors for DNA, ribonucleic acid, proteins, and small molecules detection. Because of their highly specific binding ability and signal amplification capacity, CRISPR-Cas assisted biosensor also serve as a potential tool for locus-specific detection of DNA methylation. In this perspective, based on the detection principle, a detailed classification and comprehensive discussion of recent works about the latest advances in locus-specific detection of DNA methylation using CRISPR-Cas systems are provided. Furthermore, current challenges and future perspectives of CRISPR-based locus-specific detection of DNA methylation are outlined.
Collapse
Affiliation(s)
- Songcheng Yu
- College of Public Health, Zhengzhou University, No.100 Science Avenue, Zhengzhou City, 450001, P. R. China
| | - Shengnan Cao
- College of Public Health, Zhengzhou University, No.100 Science Avenue, Zhengzhou City, 450001, P. R. China
| | - Sitian He
- College of Public Health, Zhengzhou University, No.100 Science Avenue, Zhengzhou City, 450001, P. R. China
| | - Kaixiang Zhang
- School of Pharmaceutical Sciences, Zhengzhou University, No.100 Science Avenue, Zhengzhou City, 450001, P. R. China
| |
Collapse
|
12
|
Li F, Chen Y, Shang J, Wang Q, He S, Xing X, Wang F. An Isothermal Autocatalytic Hybridization Reaction Circuit for Sensitive Detection of DNA Methyltransferase and Inhibitors Assay. Anal Chem 2022; 94:4495-4503. [PMID: 35234458 DOI: 10.1021/acs.analchem.2c00037] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Abnormal DNA methylation contributes to the annoying tumorigenesis and the elevated expression of methylation-related methyltransferase (MTase) is associated with many diseases. Hence DNA MTase could serve as a promising biomarker for cancer-specific diagnosis as well as a potential therapeutic target. Herein, we developed an isothermal autocatalytic hybridization reaction (AHR) circuit for the sensitive detection of MTase and its inhibitors by integrating the catalytic hairpin assembly (CHA) converter with the hybridization chain reaction (HCR) amplifier. The initiator-mediated HCR amplifier could generate amplified fluorescent readout, as well as numerous newly activated triggers for motivating the CHA converter. The CHA converter is designed to expose the identical sequence of HCR initiators that reversely powered the HCR amplifier. Thus, the trace amount of target could produce exponentially amplified fluorescent readout by the autocatalytic feedback cycle between HCR and CHA systems. Then an auxiliary hairpin was introduced to mediate the assay of Dam MTase via the well-established AHR circuit. The Dam MTase-catalyzed methylation of auxiliary hairpin leads to its subsequent efficient cleavage by DpnI endonuclease, thus resulting in the release of HCR initiators to initiate the AHR circuit. The programmable nature of the auxiliary hairpin allows its easy adaption into other MTase assay by simply changing the recognition site. This proposed AHR circuit permits a sensitive, robust, and versatile analysis of MTase with the limit of detection (LOD) of 0.011 U/mL. Lastly, the AHR circuit could be utilized for MTase analysis in real complex samples and for evaluating the cell-cycle-dependent expression of MTase. This developed MTase-sensing strategy holds promising potential for biomedical analysis and clinical diagnosis.
Collapse
Affiliation(s)
- Fengzhe Li
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, P. R. China
| | - Yingying Chen
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, P. R. China
| | - Jinhua Shang
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, P. R. China
| | - Qing Wang
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, P. R. China
| | - Shizhen He
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, P. R. China
| | - Xiwen Xing
- College of Life Science and Technology, Jinan University, Guangzhou, 510632, P. R. China
| | - Fuan Wang
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, P. R. China
| |
Collapse
|
13
|
He S, Yu S, Feng Y, He L, Liu L, Effah CY, Wu Y. A digital immuno-PCR assay for simultaneous determination of 5-methylcytosine and 5-hydroxymethylcytosine in human serum. Anal Chim Acta 2022; 1192:339321. [DOI: 10.1016/j.aca.2021.339321] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 11/11/2021] [Accepted: 11/23/2021] [Indexed: 11/29/2022]
|
14
|
Adampourezare M, Hasanzadeh M, Seidi F. Optical bio-sensing of DNA methylation analysis: an overview of recent progress and future prospects. RSC Adv 2022; 12:25786-25806. [PMID: 36199327 PMCID: PMC9460980 DOI: 10.1039/d2ra03630d] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Accepted: 09/03/2022] [Indexed: 12/02/2022] Open
Abstract
DNA methylation as one of the most important epigenetic modifications has a critical role in regulating gene expression and drug resistance in treating diseases such as cancer. Therefore, the detection of DNA methylation in the early stages of cancer plays an essential role in disease diagnosis. The majority of routine methods to detect DNA methylation are very tedious and costly. Therefore, designing easy and sensitive methods to detect DNA methylation directly and without the need for molecular methods is a hot topic issue in bioscience. Here we provide an overview on the optical biosensors (including fluorescence, FRET, SERs, colorimetric) that have been applied to detect the DNA methylation. In addition, various types of labeled and label-free reactions along with the application of molecular methods and optical biosensors have been surveyed. Also, the effect of nanomaterials on the sensitivity of detection methods is discussed. Furthermore, a comprehensive overview of the advantages and disadvantages of each method are provided. Finally, the use of microfluidic devices in the evaluation of DNA methylation and DNA damage analysis based on smartphone detection has been discussed. Here, we provide an overview on the optical biosensors (including fluorescence, FRET, SERs, colorimetric) that have been applied to detect the DNA methylation.![]()
Collapse
Affiliation(s)
- Mina Adampourezare
- Department of Biology, Faculty of Natural Science, University of Tabriz, Tabriz, Iran
- Pharmaceutical Analysis Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad Hasanzadeh
- Pharmaceutical Analysis Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Nutrition Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Farzad Seidi
- Jiangsu Co-Innovation Center for Efficient Processing and Utilization of Forest Resources and International Innovation Center for Forest Chemicals and Materials, Nanjing Forestry University, Nanjing 210037, China
| |
Collapse
|
15
|
Lyu N, Rajendran VK, Li J, Engel A, Molloy MP, Wang Y. Highly specific detection of KRAS single nucleotide polymorphism by asymmetric PCR/SERS assay. Analyst 2021; 146:5714-5721. [PMID: 34515700 DOI: 10.1039/d1an01108a] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The molecular diagnosis of KRAS mutations has become crucial for clinical decision-making in colorectal cancer (CRC) treatments. Currently, the common methods for detecting mutations are based on quantitative PCR, DNA sequencing and droplet digital PCR (ddPCR), which require expensive specialized equipment and testing reagents. Herein, we propose a simple and specific strategy by integrating asymmetric PCR with surface-enhanced Raman spectroscopy (Asy-PCR/SERS) for the detection of KRAS G12V mutation, one of the most common driver mutations in CRC. To discriminate mutant targets from non-targets, Asy-PCR was applied to obtain single-stranded DNA (ssDNA) with unequal amounts of forward and reverse primers, subsequently, detection of the target mutant ssDNA amplicons was attempted by hybridization with Raman reporter-coded and allele-specific oligonucleotide-functionalized gold nanoparticles (SERS nanotags). The oligo encoding of the KRAS G12V mutant sequence could be identified by using a portable Raman spectrometer where the characteristic spectra of SERS nanotags indicate the presence of mutant targets. The Asy-PCR/SERS method showed high specificity and sensitivity for identifying as few as 0.1% mutant alleles of KRAS G12V mutation from non-target sequences. Using colorectal polyp biopsies, we demonstrated that Asy-PCR/SERS assay could distinguish KRAS G12V (c.35G > T) and KRAS G12D (c.35G > A) which occur at the same nucleotide location. As KRAS G12V is a driver oncogene in other cancers including lung, pancreatic, ovarian and endometrial cancers, the proposed assay shows great potential for application in additional tumor streams.
Collapse
Affiliation(s)
- Nana Lyu
- ARC Centre of Excellence for Nanoscale BioPhotonics and Department of Molecular Sciences, Macquarie University, Sydney, NSW 2109, Australia.
| | - Vinoth Kumar Rajendran
- ARC Centre of Excellence for Nanoscale BioPhotonics and Department of Molecular Sciences, Macquarie University, Sydney, NSW 2109, Australia.
| | - Jun Li
- Bowel Cancer and Biomarker Laboratory, School of Medical Sciences, The University of Sydney, NSW 2006, Australia.
| | - Alexander Engel
- Department of Colorectal Surgery, Royal North Shore Hospital, Sydney, NSW 2065, Australia.,Sydney Medical School, The University of Sydney, NSW 2006, Australia
| | - Mark P Molloy
- Bowel Cancer and Biomarker Laboratory, School of Medical Sciences, The University of Sydney, NSW 2006, Australia.
| | - Yuling Wang
- ARC Centre of Excellence for Nanoscale BioPhotonics and Department of Molecular Sciences, Macquarie University, Sydney, NSW 2109, Australia.
| |
Collapse
|
16
|
Zhang S, Huang J, Lu J, Liu M, Chen X, Su S, Mo F, Zheng J. Electrochemical and Optical Biosensing Strategies for DNA Methylation Analysis. Curr Med Chem 2020; 27:6159-6187. [DOI: 10.2174/0929867326666190903161750] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Revised: 07/24/2019] [Accepted: 08/07/2019] [Indexed: 12/14/2022]
Abstract
DNA methylation is considered as a crucial part of epigenetic modifications and a popular
research topic in recent decades. It usually occurs with a methyl group adding to the fifth carbon
atom of cytosine while the base sequence of DNA remains unchanged. DNA methylation has significant
influences on maintaining cell functions, genetic imprinting, embryonic development and
tumorigenesis procedures and hence the analysis of DNA methylation is of great medical significance.
With the development of analytical techniques and further research on DNA methylation,
numerous DNA methylation detection strategies based on biosensing technology have been developed
to fulfill various study requirements. This article reviewed the development of electrochemistry
and optical biosensing analysis of DNA methylation in recent years; in addition, we also reviewed
some recent advances in the detection of DNA methylation using new techniques, such as
nanopore biosensors, and highlighted the key technical and biological challenges involved in these
methods. We hope this paper will provide useful information for the selection and establishment of
analysis of DNA methylation.
Collapse
Affiliation(s)
- Shu Zhang
- Department of Basic Clinical Laboratory Medicine, School of Clinical Laboratory Science, Guizhou Medical University, No. 9 Beijing Road, Yunyan District, Guiyang 550004, China
| | - Jian Huang
- Department of Clinical and Military Laboratory Medicine, College of Medical Laboratory Science, Army Medical University, 30 Gaotanyan Street, Shapingba District, Chongqing 400038, China
| | - Jingrun Lu
- Department of Basic Clinical Laboratory Medicine, School of Clinical Laboratory Science, Guizhou Medical University, No. 9 Beijing Road, Yunyan District, Guiyang 550004, China
| | - Min Liu
- Department of Basic Clinical Laboratory Medicine, School of Clinical Laboratory Science, Guizhou Medical University, No. 9 Beijing Road, Yunyan District, Guiyang 550004, China
| | - Xi Chen
- Department of Basic Clinical Laboratory Medicine, School of Clinical Laboratory Science, Guizhou Medical University, No. 9 Beijing Road, Yunyan District, Guiyang 550004, China
| | - Shasha Su
- Department of Basic Clinical Laboratory Medicine, School of Clinical Laboratory Science, Guizhou Medical University, No. 9 Beijing Road, Yunyan District, Guiyang 550004, China
| | - Fei Mo
- Department of Basic Clinical Laboratory Medicine, School of Clinical Laboratory Science, Guizhou Medical University, No. 9 Beijing Road, Yunyan District, Guiyang 550004, China
| | - Junsong Zheng
- Department of Clinical and Military Laboratory Medicine, College of Medical Laboratory Science, Army Medical University, 30 Gaotanyan Street, Shapingba District, Chongqing 400038, China
| |
Collapse
|
17
|
Ouyang J, Zhan X, Guo S, Cai S, Lei J, Zeng S, Yu L. Progress and trends on the analysis of nucleic acid and its modification. J Pharm Biomed Anal 2020; 191:113589. [DOI: 10.1016/j.jpba.2020.113589] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 07/18/2020] [Accepted: 08/20/2020] [Indexed: 12/17/2022]
|
18
|
Zhang Q, Wu Y, Xu Q, Ma F, Zhang CY. Recent advances in biosensors for in vitro detection and in vivo imaging of DNA methylation. Biosens Bioelectron 2020; 171:112712. [PMID: 33045657 DOI: 10.1016/j.bios.2020.112712] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 09/25/2020] [Accepted: 10/07/2020] [Indexed: 02/08/2023]
Abstract
DNA methylation is the predominant epigenetic modification that participates in many fundamental cellular processes through posttranscriptional regulation of gene expression. Aberrant DNA methylation is closely associated with a variety of human diseases including cancers. Therefore, accurate and sensitive detection of DNA methylation may greatly facilitate the epigenetic biological researches and disease diagnosis. In recent years, a series of novel biosensors have been developed for highly sensitive detection of DNA methylation, but an overview of recent advances in biosensors for in vitro detection and especially live-cell imaging of DNA methylation is absent. In this review, we summarize the emerging biosensors for in vitro and in vivo DNA methylation assays in the past five years (2015-2020). Based on the signal types, the biosensors for in vitro DNA methylation assay are classified into five categories including fluorescent, electrochemical, colorimetric, surface enhanced Raman spectroscopy, mass spectrometry, and surface plasmon resonance biosensors, while the biosensors for in vivo DNA methylation assay mainly rely on fluorescent imaging. We review the strategies, features and applications of these biosensors, and provide a new insight into the challenges and future directions in this area.
Collapse
Affiliation(s)
- Qian Zhang
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Provincial Key Laboratory of Clean Production of Fine Chemicals, Shandong Normal University, Jinan, 250014, China
| | - Yanxia Wu
- Department of Pathology and Pathological Diagnosis & Research Center, Affiliated Hospital of Guangdong Medical University, Zhanjiang, 524001, China
| | - Qinfeng Xu
- School of Food and Biological Engineering, National R&D Center for Goat Dairy Products Processing Technology, Shaanxi University of Science and Technology, Xi'an, 710021, China
| | - Fei Ma
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Provincial Key Laboratory of Clean Production of Fine Chemicals, Shandong Normal University, Jinan, 250014, China.
| | - Chun-Yang Zhang
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Provincial Key Laboratory of Clean Production of Fine Chemicals, Shandong Normal University, Jinan, 250014, China.
| |
Collapse
|
19
|
Lyu N, Rajendran VK, Diefenbach RJ, Charles K, Clarke SJ, Engel A, Rizos H, Molloy MP, Wang Y. Multiplex detection of ctDNA mutations in plasma of colorectal cancer patients by PCR/SERS assay. Nanotheranostics 2020; 4:224-232. [PMID: 32923312 PMCID: PMC7484630 DOI: 10.7150/ntno.48905] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Accepted: 08/04/2020] [Indexed: 12/11/2022] Open
Abstract
Molecular diagnostic testing of KRAS and BRAF mutations has become critical in the management of colorectal cancer (CRC) patients. Some progress has been made in liquid biopsy detection of mutations in circulating tumor DNA (ctDNA), which is a fraction of circulating cell-free DNA (cfDNA), but slow analysis for DNA sequencing methods has limited rapid diagnostics. Other methods such as quantitative PCR and more recently, droplet digital PCR (ddPCR), have limitations in multiplexed capacity and the need for expensive specialized equipment. Hence, a robust, rapid and facile strategy is needed for detecting multiple ctDNA mutations to improve the management of CRC patients. To address this significant problem, herein, we propose a new application of multiplex PCR/SERS (surface-enhanced Raman scattering) assay for the detection of ctDNA in CRC, in a fast and non-invasive manner to diagnose and stratify patients for effective treatment. Methods: To discriminate ctDNA mutations from wild-type cfDNA, allele-specific primers were designed for the amplification of three clinically important DNA point mutations in CRC including KRAS G12V, KRAS G13D and BRAF V600E. Surface-enhanced Raman scattering (SERS) nanotags were labelled with a short and specific sequence of oligonucleotide, which can hybridize with the corresponding PCR amplicons. The PCR/SERS assay was implemented by firstly amplifying the multiple mutations, followed by binding with multicolor SERS nanotags specific to each mutation, and subsequent enrichment with magnetic beads. The mutation status was evaluated using a portable Raman spectrometer where the fingerprint spectral peaks of the corresponding SERS nanotags indicate the presence of the mutant targets. The method was then applied to detect ctDNA from CRC patients under a blinded test, the results were further validated by ddPCR. Results: The PCR/SERS strategy showed high specificity and sensitivity for genotyping CRC cell lines and plasma ctDNA, where as few as 0.1% mutant alleles could be detected from a background of abundant wild-type cfDNA. The blinded test using 9 samples from advanced CRC patients by PCR/SERS assay was validated with ddPCR and showed good consistency with pathology testing results. Conclusions: With ddPCR-like sensitivity yet at the convenience of standard PCR, the proposed assay shows great potential in sensitive detection of multiple ctDNA mutations for clinical decision-making.
Collapse
Affiliation(s)
- Nana Lyu
- Department of Molecular Sciences, Macquarie University, Sydney, Australia
| | | | - Russell J Diefenbach
- Department of Biomedical Sciences, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, Australia.,Melanoma Institute Australia, Sydney, Australia
| | - Kellie Charles
- School of Medical Sciences, Discipline of Pharmacology, The University of Sydney, Australia
| | - Stephen J Clarke
- Royal North Shore Hospital, Department of Medical Oncology, The University of Sydney, Australia
| | - Alexander Engel
- Royal North Shore Hospital, Colorectal Surgical Unit, The University of Sydney, Australia
| | | | - Helen Rizos
- Department of Biomedical Sciences, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, Australia
| | - Mark P Molloy
- Bowel Cancer and Biomarker Laboratory, Kolling Institute, The University of Sydney, Australia
| | - Yuling Wang
- Department of Molecular Sciences, Macquarie University, Sydney, Australia
| |
Collapse
|
20
|
Zhang Y, Li CC, Zhang X, Xu Q, Zhang CY. Development of Oxidation Damage Base-Based Fluorescent Probe for Direct Detection of DNA Methylation. Anal Chem 2020; 92:10223-10227. [PMID: 32664718 DOI: 10.1021/acs.analchem.0c01880] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
DNA methylation has become a promising epigenetic biomarker for cancer diagnosis, prognosis, and therapy monitoring. Herein, we demonstrate for the first time the development of a new oxidation damage base (8-oxo-7,8-dihydroguanine (8-oxoG))-modified fluorescent probe for direct detection of DNA methylation. This fluorescent probe is labeled with carboxy-X-rhodamine (ROX) and black hole quencher 2 (BHQ2) at the 5' and 3' termini, respectively, with one 8-oxoG base modification in the middle position, and it can discriminate the methylated cytosine from the unmethylated cytosine. The presence of target methylated DNA may induce the recycle cleavage of fluorescent probes with the assistance of human 8-oxoG DNA glycosylase 1 (hOGG1) enzyme, resulting in an enhanced fluorescence signal. In comparison with the reported bisulfite treatment-based indirect approaches, this fluorescent probe can be used for direct detection of DNA methylation under isothermal conditions without the requirement of a stringent primer/template design, any thermal cycling, and ligation procedures, greatly simplifying the experimental processes. Moreover, this fluorescent probe exhibits good specificity and high sensitivity, and it can distinguish a 0.01% methylation level even in the presence of excess unmethylated DNA. Furthermore, this fluorescent probe can be used to detect DNA methylation in genomic DNA extracted from human colon cancer cells, holding great potential in epigenetic study and early clinical diagnosis.
Collapse
Affiliation(s)
- Yan Zhang
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Provincial Key Laboratory of Clean Production of Fine Chemicals, Shandong Normal University, Jinan, Shandong 250014, China
| | - Chen-Chen Li
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Provincial Key Laboratory of Clean Production of Fine Chemicals, Shandong Normal University, Jinan, Shandong 250014, China
| | - Xuechong Zhang
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi'an, Shaanxi 710021, P. R. China
| | - Qinfeng Xu
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi'an, Shaanxi 710021, P. R. China
| | - Chun-Yang Zhang
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Provincial Key Laboratory of Clean Production of Fine Chemicals, Shandong Normal University, Jinan, Shandong 250014, China
| |
Collapse
|
21
|
Su F, Ji J, Zhang P, Wang F, Li Z. Real-time quantification of fusion transcripts with ligase chain reaction by direct ligation of adjacent DNA probes at fusion junction. Analyst 2020; 145:3977-3982. [PMID: 32319973 DOI: 10.1039/d0an00163e] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Gene fusions, produced by aberrant juxtapositions of two or more genes even in different chromosomes, play important roles in the primary oncogenic mechanism and have been demonstrated to be typically associated with many cancers. So the fused genes or the transcripts can be specific predictive biomarkers for cancer diagnosis and therapy. Herein, we develop a direct ligation- and ligase chain reaction (LCR)-based method for a fusion transcript assay. In virtue of the high selectivity of ligase and the exponential amplification capacity of LCR, the proposed method can detect as low as 1 fM fusion transcripts with high specificity and has been successfully applied to real samples. With the real-time fluorescence measurements, the fusion transcripts can be assayed in a simple way. Therefore, the proposed method can provide a simple and cost-effective platform for fusion transcript detection in routine laboratories and clinical diagnosis.
Collapse
Affiliation(s)
- Fengxia Su
- School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, 100083, P. R. China.
| | | | | | | | | |
Collapse
|
22
|
Potluri PR, Rajendran VK, Sunna A, Wang Y. Rapid and specific duplex detection of methicillin-resistant Staphylococcus aureus genes by surface-enhanced Raman spectroscopy. Analyst 2020; 145:2789-2794. [PMID: 32101179 DOI: 10.1039/c9an01959f] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Methicillin-resistant Staphylococcus aureus (MRSA) is considered to be one of the important hospital-acquired pathogens. MRSA is also commonly associated with hospital-acquired infections and mortality. Quantitative and precise detection of MRSA is essential for rapid diagnosis and subsequent effective disease management strategies. We herein developed a highly specific method for rapid MRSA detection that combines surface-enhanced Raman spectroscopy (SERS) nanotags and polymerase chain reaction (PCR). SERS provided the sensitivity and spectral multiplexing capability while PCR provided the specificity required for the assay. The method was tested by the simultaneous detection of two MRSA specific genes (mecA and femA) amplified from genomic DNA isolated from clinical specimens. Magnetic isolation and rapid duplex detection were performed to obtain a detectable signal down to 104 input copies within 80 min. This demonstrated the potential of the SERS-PCR based approach for the accurate identification of MRSA at an early-diagnosis stage. This study also provides an alternative approach to the existing methods for detecting clinical targets without compromising sensitivity and selectivity, and with minimal handling steps. We thus believe that this approach will find a broad application in clinical applications.
Collapse
Affiliation(s)
- Phani R Potluri
- Department of Molecular Sciences, Macquarie University, Sydney, Australia.
| | | | | | | |
Collapse
|
23
|
Li X, Yang T, Li CS, Song Y, Wang D, Jin L, Lou H, Li W. Polymerase chain reaction - surface-enhanced Raman spectroscopy (PCR-SERS) method for gene methylation level detection in plasma. Theranostics 2020; 10:898-909. [PMID: 31903158 PMCID: PMC6929977 DOI: 10.7150/thno.30204] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Accepted: 10/07/2019] [Indexed: 12/12/2022] Open
Abstract
Gene promoter hypermethylation is a vital step in tumorigenesis. This paper set out to explore the use of polymerase chain reaction - surface-enhanced Raman spectroscopy (PCR-SERS) for the detection of gene methylation levels, with a focus on cancer diagnosis. Methods: PCR with methylation independent primers were used on DNA samples to amplify target genes regardless of their methylation states. SERS was used on the obtained PCR products to generate spectra that contained peak changes belonging to CG and AT base pairs. Multiple linear regression (MLR) was then used to deconvolute the SERS spectra so that the CG/AT ratios of the sample could be obtained. These MLR results were used to calculate methylation levels of the target genes. For protocol verification, three sets of seven reference DNA solutions with known methylation levels (0%, 1%, 5%, 25%, 50%, 75%, and 100%) were analysed. Clinically, blood plasma samples were taken from 48 non-small-cell lung cancer (NSCLC) patients and 51 healthy controls. The methylation levels of the genes p16, MGMT, and RASSF1 were determined for each patient using this method. Results: Verification experiment on the mixtures with known methylation levels resulted in an error of less than 6% from the actual levels. When applied to our clinical samples, the frequency of methylation in at least one of the three target genes among the NSCLC patients was 87.5%, but this percentage decreased to 11.8% for the control group. The methylation levels of p16 were found to be significantly higher in NSCLC patients with more pack-years smoked (p=0.04), later cancer stages (p=0.03), and cancer types of squamous cell and large cell versus adenocarcinoma (p=0.03). Prediction accuracy of 88% was achieved from classification and regression trees (CART) based on methylation levels and states, respectively. Conclusion: This research showed that the PCR-SERS protocol could quantitatively measure the methylation levels of genes in plasma. The methylation levels of the genes p16, MGMT, and RASSF1 were higher in NSCLC patients than in controls.
Collapse
Affiliation(s)
- Xiaozhou Li
- School of Science, Shenyang Ligong University, Shenyang 110159, China
- College of Environmental Sciences, Liaoning University, Shenyang 110036, China
| | - Tianyue Yang
- School of Science, Shenyang Ligong University, Shenyang 110159, China
- College of Environmental Sciences, Liaoning University, Shenyang 110036, China
| | - Caesar Siqi Li
- College of Medicine, Northeast Ohio Medical University, Rootstown 44272, USA
| | - Youtao Song
- College of Environmental Sciences, Liaoning University, Shenyang 110036, China
| | - Deli Wang
- School of Science, Shenyang Ligong University, Shenyang 110159, China
| | - Lili Jin
- School of Life Science, Liaoning University, Shenyang 110036, China
| | - Hong Lou
- School of Life Science, Liaoning University, Shenyang 110036, China
| | - Wei Li
- School of Electronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu 611731, China
| |
Collapse
|
24
|
Biosensors for epigenetic biomarkers detection: A review. Biosens Bioelectron 2019; 144:111695. [PMID: 31526982 DOI: 10.1016/j.bios.2019.111695] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Revised: 08/24/2019] [Accepted: 09/06/2019] [Indexed: 12/11/2022]
Abstract
Epigenetic inheritance is a heritable change in gene function independent of alterations in nucleotide sequence. It regulates the normal cellular activities of the organisms by affecting gene expression and transcription, and its abnormal expression may lead to the developmental disorder, senile dementia, and carcinogenesis progression. Thus, epigenetic inheritance is recognized as an important biomarker, and the accurate quantification of epigenetic inheritance is crucial to clinical diagnosis, drug development and cancer treatment. Noncoding RNA, DNA methylation and histone modification are the most common epigenetic biomarkers. The conventional biosensors (e.g., northern blotting, radiometric, mass spectrometry and immunosorbent biosensors) for epigenetic biomarkers assay usually suffer from hazardous radiation, complicated manipulation, and time-consuming procedures. To facilitate the practical applications, some new biosensors including colorimetric, luminescent, Raman scattering spectroscopy, electrochemical and fluorescent biosensors have been developed for the detection of epigenetic biomarkers with simplicity, rapidity, high throughput and high sensitivity. In this review, we summarize the recent advances in epigenetic biomarkers assay. We classify the biosensors into the direct amplification-free and the nucleotide amplification-assisted ones, and describe the principles of various biosensors, and further compare their performance for epigenetic biomarkers detection. Moreover, we discuss the emerging trends and challenges in the future development of epigenetic biomarkers biosensors.
Collapse
|
25
|
Sina AAI, Carrascosa LG, Trau M. DNA Methylation-Based Point-of-Care Cancer Detection: Challenges and Possibilities. Trends Mol Med 2019; 25:955-966. [PMID: 31253589 DOI: 10.1016/j.molmed.2019.05.014] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Revised: 05/28/2019] [Accepted: 05/29/2019] [Indexed: 12/31/2022]
Abstract
Eukaryotic cell DNA conserves a distinct genomic methylation pattern, which acts as a molecular switch to control the transcriptional machinery of the cell. However, pathological processes can alter this methylation pattern, leading to the onset of diseases such as cancer. Recent advances in methylation analysis provide a more precise understanding of the consequence of DNA methylation changes towards cancer progression. Consequently, the discoveries of numerous methylation-based biomarkers have inspired the development of simple tests for cancer detection. In this opinion article, we systematically discuss the benefits and challenges associated with the promising methylation-based approaches and develop a point-of-care index to evaluate their potential in terms of point-of-care cancer diagnostics.
Collapse
Affiliation(s)
- Abu Ali Ibn Sina
- Centre for Personalized Nanomedicine, Australian Institute for Bioengineering and Nanotechnology (AIBN), Corner College and Cooper Roads (Bldg 75), The University of Queensland, Brisbane, QLD 4072, Australia
| | - Laura G Carrascosa
- Centre for Personalized Nanomedicine, Australian Institute for Bioengineering and Nanotechnology (AIBN), Corner College and Cooper Roads (Bldg 75), The University of Queensland, Brisbane, QLD 4072, Australia.
| | - Matt Trau
- Centre for Personalized Nanomedicine, Australian Institute for Bioengineering and Nanotechnology (AIBN), Corner College and Cooper Roads (Bldg 75), The University of Queensland, Brisbane, QLD 4072, Australia; School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD 4072, Australia.
| |
Collapse
|
26
|
Li L, Lim SF, Puretzky A, Riehn R, Hallen HD. DNA Methylation Detection Using Resonance and Nanobowtie-Antenna-Enhanced Raman Spectroscopy. Biophys J 2019; 114:2498-2506. [PMID: 29874601 DOI: 10.1016/j.bpj.2018.04.021] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Revised: 03/22/2018] [Accepted: 04/10/2018] [Indexed: 01/04/2023] Open
Abstract
We show that DNA carrying 5-methylcytosine modifications or methylated DNA (m-DNA) can be distinguished from DNA with unmodified cytosine by Raman spectroscopy enhanced by both a bowtie nanoantenna and excitation resonance. In particular, m-DNA can be identified by a peak near 1000 cm-1 and changes in the Raman peaks in the 1200-1700 cm-1 band that are enhanced by the ring-absorption resonance. The identification is robust to the use of resonance Raman and nanoantenna excitation used to obtain significant signal improvement. The primary differences are three additional Raman peaks with methylation at 1014, 1239, and 1639 cm-1 and spectral intensity inversion at 1324 (C5=C6) and 1473 cm-1 (C4=N3) in m-DNA compared to that of DNA with unmodified cytosine. We attribute this to the proximity of the methyl group to the antenna, which brings the (C5=C6) mode closer to experiencing a stronger near-field enhancement. We also show distinct Raman spectral features attributed to the transition of DNA from a hydrated state, when dissolved, to a dried/denatured state. We observe a general broadening of the larger lines and a transfer of spectral weight from the ∼1470 cm-1 vibration to the two higher-energy lines of the dried m-DNA solution. We attribute the new spectral characteristics to DNA softening under high salt conditions and find that the m-DNA is still distinguishable via the ∼1000 cm-1 peak and distribution of the signal in the 1200-1700 cm-1 band. The nanoantenna gain exceeds 20,000, whereas the real signal ratio is much less because of a low average enhanced region occupancy even with these relatively high DNA concentrations. It is improved when fixed DNA in a salt crystal lies near the nanoantenna. The Raman resonance gain profile is consistent with A-term expectations, and the resonance is found at ∼259 nm excitation wavelength.
Collapse
Affiliation(s)
- Ling Li
- Department of Physics, North Carolina State University, Raleigh, North Carolina
| | - Shuang Fang Lim
- Department of Physics, North Carolina State University, Raleigh, North Carolina
| | - Alexander Puretzky
- Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, Tennessee
| | - Robert Riehn
- Department of Physics, North Carolina State University, Raleigh, North Carolina
| | - Hans D Hallen
- Department of Physics, North Carolina State University, Raleigh, North Carolina.
| |
Collapse
|
27
|
Karimi MA, Dadmehr M, Hosseini M, Korouzhdehi B, Oroojalian F. Sensitive detection of methylated DNA and methyltransferase activity based on the lighting up of FAM-labeled DNA quenched fluorescence by gold nanoparticles. RSC Adv 2019; 9:12063-12069. [PMID: 35516994 PMCID: PMC9063544 DOI: 10.1039/c9ra01564g] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Accepted: 04/04/2019] [Indexed: 12/27/2022] Open
Abstract
DNA methylation of cytosine bases, which is catalyzed by methyltransferase enzymes, involve biochemical processes that contribute to gene expression and gene regulation in cells. Detection of abnormal patterns of both methylated DNA and methyltransferase enzyme activity at early stages could be considered as promising targets for early cancer diagnosis. In the present study, a novel and facile method is introduced for the sensitive detection of the M.SssI methyltransferase (M.SssI MTase) enzyme and methylated DNA based on the fluorescence recovery of FAM-labeled DNA coupled with gold nanoparticles (AuNPs). Thiol-modified probes were functionalized with AuNPs, which brought the FAM fluorophore into the close proximity of the AuNPs. This led to the overlap between the FAM fluorescence emission and AuNPs absorption spectra, introducing a FRET occurrence and causing fluorescence quenching. The hybridization of the probe and its complementary target provided specific CpG sites for M.SssI MTase enzyme activity. The methylation process gradually converted the quenched FAM fluorophore into an emissive fluorophore upon the addition of the MTase enzyme, and the observed fluorescence recovery proved the efficiency of the assay for the detection of MTase enzyme. The fluorescence intensity showed an increasing trend with M.SssI MTase enzyme activity in the range of 1–8 U mL−1 with a detection limit of 0.14 U mL−1. The addition of methylated ssDNA targets to a ssDNA FAM-labeled probe resulted in a DNA duplex formation, leading to a strong fluorescence signal emission due to the recovery of the fluorophore signal. Conversely, the unmethylated ssDNA target caused no changes in the fluorescence signal. In the presence of methylated DNA targets, the biosensor could specifically recognize it and accordingly trigger the methylated targets through a fluorescence enhancement in the range of 5–100 pM by monitoring the increase in the fluorescence intensity with a detection limit of 2.2 pM. The obtained results showed that the assay could realize the detection of M.SssI MTase and methylated DNA effectively in diluted human serum samples. Human serum conditions showed no significant interference with the assay performance, indicating that the present method has great potential for further application in real samples. A novel method for detection of DNA methylation based on fluorescence recovery of FAM labeled DNA/Au NPs was introduced.![]()
Collapse
Affiliation(s)
| | - Mehdi Dadmehr
- Department of Biology
- Payame Noor University
- Tehran
- Iran
| | - Morteza Hosseini
- Department of Life Science Engineering
- Faculty of New Sciences & Technologies
- University of Tehran
- Tehran
- Iran
| | | | - Fatemeh Oroojalian
- Department of Advanced Sciences and Technologies
- School of Medicine
- North Khorasan University of Medical Sciences
- Bojnurd
- Iran
| |
Collapse
|
28
|
Sadeghan AA, Soltaninejad H, Hosseinkhani S, Hosseini M, Ganjali MR, Asadollahi MA. Fluorescence enhancement of silver nanocluster at intrastrand of a 12C-loop in presence of methylated region of sept 9 promoter. Anal Chim Acta 2018; 1038:157-165. [DOI: 10.1016/j.aca.2018.07.025] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Revised: 06/27/2018] [Accepted: 07/10/2018] [Indexed: 02/06/2023]
|
29
|
Haque MH, Bhattacharjee R, Islam MN, Gopalan V, Nguyen NT, Lam AK, Shiddiky MJA. Colorimetric and electrochemical quantification of global DNA methylation using a methyl cytosine-specific antibody. Analyst 2018; 142:1900-1908. [PMID: 28516982 DOI: 10.1039/c7an00526a] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
We report a simple colorimetric (naked-eye) and electrochemical method for the rapid, sensitive and specific quantification of global methylation levels using only 25 ng of input DNA. Our approach utilises a three-step strategy; (i) initial adsorption of the extracted, purified and denatured bisulfite-treated DNA on a screen-printed gold electrode (SPE-Au), (ii) immuno-recognition of methylated DNA using a horseradish peroxidase (HRP)-conjugated methylcytosine (HRP-5mC) antibody and (iii) subsequent colorimetric detection by the enzymatic oxidation of 3,3',5,5'-tetramethylbenzidin (TMB)/H2O2 which generated a blue-coloured product in the presence of methylated DNA and HRP-5mC immunocomplex. As TMB(ox) is electroactive, it also produces detectable amperometric current at +150 mV versus a Ag pseudo-reference electrode (electrochemical detection). The assay could successfully differentiate 5-aza-2'-deoxycytidine drug-treated and untreated Jurkat DNA samples. It showed good reproducibility (relative standard deviation (% RSD) = <5%, for n = 3) with fairly good sensitivity (as low as 5% difference in methylation levels) and specificity while analysing various levels of global DNA methylation in synthetic samples and cell lines. The method has also been tested for analysing the methylation level in fresh tissue samples collected from eight patients with oesophageal squamous cell carcinoma. We believe that this assay could be potentially useful as a low-cost alternative for genome-wide DNA methylation analysis in point-of-care applications.
Collapse
Affiliation(s)
- Md Hakimul Haque
- Cancer Molecular Pathology laboratory in Menzies Health Institute Queensland, Griffith University and School of Medicine, Gold Coast, QLD 4222, Australia.
| | | | | | | | | | | | | |
Collapse
|
30
|
Heck C, Michaeli Y, Bald I, Ebenstein Y. Analytical epigenetics: single-molecule optical detection of DNA and histone modifications. Curr Opin Biotechnol 2018; 55:151-158. [PMID: 30326408 DOI: 10.1016/j.copbio.2018.09.006] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Revised: 09/12/2018] [Accepted: 09/16/2018] [Indexed: 12/13/2022]
Abstract
The field of epigenetics describes the relationship between genotype and phenotype, by regulating gene expression without changing the canonical base sequence of DNA. It deals with molecular genomic information that is encoded by a rich repertoire of chemical modifications and molecular interactions. This regulation involves DNA, RNA and proteins that are enzymatically tagged with small molecular groups that alter their physical and chemical properties. It is now clear that epigenetic alterations are involved in development and disease, and thus, are the focus of intensive research. The ability to record epigenetic changes and quantify them in rare medical samples is critical for next generation diagnostics. Optical detection offers the ultimate single-molecule sensitivity and the potential for spectral multiplexing. Here we review recent progress in ultrasensitive optical detection of DNA and histone modifications.
Collapse
Affiliation(s)
- Christian Heck
- School of Chemistry, Raymond and Beverly Sackler Faculty of Exact Sciences, Tel Aviv University, Tel Aviv, Israel; Institute of Chemistry, University of Potsdam, Karl-Liebknecht-Str. 24-25, 14476 Potsdam, Germany
| | - Yael Michaeli
- School of Chemistry, Raymond and Beverly Sackler Faculty of Exact Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Ilko Bald
- Institute of Chemistry, University of Potsdam, Karl-Liebknecht-Str. 24-25, 14476 Potsdam, Germany; BAM Federal Institute for Materials Research and Testing, Richard-Willstätter-Str. 11, 12489 Berlin, Germany.
| | - Yuval Ebenstein
- School of Chemistry, Raymond and Beverly Sackler Faculty of Exact Sciences, Tel Aviv University, Tel Aviv, Israel.
| |
Collapse
|
31
|
Syedmoradi L, Esmaeili F, Norton ML. Towards DNA methylation detection using biosensors. Analyst 2018; 141:5922-5943. [PMID: 27704092 DOI: 10.1039/c6an01649a] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
DNA methylation, a stable and heritable covalent modification which mostly occurs in the context of a CpG dinucleotide, has great potential as a biomarker to detect disease, provide prognoses and predict therapeutic responses. It can be detected in a quantitative manner by many different approaches both genome-wide and at specific gene loci, in various biological fluids such as urine, plasma, and serum, which can be obtained without invasive procedures. The current, classical methods are effective in studying DNA methylation patterns, however, for the most part; they have major drawbacks such as expensive instruments, complicated and time consuming protocols as well as relatively low sensitivity, and high false positive rates. To overcome these obstacles, great efforts have been made toward the development of reliable sensor devices to solve these limitations, providing sensitive, fast and cost-effective measurements. The use of biosensors for DNA methylation biomarkers has increased in recent years, because they are portable, simple, rapid, and inexpensive which offers a straightforward way to detect methylated biomarkers. In this review, we give an overview of the conventional techniques for the detection of DNA methylation and then will focus on recent advances in biosensor based methylation detection that eliminate bisulfite conversion and PCR amplification.
Collapse
Affiliation(s)
- Leila Syedmoradi
- Department of Medical Nanotechnology, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Fariba Esmaeili
- Department of Medical Nanotechnology, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Michael L Norton
- Department of Chemistry, Marshall University, One John Marshall Drive, Huntington, WV 25755, USA.
| |
Collapse
|
32
|
Soltaninejad H, Asadollahi MA, Hosseinkhani S, Hosseini M, Ganjali MR. Discrimination of methylated and nonmethylated region of a colorectal cancer related promoter using fluorescence enhancement of gold nanocluster at intrastrand of a 9C-loop. Methods Appl Fluoresc 2018; 6:045009. [DOI: 10.1088/2050-6120/aae176] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
33
|
Sun J, Li Y, Chen C, Qi T, Xia D, Mao W, Yang T, Chen L, Shen W, Tang S. Magnetic Ni/Fe layered double hydroxide nanosheets as enhancer for DNA hairpin sensitive detection of miRNA. Talanta 2018; 187:265-271. [DOI: 10.1016/j.talanta.2018.05.037] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2017] [Revised: 04/02/2018] [Accepted: 05/08/2018] [Indexed: 11/16/2022]
|
34
|
Kim J, Park HJ, Kim JH, Chang B, Park HK. Label-free Detection for a DNA Methylation Assay Using Raman Spectroscopy. Chin Med J (Engl) 2018; 130:1961-1967. [PMID: 28776549 PMCID: PMC5555131 DOI: 10.4103/0366-6999.211874] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Background: DNA methylation has been suggested as a biomarker for early cancer detection and treatment. Varieties of technologies for detecting DNA methylation have been developed, but they are not sufficiently sensitive for use in diagnostic devices. The aim of this study was to determine the suitability of Raman spectroscopy for label-free detection of methylated DNA. Methods: The methylated promoter regions of cancer-related genes cadherin 1 (CDH1) and retinoic acid receptor beta (RARB) served as target DNA sequences. Based on bisulfite conversion, oligonucleotides of methylated or nonmethylated probes and targets were synthesized for the DNA methylation assay. Principal component analysis with linear discriminant analysis (PCA-DA) was used to discriminate the hybridization between probes and targets (methylated probe and methylated target or nonmethylated probe and nonmethylated target) of CDH1 and RARB from nonhybridization between the probe and targets (methylated probe and nonmethylated target or nonmethylated probe and methylated target). Results: This study revealed that the CDH1 and RARB oligo sets and their hybridization data could be classified using PCA-DA. The classification results for CDH1 methylated probe + CDH1 methylated target versus CDH1 methylated probe + CDH1 unmethylated target showed sensitivity, specificity, and error rates of 92%, 100%, and 8%, respectively. The classification results for the RARB methylated probe + RARB methylated target versus RARB methylated probe + RARB unmethylated target showed sensitivity, specificity, and error rates of 92%, 93%, and 11%, respectively. Conclusions: Label-free detection of DNA methylation could be achieved using Raman spectroscopy with discriminant analysis.
Collapse
Affiliation(s)
- Jeongho Kim
- Department of Biomedical Engineering, College of Medicine, Kyung Hee University, Seoul 02447, Korea
| | - Hae Jeong Park
- Department of Pharmacology, College of Medicine, Kyung Hee University, Seoul 02447, Korea
| | - Jae Hyung Kim
- Department of Biomedical Engineering, College of Medicine, Kyung Hee University, Seoul 02447, Korea
| | - Boksoon Chang
- Department of Pulmonary and Critical Care Medicine, Kyung Hee University Hospital at Gangdong, Seoul 05278, Korea
| | - Hun-Kuk Park
- Department of Biomedical Engineering, College of Medicine, Kyung Hee University, Seoul 02447; Department of Medical Engineering, Graduate School, Kyung Hee University, Seoul 02447, Korea
| |
Collapse
|
35
|
|
36
|
Ma F, Liu H, Li CC, Zhang CY. A simple and isothermal ligase-based amplification approach based on a ligation-activated cleavage reaction. Chem Commun (Camb) 2018; 54:12638-12641. [DOI: 10.1039/c8cc07843b] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
We develop a simple and isothermal ligase-based cyclic amplification approach for the sensitive detection of polynucleotide kinase, DNA, proteins and ATP.
Collapse
Affiliation(s)
- Fei Ma
- College of Chemistry
- Chemical Engineering and Materials Science
- Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong
- Key Laboratory of Molecular and Nano Probes
- Ministry of Education
| | - Huan Liu
- College of Chemistry
- Chemical Engineering and Materials Science
- Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong
- Key Laboratory of Molecular and Nano Probes
- Ministry of Education
| | - Chen-chen Li
- College of Chemistry
- Chemical Engineering and Materials Science
- Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong
- Key Laboratory of Molecular and Nano Probes
- Ministry of Education
| | - Chun-yang Zhang
- College of Chemistry
- Chemical Engineering and Materials Science
- Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong
- Key Laboratory of Molecular and Nano Probes
- Ministry of Education
| |
Collapse
|
37
|
Lau HY, Botella JR. Advanced DNA-Based Point-of-Care Diagnostic Methods for Plant Diseases Detection. FRONTIERS IN PLANT SCIENCE 2017; 8:2016. [PMID: 29375588 PMCID: PMC5770625 DOI: 10.3389/fpls.2017.02016] [Citation(s) in RCA: 88] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2017] [Accepted: 11/13/2017] [Indexed: 05/07/2023]
Abstract
Diagnostic technologies for the detection of plant pathogens with point-of-care capability and high multiplexing ability are an essential tool in the fight to reduce the large agricultural production losses caused by plant diseases. The main desirable characteristics for such diagnostic assays are high specificity, sensitivity, reproducibility, quickness, cost efficiency and high-throughput multiplex detection capability. This article describes and discusses various DNA-based point-of care diagnostic methods for applications in plant disease detection. Polymerase chain reaction (PCR) is the most common DNA amplification technology used for detecting various plant and animal pathogens. However, subsequent to PCR based assays, several types of nucleic acid amplification technologies have been developed to achieve higher sensitivity, rapid detection as well as suitable for field applications such as loop-mediated isothermal amplification, helicase-dependent amplification, rolling circle amplification, recombinase polymerase amplification, and molecular inversion probe. The principle behind these technologies has been thoroughly discussed in several review papers; herein we emphasize the application of these technologies to detect plant pathogens by outlining the advantages and disadvantages of each technology in detail.
Collapse
Affiliation(s)
- Han Yih Lau
- Biotechnology and Nanotechnology Research Centre, Malaysian Agricultural Research and Development Institute, Serdang, Malaysia
| | - Jose R. Botella
- Plant Genetic Engineering Laboratory, School of Agriculture and Food Sciences, University of Queensland, Brisbane, QLD, Australia
| |
Collapse
|
38
|
Optical biosensing strategies for DNA methylation analysis. Biosens Bioelectron 2017; 92:668-678. [DOI: 10.1016/j.bios.2016.10.034] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2016] [Revised: 10/05/2016] [Accepted: 10/18/2016] [Indexed: 11/23/2022]
|
39
|
Hossain T, Mahmudunnabi G, Masud MK, Islam MN, Ooi L, Konstantinov K, Hossain MSA, Martinac B, Alici G, Nguyen NT, Shiddiky MJA. Electrochemical biosensing strategies for DNA methylation analysis. Biosens Bioelectron 2017; 94:63-73. [PMID: 28259051 DOI: 10.1016/j.bios.2017.02.026] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2016] [Revised: 02/15/2017] [Accepted: 02/16/2017] [Indexed: 12/31/2022]
Abstract
DNA methylation is one of the key epigenetic modifications of DNA that results from the enzymatic addition of a methyl group at the fifth carbon of the cytosine base. It plays a crucial role in cellular development, genomic stability and gene expression. Aberrant DNA methylation is responsible for the pathogenesis of many diseases including cancers. Over the past several decades, many methodologies have been developed to detect DNA methylation. These methodologies range from classical molecular biology and optical approaches, such as bisulfite sequencing, microarrays, quantitative real-time PCR, colorimetry, Raman spectroscopy to the more recent electrochemical approaches. Among these, electrochemical approaches offer sensitive, simple, specific, rapid, and cost-effective analysis of DNA methylation. Additionally, electrochemical methods are highly amenable to miniaturization and possess the potential to be multiplexed. In recent years, several reviews have provided information on the detection strategies of DNA methylation. However, to date, there is no comprehensive evaluation of electrochemical DNA methylation detection strategies. Herein, we address the recent developments of electrochemical DNA methylation detection approaches. Furthermore, we highlight the major technical and biological challenges involved in these strategies and provide suggestions for the future direction of this important field.
Collapse
Affiliation(s)
- Tanvir Hossain
- Department of Biochemistry & Molecular Biology, Shahjalal University of Science & Technology, Sylhet 3114, Bangladesh
| | - Golam Mahmudunnabi
- Department of Genetic Engineering and Biotechnology, Shahjalal University of Science & Technology, Sylhet 3114, Bangladesh
| | - Mostafa Kamal Masud
- Department of Biochemistry & Molecular Biology, Shahjalal University of Science & Technology, Sylhet 3114, Bangladesh; Institute for Superconducting and Electronic Materials, Australian Institute for Innovative Materials (AIIM), University of Wollongong, Squires Way, Innovation Campus, North Wollongong, NSW 2519, Australia; Queensland Micro- and Nanotechnology Centre, Griffith University, Nathan, QLD 4111, Australia
| | - Md Nazmul Islam
- Queensland Micro- and Nanotechnology Centre, Griffith University, Nathan, QLD 4111, Australia; School of Natural Sciences, Griffith University (Nathan Campus), Nathan, QLD 4111, Australia
| | - Lezanne Ooi
- Illawarra Health and Medical Research Institute, School of Biological Sciences, University of Wollongong, Northfields Avenue, Wollongong, NSW 2522, Australia
| | - Konstantin Konstantinov
- Institute for Superconducting and Electronic Materials, Australian Institute for Innovative Materials (AIIM), University of Wollongong, Squires Way, Innovation Campus, North Wollongong, NSW 2519, Australia
| | - Md Shahriar Al Hossain
- Institute for Superconducting and Electronic Materials, Australian Institute for Innovative Materials (AIIM), University of Wollongong, Squires Way, Innovation Campus, North Wollongong, NSW 2519, Australia
| | - Boris Martinac
- Victor Chang Cardiac Research Institute, Darlinghurst, NSW 2010, Australia
| | - Gursel Alici
- ARC Centre of Excellence for Electromaterials Science, University of Wollongong, Northfields Avenue, Wollongong, NSW 2522, Australia
| | - Nam-Trung Nguyen
- Queensland Micro- and Nanotechnology Centre, Griffith University, Nathan, QLD 4111, Australia
| | - Muhammad J A Shiddiky
- Queensland Micro- and Nanotechnology Centre, Griffith University, Nathan, QLD 4111, Australia; School of Natural Sciences, Griffith University (Nathan Campus), Nathan, QLD 4111, Australia.
| |
Collapse
|
40
|
Comprehensive evaluation of molecular enhancers of the isothermal exponential amplification reaction. Sci Rep 2016; 6:37837. [PMID: 27910874 PMCID: PMC5133538 DOI: 10.1038/srep37837] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2016] [Accepted: 11/02/2016] [Indexed: 11/09/2022] Open
Abstract
The exponential amplification reaction (EXPAR) is an emerging isothermal nucleic acid amplification method with high potential for molecular diagnostics due to its isothermal nature and high amplification efficiency. However, the use of EXPAR is limited by the high levels of non-specific amplification. Hence, methods that can improve the specificity of EXPAR are desired to facilitate its widespread adoption in practice. Herein, we proposed a strategy to improve EXPAR performance by using molecular enhancers. Eight small molecules were investigated, including ethylene glycol, propylene glycol, betaine, dimethyl sulfoxide (DMSO), trehalose, tetramethylammonium chloride (TMAC), bovine serum albumin (BSA) and single-stranded binding (SSB) proteins. A combination of kinetic and end-point analysis was adopted to investigate how these molecules affected EXPAR performance. Trehalose, TMAC, BSA and SSB proteins were found to have positive effects on EXPAR with trehalose being able to increase the efficiency of EXPAR. In contrast, TMAC, BSA and SSB proteins were shown to increase the specificity of EXPAR. We applied our findings to demonstrate the combination of trehalose and TMAC could simultaneously improve both the efficiency and specificity of an EXPAR-based miRNA detection method. The information provided in this study may serve as a reference to benefit the wider isothermal amplification community.
Collapse
|
41
|
Koo KM, Wee EJH, Mainwaring PN, Wang Y, Trau M. Toward Precision Medicine: A Cancer Molecular Subtyping Nano-Strategy for RNA Biomarkers in Tumor and Urine. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2016; 12:6233-6242. [PMID: 27717152 DOI: 10.1002/smll.201602161] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Revised: 08/26/2016] [Indexed: 06/06/2023]
Abstract
Cancer is a heterogeneous disease which manifests as different molecular subtypes due to the complex nature of tumor initiation, progression, and metastasis. The concept of precision medicine aims to exploit this cancer heterogeneity by incorporating diagnostic technology to characterize each cancer patient's molecular subtype for tailored treatments. To characterize cancer molecular subtypes accurately, a suite of multiplexed bioassays have currently been developed to detect multiple oncogenic biomarkers. Despite the reliability of current multiplexed detection techniques, novel strategies are still needed to resolve limitations such as long assay time, complex protocols, and difficulty in interpreting broad overlapping spectral peaks of conventional fluorescence readouts. Herein a rapid (80 min) multiplexed platform strategy for subtyping prostate cancer tumor and urine samples based on their RNA biomarker profiles is presented. This is achieved by combining rapid multiplexed isothermal reverse transcription-recombinase polymerase amplification (RT-RPA) of target RNA biomarkers with surface-enhanced Raman spectroscopy (SERS) nanotags for "one-pot" readout. This is the first translational application of a RT-RPA/SERS-based platform for multiplexed cancer biomarker detection to address a clinical need. With excellent sensitivity of 200 zmol (100 copies) and specificity, we believed that this platform methodology could be a useful tool for rapid multiplexed subtyping of cancers.
Collapse
Affiliation(s)
- Kevin M Koo
- Centre for Personalized Nanomedicine, Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, QLD, 4072, Australia
| | - Eugene J H Wee
- Centre for Personalized Nanomedicine, Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, QLD, 4072, Australia
| | - Paul N Mainwaring
- Centre for Personalized Nanomedicine, Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, QLD, 4072, Australia
| | - Yuling Wang
- Centre for Personalized Nanomedicine, Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, QLD, 4072, Australia
| | - Matt Trau
- Centre for Personalized Nanomedicine, Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, QLD, 4072, Australia
- School of Chemistry and Molecular Biosciences, The University of Queensland, QLD, 4072, Australia
| |
Collapse
|
42
|
Zhang L, Liu Y, Li Y, Zhao Y, Wei W, Liu S. Sensitive electrochemical assaying of DNA methyltransferase activity based on mimic-hybridization chain reaction amplified strategy. Anal Chim Acta 2016; 933:75-81. [DOI: 10.1016/j.aca.2016.05.044] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2016] [Revised: 05/16/2016] [Accepted: 05/23/2016] [Indexed: 11/29/2022]
|
43
|
Lau HY, Wang Y, Wee EJH, Botella JR, Trau M. Field Demonstration of a Multiplexed Point-of-Care Diagnostic Platform for Plant Pathogens. Anal Chem 2016; 88:8074-81. [PMID: 27403651 DOI: 10.1021/acs.analchem.6b01551] [Citation(s) in RCA: 74] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Effective disease management strategies to prevent catastrophic crop losses require rapid, sensitive, and multiplexed detection methods for timely decision making. To address this need, a rapid, highly specific and sensitive point-of-care method for multiplex detection of plant pathogens was developed by taking advantage of surface-enhanced Raman scattering (SERS) labeled nanotags and recombinase polymerase amplification (RPA), which is a rapid isothermal amplification method with high specificity. In this study, three agriculturally important plant pathogens (Botrytis cinerea, Pseudomonas syringae, and Fusarium oxysporum) were used to demonstrate potential translation into the field. The RPA-SERS method was faster, more sensitive than polymerase chain reaction, and could detect as little as 2 copies of B. cinerea DNA. Furthermore, multiplex detection of the three pathogens was demonstrated for complex systems such as the Arabidopsis thaliana plant and commercial tomato crops. To demonstrate the potential for on-site field applications, a rapid single-tube RPA/SERS assay was further developed and successfully performed for a specific target outside of a laboratory setting.
Collapse
Affiliation(s)
- Han Yih Lau
- Centre for Personalized Nanomedicine, Australian Institute for Bioengineering and Nanotechnology, The University of Queensland , Brisbane QLD 4072, Australia.,Plant Genetic Engineering Laboratory, School of Agriculture and Food Sciences, The University of Queensland , Brisbane QLD 4072, Australia
| | - Yuling Wang
- Centre for Personalized Nanomedicine, Australian Institute for Bioengineering and Nanotechnology, The University of Queensland , Brisbane QLD 4072, Australia
| | - Eugene J H Wee
- Centre for Personalized Nanomedicine, Australian Institute for Bioengineering and Nanotechnology, The University of Queensland , Brisbane QLD 4072, Australia
| | - Jose R Botella
- Plant Genetic Engineering Laboratory, School of Agriculture and Food Sciences, The University of Queensland , Brisbane QLD 4072, Australia
| | - Matt Trau
- Centre for Personalized Nanomedicine, Australian Institute for Bioengineering and Nanotechnology, The University of Queensland , Brisbane QLD 4072, Australia.,School of Chemistry and Molecular Biosciences, The University of Queensland , Brisbane QLD 4072, Australia
| |
Collapse
|
44
|
Wee EJ, Wang Y, Tsao SCH, Trau M. Simple, Sensitive and Accurate Multiplex Detection of Clinically Important Melanoma DNA Mutations in Circulating Tumour DNA with SERS Nanotags. Am J Cancer Res 2016; 6:1506-13. [PMID: 27446486 PMCID: PMC4955051 DOI: 10.7150/thno.15871] [Citation(s) in RCA: 94] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2016] [Accepted: 05/31/2016] [Indexed: 11/05/2022] Open
Abstract
Sensitive and accurate identification of specific DNA mutations can influence clinical decisions. However accurate diagnosis from limiting samples such as circulating tumour DNA (ctDNA) is challenging. Current approaches based on fluorescence such as quantitative PCR (qPCR) and more recently, droplet digital PCR (ddPCR) have limitations in multiplex detection, sensitivity and the need for expensive specialized equipment. Herein we describe an assay capitalizing on the multiplexing and sensitivity benefits of surface-enhanced Raman spectroscopy (SERS) with the simplicity of standard PCR to address the limitations of current approaches. This proof-of-concept method could reproducibly detect as few as 0.1% (10 copies, CV < 9%) of target sequences thus demonstrating the high sensitivity of the method. The method was then applied to specifically detect three important melanoma mutations in multiplex. Finally, the PCR/SERS assay was used to genotype cell lines and ctDNA from serum samples where results subsequently validated with ddPCR. With ddPCR-like sensitivity and accuracy yet at the convenience of standard PCR, we believe this multiplex PCR/SERS method could find wide applications in both diagnostics and research.
Collapse
|
45
|
Heimer BW, Tam BE, Minkovsky A, Sikes HD. Using nanobiotechnology to increase the prevalence of epigenotyping assays in precision medicine. WILEY INTERDISCIPLINARY REVIEWS-NANOMEDICINE AND NANOBIOTECHNOLOGY 2016; 9. [PMID: 27126368 DOI: 10.1002/wnan.1407] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2016] [Revised: 03/07/2016] [Accepted: 03/17/2016] [Indexed: 12/31/2022]
Abstract
Epigenetic silencing of genes that are important for DNA repair, cell cycle control, apoptosis, and cellular interactions with the extracellular matrix has been causally linked to several subtypes of cancer. Translating this knowledge of the implications of promoter methylation to wide and routine use in clinical pathology laboratories has been more challenging than the case of genetic analyses because epigenetic modifications do not change the underlying sequence of the affected nucleic acid, rendering polymerase chain reaction analysis alone uninformative. Two epigenotyping assays that detect promoter methylation are currently standard of care in treatment of two distinct tumor types in only a few top hospitals across the United States. Both rely on a harsh chemical step that degrades over 90% of tumor DNA samples, which are often available in limited quantities, and imparts the potential for false-negative or false-positive results if the reaction conditions are not exactly correct. Using nanotechnology and biotechnology to devise practical new analysis techniques that avoid the drawbacks of current techniques represents a powerful approach that is likely to significantly increase the clinical use of this class of biomarkers in the coming years. WIREs Nanomed Nanobiotechnol 2017, 9:e1407. doi: 10.1002/wnan.1407 For further resources related to this article, please visit the WIREs website.
Collapse
Affiliation(s)
- Brandon W Heimer
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Brooke E Tam
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Alissa Minkovsky
- Department of Pathology, Brigham and Women's Hospital, Boston, MA, USA
| | - Hadley D Sikes
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| |
Collapse
|
46
|
Nguyen AH, Lee JU, Sim SJ. Nanoplasmonic probes of RNA folding and assembly during pre-mRNA splicing. NANOSCALE 2016; 8:4599-4607. [PMID: 26847719 DOI: 10.1039/c5nr08098c] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
RNA splicing plays important roles in transcriptome and proteome diversity. Herein, we describe the use of a nanoplasmonic system that unveils RNA folding and assembly during pre-mRNA splicing wherein the quantification of mRNA splice variants is not taken into account. With a couple of SERS-probes and plasmonic probes binding at the boundary sites of exon-2/intron-2 and intron-2/exon-3 of the pre-mature RNA of the β-globin gene, the splicing process brings the probes into the plasmonic bands. For plasmonic probes, a plasmon shift increase of ∼29 nm, corresponding to intron removal and exon-2 and exon-3 connection to form the mRNA molecule, is measured by plasmonic coupling. The increased scattering intensity and surface-enhanced Raman scattering (SERS) fingerprinting reveal the clear dynamics of pre-mRNA splicing. Moreover, a time-resolved experiment of individual RNA molecules exhibited a successful splicing and an inhibited splicing event by 33 μM biflavonoid isoginkgetin, a general inhibitor of RNA splicing. The results suggest that the RNA splicing is successfully monitored with the nanoplasmonic system. Thus, this platform can be useful for studying RNA nanotechnology, biomolecular folding, alternative splicing, and maturation of microRNA.
Collapse
Affiliation(s)
- Anh H Nguyen
- Department of Chemical and Biological Engineering, Korea University, Seoul 136-713, Korea.
| | - Jong Uk Lee
- Department of Chemical and Biological Engineering, Korea University, Seoul 136-713, Korea.
| | - Sang Jun Sim
- Department of Chemical and Biological Engineering, Korea University, Seoul 136-713, Korea. and Green School, Korea University, Seoul 136-713, Korea
| |
Collapse
|
47
|
Wang Y, Wee EJH, Trau M. Accurate and sensitive total genomic DNA methylation analysis from sub-nanogram input with embedded SERS nanotags. Chem Commun (Camb) 2016; 52:3560-3. [DOI: 10.1039/c6cc00547k] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Accurate and sensitive total genomic DNA methylation analysis from sub-nanogram input was demonstrated by using embedded SERS nanotags.
Collapse
Affiliation(s)
- Yuling Wang
- Centre for Personalized NanoMedicine
- Australian Institute for Bioengineering and Nanotechnology (AIBN)
- Brisbane
- Australia
| | - Eugene J. H. Wee
- Centre for Personalized NanoMedicine
- Australian Institute for Bioengineering and Nanotechnology (AIBN)
- Brisbane
- Australia
| | - Matt Trau
- Centre for Personalized NanoMedicine
- Australian Institute for Bioengineering and Nanotechnology (AIBN)
- Brisbane
- Australia
- School of Chemistry and Molecular Biosciences
| |
Collapse
|
48
|
Nucleic acid tool enzymes-aided signal amplification strategy for biochemical analysis: status and challenges. Anal Bioanal Chem 2015; 408:2793-811. [DOI: 10.1007/s00216-015-9240-y] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2015] [Revised: 11/13/2015] [Accepted: 12/01/2015] [Indexed: 11/27/2022]
|