1
|
Bogetti X, Saxena S. Integrating Electron Paramagnetic Resonance Spectroscopy and Computational Modeling to Measure Protein Structure and Dynamics. Chempluschem 2024; 89:e202300506. [PMID: 37801003 DOI: 10.1002/cplu.202300506] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 10/05/2023] [Accepted: 10/06/2023] [Indexed: 10/07/2023]
Abstract
Electron paramagnetic resonance (EPR) has become a powerful probe of conformational heterogeneity and dynamics of biomolecules. In this Review, we discuss different computational modeling techniques that enrich the interpretation of EPR measurements of dynamics or distance restraints. A variety of spin labels are surveyed to provide a background for the discussion of modeling tools. Molecular dynamics (MD) simulations of models containing spin labels provide dynamical properties of biomolecules and their labels. These simulations can be used to predict EPR spectra, sample stable conformations and sample rotameric preferences of label sidechains. For molecular motions longer than milliseconds, enhanced sampling strategies and de novo prediction software incorporating or validated by EPR measurements are able to efficiently refine or predict protein conformations, respectively. To sample large-amplitude conformational transition, a coarse-grained or an atomistic weighted ensemble (WE) strategy can be guided with EPR insights. Looking forward, we anticipate an integrative strategy for efficient sampling of alternate conformations by de novo predictions, followed by validations by systematic EPR measurements and MD simulations. Continuous pathways between alternate states can be further sampled by WE-MD including all intermediate states.
Collapse
Affiliation(s)
- Xiaowei Bogetti
- Department of Chemistry, University of Pittsburgh, 219 Parkman Avenue, Pittsburgh, PA, 15260, USA
| | - Sunil Saxena
- Department of Chemistry, University of Pittsburgh, 219 Parkman Avenue, Pittsburgh, PA, 15260, USA
| |
Collapse
|
2
|
Huang K, Fang X. A review on recent advances in methods for site-directed spin labeling of long RNAs. Int J Biol Macromol 2023; 239:124244. [PMID: 37001783 DOI: 10.1016/j.ijbiomac.2023.124244] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Revised: 01/12/2023] [Accepted: 03/15/2023] [Indexed: 03/31/2023]
Abstract
RNAs are important biomolecules that play essential roles in various cellular processes and are crucially linked with many human diseases. The key to elucidate the mechanisms underlying their biological functions and develop RNA-based therapeutics is to investigate RNA structure and dynamics and their connections to function in detail using a variety of approaches. Magnetic resonance techniques including paramagnetic nuclear magnetic resonance (NMR) and electron magnetic resonance (EPR) spectroscopies have proved to be powerful tools to gain insights into such properties. The prerequisites for paramagnetic NMR and EPR studies on RNAs are to achieve site-specific spin labeling of the intrinsically diamagnetic RNAs, which however is not trivial, especially for long ones. In this review, we present some covalent labeling strategies that allow site-specific introduction of electron spins to long RNAs. Generally, these strategies include assembly of long RNAs via enzymatic ligation of short oligonucleotides, co- and post-transcriptional site-specific labeling empowered with the unnatural base pair system, and direct enzymatic functionalization of natural RNAs. We introduce a few case studies to discuss the advantages and limitations of each strategy, and to provide a vision for the future development.
Collapse
|
3
|
Scherer A, Yildirim B, Drescher M. The effect of the zero-field splitting in light-induced pulsed dipolar electron paramagnetic resonance (EPR) spectroscopy. MAGNETIC RESONANCE (GOTTINGEN, GERMANY) 2023; 4:27-46. [PMID: 37904801 PMCID: PMC10583298 DOI: 10.5194/mr-4-27-2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Accepted: 01/13/2023] [Indexed: 11/01/2023]
Abstract
Laser-induced magnetic dipole (LaserIMD) spectroscopy and light-induced double electron-electron resonance (LiDEER) spectroscopy are important techniques in the emerging field of light-induced pulsed dipolar electron paramagnetic resonance (EPR) spectroscopy (light-induced PDS). These techniques use the photoexcitation of a chromophore to the triplet state and measure its dipolar coupling to a neighboring electron spin, which allows the determination of distance restraints. To date, LaserIMD and LiDEER have been analyzed with software tools that were developed for a pair of two S = 1 / 2 spins and that neglected the zero-field splitting (ZFS) of the excited triplet. Here, we explore the limits of this assumption and show that the ZFS can have a significant effect on the shape of the dipolar trace. For a detailed understanding of the effect of the ZFS, a theoretical description for LaserIMD and LiDEER is derived, taking into account the non-secular terms of the ZFS. Simulations based on this model show that the effect of the ZFS is not that pronounced in LiDEER for experimentally relevant conditions. However, the ZFS leads to an additional decay in the dipolar trace in LaserIMD. This decay is not that pronounced in Q-band but can be quite noticeable for lower magnetic field strengths in X-band. Experimentally recorded LiDEER and LaserIMD data confirm these findings. It is shown that ignoring the ZFS in the data analysis of LaserIMD traces can lead to errors in the obtained modulation depths and background decays. In X-band, it is additionally possible that the obtained distance distribution is plagued by long distance artifacts.
Collapse
Affiliation(s)
- Andreas Scherer
- Department of Chemistry, Konstanz Research School Chemical Biology, University of Konstanz, 78457 Konstanz, Germany
| | - Berk Yildirim
- Department of Chemistry, Konstanz Research School Chemical Biology, University of Konstanz, 78457 Konstanz, Germany
| | - Malte Drescher
- Department of Chemistry, Konstanz Research School Chemical Biology, University of Konstanz, 78457 Konstanz, Germany
| |
Collapse
|
4
|
Scherer A, Yao X, Qi M, Wiedmaier M, Godt A, Drescher M. Increasing the Modulation Depth of Gd III-Based Pulsed Dipolar EPR Spectroscopy (PDS) with Porphyrin-Gd III Laser-Induced Magnetic Dipole Spectroscopy. J Phys Chem Lett 2022; 13:10958-10964. [PMID: 36399541 PMCID: PMC9720741 DOI: 10.1021/acs.jpclett.2c02138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Accepted: 10/03/2022] [Indexed: 06/16/2023]
Abstract
Distance determination with pulsed EPR has become an important technique for the structural investigation of biomacromolecules, with double electron-electron resonance spectroscopy (DEER) as the most important method. GdIII-based spin labels are one of the most frequently used spin labels for DEER owing to their stability against reduction, high magnetic moment, and absence of orientation selection. A disadvantage of GdIII-GdIII DEER is the low modulation depth due to the broad EPR spectrum of GdIII. Here, we introduce laser-induced magnetic dipole spectroscopy (LaserIMD) with a spin pair consisting of GdIII(PymiMTA) and a photoexcited porphyrin as an alternative technique. We show that the excited state of the porphyrin is not disturbed by the presence of the GdIII complex and that herewith modulation depths of almost 40% are possible. This is significantly higher than the value of 7.2% that was achieved with GdIII-GdIII DEER.
Collapse
Affiliation(s)
- Andreas Scherer
- Department
of Chemistry and Konstanz Research School Chemical Biology, University of Konstanz, 78457 Konstanz, Germany
| | - Xuemei Yao
- Faculty
of Chemistry and Center of Molecular Materials (CM2), Bielefeld University, Universitätsstraße 25, 33615 Bielefeld, Germany
| | - Mian Qi
- Faculty
of Chemistry and Center of Molecular Materials (CM2), Bielefeld University, Universitätsstraße 25, 33615 Bielefeld, Germany
| | - Max Wiedmaier
- Department
of Chemistry and Konstanz Research School Chemical Biology, University of Konstanz, 78457 Konstanz, Germany
| | - Adelheid Godt
- Faculty
of Chemistry and Center of Molecular Materials (CM2), Bielefeld University, Universitätsstraße 25, 33615 Bielefeld, Germany
| | - Malte Drescher
- Department
of Chemistry and Konstanz Research School Chemical Biology, University of Konstanz, 78457 Konstanz, Germany
| |
Collapse
|
5
|
Yu L, Liu A, Zhang B, Kuang J, Guo X, Tian C, Lu Y. Dipolar coupling-based electron paramagnetic resonance method for protease enzymatic characterization and inhibitor screening. Chem Commun (Camb) 2021; 57:9602-9605. [PMID: 34546243 DOI: 10.1039/d1cc03301h] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Herein, we report an EPR-based method for protease enzymatic characterization and inhibitor screening. This method utilizes dual paramagnetically-labeled probes consisting of a nitroxide spin probe and a Gd3+ ion flanking a peptide that could be specifically cleaved by protease caspase-3. Distance-dependent dipolar coupling between the two paramagnetic centers can be modulated by the protease cleavage activity, thus providing a straightforward and convenient method for protease activity detection using EPR spectroscopy under ambient conditions. Moreover, time-course monitoring of the protease-catalyzed cleavage reaction demonstrated that this EPR-based method could not only allow a direct quantitative enzymatic kinetic assessment, but also could be used for protease inhibitor screening, thus holding great potential in drug discovery studies.
Collapse
Affiliation(s)
- Lu Yu
- The Anhui Provincial Key Laboratory of High Field Magnetic Resonance Image, High Magnetic Field Laboratory, Chinese Academy of Science, Hefei, Anhui 230031, P. R. China.
| | - Aokun Liu
- The Anhui Provincial Key Laboratory of High Field Magnetic Resonance Image, High Magnetic Field Laboratory, Chinese Academy of Science, Hefei, Anhui 230031, P. R. China. .,The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, Center for BioAnalytical Chemistry, and Hefei National Laboratory for Physical Sciences at Microscale, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| | - Bingbo Zhang
- Department of Medical Ultrasound, Shanghai Tenth People's Hospital, Tongji University Cancer Center, The Institute for Biomedical Engineering & Nano Science, Tongji University School of Medicine, Shanghai, 200072, P. R. China
| | - Jian Kuang
- The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, Center for BioAnalytical Chemistry, and Hefei National Laboratory for Physical Sciences at Microscale, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| | - Xiaoqi Guo
- The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, Center for BioAnalytical Chemistry, and Hefei National Laboratory for Physical Sciences at Microscale, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| | - Changlin Tian
- The Anhui Provincial Key Laboratory of High Field Magnetic Resonance Image, High Magnetic Field Laboratory, Chinese Academy of Science, Hefei, Anhui 230031, P. R. China. .,The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, Center for BioAnalytical Chemistry, and Hefei National Laboratory for Physical Sciences at Microscale, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| | - Yi Lu
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA.
| |
Collapse
|
6
|
Hasanbasri Z, Singewald K, Gluth TD, Driesschaert B, Saxena S. Cleavage-Resistant Protein Labeling With Hydrophilic Trityl Enables Distance Measurements In-Cell. J Phys Chem B 2021; 125:5265-5274. [PMID: 33983738 DOI: 10.1021/acs.jpcb.1c02371] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Sensitive in-cell distance measurements in proteins using pulsed-electron spin resonance (ESR) require reduction-resistant and cleavage-resistant spin labels. Among the reduction-resistant moieties, the hydrophilic trityl core known as OX063 is promising due to its long phase-memory relaxation time (Tm). This property leads to a sufficiently intense ESR signal for reliable distance measurements. Furthermore, the Tm of OX063 remains sufficiently long at higher temperatures, opening the possibility for measurements at temperatures above 50 K. In this work, we synthesized deuterated OX063 with a maleimide linker (mOX063-d24). We show that the combination of the hydrophilicity of the label and the maleimide linker enables high protein labeling that is cleavage-resistant in-cells. Distance measurements performed at 150 K using this label are more sensitive than the measurements at 80 K. The sensitivity gain is due to the significantly short longitudinal relaxation time (T1) at higher temperatures, which enables more data collection per unit of time. In addition to in vitro experiments, we perform distance measurements in Xenopus laevis oocytes. Interestingly, the Tm of mOX063-d24 is sufficiently long even in the crowded environment of the cell, leading to signals of appreciable intensity. Overall, mOX063-d24 provides highly sensitive distance measurements both in vitro and in-cells.
Collapse
Affiliation(s)
- Zikri Hasanbasri
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Kevin Singewald
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Teresa D Gluth
- Department of Pharmaceutical Sciences, School of Pharmacy & In Vivo Multifunctional Magnetic Resonance (IMMR) Center, Health Sciences Center, West Virginia University, Morgantown, West Virginia 26506, United States
| | - Benoit Driesschaert
- Department of Pharmaceutical Sciences, School of Pharmacy & In Vivo Multifunctional Magnetic Resonance (IMMR) Center, Health Sciences Center, West Virginia University, Morgantown, West Virginia 26506, United States
| | - Sunil Saxena
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| |
Collapse
|
7
|
Giannoulis A, Ben-Ishay Y, Goldfarb D. Characteristics of Gd(III) spin labels for the study of protein conformations. Methods Enzymol 2021; 651:235-290. [PMID: 33888206 DOI: 10.1016/bs.mie.2021.01.040] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Gd(III) complexes are currently established as spin labels for structural studies of biomolecules using pulse dipolar electron paramagnetic resonance (PD-EPR) techniques. This has been achieved by the availability of medium- and high-field spectrometers, understanding the spin physics underlying the spectroscopic properties of high spin Gd(III) (S=7/2) pairs and their dipolar interaction, the design of well-defined model compounds and optimization of measurement techniques. In addition, a variety of Gd(III) chelates and labeling schemes have allowed a broad scope of applications. In this review, we provide a brief background of the spectroscopic properties of Gd(III) pertinent for effective PD-EPR measurements and focus on the various labels available to date. We report on their use in PD-EPR applications and highlight their pros and cons for particular applications. We also devote a section to recent in-cell structural studies of proteins using Gd(III), which is an exciting new direction for Gd(III) spin labeling.
Collapse
Affiliation(s)
- Angeliki Giannoulis
- Department of Chemical and Biological Physics, Weizmann Institute of Science, Rehovot, Israel
| | - Yasmin Ben-Ishay
- Department of Chemical and Biological Physics, Weizmann Institute of Science, Rehovot, Israel
| | - Daniella Goldfarb
- Department of Chemical and Biological Physics, Weizmann Institute of Science, Rehovot, Israel.
| |
Collapse
|
8
|
Collauto A, Bülow S, Gophane DB, Saha S, Stelzl LS, Hummer G, Sigurdsson ST, Prisner TF. Compaction of RNA Duplexes in the Cell**. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202009800] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Alberto Collauto
- Institute of Physical and Theoretical Chemistry and Center of Biomolecular Magnetic Resonance Goethe University Frankfurt Max-von-Laue-Str. 7 60438 Frankfurt am Main Germany
| | - Sören Bülow
- Department of Theoretical Biophysics Max Planck Institute of Biophysics Max-von-Laue-Str. 3 60438 Frankfurt am Main Germany
| | - Dnyaneshwar B. Gophane
- Department of Chemistry Science Institute University of Iceland Dunhagi 3 107 Reykjavík Iceland
| | - Subham Saha
- Department of Chemistry Science Institute University of Iceland Dunhagi 3 107 Reykjavík Iceland
| | - Lukas S. Stelzl
- Department of Theoretical Biophysics Max Planck Institute of Biophysics Max-von-Laue-Str. 3 60438 Frankfurt am Main Germany
| | - Gerhard Hummer
- Department of Theoretical Biophysics Max Planck Institute of Biophysics Max-von-Laue-Str. 3 60438 Frankfurt am Main Germany
- Institute for Biophysics Goethe University Frankfurt Max-von-Laue-Str. 9 60438 Frankfurt am Main Germany
| | - Snorri T. Sigurdsson
- Department of Chemistry Science Institute University of Iceland Dunhagi 3 107 Reykjavík Iceland
| | - Thomas F. Prisner
- Institute of Physical and Theoretical Chemistry and Center of Biomolecular Magnetic Resonance Goethe University Frankfurt Max-von-Laue-Str. 7 60438 Frankfurt am Main Germany
| |
Collapse
|
9
|
Collauto A, von Bülow S, Gophane DB, Saha S, Stelzl LS, Hummer G, Sigurdsson ST, Prisner TF. Compaction of RNA Duplexes in the Cell*. Angew Chem Int Ed Engl 2020; 59:23025-23029. [PMID: 32804430 PMCID: PMC7756485 DOI: 10.1002/anie.202009800] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Indexed: 11/15/2022]
Abstract
The structure and flexibility of RNA depends sensitively on the microenvironment. Using pulsed electron-electron double-resonance (PELDOR)/double electron-electron resonance (DEER) spectroscopy combined with advanced labeling techniques, we show that the structure of double-stranded RNA (dsRNA) changes upon internalization into Xenopus laevis oocytes. Compared to dilute solution, the dsRNA A-helix is more compact in cells. We recapitulate this compaction in a densely crowded protein solution. Atomic-resolution molecular dynamics simulations of dsRNA semi-quantitatively capture the compaction, and identify non-specific electrostatic interactions between proteins and dsRNA as a possible driver of this effect.
Collapse
Affiliation(s)
- Alberto Collauto
- Institute of Physical and Theoretical Chemistry and Center of Biomolecular Magnetic ResonanceGoethe University FrankfurtMax-von-Laue-Str. 760438Frankfurt am MainGermany
| | - Sören von Bülow
- Department of Theoretical BiophysicsMax Planck Institute of BiophysicsMax-von-Laue-Str. 360438Frankfurt am MainGermany
| | - Dnyaneshwar B. Gophane
- Department of ChemistryScience InstituteUniversity of IcelandDunhagi 3107ReykjavíkIceland
| | - Subham Saha
- Department of ChemistryScience InstituteUniversity of IcelandDunhagi 3107ReykjavíkIceland
| | - Lukas S. Stelzl
- Department of Theoretical BiophysicsMax Planck Institute of BiophysicsMax-von-Laue-Str. 360438Frankfurt am MainGermany
| | - Gerhard Hummer
- Department of Theoretical BiophysicsMax Planck Institute of BiophysicsMax-von-Laue-Str. 360438Frankfurt am MainGermany
- Institute for BiophysicsGoethe University FrankfurtMax-von-Laue-Str. 960438Frankfurt am MainGermany
| | - Snorri T. Sigurdsson
- Department of ChemistryScience InstituteUniversity of IcelandDunhagi 3107ReykjavíkIceland
| | - Thomas F. Prisner
- Institute of Physical and Theoretical Chemistry and Center of Biomolecular Magnetic ResonanceGoethe University FrankfurtMax-von-Laue-Str. 760438Frankfurt am MainGermany
| |
Collapse
|
10
|
EL Mkami H, Hunter R, Cruickshank P, Taylor M, Lovett J, Feintuch A, Qi M, Godt A, Smith G. High-sensitivity Gd 3+-Gd 3+ EPR distance measurements that eliminate artefacts seen at short distances. MAGNETIC RESONANCE (GOTTINGEN, GERMANY) 2020; 1:301-313. [PMID: 37904818 PMCID: PMC10500690 DOI: 10.5194/mr-1-301-2020] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Accepted: 11/18/2020] [Indexed: 11/01/2023]
Abstract
Gadolinium complexes are attracting increasing attention as spin labels for EPR dipolar distance measurements in biomolecules and particularly for in-cell measurements. It has been shown that flip-flop transitions within the central transition of the high-spin Gd3 + ion can introduce artefacts in dipolar distance measurements, particularly when measuring distances less than 3 nm. Previous work has shown some reduction of these artefacts through increasing the frequency separation between the two frequencies required for the double electron-electron resonance (DEER) experiment. Here we use a high-power (1 kW), wideband, non-resonant system operating at 94 GHz to evaluate DEER measurement protocols using two stiff Gd(III) rulers, consisting of two b i s -Gd3 + -PyMTA complexes, with separations of 2.1 nm and 6.0 nm, respectively. We show that by avoiding the - 1 2 → 1 2 central transition completely, and placing both the pump and the observer pulses on either side of the central transition, we can now observe apparently artefact-free spectra and narrow distance distributions, even for a Gd-Gd distance of 2.1 nm. Importantly we still maintain excellent signal-to-noise ratio and relatively high modulation depths. These results have implications for in-cell EPR measurements at naturally occurring biomolecule concentrations.
Collapse
Affiliation(s)
- Hassane EL Mkami
- SUPA, School of Physics and Astronomy, University of St Andrews, St
Andrews, KY16 9SS, UK
| | - Robert I. Hunter
- SUPA, School of Physics and Astronomy, University of St Andrews, St
Andrews, KY16 9SS, UK
| | - Paul A. S. Cruickshank
- SUPA, School of Physics and Astronomy, University of St Andrews, St
Andrews, KY16 9SS, UK
| | - Michael J. Taylor
- SUPA, School of Physics and Astronomy, University of St Andrews, St
Andrews, KY16 9SS, UK
| | - Janet E. Lovett
- SUPA, School of Physics and Astronomy, University of St Andrews, St
Andrews, KY16 9SS, UK
| | - Akiva Feintuch
- Department of Chemical Physics, Weizmann Institute of Science,
Rehovot, Israel
| | - Mian Qi
- Faculty of Chemistry and Center of Molecular Materials (CM2),
Bielefeld University, Universitätsstraße 25, 33615 Bielefeld,
Germany
| | - Adelheid Godt
- Faculty of Chemistry and Center of Molecular Materials (CM2),
Bielefeld University, Universitätsstraße 25, 33615 Bielefeld,
Germany
| | - Graham M. Smith
- SUPA, School of Physics and Astronomy, University of St Andrews, St
Andrews, KY16 9SS, UK
| |
Collapse
|
11
|
Ghosh S, Casto J, Bogetti X, Arora C, Wang J, Saxena S. Orientation and dynamics of Cu 2+ based DNA labels from force field parameterized MD elucidates the relationship between EPR distance constraints and DNA backbone distances. Phys Chem Chem Phys 2020; 22:26707-26719. [PMID: 33159779 PMCID: PMC10521111 DOI: 10.1039/d0cp05016d] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/29/2023]
Abstract
Pulsed electron paramagnetic resonance (EPR) based distance measurements using the recently developed Cu2+-DPA label present a promising strategy for measuring DNA backbone distance constraints. Herein we develop force field parameters for Cu2+-DPA in order to understand the features of this label at an atomic level. We perform molecular dynamics (MD) simulations using the force field parameters of Cu2+-DPA on four different DNA duplexes. The distance between the Cu2+ centers, extracted from the 2 μs MD trajectories, agrees well with the experimental distance for all the duplexes. Further analyses of the trajectory provide insight into the orientation of the Cu2+-DPA inside the duplex that leads to such agreement with experiments. The MD results also illustrate the ability of the Cu2+-DPA to report on the DNA backbone distance constraints. Furthermore, measurement of fluctuations of individual residues showed that the flexibility of Cu2+-DPA in a DNA depends on the position of the label in the duplex, and a 2 μs MD simulation is not sufficient to fully capture the experimental distribution in some cases. Finally, the MD trajectories were utilized to understand the key aspects of the double electron electron resonance (DEER) results. The lack of orientational selectivity effects of the Cu2+-DPA at Q-band frequency is rationalized in terms of fluctuations in the Cu2+ coordination environment and rotameric fluctuations of the label linker. Overall, a combination of EPR and MD simulations based on the Cu2+-DPA labelling strategy can contribute towards understanding changes in DNA backbone conformations during protein-DNA interactions.
Collapse
Affiliation(s)
- Shreya Ghosh
- Department of Chemistry, University of Pittsburgh, PA 15260, USA.
| | | | | | | | | | | |
Collapse
|
12
|
Ghosh S, Lawless MJ, Brubaker HJ, Singewald K, Kurpiewski MR, Jen-Jacobson L, Saxena S. Cu2+-based distance measurements by pulsed EPR provide distance constraints for DNA backbone conformations in solution. Nucleic Acids Res 2020; 48:e49. [PMID: 32095832 PMCID: PMC7229862 DOI: 10.1093/nar/gkaa133] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Revised: 01/24/2020] [Accepted: 02/17/2020] [Indexed: 11/12/2022] Open
Abstract
Electron paramagnetic resonance (EPR) has become an important tool to probe conformational changes in nucleic acids. An array of EPR labels for nucleic acids are available, but they often come at the cost of long tethers, are dependent on the presence of a particular nucleotide or can be placed only at the termini. Site directed incorporation of Cu2+-chelated to a ligand, 2,2'dipicolylamine (DPA) is potentially an attractive strategy for site-specific, nucleotide independent Cu2+-labelling in DNA. To fully understand the potential of this label, we undertook a systematic and detailed analysis of the Cu2+-DPA motif using EPR and molecular dynamics (MD) simulations. We used continuous wave EPR experiments to characterize Cu2+ binding to DPA as well as optimize Cu2+ loading conditions. We performed double electron-electron resonance (DEER) experiments at two frequencies to elucidate orientational selectivity effects. Furthermore, comparison of DEER and MD simulated distance distributions reveal a remarkable agreement in the most probable distances. The results illustrate the efficacy of the Cu2+-DPA in reporting on DNA backbone conformations for sufficiently long base pair separations. This labelling strategy can serve as an important tool for probing conformational changes in DNA upon interaction with other macromolecules.
Collapse
Affiliation(s)
- Shreya Ghosh
- Department of Chemistry, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Matthew J Lawless
- Department of Chemistry, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Hanna J Brubaker
- Department of Chemistry, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Kevin Singewald
- Department of Chemistry, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Michael R Kurpiewski
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Linda Jen-Jacobson
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Sunil Saxena
- Department of Chemistry, University of Pittsburgh, Pittsburgh, PA 15260, USA
| |
Collapse
|
13
|
Fleck N, Heubach CA, Hett T, Haege FR, Bawol PP, Baltruschat H, Schiemann O. SLIM: A Short-Linked, Highly Redox-Stable Trityl Label for High-Sensitivity In-Cell EPR Distance Measurements. Angew Chem Int Ed Engl 2020; 59:9767-9772. [PMID: 32329172 PMCID: PMC7318235 DOI: 10.1002/anie.202004452] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Indexed: 12/15/2022]
Abstract
The understanding of biomolecular function is coupled to knowledge about the structure and dynamics of these biomolecules, preferably acquired under native conditions. In this regard, pulsed dipolar EPR spectroscopy (PDS) in conjunction with site-directed spin labeling (SDSL) is an important method in the toolbox of biophysical chemistry. However, the currently available spin labels have diverse deficiencies for in-cell applications, for example, low radical stability or long bioconjugation linkers. In this work, a synthesis strategy is introduced for the derivatization of trityl radicals with a maleimide-functionalized methylene group. The resulting trityl spin label, called SLIM, yields narrow distance distributions, enables highly sensitive distance measurements down to concentrations of 90 nm, and shows high stability against reduction. Using this label, the guanine-nucleotide dissociation inhibitor (GDI) domain of Yersinia outer protein O (YopO) is shown to change its conformation within eukaryotic cells.
Collapse
Affiliation(s)
- Nico Fleck
- Institute of Physical and Theoretical ChemistryUniversity of BonnWegelerstr. 1253115BonnGermany
| | - Caspar A. Heubach
- Institute of Physical and Theoretical ChemistryUniversity of BonnWegelerstr. 1253115BonnGermany
| | - Tobias Hett
- Institute of Physical and Theoretical ChemistryUniversity of BonnWegelerstr. 1253115BonnGermany
| | - Florian R. Haege
- Institute of Physical and Theoretical ChemistryUniversity of BonnWegelerstr. 1253115BonnGermany
| | - Pawel P. Bawol
- Institute of Physical and Theoretical ChemistryUniversity of BonnRömerstr. 16453117BonnGermany
| | - Helmut Baltruschat
- Institute of Physical and Theoretical ChemistryUniversity of BonnRömerstr. 16453117BonnGermany
| | - Olav Schiemann
- Institute of Physical and Theoretical ChemistryUniversity of BonnWegelerstr. 1253115BonnGermany
| |
Collapse
|
14
|
Fleck N, Heubach CA, Hett T, Haege FR, Bawol PP, Baltruschat H, Schiemann O. SLIM: A Short‐Linked, Highly Redox‐Stable Trityl Label for High‐Sensitivity In‐Cell EPR Distance Measurements. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202004452] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Affiliation(s)
- Nico Fleck
- Institute of Physical and Theoretical ChemistryUniversity of Bonn Wegelerstr. 12 53115 Bonn Germany
| | - Caspar A. Heubach
- Institute of Physical and Theoretical ChemistryUniversity of Bonn Wegelerstr. 12 53115 Bonn Germany
| | - Tobias Hett
- Institute of Physical and Theoretical ChemistryUniversity of Bonn Wegelerstr. 12 53115 Bonn Germany
| | - Florian R. Haege
- Institute of Physical and Theoretical ChemistryUniversity of Bonn Wegelerstr. 12 53115 Bonn Germany
| | - Pawel P. Bawol
- Institute of Physical and Theoretical ChemistryUniversity of Bonn Römerstr. 164 53117 Bonn Germany
| | - Helmut Baltruschat
- Institute of Physical and Theoretical ChemistryUniversity of Bonn Römerstr. 164 53117 Bonn Germany
| | - Olav Schiemann
- Institute of Physical and Theoretical ChemistryUniversity of Bonn Wegelerstr. 12 53115 Bonn Germany
| |
Collapse
|
15
|
Accelerating structural life science by paramagnetic lanthanide probe methods. Biochim Biophys Acta Gen Subj 2020; 1864:129332. [DOI: 10.1016/j.bbagen.2019.03.018] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Revised: 03/18/2019] [Accepted: 03/20/2019] [Indexed: 02/08/2023]
|
16
|
Wuebben C, Blume S, Abdullin D, Brajtenbach D, Haege F, Kath-Schorr S, Schiemann O. Site-Directed Spin Labeling of RNA with a Gem-Diethylisoindoline Spin Label: PELDOR, Relaxation, and Reduction Stability. Molecules 2019; 24:E4482. [PMID: 31817785 PMCID: PMC6943706 DOI: 10.3390/molecules24244482] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Revised: 12/02/2019] [Accepted: 12/04/2019] [Indexed: 01/08/2023] Open
Abstract
Ribonucleic acid function is governed by its structure, dynamics, and interaction with other biomolecules and influenced by the local environment. Thus, methods are needed that enable one to study RNA under conditions as natural as possible, possibly within cells. Site-directed spin-labeling of RNA with nitroxides in combination with, for example, pulsed electron-electron double resonance (PELDOR or DEER) spectroscopy has been shown to provide such information. However, for in-cell measurements, the usually used gem-dimethyl nitroxides are less suited, because they are quickly reduced under in-cell conditions. In contrast, gem-diethyl nitroxides turned out to be more stable, but labeling protocols for binding these to RNA have been sparsely reported. Therefore, we describe here the bioconjugation of an azide functionalized gem-diethyl isoindoline nitroxide to RNA using a copper (I)-catalyzed azide-alkyne cycloaddition ("click"-chemistry). The labeling protocol provides high yields and site selectivity. The analysis of the orientation selective PELDOR data show that the gem-diethyl and gem-dimethyl labels adopt similar conformations. Interestingly, in deuterated buffer, both labels attached to RNA yield TM relaxation times that are considerably longer than observed for the same type of label attached to proteins, enabling PELDOR time windows of up to 20 microseconds. Together with the increased stability in reducing environments, this label is very promising for in-cell Electron Paramagnetic Resonance (EPR) studies.
Collapse
Affiliation(s)
- Christine Wuebben
- Institute of Physical and Theoretical Chemistry, University of Bonn, Wegelerstraße 12, 53115 Bonn, Germany; (C.W.); (S.B.); (D.A.); (D.B.); (F.H.)
| | - Simon Blume
- Institute of Physical and Theoretical Chemistry, University of Bonn, Wegelerstraße 12, 53115 Bonn, Germany; (C.W.); (S.B.); (D.A.); (D.B.); (F.H.)
| | - Dinar Abdullin
- Institute of Physical and Theoretical Chemistry, University of Bonn, Wegelerstraße 12, 53115 Bonn, Germany; (C.W.); (S.B.); (D.A.); (D.B.); (F.H.)
| | - Dominik Brajtenbach
- Institute of Physical and Theoretical Chemistry, University of Bonn, Wegelerstraße 12, 53115 Bonn, Germany; (C.W.); (S.B.); (D.A.); (D.B.); (F.H.)
| | - Florian Haege
- Institute of Physical and Theoretical Chemistry, University of Bonn, Wegelerstraße 12, 53115 Bonn, Germany; (C.W.); (S.B.); (D.A.); (D.B.); (F.H.)
| | - Stephanie Kath-Schorr
- Life & Medical Sciences Institute Chemical Biology & Medicinal Chemistry Unit, University of Bonn, Gerhard-Domagk-Straße 1, 53121 Bonn, Germany;
| | - Olav Schiemann
- Institute of Physical and Theoretical Chemistry, University of Bonn, Wegelerstraße 12, 53115 Bonn, Germany; (C.W.); (S.B.); (D.A.); (D.B.); (F.H.)
| |
Collapse
|
17
|
Sameach H, Ruthstein S. EPR Distance Measurements as a Tool to Characterize Protein‐DNA Interactions. Isr J Chem 2019. [DOI: 10.1002/ijch.201900091] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Hila Sameach
- The Department of Chemistry, Faculty of Exact SciencesBar Ilan University Ramat Gan Israel 5290002
| | - Sharon Ruthstein
- The Department of Chemistry, Faculty of Exact SciencesBar Ilan University Ramat Gan Israel 5290002
| |
Collapse
|
18
|
Goldfarb D. Pulse EPR in biological systems - Beyond the expert's courtyard. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2019; 306:102-108. [PMID: 31337564 DOI: 10.1016/j.jmr.2019.07.038] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Revised: 06/07/2019] [Accepted: 07/08/2019] [Indexed: 05/14/2023]
Abstract
Application of EPR to biological systems includes many techniques and applications. In this short perspective, which dares to look into the future, I focus on pulse EPR, which is my field of expertise. Generally, pulse EPR techniques can be divided into two main groups: (1) hyperfine spectroscopy, which explores electron-nuclear interactions, and (2) pulse-dipolar (PD) EPR spectroscopy, which is based on electron-electron spin interactions. Here I focus on PD-EPR because it has a better chance of becoming a widely applied, easy-to-use table-top method to study the structural and dynamic aspects of bio-molecules. I will briefly introduce this technique, its current state of the art, the challenges it is facing, and finally I will describe futuristic scenarios of low-cost PD-EPR approaches that can cross the diffusion barrier from the core of experts to the bulk of the scientific community.
Collapse
Affiliation(s)
- Daniella Goldfarb
- Department of Chemical and Biological Physics, Weizmann Institute of Science, Rehovot, Israel.
| |
Collapse
|
19
|
John L, Drescher M. Xenopus laevis Oocytes Preparation for in-Cell EPR Spectroscopy. Bio Protoc 2018; 8:e2798. [PMID: 34286018 DOI: 10.21769/bioprotoc.2798] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2018] [Revised: 03/28/2018] [Accepted: 03/30/2018] [Indexed: 12/14/2022] Open
Abstract
One of the most exciting perspectives for studying bio-macromolecules comes from the emerging field of in-cell spectroscopy, which enables to determine the structure and dynamics of bio-macromolecules in the cell. In-cell electron paramagnetic resonance (EPR) spectroscopy in combination with micro-injection of bio-macromolecules into Xenopus laevis oocytes is ideally suited for this purpose. Xenopus laevis oocytes are a commonly used eukaryotic cell model in different fields of biology, such as cell- and development-biology. For in-cell EPR, the bio-macromolecules of interest are microinjected into the Xenopus laevis oocytes upon site-directed spin labeling. The sample solution is filled into a thin glass capillary by means of Nanoliter Injector and after that microinjected into the dark animal part of the Xenopus laevis oocytes by puncturing the membrane cautiously. Afterwards, three or five microinjected Xenopus laevis oocytes, depending on the kind of the final in-cell EPR experiment, are loaded into a Q-band EPR sample tube followed by optional shock-freezing (for experiment in frozen solution) and measurement (either at cryogenic or physiological temperatures) after the desired incubation time. The incubation time is limited due to cytotoxic effects of the microinjected samples and the stability of the paramagnetic spin label in the reducing cellular environment. Both aspects are quantified by monitoring cell morphology and reduction kinetics.
Collapse
Affiliation(s)
- Laura John
- Department of Chemistry and Konstanz Research School Chemical Biology, University of Konstanz, Konstanz, Germany
| | - Malte Drescher
- Department of Chemistry and Konstanz Research School Chemical Biology, University of Konstanz, Konstanz, Germany
| |
Collapse
|
20
|
Manukovsky N, Feintuch A, Kuprov I, Goldfarb D. Time domain simulation of Gd3+–Gd3+ distance measurements by EPR. J Chem Phys 2017; 147:044201. [DOI: 10.1063/1.4994084] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Nurit Manukovsky
- Department of Chemical Physics, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Akiva Feintuch
- Department of Chemical Physics, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Ilya Kuprov
- School of Chemistry, University of Southampton, Southampton SO17 1BJ, United Kingdom
| | - Daniella Goldfarb
- Department of Chemical Physics, Weizmann Institute of Science, Rehovot 7610001, Israel
| |
Collapse
|
21
|
Lawless MJ, Sarver JL, Saxena S. Nucleotide-Independent Copper(II)-Based Distance Measurements in DNA by Pulsed ESR Spectroscopy. Angew Chem Int Ed Engl 2017. [DOI: 10.1002/ange.201611197] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Matthew J. Lawless
- Department of Chemistry; University of Pittsburgh; 219 Parkman Avenue Pittsburgh PA 15260 USA
| | - Jessica L. Sarver
- Division of Biological, Chemical, and Environmental Sciences; Westminster College; 319 S Market St. New Wilmington PA 16172 USA
| | - Sunil Saxena
- Department of Chemistry; University of Pittsburgh; 219 Parkman Avenue Pittsburgh PA 15260 USA
| |
Collapse
|
22
|
Lawless MJ, Sarver JL, Saxena S. Nucleotide-Independent Copper(II)-Based Distance Measurements in DNA by Pulsed ESR Spectroscopy. Angew Chem Int Ed Engl 2017; 56:2115-2117. [PMID: 28090713 DOI: 10.1002/anie.201611197] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2016] [Revised: 12/14/2016] [Indexed: 01/05/2023]
Abstract
A site-specific Cu2+ binding motif within a DNA duplex for distance measurements by ESR spectroscopy is reported. This motif utilizes a commercially available 2,2'-dipicolylamine (DPA) phosphormadite easily incorporated into any DNA oligonucleotide during initial DNA synthesis. The method only requires the simple post-synthetic addition of Cu2+ without the need for further chemical modification. Notably, the label is positioned within the DNA duplex, as opposed to outside the helical perimeter, for an accurate measurement of duplex distance. A distance of 2.7 nm was measured on a doubly Cu2+ -labeled DNA sequence, which is in exact agreement with the expected distance from both DNA modeling and molecular dynamic simulations. This result suggests that with this labeling strategy the ESR measured distance directly reports on backbone DNA distance, without the need for further modeling. Furthermore, the labeling strategy is structure- and nucleotide-independent.
Collapse
Affiliation(s)
- Matthew J Lawless
- Department of Chemistry, University of Pittsburgh, 219 Parkman Avenue, Pittsburgh, PA, 15260, USA
| | - Jessica L Sarver
- Division of Biological, Chemical, and Environmental Sciences, Westminster College, 319 S Market St., New Wilmington, PA, 16172, USA
| | - Sunil Saxena
- Department of Chemistry, University of Pittsburgh, 219 Parkman Avenue, Pittsburgh, PA, 15260, USA
| |
Collapse
|
23
|
Wang X, Milne M, Martínez F, Scholl TJ, Hudson RHE. Synthesis of a poly(Gd( iii)-DOTA)–PNA conjugate as a potential MRI contrast agent via post-synthetic click chemistry functionalization. RSC Adv 2017. [DOI: 10.1039/c7ra09040d] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
An operationally easy method provides poly(Gd3+chelate) PNA conjugates that form comb-like complexes with poly(rA) and demonstrate increased relaxivity.
Collapse
Affiliation(s)
- Xiaoxiao Wang
- Department of Chemistry
- The University of Western Ontario
- London
- Canada
| | - Mark Milne
- Department of Chemistry
- The University of Western Ontario
- London
- Canada
| | - Francisco Martínez
- Department of Medical Biophysics
- The Robarts Research Institute
- The University of Western Ontario
- London
- Canada
| | - Timothy J. Scholl
- Department of Medical Biophysics
- The Robarts Research Institute
- The University of Western Ontario
- London
- Canada
| | | |
Collapse
|
24
|
Demay-Drouhard P, Ching HYV, Akhmetzyanov D, Guillot R, Tabares LC, Bertrand HC, Policar C. A Bis-Manganese(II)-DOTA Complex for Pulsed Dipolar Spectroscopy. Chemphyschem 2016; 17:2066-78. [DOI: 10.1002/cphc.201600234] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2016] [Indexed: 12/16/2022]
Affiliation(s)
- Paul Demay-Drouhard
- Ecole Normale Supérieure-PSL Research University; Département de Chimie, Sorbonne Universités-UPMC Univ Paris 06; CNRS UMR 7203 LBM; 24 rue Lhomond 75005 Paris France
| | - H. Y. Vincent Ching
- Institute for Integrative Biology of the Cell (I2BC); Department of Biochemistry, Biophysics and Structural Biology; Université Paris-Saclay, CEA, CNRS UMR 9198; Gif-sur-Yvette F-91198 France
| | - Dmitry Akhmetzyanov
- Goethe-University Frankfurt am Main; Institute of Physical and Theoretical Chemistry and; Center for Biomolecular Magnetic Resonance; Max von Laue Str. 7 60438 Frankfurt am Main Germany
| | - Régis Guillot
- Institut de Chimie Moléculaire et des Matériaux O'Orsay; Université Paris-Sud, UMR CNRS 8182, Université Paris-Saclay; 91405 Orsay France
| | - Leandro C. Tabares
- Institute for Integrative Biology of the Cell (I2BC); Department of Biochemistry, Biophysics and Structural Biology; Université Paris-Saclay, CEA, CNRS UMR 9198; Gif-sur-Yvette F-91198 France
| | - Hélène C. Bertrand
- Ecole Normale Supérieure-PSL Research University; Département de Chimie, Sorbonne Universités-UPMC Univ Paris 06; CNRS UMR 7203 LBM; 24 rue Lhomond 75005 Paris France
| | - Clotilde Policar
- Ecole Normale Supérieure-PSL Research University; Département de Chimie, Sorbonne Universités-UPMC Univ Paris 06; CNRS UMR 7203 LBM; 24 rue Lhomond 75005 Paris France
| |
Collapse
|