1
|
Sultana R, Kamihira M. Bioengineered heparin: Advances in production technology. Biotechnol Adv 2024; 77:108456. [PMID: 39326809 DOI: 10.1016/j.biotechadv.2024.108456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 09/16/2024] [Accepted: 09/18/2024] [Indexed: 09/28/2024]
Abstract
Heparin, a highly sulfated glycosaminoglycan, is considered an indispensable anticoagulant with diverse therapeutic applications and has been a mainstay in medical practice for nearly a century. Its potential extends beyond anticoagulation, showing promise in treating inflammation, cancer, and infectious diseases such as COVID-19. However, its current sourcing from animal tissues poses challenges due to variable structures and adulterations, impacting treatment efficacy and safety. Recent advancements in metabolic engineering and synthetic biology offer alternatives through bioengineered heparin production, albeit with challenges such as controlling molecular weight and sulfonation patterns. This review offers comprehensive insight into recent advancements, encompassing: (i) the metabolic engineering strategies in prokaryotic systems for heparin production; (ii) strides made in the development of bioengineered heparin; and (iii) groundbreaking approaches driving production enhancements in eukaryotic systems. Additionally, it explores the potential of recombinant Chinese hamster ovary cells in heparin synthesis, discussing recent progress, challenges, and future prospects, thereby opening up new avenues in biomedical research.
Collapse
Affiliation(s)
- Razia Sultana
- Department of Chemical Engineering, Faculty of Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan; Department of Biotechnology and Genetic Engineering, Faculty of Science, Noakhali Science and Technology University, Noakhali 3814, Bangladesh
| | - Masamichi Kamihira
- Department of Chemical Engineering, Faculty of Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan.
| |
Collapse
|
2
|
Crawford CJ, Schultz-Johansen M, Luong P, Vidal-Melgosa S, Hehemann JH, Seeberger PH. Automated Synthesis of Algal Fucoidan Oligosaccharides. J Am Chem Soc 2024; 146:18320-18330. [PMID: 38916244 PMCID: PMC11240576 DOI: 10.1021/jacs.4c02348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/26/2024]
Abstract
Fucoidan, a sulfated polysaccharide found in algae, plays a central role in marine carbon sequestration and exhibits a wide array of bioactivities. However, the molecular diversity and structural complexity of fucoidan hinder precise structure-function studies. To address this, we present an automated method for generating well-defined linear and branched α-fucan oligosaccharides. Our syntheses include oligosaccharides with up to 20 cis-glycosidic linkages, diverse branching patterns, and 11 sulfate monoesters. In this study, we demonstrate the utility of these oligosaccharides by (i) characterizing two endo-acting fucoidan glycoside hydrolases (GH107), (ii) utilizing them as standards for NMR studies to confirm suggested structures of algal fucoidans, and (iii) developing a fucoidan microarray. This microarray enabled the screening of the molecular specificity of four monoclonal antibodies (mAb) targeting fucoidan. It was found that mAb BAM4 has cross-reactivity to β-glucans, while mAb BAM2 has reactivity to fucoidans with 4-O-sulfate esters. Knowledge of the mAb BAM2 epitope specificity provided evidence that a globally abundant marine diatom, Thalassiosira weissflogii, synthesizes a fucoidan with structural homology to those found in brown algae. Automated glycan assembly provides access to fucoidan oligosaccharides. These oligosaccharides provide the basis for molecular level investigations into fucoidan's roles in medicine and carbon sequestration.
Collapse
Affiliation(s)
- Conor J Crawford
- Max Planck Institute for Colloids and Interfaces, Am Mühlenberg 1, 14476 Potsdam, Germany
| | - Mikkel Schultz-Johansen
- Max Planck Institute for Marine Microbiology, Celsiusstraße 1, 28359 Bremen, Germany
- MARUM, Center for Marine Environmental Sciences, University of Bremen, 28359 Bremen, Germany
| | - Phuong Luong
- Max Planck Institute for Colloids and Interfaces, Am Mühlenberg 1, 14476 Potsdam, Germany
- Institute for Chemistry and Biochemistry, Freie Universität Berlin, Arnimallee 22, 14195 Berlin, Germany
| | - Silvia Vidal-Melgosa
- Max Planck Institute for Marine Microbiology, Celsiusstraße 1, 28359 Bremen, Germany
- MARUM, Center for Marine Environmental Sciences, University of Bremen, 28359 Bremen, Germany
| | - Jan-Hendrik Hehemann
- Max Planck Institute for Marine Microbiology, Celsiusstraße 1, 28359 Bremen, Germany
- MARUM, Center for Marine Environmental Sciences, University of Bremen, 28359 Bremen, Germany
| | - Peter H Seeberger
- Max Planck Institute for Colloids and Interfaces, Am Mühlenberg 1, 14476 Potsdam, Germany
- Institute for Chemistry and Biochemistry, Freie Universität Berlin, Arnimallee 22, 14195 Berlin, Germany
| |
Collapse
|
3
|
Pongener I, Sletten ET, Danglad-Flores J, Seeberger PH, Miller GJ. Synthesis of a heparan sulfate tetrasaccharide using automated glycan assembly. Org Biomol Chem 2024; 22:1395-1399. [PMID: 38291974 PMCID: PMC10865181 DOI: 10.1039/d3ob01909h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Accepted: 01/16/2024] [Indexed: 02/01/2024]
Abstract
Herein we utilise automated glycan assembly to complete solid-phase synthesis of defined heparan sulfate oligosaccharides, employing challenging D-glucuronate disaccharide donors. Using an orthogonally protected D-GlcN-α-D-GlcA donor, milligram-scale synthesis of a heparan sulfate tetrasaccharide is completed in 18% yield over five steps. Furthermore, orthogonal protecting groups enabled regiospecific on-resin 6-O-sulfation. This methodology provides an important benchmark for the rapid assembly of biologically relevant heparan sulfate sequences.
Collapse
Affiliation(s)
- Imlirenla Pongener
- School of Chemical and Physical Sciences & Centre for Glycoscience, Keele University, Keele, Staffordshire, ST5 5BG, UK.
| | - Eric T Sletten
- Department of Biomolecular Systems, Max-Planck Institute of Colloids and Interfaces, Am Mühlenberg 1, 14476 Potsdam, Germany
| | - José Danglad-Flores
- Department of Biomolecular Systems, Max-Planck Institute of Colloids and Interfaces, Am Mühlenberg 1, 14476 Potsdam, Germany
| | - Peter H Seeberger
- Department of Biomolecular Systems, Max-Planck Institute of Colloids and Interfaces, Am Mühlenberg 1, 14476 Potsdam, Germany
| | - Gavin J Miller
- School of Chemical and Physical Sciences & Centre for Glycoscience, Keele University, Keele, Staffordshire, ST5 5BG, UK.
| |
Collapse
|
4
|
Pongener I, Miller GJ. d-Glucuronate and d-Glucuronate Glycal Acceptors for the Scalable Synthesis of d-GlcN-α-1,4-d-GlcA Disaccharides and Modular Assembly of Heparan Sulfate. J Org Chem 2023; 88:11130-11139. [PMID: 37458063 PMCID: PMC10407932 DOI: 10.1021/acs.joc.3c01108] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Indexed: 07/18/2023]
Abstract
Reported herein is a scalable chemical synthesis of disaccharide building blocks for heparan sulfate (HS) oligosaccharide assembly. The use of d-glucuronate-based acceptors for dehydrative glycosylation with d-glucosamine partners is explored, enabling diastereoselective synthesis of appropriately protected HS disaccharide building blocks (d-GlcN-α-1,4-d-GlcA) on a multigram scale. Isolation and characterization of key donor (1,2 glycal)- and acceptor (ortho-ester, anhydro)-derived side products ensure methodology improvements to reduce their formation; protecting the d-glucuronate acceptor at the anomeric position with a para-methoxyphenyl unit proves optimal. We also introduce glycal uronate acceptors, showing them to be comparative in reactivity to their pyranuronate counterparts. Taken together, this gram-scale access offers the capability to explore the iterative assembly of defined HS sequences containing the d-GlcN-α-1,4-d-GlcA repeat, highlighted by completing this for two tetrasaccharide syntheses.
Collapse
Affiliation(s)
- Imlirenla Pongener
- School of Chemical and Physical Sciences
& Centre for Glycoscience, Keele University, Keele, Staffordshire ST5 5BG, U.K.
| | - Gavin J. Miller
- School of Chemical and Physical Sciences
& Centre for Glycoscience, Keele University, Keele, Staffordshire ST5 5BG, U.K.
| |
Collapse
|
5
|
Hogwood J, Mulloy B, Lever R, Gray E, Page CP. Pharmacology of Heparin and Related Drugs: An Update. Pharmacol Rev 2023; 75:328-379. [PMID: 36792365 DOI: 10.1124/pharmrev.122.000684] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 11/04/2022] [Accepted: 11/08/2022] [Indexed: 02/17/2023] Open
Abstract
Heparin has been used extensively as an antithrombotic and anticoagulant for close to 100 years. This anticoagulant activity is attributed mainly to the pentasaccharide sequence, which potentiates the inhibitory action of antithrombin, a major inhibitor of the coagulation cascade. More recently it has been elucidated that heparin exhibits anti-inflammatory effect via interference of the formation of neutrophil extracellular traps and this may also contribute to heparin's antithrombotic activity. This illustrates that heparin interacts with a broad range of biomolecules, exerting both anticoagulant and nonanticoagulant actions. Since our previous review, there has been an increased interest in these nonanticoagulant effects of heparin, with the beneficial role in patients infected with SARS2-coronavirus a highly topical example. This article provides an update on our previous review with more recent developments and observations made for these novel uses of heparin and an overview of the development status of heparin-based drugs. SIGNIFICANCE STATEMENT: This state-of-the-art review covers recent developments in the use of heparin and heparin-like materials as anticoagulant, now including immunothrombosis observations, and as nonanticoagulant including a role in the treatment of SARS-coronavirus and inflammatory conditions.
Collapse
Affiliation(s)
- John Hogwood
- Sackler Institute of Pulmonary Pharmacology, Institute of Pharmaceutical Science, King's College London, London, United Kingdom (B.M., E.G., C.P.P.); National Institute for Biological Standards and Control, South Mimms, Hertfordshire, United Kingdom (J.H., E.G.) and School of Pharmacy, University College London, London, United Kingdom (R.L.)
| | - Barbara Mulloy
- Sackler Institute of Pulmonary Pharmacology, Institute of Pharmaceutical Science, King's College London, London, United Kingdom (B.M., E.G., C.P.P.); National Institute for Biological Standards and Control, South Mimms, Hertfordshire, United Kingdom (J.H., E.G.) and School of Pharmacy, University College London, London, United Kingdom (R.L.)
| | - Rebeca Lever
- Sackler Institute of Pulmonary Pharmacology, Institute of Pharmaceutical Science, King's College London, London, United Kingdom (B.M., E.G., C.P.P.); National Institute for Biological Standards and Control, South Mimms, Hertfordshire, United Kingdom (J.H., E.G.) and School of Pharmacy, University College London, London, United Kingdom (R.L.)
| | - Elaine Gray
- Sackler Institute of Pulmonary Pharmacology, Institute of Pharmaceutical Science, King's College London, London, United Kingdom (B.M., E.G., C.P.P.); National Institute for Biological Standards and Control, South Mimms, Hertfordshire, United Kingdom (J.H., E.G.) and School of Pharmacy, University College London, London, United Kingdom (R.L.)
| | - Clive P Page
- Sackler Institute of Pulmonary Pharmacology, Institute of Pharmaceutical Science, King's College London, London, United Kingdom (B.M., E.G., C.P.P.); National Institute for Biological Standards and Control, South Mimms, Hertfordshire, United Kingdom (J.H., E.G.) and School of Pharmacy, University College London, London, United Kingdom (R.L.)
| |
Collapse
|
6
|
Liao YE, Liu J, Arnold K. Heparan sulfates and heparan sulfate binding proteins in sepsis. Front Mol Biosci 2023; 10:1146685. [PMID: 36865384 PMCID: PMC9971734 DOI: 10.3389/fmolb.2023.1146685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Accepted: 01/31/2023] [Indexed: 02/16/2023] Open
Abstract
Heparan sulfates (HSs) are the main components in the glycocalyx which covers endothelial cells and modulates vascular homeostasis through interactions with multiple Heparan sulfate binding proteins (HSBPs). During sepsis, heparanase increases and induces HS shedding. The process causes glycocalyx degradation, exacerbating inflammation and coagulation in sepsis. The circulating heparan sulfate fragments may serve as a host defense system by neutralizing dysregulated Heparan sulfate binding proteins or pro-inflammatory molecules in certain circumstances. Understanding heparan sulfates and heparan sulfate binding proteins in health and sepsis is critical to decipher the dysregulated host response in sepsis and advance drug development. In this review, we will overview the current understanding of HS in glycocalyx under septic condition and the dysfunctional heparan sulfate binding proteins as potential drug targets, particularly, high mobility group box 1 (HMGB1) and histones. Moreover, several drug candidates based on heparan sulfates or related to heparan sulfates, such as heparanase inhibitors or heparin-binding protein (HBP), will be discussed regarding their recent advances. By applying chemical or chemoenzymatic approaches, the structure-function relationship between heparan sulfates and heparan sulfate binding proteins is recently revealed with structurally defined heparan sulfates. Such homogenous heparan sulfates may further facilitate the investigation of the role of heparan sulfates in sepsis and the development of carbohydrate-based therapy.
Collapse
Affiliation(s)
- Yi-En Liao
- Division of Chemical Biology and Medicinal Chemistry, Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, NC, United States
| | - Jian Liu
- Division of Chemical Biology and Medicinal Chemistry, Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, NC, United States
| | | |
Collapse
|
7
|
Meneghetti M, Naughton L, O’Shea C, Koffi Teki DSE, Chagnault V, Nader HB, Rudd TR, Yates EA, Kovensky J, Miller GJ, Lima MA. Using NMR to Dissect the Chemical Space and O-Sulfation Effects within the O- and S-Glycoside Analogues of Heparan Sulfate. ACS OMEGA 2022; 7:24461-24467. [PMID: 35874203 PMCID: PMC9301708 DOI: 10.1021/acsomega.2c02070] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Heparan sulfate (HS), a sulfated linear carbohydrate that decorates the cell surface and extracellular matrix, is ubiquitously distributed throughout the animal kingdom and represents a key regulator of biological processes and a largely untapped reservoir of potential therapeutic targets. The temporal and spatial variations in the HS structure underpin the concept of "heparanome" and a complex network of HS binding proteins. However, despite its widespread biological roles, the determination of direct structure-to-function correlations is impaired by HS chemical heterogeneity. Attempts to correlate substitution patterns (mostly at the level of sulfation) with a given biological activity have been made. Nonetheless, these do not generally consider higher-level conformational effects at the carbohydrate level. Here, the use of NMR chemical shift analysis, NOEs, and spin-spin coupling constants sheds new light on how different sulfation patterns affect the polysaccharide backbone geometry. Furthermore, the substitution of native O-glycosidic linkages to hydrolytically more stable S-glycosidic forms leads to observable conformational changes in model saccharides, suggesting that alternative chemical spaces can be accessed and explored using such mimetics. Employing a series of systematically modified heparin oligosaccharides (as a proxy for HS) and chemically synthesized O- and S-glycoside analogues, the chemical space occupied by such compounds is explored and described.
Collapse
Affiliation(s)
- Maria
C.Z. Meneghetti
- Departamento
de Bioquímica, Instituto de Farmacologia e Biologia Molecular,
Escola Paulista de Medicina, Universidade
Federal de São Paulo, Rua Três de Maio, 100, São Paulo 04044-020, São Paulo, Brazil
| | - Lucy Naughton
- School
of Life Sciences, Keele University, Keele ST55BG, Staffordshire, U.K.
- Centre
for Glycosciences, Keele University, Keele ST55BG, Staffordshire, U.K.
| | - Conor O’Shea
- Centre
for Glycosciences, Keele University, Keele ST55BG, Staffordshire, U.K.
- Lennard-Jones
Laboratories, School of Chemical and Physical Sciences, Keele University, Keele ST55BG, Staffordshire, U.K.
| | - Dindet S.-E. Koffi Teki
- Laboratoire
de Glycochimie, des Antimicrobiens et des Agroressources (LG2A), UMR
7378 CNRS, Université de Picardie
Jules Verne, 33 rue Saint Leu, Amiens Cedex F-80039, France
| | - Vincent Chagnault
- Laboratoire
de Glycochimie, des Antimicrobiens et des Agroressources (LG2A), UMR
7378 CNRS, Université de Picardie
Jules Verne, 33 rue Saint Leu, Amiens Cedex F-80039, France
| | - Helena B. Nader
- Departamento
de Bioquímica, Instituto de Farmacologia e Biologia Molecular,
Escola Paulista de Medicina, Universidade
Federal de São Paulo, Rua Três de Maio, 100, São Paulo 04044-020, São Paulo, Brazil
| | - Timothy R. Rudd
- National
Institute for Biological Standards and Control (NIBSC), Blanche Lane, South Mimms, Potters Bar EN6 3QG, Hertfordshire, U.K.
- Department
of Biochemistry and Systems Biology, Institute of Systems, Molecular
and Integrative Biology, University of Liverpool, Liverpool L69 7ZB, U.K.
| | - Edwin A. Yates
- Department
of Biochemistry and Systems Biology, Institute of Systems, Molecular
and Integrative Biology, University of Liverpool, Liverpool L69 7ZB, U.K.
| | - José Kovensky
- Laboratoire
de Glycochimie, des Antimicrobiens et des Agroressources (LG2A), UMR
7378 CNRS, Université de Picardie
Jules Verne, 33 rue Saint Leu, Amiens Cedex F-80039, France
| | - Gavin J. Miller
- Centre
for Glycosciences, Keele University, Keele ST55BG, Staffordshire, U.K.
- Lennard-Jones
Laboratories, School of Chemical and Physical Sciences, Keele University, Keele ST55BG, Staffordshire, U.K.
| | - Marcelo A. Lima
- School
of Life Sciences, Keele University, Keele ST55BG, Staffordshire, U.K.
- Centre
for Glycosciences, Keele University, Keele ST55BG, Staffordshire, U.K.
| |
Collapse
|
8
|
Gray AL, Pun N, Ridley AJL, Dyer DP. Role of extracellular matrix proteoglycans in immune cell recruitment. Int J Exp Pathol 2022; 103:34-43. [PMID: 35076142 PMCID: PMC8961502 DOI: 10.1111/iep.12428] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 01/05/2022] [Accepted: 01/08/2022] [Indexed: 12/28/2022] Open
Abstract
Leucocyte recruitment is a critical component of the immune response and is central to our ability to fight infection. Paradoxically, leucocyte recruitment is also a central component of inflammatory-based diseases such as rheumatoid arthritis, atherosclerosis and cancer. The role of the extracellular matrix, in particular proteoglycans, in this process has been largely overlooked. Proteoglycans consist of protein cores with glycosaminoglycan sugar side chains attached. Proteoglycans have been shown to bind and regulate the function of a number of proteins, for example chemokines, and also play a key structural role in the local tissue environment/niche. Whilst they have been implicated in leucocyte recruitment and inflammatory disease, their mechanistic function has yet to be fully understood, precluding therapeutic targeting. This review summarizes what is currently known about the role of proteoglycans in the different stages of leucocyte recruitment and proposes a number of areas where more research is needed. A better understanding of the mechanistic role of proteoglycans during inflammatory disease will inform the development of next-generation therapeutics.
Collapse
Affiliation(s)
- Anna L. Gray
- Wellcome Centre for Cell‐Matrix ResearchFaculty of Biology, Medicine and HealthManchester Academic Health Science CentreLydia Becker Institute of Immunology and InflammationUniversity of ManchesterManchesterUK
- Geoffrey Jefferson Brain Research CentreNorthern Care Alliance NHS GroupManchester Academic Health Science CentreUniversity of ManchesterManchesterUK
| | - Nabina Pun
- Wellcome Centre for Cell‐Matrix ResearchFaculty of Biology, Medicine and HealthManchester Academic Health Science CentreLydia Becker Institute of Immunology and InflammationUniversity of ManchesterManchesterUK
| | - Amanda J. L. Ridley
- Wellcome Centre for Cell‐Matrix ResearchFaculty of Biology, Medicine and HealthManchester Academic Health Science CentreLydia Becker Institute of Immunology and InflammationUniversity of ManchesterManchesterUK
| | - Douglas P. Dyer
- Wellcome Centre for Cell‐Matrix ResearchFaculty of Biology, Medicine and HealthManchester Academic Health Science CentreLydia Becker Institute of Immunology and InflammationUniversity of ManchesterManchesterUK
- Geoffrey Jefferson Brain Research CentreNorthern Care Alliance NHS GroupManchester Academic Health Science CentreUniversity of ManchesterManchesterUK
| |
Collapse
|
9
|
Pongener I, O'Shea C, Wootton H, Watkinson M, Miller GJ. Developments in the Chemical Synthesis of Heparin and Heparan Sulfate. CHEM REC 2021; 21:3238-3255. [PMID: 34523797 DOI: 10.1002/tcr.202100173] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 08/19/2021] [Indexed: 11/08/2022]
Abstract
Heparin and heparan sulfate represent key members of the glycosaminoglycan family of carbohydrates and underpin considerable repertoires of biological importance. As such, their efficiency of synthesis represents a key requirement, to further understand and exploit the H/HS structure-to-biological function axis. In this review we focus on chemical approaches to and methodology improvements for the synthesis of these essential sugars (from 2015 onwards). We first consider advances in accessing the heparin-derived pentasaccharide anticoagulant fondaparinux. This is followed by heparan sulfate targets, including key building block synthesis, oligosaccharide construction and chemical sulfation techniques. We end with a consideration of technological improvements to traditional, solution-phase synthesis approaches that are increasingly being utilised.
Collapse
Affiliation(s)
- Imlirenla Pongener
- Lennard-Jones Laboratories, School of Chemical and Physical Sciences, Keele University, ST5 5BG, Staffordshire, UK
| | - Conor O'Shea
- Lennard-Jones Laboratories, School of Chemical and Physical Sciences, Keele University, ST5 5BG, Staffordshire, UK
| | - Hannah Wootton
- Lennard-Jones Laboratories, School of Chemical and Physical Sciences, Keele University, ST5 5BG, Staffordshire, UK
| | - Michael Watkinson
- Lennard-Jones Laboratories, School of Chemical and Physical Sciences, Keele University, ST5 5BG, Staffordshire, UK
| | - Gavin J Miller
- Lennard-Jones Laboratories, School of Chemical and Physical Sciences, Keele University, ST5 5BG, Staffordshire, UK
| |
Collapse
|
10
|
Derler R, Kitic N, Gerlza T, Kungl AJ. Isolation and Characterization of Heparan Sulfate from Human Lung Tissues. Molecules 2021; 26:5512. [PMID: 34576979 PMCID: PMC8469465 DOI: 10.3390/molecules26185512] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 09/07/2021] [Accepted: 09/08/2021] [Indexed: 01/13/2023] Open
Abstract
Glycosaminoglycans are a class of linear, highly negatively charged, O-linked polysaccharides that are involved in many (patho)physiological processes. In vitro experimental investigations of such processes typically involve porcine-derived heparan sulfate (HS). Structural information about human, particularly organ-specific heparan sulfate, and how it compares with HS from other organisms, is very limited. In this study, heparan sulfate was isolated from human lung tissues derived from five donors and was characterized for their overall size distribution and disaccharide composition. The expression profiles of proteoglycans and HS-modifying enzymes was quantified in order to identify the major core proteins for HS. In addition, the binding affinities of human HS to two chemokines-CXCL8 and CCL2-were investigated, which represent important inflammatory mediators in lung pathologies. Our data revealed that syndecans are the predominant proteoglycan class in human lungs and that the disaccharide composition varies among individuals according to sex, age, and health stage (one of the donor lungs was accidentally discovered to contain a solid tumor). The compositional difference of the five human lung HS preparations affected chemokine binding affinities to various degrees, indicating selective immune cell responses depending on the relative chemokine-glycan affinities. This represents important new insights that could be translated into novel therapeutic concepts for individually treating lung immunological disorders via HS targets.
Collapse
Affiliation(s)
- Rupert Derler
- Institute of Pharmaceutical Sciences, University of Graz, Schubertstraße 1/1, 8010 Graz, Austria; (R.D.); (N.K.); (T.G.)
- Antagonis Biotherapeutics GmbH, Strasserhofweg 77a, 8045 Graz, Austria
| | - Nikola Kitic
- Institute of Pharmaceutical Sciences, University of Graz, Schubertstraße 1/1, 8010 Graz, Austria; (R.D.); (N.K.); (T.G.)
| | - Tanja Gerlza
- Institute of Pharmaceutical Sciences, University of Graz, Schubertstraße 1/1, 8010 Graz, Austria; (R.D.); (N.K.); (T.G.)
| | - Andreas J. Kungl
- Institute of Pharmaceutical Sciences, University of Graz, Schubertstraße 1/1, 8010 Graz, Austria; (R.D.); (N.K.); (T.G.)
- Antagonis Biotherapeutics GmbH, Strasserhofweg 77a, 8045 Graz, Austria
| |
Collapse
|
11
|
Harvey DJ. ANALYSIS OF CARBOHYDRATES AND GLYCOCONJUGATES BY MATRIX-ASSISTED LASER DESORPTION/IONIZATION MASS SPECTROMETRY: AN UPDATE FOR 2015-2016. MASS SPECTROMETRY REVIEWS 2021; 40:408-565. [PMID: 33725404 DOI: 10.1002/mas.21651] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Accepted: 07/24/2020] [Indexed: 06/12/2023]
Abstract
This review is the ninth update of the original article published in 1999 on the application of matrix-assisted laser desorption/ionization (MALDI) mass spectrometry to the analysis of carbohydrates and glycoconjugates and brings coverage of the literature to the end of 2016. Also included are papers that describe methods appropriate to analysis by MALDI, such as sample preparation techniques, even though the ionization method is not MALDI. Topics covered in the first part of the review include general aspects such as theory of the MALDI process, matrices, derivatization, MALDI imaging, fragmentation and arrays. The second part of the review is devoted to applications to various structural types such as oligo- and poly-saccharides, glycoproteins, glycolipids, glycosides and biopharmaceuticals. Much of this material is presented in tabular form. The third part of the review covers medical and industrial applications of the technique, studies of enzyme reactions and applications to chemical synthesis. The reported work shows increasing use of combined new techniques such as ion mobility and the enormous impact that MALDI imaging is having. MALDI, although invented over 30 years ago is still an ideal technique for carbohydrate analysis and advancements in the technique and range of applications show no sign of deminishing. © 2020 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- David J Harvey
- Nuffield Department of Medicine, Target Discovery Institute, University of Oxford, Roosevelt Drive, Oxford, OX3 7FZ, United Kingdom
| |
Collapse
|
12
|
Jain P, Shanthamurthy CD, Leviatan Ben-Arye S, Woods RJ, Kikkeri R, Padler-Karavani V. Discovery of rare sulfated N-unsubstituted glucosamine based heparan sulfate analogs selectively activating chemokines. Chem Sci 2021; 12:3674-3681. [PMID: 33889380 PMCID: PMC8025211 DOI: 10.1039/d0sc05862a] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2020] [Accepted: 01/15/2021] [Indexed: 12/24/2022] Open
Abstract
Achieving selective inhibition of chemokines with structurally well-defined heparan sulfate (HS) oligosaccharides can provide important insights into cancer cell migration and metastasis. However, HS is highly heterogeneous in chemical composition, which limits its therapeutic use. Here, we report the rational design and synthesis of N-unsubstituted (NU) and N-acetylated (NA) heparan sulfate tetrasaccharides that selectively inhibit structurally homologous chemokines. HS analogs were produced by divergent synthesis, where fully protected HS tetrasaccharide precursor was subjected to selective deprotection and regioselectively O-sulfated, and O-phosphorylated to obtain 13 novel HS tetrasaccharides. HS microarray and SPR analysis with a wide range of chemokines revealed the structural significance of sulfation patterns and NU domain in chemokine activities for the first time. Particularly, HT-3,6S-NH revealed selective recognition by CCL2 chemokine. Further systematic interrogation of the role of HT-3,6S-NH in cancer demonstrated an effective blockade of CCL2 and its receptor CCR2 interactions, thereby impairing cancer cell proliferation, migration and invasion, a step towards designing novel drug molecules.
Collapse
Affiliation(s)
- Prashant Jain
- Department of Chemistry , Indian Institute of Science Education and Research , Pune-411008 , India .
| | - Chethan D Shanthamurthy
- Department of Chemistry , Indian Institute of Science Education and Research , Pune-411008 , India .
| | - Shani Leviatan Ben-Arye
- Department of Cell Research and Immunology , The Shmunis School of Biomedicine and Cancer Research , The George S. Wise Faculty of Life Sciences , Tel Aviv University , Tel Aviv , 69978 , Israel .
| | - Robert J Woods
- Complex Carbohydrate Research Center , University of Georgia , Athens 30606 , GA , USA
| | - Raghavendra Kikkeri
- Department of Chemistry , Indian Institute of Science Education and Research , Pune-411008 , India .
| | - Vered Padler-Karavani
- Department of Cell Research and Immunology , The Shmunis School of Biomedicine and Cancer Research , The George S. Wise Faculty of Life Sciences , Tel Aviv University , Tel Aviv , 69978 , Israel .
| |
Collapse
|
13
|
Jain P, Shanthamurthy CD, Leviatan Ben-Arye S, Yehuda S, Nandikol SS, Thulasiram HV, Padler-Karavani V, Kikkeri R. Synthetic heparan sulfate ligands for vascular endothelial growth factor to modulate angiogenesis. Chem Commun (Camb) 2021; 57:3516-3519. [PMID: 33704312 DOI: 10.1039/d1cc00964h] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
We report the discovery of a potential heparan sulfate (HS) ligand to target several growth factors using 13 unique HS tetrasaccharide ligands. By employing an HS microarray and SPR, we deciphered the crucial structure-binding relationship of these glycans with the growth factors BMP2, VEGF165, HB-EGF, and FGF2. Notably, GlcNHAc(6-O-SO3-)-IdoA(2-O-SO3-) (HT-2,6S-NAc) tetrasaccharide showed strong binding with the VEGF165 growth factor. In vitro vascular endothelial cell proliferation, migration and angiogenesis was inhibited in the presence of VEGF165 and HT-2,6S-NAc or HT-6S-NAc, revealing the potential therapeutic role of these synthetic HS ligands.
Collapse
Affiliation(s)
- Prashant Jain
- Indian Institute of Science Education and Research, Dr Homi Bhabha Road, Pune-411008, India.
| | | | | | | | | | | | | | | |
Collapse
|
14
|
Shanthamurthy CD, Leviatan Ben-Arye S, Kumar NV, Yehuda S, Amon R, Woods RJ, Padler-Karavani V, Kikkeri R. Heparan Sulfate Mimetics Differentially Affect Homologous Chemokines and Attenuate Cancer Development. J Med Chem 2021; 64:3367-3380. [PMID: 33683903 DOI: 10.1021/acs.jmedchem.0c01800] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Achieving selective inhibition of chemokine activity by structurally well-defined heparan sulfate (HS) or HS mimetic molecules can provide important insights into their roles in individual physiological and pathological cellular processes. Here, we report a novel tailor-made HS mimetic, which furnishes an exclusive iduronic acid (IdoA) scaffold with different sulfation patterns and oligosaccharide chain lengths as potential ligands to target chemokines. Notably, highly sulfated-IdoA tetrasaccharide (I-45) exhibited strong binding to CCL2 chemokine thereby blocking CCL2/CCR2-mediated in vitro cancer cell invasion and metastasis. Taken together, IdoA-based HS mimetics offer an alternative HS substrate to generate selective and efficient inhibitors for chemokines and pave the way to a wide range of new therapeutic applications in cancer biology and immunology.
Collapse
Affiliation(s)
- Chethan D Shanthamurthy
- Indian Institute of Science Education and Research, Dr. Homi Bhabha Road, Pune 411008, India
| | - Shani Leviatan Ben-Arye
- Department of Cell Research and Immunology, the Shmunis School of Biomedicine and Cancer Research, the George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978, Israel
| | | | - Sharon Yehuda
- Department of Cell Research and Immunology, the Shmunis School of Biomedicine and Cancer Research, the George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978, Israel
| | - Ron Amon
- Department of Cell Research and Immunology, the Shmunis School of Biomedicine and Cancer Research, the George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978, Israel
| | - Robert J Woods
- Complex Carbohydrate Research Center, University of Georgia, Athens 306062 Georgia, United States
| | - Vered Padler-Karavani
- Department of Cell Research and Immunology, the Shmunis School of Biomedicine and Cancer Research, the George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978, Israel
| | - Raghavendra Kikkeri
- Indian Institute of Science Education and Research, Dr. Homi Bhabha Road, Pune 411008, India
| |
Collapse
|
15
|
Handel TM, Dyer DP. Perspectives on the Biological Role of Chemokine:Glycosaminoglycan Interactions. J Histochem Cytochem 2021; 69:87-91. [PMID: 33285085 PMCID: PMC7838337 DOI: 10.1369/0022155420977971] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Accepted: 11/11/2020] [Indexed: 02/02/2023] Open
Affiliation(s)
- Tracy M Handel
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, CA
| | - Douglas P Dyer
- Wellcome Centre for Cell-Matrix Research, Lydia Becker Institute of Immunology and Inflammation, Division of Infection, Immunity & Respiratory Medicine, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester, United Kingdom
| |
Collapse
|
16
|
Dyer DP. Understanding the mechanisms that facilitate specificity, not redundancy, of chemokine-mediated leukocyte recruitment. Immunology 2020; 160:336-344. [PMID: 32285441 PMCID: PMC7370109 DOI: 10.1111/imm.13200] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 04/06/2020] [Accepted: 04/06/2020] [Indexed: 12/29/2022] Open
Abstract
Chemokines (chemotactic cytokines) and their receptors are critical to recruitment and positioning of cells during development and the immune response. The chemokine system has long been described as redundant for a number of reasons, where multiple chemokine ligands can bind to multiple receptors and vice versa. This apparent redundancy has been thought to be a major reason for the failure of drugs targeting chemokines during inflammatory disease. We are now beginning to understand that chemokine biology is in fact based around a high degree of specificity, where each chemokine and receptor plays a particular role in the immune response. This specificity hypothesis is supported by a number of recent studies designed to address this problem. This review will detail these studies and the mechanisms that produce this specificity of function with an emphasis on the emerging role of chemokine–glycosaminoglycan interactions.
Collapse
Affiliation(s)
- Douglas P Dyer
- Wellcome Centre for Cell-Matrix Research, Lydia Becker Institute of Immunology and Inflammation, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester, UK
| |
Collapse
|
17
|
Gulberti S, Mao X, Bui C, Fournel-Gigleux S. The role of heparan sulfate maturation in cancer: A focus on the 3O-sulfation and the enigmatic 3O-sulfotransferases (HS3STs). Semin Cancer Biol 2020; 62:68-85. [DOI: 10.1016/j.semcancer.2019.10.009] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Revised: 10/10/2019] [Accepted: 10/11/2019] [Indexed: 01/05/2023]
|
18
|
El Masri R, Crétinon Y, Gout E, Vivès RR. HS and Inflammation: A Potential Playground for the Sulfs? Front Immunol 2020; 11:570. [PMID: 32318065 PMCID: PMC7147386 DOI: 10.3389/fimmu.2020.00570] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Accepted: 03/12/2020] [Indexed: 11/13/2022] Open
Abstract
Heparan sulfate (HS) is a complex polysaccharide abundantly found in extracellular matrices and cell surfaces. HS participates in major cellular processes, through its ability to bind and modulate a wide array of signaling proteins. HS/ligand interactions involve saccharide domains of specific sulfation pattern. Assembly of such domains is orchestrated by a complex biosynthesis machinery and their structure is further regulated at the cell surface by post-synthetic modifying enzymes. Amongst them, extracellular sulfatases of the Sulf family catalyze the selective removal of 6-O-sulfate groups, which participate in the binding of many proteins. As such, increasing interest arose on the regulation of HS biological properties by the Sulfs. However, studies of the Sulfs have so far been essentially restricted to the fields of development and tumor progression. The aim of this review is to survey recent data of the literature on the still poorly documented role of the Sulfs during inflammation, and to widen the perspectives for the study of this intriguing regulatory mechanism toward new physiopathological processes.
Collapse
Affiliation(s)
- Rana El Masri
- Université Grenoble Alpes, CNRS, CEA, Institut de Biologie Structurale (IBS), Grenoble, France
| | - Yoann Crétinon
- Université Grenoble Alpes, CNRS, CEA, Institut de Biologie Structurale (IBS), Grenoble, France
| | - Evelyne Gout
- Université Grenoble Alpes, CNRS, CEA, Institut de Biologie Structurale (IBS), Grenoble, France
| | - Romain R Vivès
- Université Grenoble Alpes, CNRS, CEA, Institut de Biologie Structurale (IBS), Grenoble, France
| |
Collapse
|
19
|
Valverde P, Ardá A, Reichardt NC, Jiménez-Barbero J, Gimeno A. Glycans in drug discovery. MEDCHEMCOMM 2019; 10:1678-1691. [PMID: 31814952 PMCID: PMC6839814 DOI: 10.1039/c9md00292h] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Accepted: 07/10/2019] [Indexed: 02/06/2023]
Abstract
Glycans are key players in many biological processes. They are essential for protein folding and stability and act as recognition elements in cell-cell and cell-matrix interactions. Thus, being at the heart of medically relevant biological processes, glycans have come onto the scene and are considered hot spots for biomedical intervention. The progress in biophysical techniques allowing access to an increasing molecular and structural understanding of these processes has led to the development of effective therapeutics. Indeed, strategies aimed at designing glycomimetics able to block specific lectin-carbohydrate interactions, carbohydrate-based vaccines mimicking self- and non-self-antigens as well as the exploitation of the therapeutic potential of glycosylated antibodies are being pursued. In this mini-review the most prominent contributions concerning recurrent diseases are highlighted, including bacterial and viral infections, cancer or immune-related pathologies, which certainly show the great promise of carbohydrates in drug discovery.
Collapse
Affiliation(s)
- Pablo Valverde
- CIC bioGUNE , Bizkaia Technology Park, Building 800 , 48162 Derio , Bizkaia , Spain .
| | - Ana Ardá
- CIC bioGUNE , Bizkaia Technology Park, Building 800 , 48162 Derio , Bizkaia , Spain .
| | | | - Jesús Jiménez-Barbero
- CIC bioGUNE , Bizkaia Technology Park, Building 800 , 48162 Derio , Bizkaia , Spain .
- Ikerbasque , Basque Foundation for Science , 48013 Bilbao , Bizkaia , Spain
- Department of Organic Chemistry II , University of the Basque Country , UPV/EHU , 48940 Leioa , Bizkaia , Spain
| | - Ana Gimeno
- CIC bioGUNE , Bizkaia Technology Park, Building 800 , 48162 Derio , Bizkaia , Spain .
| |
Collapse
|
20
|
Affiliation(s)
| | - Raghavendra Kikkeri
- Indian Institute of Science Education and Research; Dr. Homi Bhabha Road 411008 Pune India
| |
Collapse
|
21
|
Lanzi C, Cassinelli G. Heparan Sulfate Mimetics in Cancer Therapy: The Challenge to Define Structural Determinants and the Relevance of Targets for Optimal Activity. Molecules 2018; 23:E2915. [PMID: 30413079 PMCID: PMC6278363 DOI: 10.3390/molecules23112915] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Revised: 11/06/2018] [Accepted: 11/06/2018] [Indexed: 12/21/2022] Open
Abstract
Beyond anticoagulation, the therapeutic potential of heparin derivatives and heparan sulfate (HS) mimetics (functionally defined HS mimetics) in oncology is related to their ability to bind and modulate the function of a vast array of HS-binding proteins with pivotal roles in cancer growth and progression. The definition of structural/functional determinants and the introduction of chemical modifications enabled heparin derivatives to be identified with greatly reduced or absent anticoagulant activity, but conserved/enhanced anticancer activity. These studies paved the way for the disclosure of structural requirements for the inhibitory effects of HS mimetics on heparanase, selectins, and growth factor receptor signaling, as well as for the limitation of side effects. Actually, HS mimetics affect the tumor biological behavior via a multi-target mechanism of action based on their effects on tumor cells and various components of the tumor microenvironment. Emerging evidence indicates that immunomodulation can participate in the antitumor activity of these agents. Significant ability to enhance the antitumor effects of combination treatments with standard therapies was shown in several tumor models. While the first HS mimetics are undergoing early clinical evaluation, an improved understanding of the molecular contexts favoring the antitumor action in certain malignancies or subgroups is needed to fully exploit their potential.
Collapse
Affiliation(s)
- Cinzia Lanzi
- Molecular Pharmacology Unit, Department of Applied Research and Technological Development, Fondazione IRCCS Istituto Nazionale dei Tumori, 20133 Milan, Italy.
| | - Giuliana Cassinelli
- Molecular Pharmacology Unit, Department of Applied Research and Technological Development, Fondazione IRCCS Istituto Nazionale dei Tumori, 20133 Milan, Italy.
| |
Collapse
|
22
|
Dey S, Wong CH. Programmable one-pot synthesis of heparin pentasaccharides enabling access to regiodefined sulfate derivatives. Chem Sci 2018; 9:6685-6691. [PMID: 30310602 PMCID: PMC6115620 DOI: 10.1039/c8sc01743c] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2018] [Accepted: 07/01/2018] [Indexed: 01/17/2023] Open
Abstract
Heparin (H) and heparan sulfate (HS) belong to the glycosaminoglycan (GAG) family of oligosaccharides, and their sequences and sulfation patterns are known to regulate the functions of various proteins in biological processes. Among these, the 6-O-sulfation of HS/H contributes most significantly to the structural diversity and binding interactions. However, the synthesis of HS with defined sulfation patterns remains a major challenge. Herein, we report a highly efficient and programmable one-pot method for the synthesis of protected heparin pentasaccharides using thioglycoside building blocks with optimized relative reactivities to allow the selective deprotection and preparation of regiodefined sulfate derivatives.
Collapse
Affiliation(s)
- Supriya Dey
- Department of Chemistry , The Scripps Research Institute , 10550 N Torrey Pines Road , La Jolla 92037 , USA
| | - Chi-Huey Wong
- Department of Chemistry , The Scripps Research Institute , 10550 N Torrey Pines Road , La Jolla 92037 , USA
- The Genomics Research Center , Academia Sinica , No. 128, Academia Road, Section 2 , Taipei , Taiwan .
| |
Collapse
|
23
|
Lim TC, Cai S, Huber RG, Bond PJ, Siew Chia PX, Khou SL, Gao S, Lee SS, Lee SG. Facile saccharide-free mimetics that recapitulate key features of glycosaminoglycan sulfation patterns. Chem Sci 2018; 9:7940-7947. [PMID: 30429999 PMCID: PMC6201788 DOI: 10.1039/c8sc02303d] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Accepted: 08/21/2018] [Indexed: 12/16/2022] Open
Abstract
We report a new class of saccharide-free glycosaminoglycan (GAG) mimetics where polyproline imparts facilely-made sulfation patterns with GAG-like structure, function and tunability.
Controlling glycosaminoglycan (GAG) activity to exploit its immense potential in biology ultimately requires facile manipulation of sulfation patterns associated with GAGs. However, satisfying this requirement in full remains challenging, given that synthesis of GAGs is technically arduous while convenient GAG mimetics often produce sulfation patterns that are uncharacteristic of GAGs. To overcome this, we develop saccharide-free polyproline-based GAG mimetics (PGMs) that can be facilely assembled via amide coupling chemistry. Molecular dynamics simulations show that PGMs recapitulate key GAG structural features (i.e. ∼9 Å-sized repeating units, periodicity and helicity) and as with GAGs, can be tuned to introduce systematic variations in sulfate clustering and spacing. Functionally, a variety of PGMs control various GAG activities (concerning P-selectin, neurotrophic factors and heparinase) and exhibit GAG-like characteristics such as progressive modulation, comparable effectiveness with heparins, need for different sequences to suit different activities and the presence of a “minimal bioactive length”. Furthermore, PGMs produce consistent effects in vivo and successfully provide therapeutic benefits over cancer metastasis. Taken together with their high level of biosafety, PGMs answer the long-standing need for an effective and practicable strategy to manipulate GAG-appropriate sulfation patterns and exploit GAG activity in medicine and biotechnology.
Collapse
Affiliation(s)
- Teck Chuan Lim
- Institute of Bioengineering and Nanotechnology , 31 Biopolis Way, The Nanos , Singapore 138669 , Singapore .
| | - Shuting Cai
- Institute of Bioengineering and Nanotechnology , 31 Biopolis Way, The Nanos , Singapore 138669 , Singapore .
| | - Roland G Huber
- Bioinformatics Institute , 30 Biopolis Street, #07-01 Matrix , Singapore 138671 , Singapore
| | - Peter J Bond
- Bioinformatics Institute , 30 Biopolis Street, #07-01 Matrix , Singapore 138671 , Singapore.,Department of Biological Sciences , National University of Singapore , 14 Science Drive 4 , Singapore 117543 , Singapore
| | - Priscilla Xian Siew Chia
- Institute of Bioengineering and Nanotechnology , 31 Biopolis Way, The Nanos , Singapore 138669 , Singapore .
| | - Siv Ly Khou
- Institute of Bioengineering and Nanotechnology , 31 Biopolis Way, The Nanos , Singapore 138669 , Singapore .
| | - Shujun Gao
- Institute of Bioengineering and Nanotechnology , 31 Biopolis Way, The Nanos , Singapore 138669 , Singapore .
| | - Su Seong Lee
- Institute of Bioengineering and Nanotechnology , 31 Biopolis Way, The Nanos , Singapore 138669 , Singapore .
| | - Song-Gil Lee
- Institute of Bioengineering and Nanotechnology , 31 Biopolis Way, The Nanos , Singapore 138669 , Singapore .
| |
Collapse
|
24
|
Huang RL, Chen HJ, Chen LY, Chao TK, Lin WY, Liew PL, Su PH, Weng YC, Wang YC, Liao CC, Hsu YW, Wang HC, Lai HC. Epigenetic loss of heparan sulfate 3-O-sulfation sensitizes ovarian carcinoma to oncogenic signals and predicts prognosis. Int J Cancer 2018; 143:1943-1953. [PMID: 29732534 DOI: 10.1002/ijc.31580] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Revised: 04/02/2018] [Accepted: 04/23/2018] [Indexed: 11/05/2022]
Abstract
Precision medicine requires markers for therapeutic guidance. The purpose of this study was to determine whether epithelial ovarian cancer (EOC) epigenetics can lead to the identification of biomarkers for precision medicine. Through integrative methylomics, we discovered and validated the epigenetic signature of NEFH and HS3ST2 as an independent prognostic factor for type II EOC in our dataset (n = 84), and two independent methylomics datasets (total n = 467). Integrated transcriptomics dataset (n = 1147) and tissue microarrays (n = 54) of HS3ST2 also related to high-methylation statuses and the EOC prognosis. Mechanistic explorations of HS3ST2 have assessed responses to oncogenic stimulations such as IL-6, EGF, and FGF2 in cancer cells. The combination of HS3ST2 and various oncogenic ligands also confers the worse outcome. 3-O-sulfation of heparan sulfate by HS3ST2 makes ovarian cancer cells intrinsically sensitive to oncogenic signals, which sheds new light on the application of HS3ST2 as a companion diagnostic for targeted therapy using kinase inhibitors or therapeutic antibodies.
Collapse
Affiliation(s)
- Rui-Lan Huang
- Department of Obstetrics and Gynecology, Shuang Ho Hospital, Taipei Medical University, New Taipei, Taiwan.,Translational epigenetic center, Shuang Ho Hospital, Taipei Medical University, New Taipei, Taiwan
| | - Hsiang-Ju Chen
- Molecular and Cell Biology, Taiwan International Graduate Program, Academia Sinica and National Defense Medical Center, Taipei, Taiwan.,Graduate Institute of Life Sciences, National Defense Medical Center, Taipei, Taiwan
| | - Lin-Yu Chen
- Graduate Institute of Life Sciences, National Defense Medical Center, Taipei, Taiwan
| | - Tai-Kuang Chao
- Department of Pathology, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan.,Graduate Institute of Medical Sciences, National Defense Medical Center, Taipei, Taiwan
| | - Wei-Yu Lin
- Northern Institute for Cancer Research, Newcastle University, Newcastle-upon-Tyne, UK
| | - Phui-Ly Liew
- Department of Pathology, Shuang Ho Hospital, Taipei Medical University, New Taipei, Taiwan.,Department of Pathology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Po-Hsuan Su
- Translational epigenetic center, Shuang Ho Hospital, Taipei Medical University, New Taipei, Taiwan.,Department of Medical Research, Shuang Ho Hospital, Taipei Medical University, New Taipei, Taiwan
| | - Yu-Chun Weng
- Translational epigenetic center, Shuang Ho Hospital, Taipei Medical University, New Taipei, Taiwan
| | - Yu-Chi Wang
- Graduate Institute of Medical Sciences, National Defense Medical Center, Taipei, Taiwan.,Department of Obstetrics and Gynecology, Tri-Service General Hospital, National Defense Medical Centre, Taipei, Taiwan
| | - Chi-Chun Liao
- Department of Obstetrics and Gynecology, Shuang Ho Hospital, Taipei Medical University, New Taipei, Taiwan
| | - Yaw-Wen Hsu
- Graduate Institute of Life Sciences, National Defense Medical Center, Taipei, Taiwan
| | - Hui-Chen Wang
- Department of Obstetrics and Gynecology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Hung-Cheng Lai
- Department of Obstetrics and Gynecology, Shuang Ho Hospital, Taipei Medical University, New Taipei, Taiwan.,Translational epigenetic center, Shuang Ho Hospital, Taipei Medical University, New Taipei, Taiwan.,Department of Obstetrics and Gynecology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan.,Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, 410008, People's Republic of China.,Hunan Key Laboratory of Pharmacogenetics, Institute of Clinical Pharmacology, Central South University, Changsha, 410078, People's Republic of China
| |
Collapse
|
25
|
Maza S, Gandia-Aguado N, de Paz JL, Nieto PM. Fluorous-tag assisted synthesis of a glycosaminoglycan mimetic tetrasaccharide as a high-affinity FGF-2 and midkine ligand. Bioorg Med Chem 2018; 26:1076-1085. [DOI: 10.1016/j.bmc.2018.01.022] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Revised: 01/22/2018] [Accepted: 01/24/2018] [Indexed: 02/01/2023]
|
26
|
Heparin Mimetics: Their Therapeutic Potential. Pharmaceuticals (Basel) 2017; 10:ph10040078. [PMID: 28974047 PMCID: PMC5748635 DOI: 10.3390/ph10040078] [Citation(s) in RCA: 79] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Revised: 09/21/2017] [Accepted: 09/22/2017] [Indexed: 01/04/2023] Open
Abstract
Heparin mimetics are synthetic and semi-synthetic compounds that are highly sulfated, structurally distinct analogues of glycosaminoglycans. These mimetics are often rationally designed to increase potency and binding selectivity towards specific proteins involved in disease manifestations. Some of the major therapeutic arenas towards which heparin mimetics are targeted include: coagulation and thrombosis, cancers, and inflammatory diseases. Although Fondaparinux, a rationally designed heparin mimetic, is now approved for prophylaxis and treatment of venous thromboembolism, the search for novel anticoagulant heparin mimetics with increased affinity and fewer side effects remains a subject of research. However, increasingly, research is focusing on the non-anticoagulant activities of these molecules. Heparin mimetics have potential as anti-cancer agents due to their ability to: (1) inhibit heparanase, an endoglycosidase which facilitates the spread of tumor cells; and (2) inhibit angiogenesis by binding to growth factors. The heparin mimetic, PI-88 is in clinical trials for post-surgical hepatocellular carcinoma and advanced melanoma. The anti-inflammatory properties of heparin mimetics have primarily been attributed to their ability to interact with: complement system proteins, selectins and chemokines; each of which function differently to facilitate inflammation. The efficacy of low/non-anticoagulant heparin mimetics in animal models of different inflammatory diseases has been demonstrated. These findings, plus clinical data that indicates heparin has anti-inflammatory activity, will raise the momentum for developing heparin mimetics as a new class of therapeutic agent for inflammatory diseases.
Collapse
|
27
|
Synthetic heparin and heparan sulfate: probes in defining biological functions. Curr Opin Chem Biol 2017; 40:152-159. [DOI: 10.1016/j.cbpa.2017.09.012] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2017] [Revised: 09/11/2017] [Accepted: 09/15/2017] [Indexed: 12/18/2022]
|
28
|
Glycosaminoglycan Interactions with Chemokines Add Complexity to a Complex System. Pharmaceuticals (Basel) 2017; 10:ph10030070. [PMID: 28792472 PMCID: PMC5620614 DOI: 10.3390/ph10030070] [Citation(s) in RCA: 91] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2017] [Revised: 07/24/2017] [Accepted: 07/24/2017] [Indexed: 12/12/2022] Open
Abstract
Chemokines have two types of interactions that function cooperatively to control cell migration. Chemokine receptors on migrating cells integrate signals initiated upon chemokine binding to promote cell movement. Interactions with glycosaminoglycans (GAGs) localize chemokines on and near cell surfaces and the extracellular matrix to provide direction to the cell movement. The matrix of interacting chemokine–receptor partners has been known for some time, precise signaling and trafficking properties of many chemokine–receptor pairs have been characterized, and recent structural information has revealed atomic level detail on chemokine–receptor recognition and activation. However, precise knowledge of the interactions of chemokines with GAGs has lagged far behind such that a single paradigm of GAG presentation on surfaces is generally applied to all chemokines. This review summarizes accumulating evidence which suggests that there is a great deal of diversity and specificity in these interactions, that GAG interactions help fine-tune the function of chemokines, and that GAGs have other roles in chemokine biology beyond localization and surface presentation. This suggests that chemokine–GAG interactions add complexity to the already complex functions of the receptors and ligands.
Collapse
|
29
|
The "in and out" of glucosamine 6-O-sulfation: the 6th sense of heparan sulfate. Glycoconj J 2016; 34:285-298. [PMID: 27812771 DOI: 10.1007/s10719-016-9736-5] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2016] [Revised: 09/26/2016] [Accepted: 09/28/2016] [Indexed: 01/06/2023]
Abstract
The biological properties of Heparan sulfate (HS) polysaccharides essentially rely on their ability to bind and modulate a multitude of protein ligands. These interactions involve internal oligosaccharide sequences defined by their sulfation patterns. Amongst these, the 6-O-sulfation of HS contributes significantly to the polysaccharide structural diversity and is critically involved in the binding of many proteins. HS 6-O-sulfation is catalyzed by 6-O-sulfotransferases (6OSTs) during biosynthesis, and it is further modified by the post-synthetic action of 6-O-endosulfatases (Sulfs), two enzyme families that remain poorly characterized. The aim of the present review is to summarize the contribution of 6-O-sulfates in HS structure/function relationships and to discuss the present knowledge on the complex mechanisms regulating HS 6-O-sulfation.
Collapse
|
30
|
Dalton CE, Quinn SD, Rafferty A, Morten MJ, Gardiner JM, Magennis SW. Single-Molecule Fluorescence Detection of a Synthetic Heparan Sulfate Disaccharide. Chemphyschem 2016; 17:3442-3446. [PMID: 27538128 PMCID: PMC5111599 DOI: 10.1002/cphc.201600750] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2016] [Indexed: 11/11/2022]
Abstract
The first single-molecule fluorescence detection of a structurally-defined synthetic carbohydrate is reported: a heparan sulfate (HS) disaccharide fragment labeled with Alexa488. Single molecules have been measured whilst freely diffusing in solution and controlled encapsulation in surface-tethered lipid vesicles has allowed extended observations of carbohydrate molecules down to the single-molecule level. The diverse and dynamic nature of HS-protein interactions means that new tools to investigate pure HS fragments at the molecular level would significantly enhance our understanding of HS. This work is a proof-of-principle demonstration of the feasibility of single-molecule studies of synthetic carbohydrates which offers a new approach to the study of pure glycosaminoglycan (GAG) fragments.
Collapse
Affiliation(s)
- Charlotte E Dalton
- The School of Chemistry and Manchester Institute of Biotechnology, The University of Manchester, 131 Princess Street, Manchester, M1 7DN, UK
| | - Steven D Quinn
- WestCHEM, School of Chemistry, University of Glasgow, Joseph Black Building, University Avenue, Glasgow, G12 8QQ, UK
| | - Aidan Rafferty
- WestCHEM, School of Chemistry, University of Glasgow, Joseph Black Building, University Avenue, Glasgow, G12 8QQ, UK
| | - Michael J Morten
- WestCHEM, School of Chemistry, University of Glasgow, Joseph Black Building, University Avenue, Glasgow, G12 8QQ, UK
| | - John M Gardiner
- The School of Chemistry and Manchester Institute of Biotechnology, The University of Manchester, 131 Princess Street, Manchester, M1 7DN, UK
| | - Steven W Magennis
- WestCHEM, School of Chemistry, University of Glasgow, Joseph Black Building, University Avenue, Glasgow, G12 8QQ, UK
| |
Collapse
|
31
|
Avizienyte E, Cole CL, Rushton G, Miller GJ, Bugatti A, Presta M, Gardiner JM, Jayson GC. Synthetic Site-Selectively Mono-6-O-Sulfated Heparan Sulfate Dodecasaccharide Shows Anti-Angiogenic Properties In Vitro and Sensitizes Tumors to Cisplatin In Vivo. PLoS One 2016; 11:e0159739. [PMID: 27490176 PMCID: PMC4973927 DOI: 10.1371/journal.pone.0159739] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2016] [Accepted: 07/07/2016] [Indexed: 11/23/2022] Open
Abstract
Heparan sulphate (HS), a ubiquitously expressed glycosaminoglycan (GAG), regulates multiple cellular functions by mediating interactions between numerous growth factors and their cell surface cognate receptors. However, the structural specificity of HS in these interactions remains largely undefined. Here, we used completely synthetic, structurally defined, alternating N-sulfated glucosamine (NS) and 2-O-sulfated iduronate (IS) residues to generate dodecasaccharides ([NSIS]6) that contained no, one or six glucosamine 6-O-sulfates (6S). The aim was to address how 6S contributes to the potential of defined HS dodecasaccharides to inhibit the angiogenic growth factors FGF2 and VEGF165, in vitro and in vivo. We show that the addition of a single 6S at the non-reducing end of [NSIS]6, i.e. [NSIS6S]-[NSIS]5, significantly augments the inhibition of FGF2-dependent endothelial cell proliferation, migration and sprouting in vitro when compared to the non-6S variant. In contrast, the fully 6-O-sulfated dodecasaccharide, [NSIS6S]6, is not a potent inhibitor of FGF2. Addition of a single 6S did not significantly improve inhibitory properties of [NSIS]6 when tested against VEGF165-dependent endothelial cell functions.In vivo, [NSIS6S]-[NSIS]5 blocked FGF2-dependent blood vessel formation without affecting tumor growth. Reduction of non-FGF2-dependent ovarian tumor growth occurred when [NSIS6S]-[NSIS]5 was combined with cisplatin. The degree of inhibition by [NSIS6S]-[NSIS]5 in combination with cisplatin in vivo equated with that induced by bevacizumab and sunitinib when administered with cisplatin. Evaluation of post-treatment vasculature revealed that [NSIS6S]-[NSIS]5 treatment had the greatest impact on tumor blood vessel size and lumen formation. Our data for the first time demonstrate that synthetic, structurally defined oligosaccharides have potential to be developed as active anti-angiogenic agents that sensitize tumors to chemotherapeutic agents.
Collapse
Affiliation(s)
- Egle Avizienyte
- Institute of Cancer Sciences, Faculty of Medical and Human Sciences, The University of Manchester, Manchester M20 4BX, United Kingdom
- * E-mail: (EA); (GCJ)
| | - Claire L. Cole
- Institute of Cancer Sciences, Faculty of Medical and Human Sciences, The University of Manchester, Manchester M20 4BX, United Kingdom
| | - Graham Rushton
- Institute of Cancer Sciences, Faculty of Medical and Human Sciences, The University of Manchester, Manchester M20 4BX, United Kingdom
| | - Gavin J. Miller
- School of Chemistry and Manchester Interdisciplinary Biocentre, The University of Manchester, Manchester M1 7ND, United Kingdom
| | - Antonella Bugatti
- Unit of General Pathology and Immunology, Department of Biomedical Sciences and Biotechnology, University of Brescia, Viale Europa 11, 25123 Brescia, Italy
| | - Marco Presta
- Unit of General Pathology and Immunology, Department of Biomedical Sciences and Biotechnology, University of Brescia, Viale Europa 11, 25123 Brescia, Italy
| | - John M. Gardiner
- School of Chemistry and Manchester Interdisciplinary Biocentre, The University of Manchester, Manchester M1 7ND, United Kingdom
| | - Gordon C. Jayson
- Institute of Cancer Sciences, Faculty of Medical and Human Sciences, The University of Manchester, Manchester M20 4BX, United Kingdom
- * E-mail: (EA); (GCJ)
| |
Collapse
|
32
|
Mende M, Bednarek C, Wawryszyn M, Sauter P, Biskup MB, Schepers U, Bräse S. Chemical Synthesis of Glycosaminoglycans. Chem Rev 2016; 116:8193-255. [DOI: 10.1021/acs.chemrev.6b00010] [Citation(s) in RCA: 144] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Marco Mende
- Institute
of Organic Chemistry, Karlsruhe Institute of Technology (KIT), Fritz-Haber-Weg 6, D-76131 Karlsruhe, Germany
| | - Christin Bednarek
- Institute
of Organic Chemistry, Karlsruhe Institute of Technology (KIT), Fritz-Haber-Weg 6, D-76131 Karlsruhe, Germany
| | - Mirella Wawryszyn
- Institute
of Organic Chemistry, Karlsruhe Institute of Technology (KIT), Fritz-Haber-Weg 6, D-76131 Karlsruhe, Germany
| | - Paul Sauter
- Institute
of Organic Chemistry, Karlsruhe Institute of Technology (KIT), Fritz-Haber-Weg 6, D-76131 Karlsruhe, Germany
| | - Moritz B. Biskup
- Division
2—Informatics, Economics and Society, Karlsruhe Institute of Technology (KIT), Kaiserstraße 12, D-76131 Karlsruhe, Germany
| | - Ute Schepers
- Institute
of Toxicology and Genetics, Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, D-76344 Eggenstein-Leopoldshafen, Germany
| | - Stefan Bräse
- Institute
of Organic Chemistry, Karlsruhe Institute of Technology (KIT), Fritz-Haber-Weg 6, D-76131 Karlsruhe, Germany
- Institute
of Toxicology and Genetics, Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, D-76344 Eggenstein-Leopoldshafen, Germany
| |
Collapse
|
33
|
Monneau Y, Arenzana-Seisdedos F, Lortat-Jacob H. The sweet spot: how GAGs help chemokines guide migrating cells. J Leukoc Biol 2015; 99:935-53. [DOI: 10.1189/jlb.3mr0915-440r] [Citation(s) in RCA: 90] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2015] [Accepted: 11/24/2015] [Indexed: 12/19/2022] Open
|
34
|
Mechanistic and therapeutic overview of glycosaminoglycans: the unsung heroes of biomolecular signaling. Glycoconj J 2015; 33:1-17. [DOI: 10.1007/s10719-015-9642-2] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2015] [Revised: 11/19/2015] [Accepted: 11/20/2015] [Indexed: 12/28/2022]
|
35
|
Miller GJ, Broberg KR, Rudd C, Helliwell MR, Jayson GC, Gardiner JM. A latent reactive handle for functionalising heparin-like and LMWH deca- and dodecasaccharides. Org Biomol Chem 2015; 13:11208-19. [PMID: 26381107 PMCID: PMC4672752 DOI: 10.1039/c5ob01706h] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Disaccharide units containing a latent aldehyde surrogate at O4 provide late-stage access to terminal aldehyde LMWH and HS deca and dodecasaccharides.
d-Glucosamine derivatives bearing latent O4 functionality provide modified H/HS-type disaccharide donors for a final stage capping approach enabling introduction of conjugation-suitable, non-reducing terminal functionality to biologically important glycosaminoglycan oligosaccharides. Application to the synthesis of the first O4-terminus modified synthetic LMWH decasaccharide and an HS-like dodecasaccharide is reported.
Collapse
Affiliation(s)
- Gavin J Miller
- Manchester Institute of Biotechnology and School of Chemistry, 131 Princess Street, University of Manchester M1 7DN, UK.
| | | | | | | | | | | |
Collapse
|
36
|
Hansen SU, Miller GJ, Cliff MJ, Jayson GC, Gardiner JM. Making the longest sugars: a chemical synthesis of heparin-related [4] n oligosaccharides from 16-mer to 40-mer. Chem Sci 2015; 6:6158-6164. [PMID: 30090231 PMCID: PMC6054106 DOI: 10.1039/c5sc02091c] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2015] [Accepted: 07/23/2015] [Indexed: 01/07/2023] Open
Abstract
The chemical synthesis of long oligosaccharides remains a major challenge. In particular, the synthesis of glycosaminoglycan (GAG) oligosaccharides belonging to the heparin and heparan sulfate (H/HS) family has been a high profile target, particularly with respect to the longer heparanome. Herein we describe a synthesis of the longest heparin-related oligosaccharide to date and concurrently provide an entry to the longest synthetic oligosaccharides of any type yet reported. Specifically, the iterative construction of a series of [4] n -mer heparin-backbone oligosaccharides ranging from 16-mer through to the 40-mer in length is described. This demonstrates for the first time the viability of generating long sequence heparanoids by chemical synthesis, via practical solution-phase synthesis. Pure-Shift HSQC NMR provides a dramatic improvement in anomeric signal resolution, allowing full resolution of all 12 anomeric protons and extrapolation to support anomeric integrity of the longer species. A chemically pure 6-O-desfulfated GlcNS-IdoAS icosasaccharide (20-mer) represents the longest pure synthetic heparin-like oligosaccharide.
Collapse
Affiliation(s)
- Steen U Hansen
- Manchester Institute of Biotechnology and School of Chemistry , University of Manchester , 131 Princess Street , M1 7DN , UK . ; Tel: +44 (0)161 306 4530
| | - Gavin J Miller
- Manchester Institute of Biotechnology and School of Chemistry , University of Manchester , 131 Princess Street , M1 7DN , UK . ; Tel: +44 (0)161 306 4530
| | - Matthew J Cliff
- Manchester Institute of Biotechnology and Faculty of Life Sciences , The University of Manchester , 131 Princess Street , Manchester M1 7DN , UK
| | - Gordon C Jayson
- Institute or Cancer Studies , University of Manchester , Manchester , UK
| | - John M Gardiner
- Manchester Institute of Biotechnology and School of Chemistry , University of Manchester , 131 Princess Street , M1 7DN , UK . ; Tel: +44 (0)161 306 4530
| |
Collapse
|