1
|
Yin B, Chen J, Xiang G, Xu Z, Yang M, Wong SHD. Multiscale and stimuli-responsive biosensing in biomedical applications: Emerging biomaterials based on aggregation-induced emission luminogens. Biosens Bioelectron 2025; 271:117066. [PMID: 39689580 DOI: 10.1016/j.bios.2024.117066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 11/18/2024] [Accepted: 12/13/2024] [Indexed: 12/19/2024]
Abstract
Biosensors play a critical role in the diagnosis, treatment, and prognosis of diseases, with diverse applications ranging from molecular diagnostics to in vivo imaging. Conventional fluorescence-based biosensors, however, often suffer from aggregation-caused emission quenching (ACQ), limiting their effectiveness in high concentrations and complex environments. In contrast, the phenomenon of aggregation-induced emission (AIE) has emerged as a promising alternative, where luminescent materials exhibit strong emission in the aggregated state with good photostability, biocompatibility, large Stokes shift, high quantum yield, and tunable emission. This review article discusses the development of AIEgen-based biosensors for multiscale biosensing in biomedical applications. The integration of AIEgens with nanomaterials, such as graphene oxide and stimuli-responsive nanomaterials, can further improve the selectivity and multifunctionality of biomolecule detection. By careful molecular design, the affinity between AIEgens and specific biomolecules can be tuned, enabling the selective detection of targets like DNA, RNA, and proteins ex vivo, in vitro and in vivo, which can be applied across multiple scales, from detecting biomolecules and cellular structures to analyzing tissues and organs, underscoring their growing importance in disease diagnosis. Furthermore, we explore the potential integration of AIEgen-based biosensors with artificial intelligence (AI) technologies, offering promising avenues for future advancements in this field.
Collapse
Affiliation(s)
- Bohan Yin
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Kowloon, Hong Kong, 999077, China
| | - Jiareng Chen
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Kowloon, Hong Kong, 999077, China
| | - Guangli Xiang
- School of Medicine and Pharmacy, Ocean University of China, Qingdao, 266003, China
| | - Zehui Xu
- School of Medicine and Pharmacy, Ocean University of China, Qingdao, 266003, China
| | - Mo Yang
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Kowloon, Hong Kong, 999077, China; The Hong Kong Polytechnic University Shenzhen Research Institute, Shenzhen, 518000, China; Joint Research Center of Biosensing and Precision Theranostics, The Hong Kong Polytechnic University, Kowloon, Hong Kong, 999077, China.
| | - Siu Hong Dexter Wong
- Laboratory for Marine Drugs and Bioproducts, Qingdao Marine Science and Technology Center, Qingdao, 266237, China; School of Medicine and Pharmacy, Ocean University of China, Qingdao, 266003, China.
| |
Collapse
|
2
|
Bhardwaj K, Anand T, Jangir R, Sahoo SK. Aggregation-Induced Emission Active Benzidine-Pyridoxal Derived Scaffold for Detecting Fe 3+ and pH. J Fluoresc 2024; 34:2917-2926. [PMID: 37962767 DOI: 10.1007/s10895-023-03503-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Accepted: 11/06/2023] [Indexed: 11/15/2023]
Abstract
Present work introduces an aggregation-induced emission (AIE) active Schiff base 4,4'-((1E,1'E)-([1,1'-biphenyl]-4,4'-diylbis(azaneylylidene))bis(methaneylylidene))bis(5-(hydroxymethyl)-2-methylpyridin-3-ol) (BNPY). Schiff base BNPY was synthesized by reacting benzidine with pyridoxal. The non-fluorescent BNPY in freely soluble DMSO medium showed a significant fluorescence enhancement at 563 nm (λex = 400 nm) upon increasing the water fraction (fw) in DMSO above 60% due to the restriction of intramolecular rotation upon the aggregation of BNPY. The AIE active BNPY was employed for the detection of metal ions in DMSO:H2O (fw = 70%). Upon the addition of Fe3+, the fluorescence emission of BNPY at 563 nm was quenched due to the chelation-enhanced fluorescence quenching (CHEQ). The Job's plot experiment supported the formation of a complex between BNPY and Fe3+ in 1:2 binding ratio. With an estimated detection limit of 5.6 × 10-7 M, BNPY was employed to detect and quantify Fe3+ ion in real water samples with satisfactory recovery percentages. Moreover, the pH studies of BNPY aggregates revealed three different fluorescence windows: non-fluorescent in acidic pH 2.02 to 3.16, yellow fluorescent between pH 3.60 to 9.33, and green fluorescent in basic pH 9.96 to 12.86.
Collapse
Affiliation(s)
- Kanishk Bhardwaj
- Department of Chemistry, Sardar Vallabhbhai National Institute Technology, Surat, Gujarat, 395007, India
| | - Thangaraj Anand
- Department of Chemistry, Sathyabama Institute of Science and Technology, Chennai, 600119, India
| | - Ritambhra Jangir
- Department of Chemistry, Sardar Vallabhbhai National Institute Technology, Surat, Gujarat, 395007, India
| | - Suban K Sahoo
- Department of Chemistry, Sardar Vallabhbhai National Institute Technology, Surat, Gujarat, 395007, India.
| |
Collapse
|
3
|
Ermakova EV, Zvyagina AI, Kharlamova AD, Abel AS, Andraud C, Bessmertnykh-Lemeune A. Preparation of Langmuir-Blodgett Films from Quinoxalines Exhibiting Aggregation-Induced Emission and Their Acidochromism. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:15117-15128. [PMID: 38979711 DOI: 10.1021/acs.langmuir.4c01497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/10/2024]
Abstract
The development of aggregation-induced emission (AIE)-exhibiting compounds heavily relies on our evolving comprehension of their behavior at interfaces, an understanding that still remains notably limited. In this study, we explored the preparation of two-dimensional (2D) sensing films from 2,3-diphenylquinoxaline-based diazapolyoxa- and polyazamacrocycles displaying AIE via the Langmuir-Blodgett (LB) technique. This systematic investigation highlights the key role of the heteroatom-containing tether of 2,3-diphenylquinoxalines in the successful fabrication of Langmuir layers at the air-water interface and the transfer of AIE-emitting supramolecular aggregates onto solid supports. Using both diazapolyoxa- and polyazamacrocycles, we prepared AIE-exhibiting monolayer films containing emissive supramolecular aggregates on silica, mica, and quartz glass and characterized them using ultraviolet-visible (UV-vis) and photoluminescence (PL) spectroscopies, atomic force microscopy (AFM) imaging, and fluorescence microscopy. We also obtained multilayer AIE-emitting films through the LB technique, albeit with increased complexity. Remarkably, by employing the smallest macrocycle N2C3Q, we successfully prepared LB films suitable for the visual detection of acidic vapors. This sensing material, which contains a much lesser amount of organic dye compared with traditional drop-cast films, can be regenerated and utilized for real-life sample analysis, such as monitoring the presence of ammonia in the air and the freshness of meat.
Collapse
Affiliation(s)
- Elizaveta V Ermakova
- Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences, Leninsky Pr. 31-4, Moscow 119071, Russia
| | - Alexandra I Zvyagina
- Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences, Leninsky Pr. 31-4, Moscow 119071, Russia
| | - Alisa D Kharlamova
- Department of Chemistry, Lomonosov Moscow State University, 1-3, Leninskie Gory, Moscow 119991, Russia
| | - Anton S Abel
- Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences, Leninsky Pr. 31-4, Moscow 119071, Russia
- Department of Chemistry, Lomonosov Moscow State University, 1-3, Leninskie Gory, Moscow 119991, Russia
| | - Chantal Andraud
- Université de Lyon, CNRS UMR 5182, École Normale Supérieure de Lyon, Université Claude Bernard Lyon 1, 46 Allée d'Italie, 69342 Lyon, France
| | - Alla Bessmertnykh-Lemeune
- Université de Lyon, CNRS UMR 5182, École Normale Supérieure de Lyon, Université Claude Bernard Lyon 1, 46 Allée d'Italie, 69342 Lyon, France
| |
Collapse
|
4
|
Yang YS, Yuan YZ, Zhang YP, Guo HC, Xue JJ. Cinnamyl Chalcone Based AIE Fluorescent Probes for Sensitive Detection of Hydrazine and its Application in Living Cells. J Fluoresc 2024; 34:1603-1615. [PMID: 37561367 DOI: 10.1007/s10895-023-03357-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Accepted: 07/18/2023] [Indexed: 08/11/2023]
Abstract
Widely utilized in the chemical industry and agriculture, hydrazine is easily absorbed by living things and can cause physical harm when in touch for an extended period of time. As a result, a novel cinnamaldehyde chalcone C5 was produced by Friedel Crafts process and aldol condensation reaction. Triphenylamine was used as the raw material for hydrazine determination in both reactions. Chalcone C5 exhibits significant AIE behavior in a mixed mixture of ethanol and water in addition to having great selectivity and a low detection limit (0.119 nm) for hydrazine. The solvent effect test revealed a linear relationship between the Stokes shift of C5 in the solvent and the rise in solvent orientation polarization. It is important to note that C5 is not harmful to MCF-7 cells, mouse kidney cells, or pig kidney cells. Furthermore, research on cell imaging has demonstrated that probe C5 may be utilized to image the fluorescence of hydrazine in active MCF-7 cells.
Collapse
Affiliation(s)
- Yun-Shang Yang
- School of Petrochemical Engineering & Key Laboratory of Low Carbon Energy and Chemical Engineering of Gansu, Lanzhou University of Technology, Lanzhou, 730050, China.
| | - Yi-Zhen Yuan
- School of Petrochemical Engineering & Key Laboratory of Low Carbon Energy and Chemical Engineering of Gansu, Lanzhou University of Technology, Lanzhou, 730050, China
| | - Ying-Peng Zhang
- School of Petrochemical Engineering & Key Laboratory of Low Carbon Energy and Chemical Engineering of Gansu, Lanzhou University of Technology, Lanzhou, 730050, China.
| | - Hui-Chen Guo
- State Key Laboratory of Veterinary Etiological Biology and Key Laboratory of Animal Virology of Ministry of Agriculture, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730046, China
| | - Ji-Jun Xue
- State Key Laboratory of Applied Organic Chemistry & College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, China
| |
Collapse
|
5
|
Huang Y, Zhang Q, Lam CYK, Li C, Yang C, Zhong Z, Zhang R, Yan J, Chen J, Yin B, Wong SHD, Yang M. An Aggregation-Induced Emission-Based Dual Emitting Nanoprobe for Detecting Intracellular pH and Unravelling Metabolic Variations in Differentiating Lymphocytes. ACS NANO 2024; 18:15935-15949. [PMID: 38833531 DOI: 10.1021/acsnano.4c03796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2024]
Abstract
Monitoring T lymphocyte differentiation is essential for understanding T cell fate regulation and advancing adoptive T cell immunotherapy. However, current biomarker analysis methods necessitate cell lysis, leading to source depletion. Intracellular pH (pHi) can be affected by the presence of lactic acid (LA), a metabolic mediator of T cell activity such as glycolysis during T cell activation; therefore, it is a potentially a good biomarker of T cell state. In this work, a dual emitting enhancement-based nanoprobe, namely, AIEgen@F127-AptCD8, was developed to accurately detect the pHi of T cells to "read" the T cell differentiation process. The nanocore of this probe comprises a pair of AIE dyes, TPE-AMC (pH-sensitive moiety) and TPE-TCF, that form a donor-acceptor pair for sensitive detection of pHi by dual emitting enhancement analysis. The nanoprobe exhibits a distinctly sensitive narrow range of pHi values (from 6.0 to 7.4) that can precisely distinguish the differentiated lymphocytes from naïve ones based on their distinct pHi profiles. Activated CD8+ T cells demonstrate lower pHi (6.49 ± 0.09) than the naïve cells (7.26 ± 0.11); Jurkat cells exhibit lower pHi (6.43 ± 0.06) compared to that of nonactivated ones (7.29 ± 0.09) on 7 days post-activation. The glycolytic product profiles in T cells strongly correlate with their pHi profiles, ascertaining the reliability of probing pHi for predicting T cell states. The specificity and dynamic detection capabilities of this nanoprobe make it a promising tool for indirectly and noninvasively monitoring T cell activation and differentiation states.
Collapse
Affiliation(s)
- Yingying Huang
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Kowloon, Hong Kong 999077, China
| | - Qin Zhang
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Kowloon, Hong Kong 999077, China
| | - Ching Ying Katherine Lam
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Kowloon, Hong Kong 999077, China
| | - Chuanqi Li
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Kowloon, Hong Kong 999077, China
| | - Chen Yang
- Department of Applied Physics, The Hong Kong Polytechnic University, Kowloon, Hong Kong 999077, China
| | - Zhiming Zhong
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Kowloon, Hong Kong 999077, China
| | - Ruolin Zhang
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Kowloon, Hong Kong 999077, China
| | - Jiaxiang Yan
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Kowloon, Hong Kong 999077, China
| | - Jiareng Chen
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Kowloon, Hong Kong 999077, China
| | - Bohan Yin
- School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
- Laboratory for Marine Drugs and Bioproducts, Qingdao Marine Science and Technology Center, Qingdao 266237, China
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Kowloon, Hong Kong 999077, China
| | - Siu Hong Dexter Wong
- School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
- Laboratory for Marine Drugs and Bioproducts, Qingdao Marine Science and Technology Center, Qingdao 266237, China
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Kowloon, Hong Kong 999077, China
- Research Institute for Sports Science and Technology, The Hong Kong Polytechnic University, Kowloon, Hong Kong 999077, China
| | - Mo Yang
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Kowloon, Hong Kong 999077, China
- Research Institute for Sports Science and Technology, The Hong Kong Polytechnic University, Kowloon, Hong Kong 999077, China
- The Hong Kong Polytechnic University Shenzhen Research Institute, Shenzhen 518000, China
| |
Collapse
|
6
|
Mohammed Hashim KK, Manoj E. Aminoguanidine-based bioactive proligand as AIEE probe for anticancer and anticovid studies. RSC Adv 2024; 14:13654-13668. [PMID: 38665490 PMCID: PMC11044126 DOI: 10.1039/d4ra00554f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Accepted: 04/18/2024] [Indexed: 04/28/2024] Open
Abstract
The emission features of a novel bioactive compound, 1,3-bis(2-hydroxy-3,5-diiodophenyl-methylideneamino)guanidine is found impressive with aggregation induced emission enhancement. The nitrogen and iodine rich multidentate proligand was characterized physicochemically. SCXRD and Hirshfeld surface investigation have revealed the presence of significant triangular iodine bonding apart from hydrogen bonding, weak C-H⋯π and π⋯π intermolecular interactions. These interactions collectively contribute to the solid-state packing arrangement of the molecules within the crystal lattice. The band gap of the compound was estimated experimentally and is supported with theoretical calculations. The solid-state fluorescence quantum yield of Φ = 0.36 emphasizes the utility of the proligand and the AIEE characteristics is attributed to restricted intramolecular motions as indicated by fluorescence lifetime decay studies. Strong interaction of the compound with calf thymus DNA was explored experimentally and found to align with in silico docking results. Notably, in vitro anticancer assessment on MCF-7 breast cancer cells show an IC50 value of 181.05 μg mL-1 and signifying its potent cytotoxic properties. Also, the compound is found to have lesser cytotoxicity against L929 normal cell line with an IC50 value of 356.54 μg mL-1. Computational studies further underscore the exceptional binding affinity with active sites in the SARS-CoV-2 main protease 3CLpro, surpassing established repurposed drugs. Furthermore, the proligand demonstrates excellent putative affinity towards the SARS-CoV-2 spike glycoprotein, accompanied by its distinctive AIEE attributes, drug likeness and DNA binding capability rendering it a valuable tool for prospective research investigations.
Collapse
Affiliation(s)
- K K Mohammed Hashim
- Department of Applied Chemistry, Cochin University of Science and Technology Kochi Kerala 682 022 India
| | - E Manoj
- Department of Applied Chemistry, Cochin University of Science and Technology Kochi Kerala 682 022 India
| |
Collapse
|
7
|
Ilyas F, Fazal H, Ahmed M, Iqbal A, Ishaq M, Jabeen M, Butt M, Farid S. Advances in ionic liquids as fluorescent sensors. CHEMOSPHERE 2024; 352:141434. [PMID: 38401867 DOI: 10.1016/j.chemosphere.2024.141434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 02/08/2024] [Accepted: 02/08/2024] [Indexed: 02/26/2024]
Abstract
Ionic liquids (ILs) are a class of liquid salts with characteristics such as a low melting point, an ionic nature, non-volatility, and tunable properties. Because of their adaptability, they have a significant influence in the field of fluorescence. This paper reviews the primary literature on the use of ILs in fluorescence sensing technologies. The kind of target material is utilized to classify the fluorescence sensors made with the use of ILs. They include using ILs as probes for metals, nitro explosives, small organic compounds, anions, and gases. The efficacy of an IL-based fluorescence sensor depends on the precise design to guarantee specificity, sensitivity, and a consistent reaction to the desired analyte. The precise method can differ depending on the chemical properties of the IL, the choice of fluorophore, and the interactions with the analyte. Overall, the viability of the aforementioned materials for chemical analysis is evaluated, and prospective possibilities for further development are identified.
Collapse
Affiliation(s)
- Farva Ilyas
- Department of Materials Science and Engineering, College of Transportation Engineering, Dalian Maritime University, Dalian, 116026, China; Shanghai Jiao Tong University, Shanghai, 200240, China.
| | - Hira Fazal
- Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Muhktiar Ahmed
- Chemistry of Interfaces, Luleå University of Technology, SE-97 187, Luleå, Sweden
| | - Asma Iqbal
- Shanghai Jiao Tong University, Shanghai, 200240, China
| | | | - Maher Jabeen
- Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Madiha Butt
- Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Sumbal Farid
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
| |
Collapse
|
8
|
Yang P, Li Z, Fang B, Liu L. Self-healing hydrogels based on biological macromolecules in wound healing: A review. Int J Biol Macromol 2023; 253:127612. [PMID: 37871725 DOI: 10.1016/j.ijbiomac.2023.127612] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Revised: 10/02/2023] [Accepted: 10/20/2023] [Indexed: 10/25/2023]
Abstract
The complete healing of skin wounds has been a challenge in clinical treatment. Self-healing hydrogels are special hydrogels formed by distinctive physicochemically reversible bonds, and they are considered promising biomaterials in the biomedical field owing to their inherently good drug-carrying capacity as well as self-healing and repair abilities. Moreover, natural polymeric materials have received considerable attention in skin tissue engineering owing to their low cytotoxicity, low immunogenicity, and excellent biodegradation rates. In this paper, we review recent advances in the design of self-healing hydrogels based on natural polymers for skin-wound healing applications. First, we outline a variety of natural polymers that can be used to construct self-healing hydrogel systems and highlight the advantages and disadvantages of different natural polymers. We then describe the principle of self-healing hydrogels in terms of two different crosslinking mechanisms-physical and chemical-and dissect their performance characteristics based on the practical needs of skin-trauma applications. Next, we outline the biological mechanisms involved in the healing of skin wounds and describe the current application strategies for self-healing hydrogels based on these mechanisms. Finally, we analyze and summarize the challenges and prospects of natural-material-based self-healing hydrogels for skin applications.
Collapse
Affiliation(s)
- Pu Yang
- Department of Plastic and Aesthetic (Burn) Surgery, The Second Xiangya Hospital, Central South University, Changsha 410011, China
| | - Zhen Li
- Department of Plastic and Aesthetic (Burn) Surgery, The Second Xiangya Hospital, Central South University, Changsha 410011, China
| | - Bairong Fang
- Department of Plastic and Aesthetic (Burn) Surgery, The Second Xiangya Hospital, Central South University, Changsha 410011, China.
| | - Liangle Liu
- The Third Affiliated Hospital of Wenzhou Medical University, Wenzhou 325200, China.
| |
Collapse
|
9
|
Mathivanan M, Tharmalingam B, Anitha O, Thiruppathiraja T, Lakshmipathi S, Grzegorz Małecki J, Murugesapandian B. A unique methanol responsiveness, AIE, acidochromism and mechanofluorochromic features of flexible ethylenediamine bridged rhodamine B-diethylamino hydroxycoumarin conjugate. J Mol Liq 2023; 382:121845. [DOI: 10.1016/j.molliq.2023.121845] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
10
|
Stoerkler T, Retailleau P, Jacquemin D, Ulrich G, Massue J. Heteroaryl-Substituted Bis-Anils: Aggregation-Induced Emission (AIE) Derivatives with Tunable ESIPT Emission Color and pH Sensitivity. Chemistry 2023; 29:e202203766. [PMID: 36524677 DOI: 10.1002/chem.202203766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 12/15/2022] [Accepted: 12/16/2022] [Indexed: 12/23/2022]
Abstract
The two-step synthesis, structural, and photophysical properties of a series of heteroaryl-substituted bis-anil derivatives presenting aggregation-induced emission (AIE) coupled with an excited-state intramolecular proton transfer (ESIPT) process is described. The fluorescence color of the aggregates can be fine tuned by changing the electronic nature of the peripheral substitution, leading to a wide range of emission wavelengths (from green to the near infra-red). Moreover, upon introduction of strong electron-withdrawing groups such as cyano (CN), a competition between ESIPT and deprotonation is observed leading to the emission of the anionic species at low water percentage. This observation led to the synthesis of an additional mixed AIE fluorophore, functionalized by methoxy groups on one side and cyano groups on the other side. Upon addition of water, this dye displays first anionic emission, followed by typical AIE/ESIPT red fluorescence upon formation of the aggregates. TD-DFT calculations on selected AIE dyes were performed to rationalize the nature of the emissive transitions in these derivatives.
Collapse
Affiliation(s)
- Timothée Stoerkler
- Institut de Chimie et Procédés pour l'Energie, l'Environnement et la Santé (ICPEES) Equipe Chimie Organique pour la Biologie, les Matériaux et l'Optique (COMBO) UMR CNRS 7515, Ecole Européenne de Chimie, Polymères et Matériaux (ECPM), 25 Rue Becquerel, 67087, Strasbourg Cedex 02, France
| | - Pascal Retailleau
- Service de Cristallographie Structurale, ICSN-CNRS, Université Paris-Saclay 1, Avenue de la Terrasse, Bât. 27, 91198 Gif-sur-Yvette, Cedex, France
| | - Denis Jacquemin
- Nantes Université, CNRS, CEISAM UMR 6230, 44000, Nantes, France.,Institut Universitaire de France (IUF), 75005, Paris, France
| | - Gilles Ulrich
- Institut de Chimie et Procédés pour l'Energie, l'Environnement et la Santé (ICPEES) Equipe Chimie Organique pour la Biologie, les Matériaux et l'Optique (COMBO) UMR CNRS 7515, Ecole Européenne de Chimie, Polymères et Matériaux (ECPM), 25 Rue Becquerel, 67087, Strasbourg Cedex 02, France
| | - Julien Massue
- Institut de Chimie et Procédés pour l'Energie, l'Environnement et la Santé (ICPEES) Equipe Chimie Organique pour la Biologie, les Matériaux et l'Optique (COMBO) UMR CNRS 7515, Ecole Européenne de Chimie, Polymères et Matériaux (ECPM), 25 Rue Becquerel, 67087, Strasbourg Cedex 02, France
| |
Collapse
|
11
|
Dong PP, Liu YY, Peng QC, Li HY, Li K, Zang SQ, Tang BZ. Luminescent MOFs constructed by using butterfly-like AIE ligands. Dalton Trans 2023; 52:1913-1918. [PMID: 36722787 DOI: 10.1039/d2dt03382h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
In this work, a series of butterfly-like isomers named oxacalix[2]naphthalene[2]pyrazine (ONP) were conveniently synthesized by a one-step catalyst-free reaction in a facile manner, and they exhibit typical characteristics of aggregation-induced emission (AIE). The mechanism study shows that restriction of intramolecular vibration (RIV) is the reason for their AIE properties. The pyrazine groups endow ONP molecules with good coordination ability, which makes them ideal ligands for constructing metal-organic frameworks (MOFs). Thus, three ONP-based luminescent MOFs were constructed, and they exhibit intense emission with lifetimes in the order of microseconds. More importantly, different ONP isomers have different binding capacities, and thus only one kind of MOF can be obtained even when using an isomer mixture of ONP ligands. This result suggested that the conformation of ONPs is an important determining factor for their application as bridging ligands. This work not only reports a series of new RIV-type AIEgens, but also offers a new platform for the construction of luminescent MOFs.
Collapse
Affiliation(s)
- Pan-Pan Dong
- Henan Key Laboratory of Crystalline Molecular Functional Materials, Henan International Joint Laboratory of Tumor Theranostical Cluster Materials, Green Catalysis Center and College of Chemistry, Zhengzhou University, Zhengzhou 450001, China.
| | - Yuan-Yuan Liu
- Henan Key Laboratory of Crystalline Molecular Functional Materials, Henan International Joint Laboratory of Tumor Theranostical Cluster Materials, Green Catalysis Center and College of Chemistry, Zhengzhou University, Zhengzhou 450001, China.
| | - Qiu-Chen Peng
- Henan Key Laboratory of Crystalline Molecular Functional Materials, Henan International Joint Laboratory of Tumor Theranostical Cluster Materials, Green Catalysis Center and College of Chemistry, Zhengzhou University, Zhengzhou 450001, China.
| | - Hai-Yang Li
- Henan Key Laboratory of Crystalline Molecular Functional Materials, Henan International Joint Laboratory of Tumor Theranostical Cluster Materials, Green Catalysis Center and College of Chemistry, Zhengzhou University, Zhengzhou 450001, China.
| | - Kai Li
- Henan Key Laboratory of Crystalline Molecular Functional Materials, Henan International Joint Laboratory of Tumor Theranostical Cluster Materials, Green Catalysis Center and College of Chemistry, Zhengzhou University, Zhengzhou 450001, China.
| | - Shuang-Quan Zang
- Henan Key Laboratory of Crystalline Molecular Functional Materials, Henan International Joint Laboratory of Tumor Theranostical Cluster Materials, Green Catalysis Center and College of Chemistry, Zhengzhou University, Zhengzhou 450001, China.
| | - Ben Zhong Tang
- The Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, The Hong Kong University of Science and Technology, Kowloon, Hong Kong 999077, China.,School of Science and Engineering, Shenzhen Institute of Aggregate Science and Technology, The Chinese University of Hong Kong, Shenzhen, Guangdong 518172, China.
| |
Collapse
|
12
|
Li M, Wang S, Song Y, Chen L. A fluorescent covalent organic framework for visual detection of p-benzoquinone. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2023; 286:122022. [PMID: 36308832 DOI: 10.1016/j.saa.2022.122022] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2022] [Revised: 09/30/2022] [Accepted: 10/17/2022] [Indexed: 06/16/2023]
Abstract
P-benzoquinone (PBQ) is toxic and harmful for health. The development of portable sensor to realize the detection of PBQ is of great significance. Herein, a novel covalent organic framework (COFML-TFPB) with intramolecular charge transfer and aggregation induced emission properties was proposed via condensation reaction of melem (ML) and 1,3,5-tris (4-formylphenyl) benzene (TFPB). COFML-TFPB shows strong fluorescence in both solution and solid state and can be used for the fluorescence detection of PBQ. Due to the internal filtration effect and photoinduced electron transfer effect, PBQ can quench the fluorescence of COFML-TFPB. The developed COFML-TFPB fluorescent sensor displayed a wide linear range for PBQ from 0.138 ng mL-1 - 35 μg mL-1, and the detection limit was 0.046 ng mL-1. In addition, fluorescent test paper for rapid and portable detection of PBQ was also developed by depositing COFML-TFPB on filter paper directly. It reduces the cost and time of detection and realizes the semiquantitative detection of PBQ. Moreover, the fluorescence color was converted into digital RGB value to calculate the concentration of PBQ accurately by a smartphone. This method realizes the portable qualitative and semiquantitative determination of PBQ.
Collapse
Affiliation(s)
- Mengyao Li
- National Engineering Research Center for Carbohydrate Synthesis/Key Lab of Fluorine, Silicon for Energy Materials and Chemistry of Ministry of Education, College of Chemistry and Chemical Engineering, Jiangxi Normal University, 99 Ziyang Avenue, Nanchang 330022, China
| | - Shiqi Wang
- National Engineering Research Center for Carbohydrate Synthesis/Key Lab of Fluorine, Silicon for Energy Materials and Chemistry of Ministry of Education, College of Chemistry and Chemical Engineering, Jiangxi Normal University, 99 Ziyang Avenue, Nanchang 330022, China
| | - Yonghai Song
- National Engineering Research Center for Carbohydrate Synthesis/Key Lab of Fluorine, Silicon for Energy Materials and Chemistry of Ministry of Education, College of Chemistry and Chemical Engineering, Jiangxi Normal University, 99 Ziyang Avenue, Nanchang 330022, China
| | - Lili Chen
- National Engineering Research Center for Carbohydrate Synthesis/Key Lab of Fluorine, Silicon for Energy Materials and Chemistry of Ministry of Education, College of Chemistry and Chemical Engineering, Jiangxi Normal University, 99 Ziyang Avenue, Nanchang 330022, China.
| |
Collapse
|
13
|
The location of benzothiazole on the skeleton of rofecoxib defines an AIEgen and its potential application as multifunctional materials. J Mol Struct 2023. [DOI: 10.1016/j.molstruc.2023.134983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
14
|
Barot YB, Anand V, Mishra R. AIE-active phenothiazine based Schiff-base for the selective sensing of the explosive picric acid in real water samples and paper-based device. J Photochem Photobiol A Chem 2023. [DOI: 10.1016/j.jphotochem.2022.114224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
15
|
Su HF, Peng QC, Liu YU, Xie T, Liu PP, Cai YC, Wen W, Yu YH, Li K, Zang SQ. A near-infrared AIE probe and its applications for specific in vitro and in vivo two-photon imaging of lipid droplets. Biomaterials 2022; 288:121691. [DOI: 10.1016/j.biomaterials.2022.121691] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 07/07/2022] [Accepted: 07/19/2022] [Indexed: 02/07/2023]
|
16
|
Dutta B, Halder S. Schiff base compounds as fluorimetric pH sensor: a review. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2022; 14:2132-2146. [PMID: 35638380 DOI: 10.1039/d2ay00552b] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
With the recent progress of biological and environmental research, detection of pH values has become one of the most indispensable requirements. To determine the pH values of a certain medium, organic Schiff base compounds and their derivatives have been observed to play pivotal roles because of their smooth synthetic roots, easily tuneable structural architecture, non-destructive signals of emission, visually differentiable colour generation and capability of real sample analysis. Therefore with the revolutionary upgradation of wavelength radiometric techniques, the construction of molecular structures which can exhibit dual emission and absorption characteristics and which can be regulated by the change in pH values, has been a stimulating challenge. Generally a pH sensor molecule has a chromophoric or fluorophoric portion. Normally heteroatoms attached to these chromophore units either get protonated or deprotonated in acidic or basic media which gives rise to changes in absorption and emission properties of the molecule.
Collapse
Affiliation(s)
- Basudeb Dutta
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, West Bengal 741246, India
| | - Shibashis Halder
- Department of Chemistry, Tej Narayan Banaili College, Bhagalpur, Bihar 812007, India.
| |
Collapse
|
17
|
Li Q, Niu Z, Nan X, Wang E. An AIE-Active probe for detection and bioimaging of pH values based on lactone hydrolysis reaction. J Fluoresc 2022; 32:1611-1617. [PMID: 35593957 DOI: 10.1007/s10895-022-02967-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Accepted: 05/05/2022] [Indexed: 11/24/2022]
Abstract
Cellular pH homeostasis is essential for many physiological and pathological processes. pH monitoring is helpful for the diagnosis, treatment and prevention of disorders and diseases. Herein, we developed a ratiometric fluorescent pH probe (TCC) based on a coumarin derivative containing a highly active lactone ring. TCC exhibited a typical AIE effect and emitted blue fluorescence under weak acidic condition. When under weak basic condition, the active lactone moiety underwent a hydrolysis reaction to afford a water-soluble product, which gave red-shifted emission. The emission color change from blue through cyan and then to yellow within pH 6.5-9.0 which is approximate to the biological pH range. And the fluorescence color change along with pH value is reversible. Furthermore, TCC was successfully utilized in the detection of the intracellular pH change of live HeLa cells, which indicated that TCC had practical potential in biomedical research.
Collapse
Affiliation(s)
- Qiao Li
- Key Laboratory of Tropical Medicinal Resource Chemistry of Ministry of Education, Key Laboratory of Tropical Medicinal Plant Chemistry of Hainan Province, College of Chemistry & Chemical Engineering, Hainan normal University, 571158, Haikou, China
| | - Zhigang Niu
- Key Laboratory of Tropical Medicinal Resource Chemistry of Ministry of Education, Key Laboratory of Tropical Medicinal Plant Chemistry of Hainan Province, College of Chemistry & Chemical Engineering, Hainan normal University, 571158, Haikou, China
| | - Xuying Nan
- Key Laboratory of Tropical Medicinal Resource Chemistry of Ministry of Education, Key Laboratory of Tropical Medicinal Plant Chemistry of Hainan Province, College of Chemistry & Chemical Engineering, Hainan normal University, 571158, Haikou, China
| | - Enju Wang
- Key Laboratory of Tropical Medicinal Resource Chemistry of Ministry of Education, Key Laboratory of Tropical Medicinal Plant Chemistry of Hainan Province, College of Chemistry & Chemical Engineering, Hainan normal University, 571158, Haikou, China.
| |
Collapse
|
18
|
Duan Y, Liu Y, Han H, Geng H, Liao Y, Han T. A dual-channel indicator of fish spoilage based on a D-π-A luminogen serving as a smart label for intelligent food packaging. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2022; 266:120433. [PMID: 34601370 DOI: 10.1016/j.saa.2021.120433] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 09/22/2021] [Accepted: 09/22/2021] [Indexed: 06/13/2023]
Abstract
Advances in food monitoring benefit tremendously from the naked-eye observation and device-miniaturization of colorimetric and fluorometric methods. Intelligent food packaging, containing a built-in sensor inside food bags, is capable of real-time monitoring of food quality by visibly discernible out-put signals, which effectively ensures food safety. We synthesized a donor-π-acceptor (D-π-A) compound DPABA, and disclosed its fluorescence response to amines. According to quantum chemical calculations, DPABA is apt to D-A coupling in aggregated state, causing the formation of exciplex/excimer together with intermolecular charge/energy transfer to the disadvantage of light emission; while the evasion of amine vapors would decouple the intermolecular D-A interactions to induce stronger emission with shorter wavelength. Utilizing the amine vapor generated by fish, DPABA can serve as an indicator for freshness monitoring. To create an intelligent food package, the compound was made into cellulose film, which was further cut into smart labels to be encapsulated into food bags. The as-prepared smart label exhibits red color under ambient light and glows weak red emission under UV light, while it turns into faint yellow color in response to putrid fish, and its emission changes to bright cyan. The output signals can be accurately recorded by instrument, and detected by naked eye, suggesting high signal contrast. In addition, the smart label exhibits different changing scope in response to different degree of freshness, showing high potential for in-field detection.
Collapse
Affiliation(s)
- Yuai Duan
- Department of Chemistry, Capital Normal University, Beijing, 100048, China
| | - Yang Liu
- Beijing Key Laboratory of Radiation Advanced Materials, Beijing Research Center for Radiation Application, Beijing, 100015, China
| | - Hongliang Han
- Department of Chemistry, Capital Normal University, Beijing, 100048, China
| | - Hua Geng
- Department of Chemistry, Capital Normal University, Beijing, 100048, China
| | - Yi Liao
- Department of Chemistry, Capital Normal University, Beijing, 100048, China.
| | - Tianyu Han
- Department of Chemistry, Capital Normal University, Beijing, 100048, China.
| |
Collapse
|
19
|
Li X, Xiu D, Shi J, Miao J, Yu Y, Song H, Lin J, Feng Q, Yu H. Visual Hg(II) sensing in aqueous solution via a new 2,5-Bis(4-pyridyl)thiazolo[5,4-d]thiazole-based fluorescence coordination polymer. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2022; 265:120367. [PMID: 34530197 DOI: 10.1016/j.saa.2021.120367] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 08/26/2021] [Accepted: 09/02/2021] [Indexed: 06/13/2023]
Abstract
A new fluorescence coordination polymer [Zn(Py2TTz)(5-OH-IPA)]n (1) (Py2TTz = 2,5-bis(4-pyridyl)thiazolo[5,4-d]thiazole, 5-OH-IPA = 5-hydroxyisophthalic acid dianion) was synthesized, which exhibited the characteristics of fluorescence quenching and bathochromic shift toward Hg(II) in aqueous solution at pH 7.00. Mechanism study showed that the interactions between Hg(II) ions and Py2TTz ligands in 1 were responsible for the fluorescence emission change. Thanks to the specific interactions between 1 and Hg(II), excellent selectivity was achieved both in aqueous solution and in solid test paper. The detection limit of 1 for Hg(II) sensing was 125.76 nmol L-1 and a linear rang was 1.00-10.00 μmol L-1. More importantly, satisfactory recovery and accuracy of 1 for Hg(II) sensing were also obtained in buffer-free real water samples.
Collapse
Affiliation(s)
- Xin Li
- National Demonstration Center for Experimental Chemistry Education, Hebei Key Laboratory of Organic Functional Molecules, College of Chemistry and Materials Science, Hebei Normal University, Shijiazhuang, Hebei 050024, PR China
| | - Deping Xiu
- National Demonstration Center for Experimental Chemistry Education, Hebei Key Laboratory of Organic Functional Molecules, College of Chemistry and Materials Science, Hebei Normal University, Shijiazhuang, Hebei 050024, PR China
| | - Junjie Shi
- National Demonstration Center for Experimental Chemistry Education, Hebei Key Laboratory of Organic Functional Molecules, College of Chemistry and Materials Science, Hebei Normal University, Shijiazhuang, Hebei 050024, PR China
| | - Jiaran Miao
- National Demonstration Center for Experimental Chemistry Education, Hebei Key Laboratory of Organic Functional Molecules, College of Chemistry and Materials Science, Hebei Normal University, Shijiazhuang, Hebei 050024, PR China
| | - Yingying Yu
- National Demonstration Center for Experimental Chemistry Education, Hebei Key Laboratory of Organic Functional Molecules, College of Chemistry and Materials Science, Hebei Normal University, Shijiazhuang, Hebei 050024, PR China
| | - Huihua Song
- National Demonstration Center for Experimental Chemistry Education, Hebei Key Laboratory of Organic Functional Molecules, College of Chemistry and Materials Science, Hebei Normal University, Shijiazhuang, Hebei 050024, PR China
| | - Jin Lin
- National Demonstration Center for Experimental Chemistry Education, Hebei Key Laboratory of Organic Functional Molecules, College of Chemistry and Materials Science, Hebei Normal University, Shijiazhuang, Hebei 050024, PR China
| | - Qi Feng
- National Demonstration Center for Experimental Chemistry Education, Hebei Key Laboratory of Organic Functional Molecules, College of Chemistry and Materials Science, Hebei Normal University, Shijiazhuang, Hebei 050024, PR China.
| | - Haitao Yu
- National Demonstration Center for Experimental Chemistry Education, Hebei Key Laboratory of Organic Functional Molecules, College of Chemistry and Materials Science, Hebei Normal University, Shijiazhuang, Hebei 050024, PR China.
| |
Collapse
|
20
|
Jiao Z, Yang J, Long X, Lu Y, Guo Z, Peng Y, Huang X, Yin Y, Song C, Zhang P. CRISPR/Cas12a-Assisted Visual Logic-Gate Detection of Pathogenic Microorganisms Based on Water-Soluble DNA-Binding AIEgens. Front Chem 2022; 9:801972. [PMID: 35096768 PMCID: PMC8795674 DOI: 10.3389/fchem.2021.801972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Accepted: 12/14/2021] [Indexed: 11/20/2022] Open
Abstract
Here, we developed a rapid, visual and double-checked Logic Gate detection platform for detection of pathogenic microorganisms by aggregation-induced emission luminogens (AIEgens) in combination with Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR)/CRISPR associated (Cas). DNA light-up AIEgens (1,1,2,2-tetrakis[4-(2-bromo-ethoxy) phenyl]ethene, TTAPE) was non-emissive but the emission was turned on in the presence of large amount of DNA produced by recombinase polymerase amplification (RPA). When CRISPR/Cas12a was added, all long-stranded DNA were cut leading to the emission quenched. Thus, a method that can directly observe the emission changes with the naked eye has been successfully constructed. The detection is speedy within only 20 min, and has strong specificity to the target. The result can be judged by Logic Gate. Only when the output signal is (1,0), does it represent the presence of pathogenic microorganisms in the test object. Finally, the method was applied to the detect pathogenic microorganisms in environmental water samples, which proved that this method has high selectivity, specificity and applicability for the detection of pathogenic microorganisms in environmental water samples.
Collapse
Affiliation(s)
- Zhe Jiao
- School of Environment and Civil Engineering, Dongguan University of Technology, Dongguan, China
| | - Jialing Yang
- School of Environment and Civil Engineering, Dongguan University of Technology, Dongguan, China
| | - Xiaojuan Long
- Guangdong Dongguan Ecological and Environmental Monitoring Station, Dongguan, China
| | - Yingfang Lu
- Guangdong Dongguan Ecological and Environmental Monitoring Station, Dongguan, China
- *Correspondence: Yingfang Lu, ; Xuelin Huang, ; Chao Song, ; Pengfei Zhang,
| | - Zongning Guo
- Huangpu Customs District Technology Center, Dongguan, China
| | - Yonglin Peng
- Pinete (Zhongshan) Biotechnology Co., Ltd., Zhongshan, China
| | - Xuelin Huang
- Huangpu Customs District Technology Center, Dongguan, China
- *Correspondence: Yingfang Lu, ; Xuelin Huang, ; Chao Song, ; Pengfei Zhang,
| | - Yi Yin
- Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, China
| | - Chao Song
- Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, China
- Key Laboratory of Control of Quality and Safety for Aquatic Products, Ministry of Agriculture and Rural Affairs, Beijing, China
- *Correspondence: Yingfang Lu, ; Xuelin Huang, ; Chao Song, ; Pengfei Zhang,
| | - Pengfei Zhang
- Guangdong Key Laboratory of Nanomedicine, Shenzhen Engineering Laboratory of Nanomedicine and Nanoformulations, CAS Key Laboratory of Health Informatics, Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
- *Correspondence: Yingfang Lu, ; Xuelin Huang, ; Chao Song, ; Pengfei Zhang,
| |
Collapse
|
21
|
Lv Y, Xiong Z, Li Y, Li D, Liang J, Yang Y, Xiang F, Xiang S, Zhao YS, Zhang Z. Framework-Shrinkage-Induced Wavelength-Switchable Lasing from a Single Hydrogen-Bonded Organic Framework Microcrystal. J Phys Chem Lett 2022; 13:130-135. [PMID: 34962396 DOI: 10.1021/acs.jpclett.1c03855] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Porous organic materials (POMs) have shown great potential for fabricating tunable miniaturized lasers. However, most pure-POM micro/nanolasers are achieved via coordination interactions, during which strong charge exchanges inevitably destroy the intrinsic gain property and even lead to optical quenching, hindering their practical applications. Herein, we reported on an approach to realize hydrogen-bonded organic framework (HOF)-based in situ wavelength-switchable lasing based on the framework-shrinkage effect. A flexible HOF with reversible framework shrinkage was constructed from gain blocks with multiple rotors. The framework shrinkage of the HOF induced the in situ regulation on the conformation and conjugation degree of gain blocks, leading to distinct energy-level structures with blue/green-color gain emissions. Inspired by this, the in situ wavelength-switchable lasing from HOF microcrystals was achieved through reversibly controlling the framework shrinkage via the absorption/desorption of guests. The results offer useful insight into the use of flexible HOFs for exploiting miniaturized lasers with on-demand nanophotonics performance.
Collapse
Affiliation(s)
- Yuanchao Lv
- Fujian Provincial Key Laboratory of Polymer Materials, College of Chemistry and Materials Science, Fujian Normal University, Fuzhou 350007, China
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China
| | - Zhile Xiong
- Fujian Provincial Key Laboratory of Polymer Materials, College of Chemistry and Materials Science, Fujian Normal University, Fuzhou 350007, China
| | - Yunbin Li
- Fujian Provincial Key Laboratory of Polymer Materials, College of Chemistry and Materials Science, Fujian Normal University, Fuzhou 350007, China
| | - Delin Li
- Fujian Provincial Key Laboratory of Polymer Materials, College of Chemistry and Materials Science, Fujian Normal University, Fuzhou 350007, China
| | - Jiashuai Liang
- Fujian Provincial Key Laboratory of Polymer Materials, College of Chemistry and Materials Science, Fujian Normal University, Fuzhou 350007, China
| | - Yisi Yang
- Fujian Provincial Key Laboratory of Polymer Materials, College of Chemistry and Materials Science, Fujian Normal University, Fuzhou 350007, China
| | - Fahui Xiang
- Fujian Provincial Key Laboratory of Polymer Materials, College of Chemistry and Materials Science, Fujian Normal University, Fuzhou 350007, China
| | - Shengchang Xiang
- Fujian Provincial Key Laboratory of Polymer Materials, College of Chemistry and Materials Science, Fujian Normal University, Fuzhou 350007, China
| | - Yong Sheng Zhao
- Key Laboratory of Photochemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Zhangjing Zhang
- Fujian Provincial Key Laboratory of Polymer Materials, College of Chemistry and Materials Science, Fujian Normal University, Fuzhou 350007, China
| |
Collapse
|
22
|
Wang Z, Zhou Y, Xu R, Xu Y, Dang D, Shen Q, Meng L, Tang BZ. Seeing the unseen: AIE luminogens for super-resolution imaging. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2021.214279] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
23
|
Pariat T, Stoerkler T, Diguet C, Laurent AD, Jacquemin D, Ulrich G, Massue J. Dual Solution-/Solid-State Emissive Excited-State Intramolecular Proton Transfer (ESIPT) Dyes: A Combined Experimental and Theoretical Approach. J Org Chem 2021; 86:17606-17619. [PMID: 34846147 DOI: 10.1021/acs.joc.1c01698] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Excited-state intramolecular proton transfer (ESIPT) dyes typically show strong solid-state emission, but faint fluorescence intensity is observed in the solution state owing to detrimental molecular motions. This article investigates the influence of direct (hetero)arylation on the optical properties of 2-(2'-hydroxyphenyl)benzoxazole ESIPT emitters. The synthesis of two series of ESIPT emitters bearing substituted neutral or charged aryl, thiophene, or pyridine rings is reported herein along with full photophysical studies in solution and solid states, demonstrating the dual solution-/solid-state emission behavior. Depending on the nature of substitution, several excited-state dynamics are observed: quantitative or partially frustrated ESIPT process or deprotonation of the excited species. Protonation studies revealed that pyridine substitution triggered a strong increase of quantum yield in the solution state for the protonated species owing to favorable quinoidal stabilization. These attractive features led to the development of a second series of dyes with alkyl or aryl pyridinium moieties showing strong tunable solution/solid fluorescence intensity. For each series, ab initio calculations helped rationalize and ascertain their behavior in the excited state and the nature of the emission observed by the experimental results.
Collapse
Affiliation(s)
- Thibault Pariat
- Institut de Chimie et Procédés pour l'Energie, l'Environnement et la Santé (ICPEES), Equipe Chimie Organique pour la Biologie, les Matériaux et l'Optique (COMBO), UMR CNRS 7515, Ecole Européenne de Chimie, Polymères et Matériaux (ECPM), Université de Strasbourg, 25 Rue Becquerel, 67087 Strasbourg Cedex 02, France
| | - Timothée Stoerkler
- Institut de Chimie et Procédés pour l'Energie, l'Environnement et la Santé (ICPEES), Equipe Chimie Organique pour la Biologie, les Matériaux et l'Optique (COMBO), UMR CNRS 7515, Ecole Européenne de Chimie, Polymères et Matériaux (ECPM), Université de Strasbourg, 25 Rue Becquerel, 67087 Strasbourg Cedex 02, France
| | - Clément Diguet
- Laboratoire CEISAM UMR UN-CNRS 6230, Université de Nantes, Nantes F-44000, France
| | - Adèle D Laurent
- Laboratoire CEISAM UMR UN-CNRS 6230, Université de Nantes, Nantes F-44000, France
| | - Denis Jacquemin
- Laboratoire CEISAM UMR UN-CNRS 6230, Université de Nantes, Nantes F-44000, France
| | - Gilles Ulrich
- Institut de Chimie et Procédés pour l'Energie, l'Environnement et la Santé (ICPEES), Equipe Chimie Organique pour la Biologie, les Matériaux et l'Optique (COMBO), UMR CNRS 7515, Ecole Européenne de Chimie, Polymères et Matériaux (ECPM), Université de Strasbourg, 25 Rue Becquerel, 67087 Strasbourg Cedex 02, France
| | - Julien Massue
- Institut de Chimie et Procédés pour l'Energie, l'Environnement et la Santé (ICPEES), Equipe Chimie Organique pour la Biologie, les Matériaux et l'Optique (COMBO), UMR CNRS 7515, Ecole Européenne de Chimie, Polymères et Matériaux (ECPM), Université de Strasbourg, 25 Rue Becquerel, 67087 Strasbourg Cedex 02, France
| |
Collapse
|
24
|
Chang Y, Xia N, Huang Y, Sun Z, Liu L. In Situ Assembly of Nanomaterials and Molecules for the Signal Enhancement of Electrochemical Biosensors. NANOMATERIALS 2021; 11:nano11123307. [PMID: 34947656 PMCID: PMC8705329 DOI: 10.3390/nano11123307] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 11/30/2021] [Accepted: 12/04/2021] [Indexed: 02/07/2023]
Abstract
The physiochemical properties of nanomaterials have a close relationship with their status in solution. As a result of its better simplicity than that of pre-assembled aggregates, the in situ assembly of nanomaterials has been integrated into the design of electrochemical biosensors for the signal output and amplification. In this review, we highlight the significant progress in the in situ assembly of nanomaterials as the nanolabels for enhancing the performances of electrochemical biosensors. The works are discussed based on the difference in the interactions for the assembly of nanomaterials, including DNA hybridization, metal ion-ligand coordination, metal-thiol and boronate ester interactions, aptamer-target binding, electrostatic attraction, and streptavidin (SA)-biotin conjugate. We further expand the range of the assembly units from nanomaterials to small organic molecules and biomolecules, which endow the signal-amplified strategies with more potential applications.
Collapse
Affiliation(s)
| | | | | | | | - Lin Liu
- Correspondence: (Z.S.); (L.L.)
| |
Collapse
|
25
|
Zalmi GA, Bhosale SV. Aggregation induced emission (AIE) molecules for measurement of intracellular temperature, pH, and viscosity sensing. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2021; 184:11-60. [PMID: 34749971 DOI: 10.1016/bs.pmbts.2021.07.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
This book chapter presents insightful growth and progress in the field of sensing especially, temperature, pH, and viscosity sensing. We focus more on aggregation-induced emission (AIE)-active materials for measuring intracellular pH, viscosity, and temperature by means of fluorescence and absorption study. A special emphasis is given on AIE active fluorescent molecules, molecular rotors, polymeric nanomaterials which are considered as the important aspects of sense. It also gives the fundamental and brief understanding between these different AIE active material and its application in biological systems.
Collapse
Affiliation(s)
- Geeta A Zalmi
- School of Chemical Sciences, Goa University, Taleigao Plateau, Goa, India
| | | |
Collapse
|
26
|
Xiu D, Shi J, Deng M, Song H, Hao Z, Feng Q, Yu H. A new fluorescent chemosensor for Al(III) detection with highly selective in aqueous solution and solid test paper. J Mol Struct 2021. [DOI: 10.1016/j.molstruc.2021.130761] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
27
|
Ding G, Wang X, Zhao W, Mao S, Wang J, Kang S, Meng J, Liu H, Yang H, Liang S. A portable AIEgen-based organic fluorescence sensor design and its reusable application in information storage and pH detection. Tetrahedron 2021. [DOI: 10.1016/j.tet.2021.132258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
28
|
Lv Y, Li D, Ren A, Xiong Z, Yao Y, Cai K, Xiang S, Zhang Z, Zhao YS. Hydrogen-Bonded Organic Framework Microlasers with Conformation-Induced Color-Tunable Output. ACS APPLIED MATERIALS & INTERFACES 2021; 13:28662-28667. [PMID: 34114811 DOI: 10.1021/acsami.1c06312] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Porous organic frameworks have emerged as the promising platforms to construct tunable microlasers. Most of these microlasers are achieved from metal-organic frameworks via meticulously accommodating the laser dyes with the sacrifice of the pore space, yet they often suffer from the obstacles of either relatively limited gain concentration or sophisticated fabrication techniques. Herein, we reported on the first hydrogen-bonded organic framework (HOF) microlasers with color-tunable performance based on conformation-dependent stimulated emissions. Two types of HOF microcrystals with the same gain lumnogen as the building block were synthesized via a temperature-controlled self-assembly method. The distinct frameworks offer different conformations of the gain building block, which lead to great impacts on their conjugation degrees and excited-state processes, resulting in remarkably distinct emission colors (blue and green). Accordingly, blue/green-color lasing actions were achieved in these two types of HOFs based on well-faceted assembled wire-like cavities. These results offer a deep insight on the exploitation of HOF-based miniaturized lasers with desired nanophotonics performances.
Collapse
Affiliation(s)
- Yuanchao Lv
- Fujian Provincial Key Laboratory of Polymer Materials, College of Chemistry and Materials Science, Fujian Normal University, Fuzhou 350007, China
| | - Delin Li
- Fujian Provincial Key Laboratory of Polymer Materials, College of Chemistry and Materials Science, Fujian Normal University, Fuzhou 350007, China
| | - Ang Ren
- Key Laboratory of Photochemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Zhile Xiong
- Fujian Provincial Key Laboratory of Polymer Materials, College of Chemistry and Materials Science, Fujian Normal University, Fuzhou 350007, China
| | - Yinan Yao
- Key Laboratory of Photochemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Kaicong Cai
- Fujian Provincial Key Laboratory of Polymer Materials, College of Chemistry and Materials Science, Fujian Normal University, Fuzhou 350007, China
| | - Shengchang Xiang
- Fujian Provincial Key Laboratory of Polymer Materials, College of Chemistry and Materials Science, Fujian Normal University, Fuzhou 350007, China
| | - Zhangjing Zhang
- Fujian Provincial Key Laboratory of Polymer Materials, College of Chemistry and Materials Science, Fujian Normal University, Fuzhou 350007, China
| | - Yong Sheng Zhao
- Key Laboratory of Photochemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| |
Collapse
|
29
|
Lina G, Gao Y, Han L. Detecting Cu2+ and H2O in methanol based on aggregation-induced emission fluorescent enhancement. J COORD CHEM 2021. [DOI: 10.1080/00958972.2021.1897114] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Affiliation(s)
- Guo Lina
- Chemical Engineering College, Inner Mongolia University of Technology, Hohhot, PR China
| | - Yuanyuan Gao
- Chemical Engineering College, Inner Mongolia University of Technology, Hohhot, PR China
| | - Limin Han
- Chemical Engineering College, Inner Mongolia University of Technology, Hohhot, PR China
| |
Collapse
|
30
|
Pariat T, Munch M, Durko-Maciag M, Mysliwiec J, Retailleau P, Vérité PM, Jacquemin D, Massue J, Ulrich G. Impact of Heteroatom Substitution on Dual-State Emissive Rigidified 2-(2'-hydroxyphenyl)benzazole Dyes: Towards Ultra-Bright ESIPT Fluorophores*. Chemistry 2021; 27:3483-3495. [PMID: 33191573 DOI: 10.1002/chem.202004767] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Indexed: 01/09/2023]
Abstract
2-(2'-Hydroxyphenyl)benzazole (HBX) fluorophores are well-known excited-state intramolecular proton transfer (ESIPT) emitters largely studied for their synthetic versatility, photostability, strong solid-state fluorescence and ability to engineer dual emission, thus paving the way to applications as white emitters, ratiometric sensors, and cryptographic dyes. However, they are heavily quenched in solution, due to efficient non-radiative pathways taking place as a consequence of the proton transfer in the excited-state. In this contribution, the nature of the heteroring constitutive of these rigidified HBX dyes was modified and we demonstrate that this simple structural modification triggers major optical changes in terms of emission color, dual emission engineering, and importantly, fluorescent quantum yield. Investigation of the photophysical properties in solution and in the solid state of a series of ethynyl-TIPS extended HBX fluorophores, along with ab initio calculations demonstrate the very promising abilities of these dyes to act as bright dual-state emitters, in both solution (even in protic environments) and solid state.
Collapse
Affiliation(s)
- Thibault Pariat
- Institut de Chimie et Procédés pour l'Energie, l'Environnement et la Santé (ICPEES), UMR CNRS 7515, Ecole Européenne de Chimie, Polymères et Matériaux (ECPM), 25 Rue Becquerel, 67087, Strasbourg Cedex 02, France
| | - Maxime Munch
- Institut de Chimie et Procédés pour l'Energie, l'Environnement et la Santé (ICPEES), UMR CNRS 7515, Ecole Européenne de Chimie, Polymères et Matériaux (ECPM), 25 Rue Becquerel, 67087, Strasbourg Cedex 02, France
| | - Martyna Durko-Maciag
- Institut de Chimie et Procédés pour l'Energie, l'Environnement et la Santé (ICPEES), UMR CNRS 7515, Ecole Européenne de Chimie, Polymères et Matériaux (ECPM), 25 Rue Becquerel, 67087, Strasbourg Cedex 02, France.,Advanced Materials Engineering and Modeling Group, Wroclaw University of Science and Technology, Wybrzeze Wyspianskiego 27, 50370, Wroclaw, Poland
| | - Jaroslaw Mysliwiec
- Advanced Materials Engineering and Modeling Group, Wroclaw University of Science and Technology, Wybrzeze Wyspianskiego 27, 50370, Wroclaw, Poland
| | - Pascal Retailleau
- Laboratoire de Cristallochimie, ICSN-CNRS, 1 Avenue de la Terrasse, Bât. 27, 91198, Gif-sur-Yvette Cedex, France
| | - Pauline M Vérité
- CEISAM Lab-UMR 6230-CNRS and University of Nantes, 2 Rue de la Houssinière, 44322, Nantes, France
| | - Denis Jacquemin
- CEISAM Lab-UMR 6230-CNRS and University of Nantes, 2 Rue de la Houssinière, 44322, Nantes, France
| | - Julien Massue
- Institut de Chimie et Procédés pour l'Energie, l'Environnement et la Santé (ICPEES), UMR CNRS 7515, Ecole Européenne de Chimie, Polymères et Matériaux (ECPM), 25 Rue Becquerel, 67087, Strasbourg Cedex 02, France
| | - Gilles Ulrich
- Institut de Chimie et Procédés pour l'Energie, l'Environnement et la Santé (ICPEES), UMR CNRS 7515, Ecole Européenne de Chimie, Polymères et Matériaux (ECPM), 25 Rue Becquerel, 67087, Strasbourg Cedex 02, France
| |
Collapse
|
31
|
Chen M, Ren Y, Liu H, Jiang Q, Zhang J, Zhu M. A Versatile Aggregation-induced Emission Fluorescent Probe for Visible Detection of pH. J Fluoresc 2021; 31:475-485. [PMID: 33433818 DOI: 10.1007/s10895-020-02669-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Accepted: 12/28/2020] [Indexed: 01/05/2023]
Abstract
By tactfully structuring a luminescent molecule as an accurate pH probe with aggregation-induced emission (AIE) feature, it is significant to overcome aggregation-caused quenching of emitted light in practice. Herein, we present a simple AIE-active fluorescence probe for pH detection on the basis of intramolecular charge transfer (ICT) with wide response range and high sensitivity reaction. The donor-acceptor-donor (D-A-D) style probe utilized a conjugated structural hybrid of the electron-withdrawing nitrile group and electron-donating hydroxyl as well as dimethylamino groups for fluorescent platform. The AIE-active probe possesses good fluorescence under water fraction up to 90% in mixed MeOH/water system. Furthermore, it can be used in profiling and visualization of pH detection in MeOH/water system at fw = 90% under UV 365 nm lamp. What's more, the probe can be employed to be a broad range test paper of pH detection, paving the way for low-cost practical applications.
Collapse
Affiliation(s)
- Meihui Chen
- College of Chemistry and Chemical Engineering, Neijiang Normal University, 641100, Neijiang, P. R. China
| | - Yi Ren
- College of Chemistry and Chemical Engineering, Neijiang Normal University, 641100, Neijiang, P. R. China
| | - Huan Liu
- College of Chemistry and Chemical Engineering, Neijiang Normal University, 641100, Neijiang, P. R. China
| | - Qian Jiang
- College of Chemistry and Chemical Engineering, Neijiang Normal University, 641100, Neijiang, P. R. China
| | - Jing Zhang
- College of Chemistry and Chemical Engineering, Neijiang Normal University, 641100, Neijiang, P. R. China
| | - Mingguang Zhu
- College of Chemistry and Chemical Engineering, Neijiang Normal University, 641100, Neijiang, P. R. China.
| |
Collapse
|
32
|
Qin Y, Peng Q, Chen F, Liu Y, Li K, Zang S. AIE Ligand Constructed Zn(II) Complex with Reversible Photo-induced Color and Emission Changes. Chem Res Chin Univ 2021. [DOI: 10.1007/s40242-021-0331-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
33
|
Chen HY, Yao CC, Tseng TY, Yeh YC, Huang HS, Yeh MY. Synthesis and photophysical properties of benzoxazolyl-imidazole and benzothiazolyl-imidazole conjugates. RSC Adv 2021; 11:40228-40234. [PMID: 35494111 PMCID: PMC9044771 DOI: 10.1039/d1ra08342b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Accepted: 12/13/2021] [Indexed: 11/21/2022] Open
Abstract
Materials that have higher fluorescence emission in the solid state than molecules in solution have recently been paid more attention by the scientific community due to their potential applications in various fields. In this work, we newly synthesized benzoxazolyl-imidazole and benzothiazolyl-imidazole conjugates, which show aggregation-induced emission (AIE) features in their solid and aggregate states. It was found that oxygen and sulfur substitutions can dramatically influence the molecular structures and polarities of the dyes, leading to different degrees of the AIE phenomenon. The benzothiazolyl-imidazole molecule has lower polarity compared to that of benzoxazolyl-imidazole; therefore, the dye bearing a benzothiazolyl group shows higher emission intensity and dual emission in aqueous solution. Theoretical calculation results suggest that the benzothiazolyl-imidazole molecules might have electrostatic interactions between sulfur and nitrogen atoms, explaining the experimental observations of lower critical aggregation concentration and photophysical properties both in solution and in the solid state. The theoretical calculations agree with the experimental data, thus demonstrating a potent strategy to gain a deep understanding of the structure–property relationships to design solid-state fluorescent materials. The effect of heteroatoms on the structural and photophysical properties of donor-π-acceptor molecules, comprising imidazole and benzoxazolyl as well as imidazole and benzothiazolyl units, was investigated.![]()
Collapse
Affiliation(s)
- Hsing-Yu Chen
- Department of Chemistry, Chung Yuan Christian University, No. 200, Zhongbei Rd., Zhongli Dist., Taoyuan City 320314, Taiwan
| | - Chen-Chen Yao
- Department of Chemistry, Chung Yuan Christian University, No. 200, Zhongbei Rd., Zhongli Dist., Taoyuan City 320314, Taiwan
| | - Tzu-Yu Tseng
- Department of Chemistry, Chung Yuan Christian University, No. 200, Zhongbei Rd., Zhongli Dist., Taoyuan City 320314, Taiwan
| | - Yao-Chun Yeh
- Department of Chemistry, Chung Yuan Christian University, No. 200, Zhongbei Rd., Zhongli Dist., Taoyuan City 320314, Taiwan
| | - He-Shin Huang
- Department of Chemistry, Chung Yuan Christian University, No. 200, Zhongbei Rd., Zhongli Dist., Taoyuan City 320314, Taiwan
| | - Mei-Yu Yeh
- Department of Chemistry, Chung Yuan Christian University, No. 200, Zhongbei Rd., Zhongli Dist., Taoyuan City 320314, Taiwan
| |
Collapse
|
34
|
Recent advances in the development of colorimetric analysis and testing based on aggregation-induced nanozymes. CHINESE CHEM LETT 2021. [DOI: 10.1016/j.cclet.2020.09.017] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
35
|
|
36
|
Luan F, Xiao G, Zhang Y, Li S, Hu Z, Du H, Guo D. Synthesis, fluorescence properties and F− detection performance of Eu(III) complexes based on the novel coumarin Schiff base derivatives. J Mol Liq 2020. [DOI: 10.1016/j.molliq.2020.114439] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
37
|
Lasitha P, Dasgupta S, Naresh Patwari G. Unraveling the Origin of Differentiable 'Turn-On' Fluorescence Sensing of Zn 2+ and Cd 2+ Ions with Squaramides. Chemphyschem 2020; 21:1564-1570. [PMID: 32488932 DOI: 10.1002/cphc.202000332] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 06/01/2020] [Indexed: 11/09/2022]
Abstract
A squaramide ring conjugated with Schiff-bases decorated with hydroxy and methoxy functional groups differentially senses zinc and cadmium ions, which turn on the fluorescence. The feebly emitting free ligands light up in the presence of zinc and cadmium acetates, with the acetate ion playing a pivotal role as a conjugate anion. The selective and differentiable emission responses for zinc and cadmium ions make these ligands efficient multi-analyte sensing agents. Furthermore, these ligands could be used to differentially sense zinc and cadmium ions even in aqueous environments. The NMR investigations reveal marginal differences in the binding of zinc and cadmium ions to the ligands, whereas density functional theory calculations suggest the different extent of ligand-to-metal charge transfer (LMCT) contributes to the differential behavior. Finally, comparison of the excited-state dynamics of free ligand and the metal complexes reveal the appearance of longer lifetime (about 500-700 ps) component with complexation, due to rigidified molecular skeleton, thereby impeding the non-radiative processes.
Collapse
Affiliation(s)
- P Lasitha
- Department of Chemistry, Indian Institute of Technology Bombay Powai, Mumbai, 400076, India
| | - S Dasgupta
- Department of Chemistry, Indian Institute of Technology Bombay Powai, Mumbai, 400076, India
| | - G Naresh Patwari
- Department of Chemistry, Indian Institute of Technology Bombay Powai, Mumbai, 400076, India
| |
Collapse
|
38
|
Méndez‐Ardoy A, Reina JJ, Montenegro J. Synthesis and Supramolecular Functional Assemblies of Ratiometric pH Probes. Chemistry 2020; 26:7516-7536. [DOI: 10.1002/chem.201904834] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Revised: 12/20/2019] [Indexed: 01/28/2023]
Affiliation(s)
- Alejandro Méndez‐Ardoy
- Centro Singular de Investigación en Química Biolóxica e, Materiais Moleculares (CIQUS)Departamento de Química OrgánicaUniversidade de Santiago de Compostela 15782 Santiago de Compostela Spain
| | - Jose J. Reina
- Centro Singular de Investigación en Química Biolóxica e, Materiais Moleculares (CIQUS)Departamento de Química OrgánicaUniversidade de Santiago de Compostela 15782 Santiago de Compostela Spain
| | - Javier Montenegro
- Centro Singular de Investigación en Química Biolóxica e, Materiais Moleculares (CIQUS)Departamento de Química OrgánicaUniversidade de Santiago de Compostela 15782 Santiago de Compostela Spain
| |
Collapse
|
39
|
Wang X, Wang H, Niu Y, Wang Y, Feng L. A facile AIE fluorescent probe for broad range of pH detection. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2020; 226:117650. [PMID: 31634712 DOI: 10.1016/j.saa.2019.117650] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Revised: 10/05/2019] [Accepted: 10/09/2019] [Indexed: 06/10/2023]
Abstract
Detection of pH has received more and more attention in various fields. Currently, a hot research topic is focused on how to use a facile fluorescent dye to achieve a wide range and accurate pH detection. Herein, we reported a simple fluorescence probe for pH detection with wide range and accuracy based on the Aggregation-Induced Emission (AIE) characteristics. The probe 2-oxo-N'-(2-(quinolin-8-yloxy)acetyl)-2H-chromene-3-carbo- hydrazide (CHBQ) as comprised of coumarin and quinoline as the electron donor and acceptor, N, N'-diformylhydrazine bond as the linking group, respectively. The probe displays good AIE characteristics under water content up to 99% in mixed medium. Furthermore, it can identify acid and base as fast as 30 s by color change of the solution under UV365 nm lamp. The detection of the probe for pH was hardly interfered with other ions. What's more, the probe CHBQ can be designed to be a broad range test paper of pH detection, which has a great practical value.
Collapse
Affiliation(s)
- Xiaoju Wang
- Institute of Molecular Science, Chemical Biology and Molecular Engineering, Laboratory of Education Ministry, Shanxi University, Taiyuan, 030006, PR China
| | - Haoping Wang
- School of Chemistry and Chemical Engineering, Shanxi University, Taiyuan, 030006, PR China
| | - Yan Niu
- School of Chemistry and Chemical Engineering, Shanxi University, Taiyuan, 030006, PR China
| | - Yunxia Wang
- School of Chemistry and Chemical Engineering, Shanxi University, Taiyuan, 030006, PR China.
| | - Liheng Feng
- School of Chemistry and Chemical Engineering, Shanxi University, Taiyuan, 030006, PR China.
| |
Collapse
|
40
|
Bhardwaj V, Thangaraj A, Varddhan S, Ashok Kumar SK, Crisponi G, Sahoo SK. An aggregation-induced emission active vitamin B6 cofactor derivative: application in pH sensing and detection of latent fingerprints. Photochem Photobiol Sci 2020; 19:1402-1409. [DOI: 10.1039/d0pp00262c] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Aggregation-induced emission (AIE) properties of an easy-to-prepare and structurally planar Schiff base derivative of the vitamin B6 cofactor pyridoxal (L) were investigated in DMSO–H2O mixed solvents.
Collapse
Affiliation(s)
- Vinita Bhardwaj
- Department of Applied Chemistry
- S.V. National Institute of Technology (SVNIT)
- Surat-395007
- India
| | - Anand Thangaraj
- Department of Applied Chemistry
- S.V. National Institute of Technology (SVNIT)
- Surat-395007
- India
| | - Seshu Varddhan
- Department of Applied Chemistry
- S.V. National Institute of Technology (SVNIT)
- Surat-395007
- India
| | - S. K. Ashok Kumar
- Materials Chemistry Division
- School of Advanced Sciences
- VIT University
- Vellore-632014
- India
| | - Guido Crisponi
- Dipartimento di Scienze della Vita e dell'Ambiente
- Università di Cagliari
- Cittadella Universitaria
- Monserrato-Cagliari
- Italy
| | - Suban K. Sahoo
- Department of Applied Chemistry
- S.V. National Institute of Technology (SVNIT)
- Surat-395007
- India
| |
Collapse
|
41
|
Li Y, Gai T, Lin Y, Zhang W, Li K, Liu Y, Duan Y, Li B, Ding J, Li J. Eight Cd(ii) coordination polymers with persistent room-temperature phosphorescence: intriguing dual emission and time-resolved afterglow modulation. Inorg Chem Front 2020. [DOI: 10.1039/c9qi01273g] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
A new series of p-RTP CPs 1–8 were designed and successfully synthesized; 5–8, in particular, exhibited intriguing time-resolved afterglow modulation.
Collapse
Affiliation(s)
- Yajie Li
- College of Chemistry
- Zhengzhou University
- P. R. China
| | - Tianyu Gai
- College of Chemistry
- Zhengzhou University
- P. R. China
| | - Yuejin Lin
- College of Chemistry
- Zhengzhou University
- P. R. China
| | | | - Kai Li
- College of Chemistry
- Zhengzhou University
- P. R. China
| | - Yan Liu
- College of Chemistry
- Zhengzhou University
- P. R. China
| | - Yanquan Duan
- College of Chemistry
- Zhengzhou University
- P. R. China
| | - Baojun Li
- College of Chemistry
- Zhengzhou University
- P. R. China
| | - Jie Ding
- College of Chemistry
- Zhengzhou University
- P. R. China
| | - Jinpeng Li
- College of Chemistry
- Zhengzhou University
- P. R. China
| |
Collapse
|
42
|
Xing C, Liu J, Chen F, Li Y, Lv C, Peng Q, Hou H, Li K. Diphenyl-1-pyrenylphosphine: photo-triggered AIE/ACQ transition with remarkable third-order nonlinear optical signal change. Chem Commun (Camb) 2020; 56:4220-4223. [DOI: 10.1039/d0cc01031f] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
A propeller-like pyrene derivative is reported, which exhibits a unique photo-triggered AIE/ACQ transition with a remarkable third-order nonlinear optical signal change.
Collapse
Affiliation(s)
- Chang Xing
- Green Catalysis Center, and College of Chemistry
- Zhengzhou University
- Henan 450001
- P. R. China
| | - Jianxun Liu
- Green Catalysis Center, and College of Chemistry
- Zhengzhou University
- Henan 450001
- P. R. China
| | - Fang Chen
- Green Catalysis Center, and College of Chemistry
- Zhengzhou University
- Henan 450001
- P. R. China
| | - Yuanyuan Li
- School of Chemistry and Chemical Engineering
- Henan University of Technology
- P. R. China
| | - Changjian Lv
- Green Catalysis Center, and College of Chemistry
- Zhengzhou University
- Henan 450001
- P. R. China
| | - Qiuchen Peng
- Green Catalysis Center, and College of Chemistry
- Zhengzhou University
- Henan 450001
- P. R. China
- School of Chemistry and Chemical Engineering
| | - Hongwei Hou
- Green Catalysis Center, and College of Chemistry
- Zhengzhou University
- Henan 450001
- P. R. China
| | - Kai Li
- Green Catalysis Center, and College of Chemistry
- Zhengzhou University
- Henan 450001
- P. R. China
| |
Collapse
|
43
|
Mathivanan M, Tharmalingam B, Lin CH, Pandiyan BV, Thiagarajan V, Murugesapandian B. ESIPT-active multi-color aggregation-induced emission features of triphenylamine–salicylaldehyde-based unsymmetrical azine family. CrystEngComm 2020. [DOI: 10.1039/c9ce01490j] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
A new family of ESIPT and AIE-active triphenylamine-appended unsymmetrical azine derivatives is reported.
Collapse
Affiliation(s)
| | | | - Chia-Her Lin
- Department of Chemistry
- National Taiwan Normal University
- Taipei
- Taiwan
| | | | | | | |
Collapse
|
44
|
Tian D, Zheng X, Li X, Liu X, Zhao J, Wang J. Tunable Aggregation-Induced Emission of Imidazole Hydrazones by pH and Anions. Chemistry 2019; 25:16519-16522. [PMID: 31644833 DOI: 10.1002/chem.201904259] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Revised: 10/17/2019] [Indexed: 01/24/2023]
Abstract
Aggregation-induced emission (AIE) materials have drawn great attention for applications as organic light-emitting diodes (OLED) and probes. The applications are, however, restricted by the complex syntheses and hydrophobic properties. Herein, a one-step synthesis of an AIE material based on imidazole hydrazone is assessed. Protonation of the imidazole-H leads to emission color change from yellow to green in the solid state. The emission color is recovered upon imidazole-H+ deprotonation. Moreover, the emission wavelength shifts from 532 to 572 nm by anion exchange. In addition, an enhanced emission (ΦF up to 22.6 %) was obtained with the Br- anion compared with NTf2 - , SbCl5 - , PF6 - , and OTf- anions. X-ray crystallography studies together with theoretical calculations show that the enhanced emission of hydrazone salts arises from strong hydrogen bonding between the hydrazone proton and the halide ion (Cl- or Br- ).
Collapse
Affiliation(s)
- Dongjie Tian
- Collaborative Innovation Center of Henan Province for, Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan, 453007, P.R. China
| | - Xin Zheng
- Collaborative Innovation Center of Henan Province for, Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan, 453007, P.R. China.,College of Science, Henan Agricultural University Zhengzhou, Henan, 450002, P.R. China
| | - Xiaochuan Li
- Collaborative Innovation Center of Henan Province for, Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan, 453007, P.R. China
| | - Xiaojing Liu
- College of Science, Henan Agricultural University Zhengzhou, Henan, 450002, P.R. China
| | - Jinhu Zhao
- College of Science, Henan Agricultural University Zhengzhou, Henan, 450002, P.R. China
| | - Jianji Wang
- Collaborative Innovation Center of Henan Province for, Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan, 453007, P.R. China
| |
Collapse
|
45
|
Ma X, Zhang J, Zhang Y, Liu J. Adsorption Promoted Aggregation-Induced Emission Showing Strong Dye Lateral Interactions. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:16304-16311. [PMID: 31702160 DOI: 10.1021/acs.langmuir.9b02823] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Aggregation-induced emission (AIE) is a powerful method to produce fluorescence for a diverse range of applications. While most previous work induced aggregation by change of solvent, ionic strength, pH, or self-assembly, we herein explored adsorption-induced aggregation using 4,4'-(hydrazine-1,2-diylidene bis(methanylylidene)) bis(3-hydroxybenzoic acid) (HDBB) as an AIE luminogen. HDBB is known to aggregate with AIE at low pH but not at neutral pH, and its aggregation facilitates excited state intramolecular proton transfer for enhanced emission. Using a nonquenching nanomaterial, Y2O3 nanoparticles, HDBB showed sevenfold fluorescence increase at pH 7.0. Fluorescence lifetime showed that HDBB was in the aggregated state in the presence of Y2O3. For comparison, a fluorescent porphyrin compound showed that adsorption caused quenching after mixing with Y2O3, whereas other dyes such as fluorescein, calcein, and rhodamine B failed to be adsorbed by Y2O3. Adsorption did not follow a Langmuir isotherm, but it showed strong lateral HDBB interactions because adsorption was only achieved with a high concentration of HDBB. Adsorption was inhibited by salt and by phosphate, indicating the importance of electrostatic and metal-binding interactions. Comparisons were made with other nanomaterials, where graphene oxide and CeO2 quenched HDBB and a cationic liposome also enhanced its emission, although with a less red-shifted peak wavelength. This study provides a simple method to induce aggregation of an AIE dye and its aggregation in turn-enhanced adsorption.
Collapse
Affiliation(s)
- Xuejuan Ma
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, School of Chemistry and Chemical Engineering , Shaanxi Normal University , Chang'an West Road 620 , Xi'an , Shaanxi 710119 , China
- Department of Chemistry, Waterloo Institute for Nanotechnology , University of Waterloo , 200 University Avenue West , Waterloo , Ontario N2L 3G1 , Canada
| | - Jinyi Zhang
- Department of Chemistry, Waterloo Institute for Nanotechnology , University of Waterloo , 200 University Avenue West , Waterloo , Ontario N2L 3G1 , Canada
| | - Yaodong Zhang
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, School of Chemistry and Chemical Engineering , Shaanxi Normal University , Chang'an West Road 620 , Xi'an , Shaanxi 710119 , China
| | - Juewen Liu
- Department of Chemistry, Waterloo Institute for Nanotechnology , University of Waterloo , 200 University Avenue West , Waterloo , Ontario N2L 3G1 , Canada
| |
Collapse
|
46
|
Lv Y, Xiong Z, Yao Z, Yang Y, Xiang S, Zhang Z, Zhao YS. Steric-Hindrance-Controlled Laser Switch Based on Pure Metal–Organic Framework Microcrystals. J Am Chem Soc 2019; 141:19959-19963. [DOI: 10.1021/jacs.9b09517] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Affiliation(s)
- Yuanchao Lv
- Fujian Provincial Key Laboratory of Polymer Materials, College of Chemistry and Materials Science, Fujian Normal University, Fuzhou 350007, China
| | - Zhile Xiong
- Fujian Provincial Key Laboratory of Polymer Materials, College of Chemistry and Materials Science, Fujian Normal University, Fuzhou 350007, China
| | - Zizhu Yao
- Fujian Provincial Key Laboratory of Polymer Materials, College of Chemistry and Materials Science, Fujian Normal University, Fuzhou 350007, China
| | - Yisi Yang
- Fujian Provincial Key Laboratory of Polymer Materials, College of Chemistry and Materials Science, Fujian Normal University, Fuzhou 350007, China
| | - Shengchang Xiang
- Fujian Provincial Key Laboratory of Polymer Materials, College of Chemistry and Materials Science, Fujian Normal University, Fuzhou 350007, China
| | - Zhangjing Zhang
- Fujian Provincial Key Laboratory of Polymer Materials, College of Chemistry and Materials Science, Fujian Normal University, Fuzhou 350007, China
| | - Yong Sheng Zhao
- Key Laboratory of Photochemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| |
Collapse
|
47
|
Sun K, Zhang YL, Chen XL, Su HF, Peng QC, Yu B, Qu LB, Li K. A Type of Atypical AIEgen Used for One-Photon/Two-Photon Targeted Imaging in Live Cells. ACS APPLIED BIO MATERIALS 2019; 3:505-511. [DOI: 10.1021/acsabm.9b00946] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Affiliation(s)
- Kai Sun
- College of Chemistry, Zhengzhou University, Zhengzhou 450001, P. R. China
| | - Yin-Li Zhang
- College of Chemistry, Zhengzhou University, Zhengzhou 450001, P. R. China
| | - Xiao-Lan Chen
- College of Chemistry, Zhengzhou University, Zhengzhou 450001, P. R. China
| | - Hui-Fang Su
- Department of Osteology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450001, P. R. China
| | - Qiu-Chen Peng
- College of Chemistry, Zhengzhou University, Zhengzhou 450001, P. R. China
| | - Bing Yu
- College of Chemistry, Zhengzhou University, Zhengzhou 450001, P. R. China
| | - Ling-Bo Qu
- College of Chemistry, Zhengzhou University, Zhengzhou 450001, P. R. China
| | - Kai Li
- College of Chemistry, Zhengzhou University, Zhengzhou 450001, P. R. China
| |
Collapse
|
48
|
Li Y, Hou L, Shan F, Zhang Z, Li Y, Liu Y, Peng Q, He J, Li K. A Novel Aggregation‐Induced Emission Luminogen Based Molecularly Imprinted Fluorescence Sensor for Ratiometric Determination of Rhodamine B in Food Samples. ChemistrySelect 2019. [DOI: 10.1002/slct.201903141] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Yuanyuan Li
- School of Chemistry and Chemical EngineeringHenan University of Technology Henan 450001 P. R. China
| | - Liyu Hou
- School of Chemistry and Chemical EngineeringHenan University of Technology Henan 450001 P. R. China
| | - Fangjian Shan
- School of Chemistry and Chemical EngineeringHenan University of Technology Henan 450001 P. R. China
| | - Zuoliang Zhang
- School of Chemistry and Chemical EngineeringHenan University of Technology Henan 450001 P. R. China
| | - Yajing Li
- School of Chemistry and Chemical EngineeringHenan University of Technology Henan 450001 P. R. China
| | - Yiqing Liu
- School of Chemistry and Chemical EngineeringHenan University of Technology Henan 450001 P. R. China
| | - Qiuchen Peng
- College of Chemistry and Molecular EngineeringZhengzhou University Henan 450001 P. R. China
| | - Juan He
- School of Chemistry and Chemical EngineeringHenan University of Technology Henan 450001 P. R. China
| | - Kai Li
- College of Chemistry and Molecular EngineeringZhengzhou University Henan 450001 P. R. China
| |
Collapse
|
49
|
Sauvé ER, Tonge CM, Hudson ZM. Aggregation-Induced Energy Transfer in Color-Tunable Multiblock Bottlebrush Nanofibers. J Am Chem Soc 2019; 141:16422-16431. [DOI: 10.1021/jacs.9b08133] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Ethan R. Sauvé
- Department of Chemistry, The University of British Columbia, 2036 Main Mall, Vancouver, British Columbia, Canada V6T 1Z1
| | - Christopher M. Tonge
- Department of Chemistry, The University of British Columbia, 2036 Main Mall, Vancouver, British Columbia, Canada V6T 1Z1
| | - Zachary M. Hudson
- Department of Chemistry, The University of British Columbia, 2036 Main Mall, Vancouver, British Columbia, Canada V6T 1Z1
| |
Collapse
|
50
|
Ma X, Chen S, Yu H, Guan Y, Li J, Yan X, Zhang Z. A Phenanthroline-Based Fluorescent Probe for Highly Selective Detection of Extreme Alkalinity (pH > 14) in Aqueous Solution. NANOSCALE RESEARCH LETTERS 2019; 14:318. [PMID: 31535227 PMCID: PMC6751243 DOI: 10.1186/s11671-019-3149-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Accepted: 09/06/2019] [Indexed: 06/10/2023]
Abstract
Although numerous fluorescent probes are designed to detect the pH value in the past decades, developing fluorescent probes for extreme alkalinity (pH > 14) detection in aqueous solution is still a great challenge. In this work, we utilized 1H-imidazo[4,5-f][1, 10] phenanthroline (IP) group as the recognition group of hydroxyl ion and introduced two triethylene glycol monomethyl ether groups to improve its solubility. This IP derivative, BMIP, possessed good solubility (25 mg/mL) in water. It displayed high selectivity toward extreme alkalinity (pH > 14) over other ions and pH (from extreme acidity to pH = 14). From 3 to 6 mol/L OH-, the exact concentration of OH- could be revealed by BMIP and the whole detection process just needed a short time (≤ 10 s). Meanwhile, it exhibited good anti-interference ability and repeatability during the detection process. Through optical spectra and NMR analysis, its detection mechanism was proved to be deprotonation by hydroxyl ion and then aggregation-induced enhanced emission. Our study presents a new basic group based on which researchers can develop new fluorescent probes that can detect extreme alkalinity (pH > 14) in aqueous solution.
Collapse
Affiliation(s)
- Xiaoyu Ma
- Research Institute for New Materials Technology, Chongqing University of Arts and Sciences, Yongchuan, 402160, People's Republic of China
- College of Chemistry, Jilin University, Changchun, 130012, People's Republic of China
| | - Shanyong Chen
- Research Institute for New Materials Technology, Chongqing University of Arts and Sciences, Yongchuan, 402160, People's Republic of China.
| | - Hong Yu
- Research Institute for New Materials Technology, Chongqing University of Arts and Sciences, Yongchuan, 402160, People's Republic of China.
| | - Youwei Guan
- Research Institute for New Materials Technology, Chongqing University of Arts and Sciences, Yongchuan, 402160, People's Republic of China
| | - Junjun Li
- Research Institute for New Materials Technology, Chongqing University of Arts and Sciences, Yongchuan, 402160, People's Republic of China
| | - Xingwu Yan
- Research Institute for New Materials Technology, Chongqing University of Arts and Sciences, Yongchuan, 402160, People's Republic of China
| | - Zhenghao Zhang
- State Grid Tianjin Electric Power Corporation Chengxi District Supply Company, Tianjin, 300191, People's Republic of China
| |
Collapse
|