1
|
Xuan W, Ma JA. Pinpointing Acidic Residues in Proteins. ChemMedChem 2024; 19:e202300623. [PMID: 38303683 DOI: 10.1002/cmdc.202300623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 12/18/2023] [Indexed: 02/03/2024]
Abstract
It is of great importance to pinpoint specific residues or sites of a protein in biological contexts to enable desired mechanism of action for small molecules or to precisely control protein function. In this regard, acidic residues including aspartic acid (Asp) and glutamic acid (Glu) hold great potential due to their great prevalence and unique function. To unlock the largely untapped potential, great efforts have been made recently by synthetic chemists, chemical biologists and pharmacologists. Herein, we would like to highlight the remarkable progress and particularly introduce the electrophiles that exhibit reactivity to carboxylic acids, the light-induced reactivities to carboxylic acids and the genetically encoded noncanonical amino acids that allow protein manipulations at acidic residues. We also comment on certain unresolved challenges, hoping to draw more attention to this rapidly developing area.
Collapse
Affiliation(s)
- Weimin Xuan
- Frontiers Science Center for Synthetic Biology, Tianjin Key Laboratory of Function and Application of Biological Macromolecular Structures, School of Life Sciences, Tianjin University, Tianjin, 300072, China
| | - Jun-An Ma
- Department of Chemistry, Frontiers Science Center for Synthetic Biology, Tianjin University, Tianjin, 300072, P. R. China
| |
Collapse
|
2
|
Zhang J, Liu J, Zhang G, He X, Xiong F, Fan X, Li Y, Li Y. Synthesis of Diacylhydrazine Derivatives Based on Tetrazole-Focused DNA-Encoded Library. Org Lett 2024; 26:1094-1099. [PMID: 38277138 DOI: 10.1021/acs.orglett.3c04374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2024]
Abstract
Utilizing already existing DNA-encoded libraries (DELs) for the generation of a distinct DEL represents an expedited strategy for expanding the chemical space. Herein, we leverage the unique photoreactivity of tetrazoles to synthesize diacylhydrazines on DNA. Widely available carboxylic acids serving as building blocks were employed under the mild photomediated reaction conditions, affording diverse DNA-conjugated diacylhydrazines. This methodology also demonstrates robustness in DEL-compatible synthesis and facilitates the preparation of oligonucleotide-based chemical probes.
Collapse
Affiliation(s)
- Juan Zhang
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, Innovative Drug Research Center, School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, China
| | - Jinlu Liu
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, Innovative Drug Research Center, School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, China
| | - Gong Zhang
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, Innovative Drug Research Center, School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, China
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, China
| | - Xun He
- Shenzhen Innovation Center for Small Molecule Drug Discovery Co., Ltd., Shenzhen 518110, China
| | - Feng Xiong
- Shenzhen Innovation Center for Small Molecule Drug Discovery Co., Ltd., Shenzhen 518110, China
| | - Xiaohong Fan
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, Innovative Drug Research Center, School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, China
- Pharmaceutical Department, Chongqing University Three Gorges Hospital, Chongqing University, Chongqing 404100, China
| | - Yangfeng Li
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, Innovative Drug Research Center, School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, China
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, China
| | - Yizhou Li
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, Innovative Drug Research Center, School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, China
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, China
| |
Collapse
|
3
|
Zhang J, Liu J, Li X, Ju Y, Li Y, Zhang G, Li Y. Unexpected Cyclization Product Discovery from the Photoinduced Bioconjugation Chemistry between Tetrazole and Amine. J Am Chem Soc 2024; 146:2122-2131. [PMID: 38190443 DOI: 10.1021/jacs.3c11574] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2024]
Abstract
Bioconjugation chemistry has emerged as a powerful tool for the modification of diverse biomolecules under mild conditions. Tetrazole, initially proposed as a bioorthogonal photoclick handle for 1,3-dipolar cyclization with alkenes, was later demonstrated to possess broader photoreactivity with carboxylic acids, serving as a versatile bioconjugation and photoaffinity labeling probe. In this study, we unexpectedly discovered and validated the photoreactivity between tetrazole and primary amine to afford a new 1,2,4-triazole cyclization product. Given the significance of functionalized N-heterocycles in medicinal chemistry, we successfully harnessed the serendipitously discovered reaction to synthesize both pharmacologically relevant DNA-encoded chemical libraries (DELs) and small molecule compounds bearing 1,2,4-triazole scaffolds. Furthermore, the mild reaction conditions and stable 1,2,4-triazole linkage found broad application in photoinduced bioconjugation scenarios, spanning from intramolecular peptide macrocyclization and templated DNA reaction cross-linking to intermolecular photoaffinity labeling of proteins. Triazole cross-linking products on lysine side chains were identified in tetrazole-labeled proteins, refining the comprehensive understanding of the photo-cross-linking profiles of tetrazole-based probes. Altogether, this tetrazole-amine bioconjugation expands the current bioconjugation toolbox and creates new possibilities at the interface of medicinal chemistry and chemical biology.
Collapse
Affiliation(s)
- Juan Zhang
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, Innovative Drug Research Center, School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, P. R. China
| | - Jinlu Liu
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, Innovative Drug Research Center, School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, P. R. China
| | - Xianfeng Li
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, Innovative Drug Research Center, School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, P. R. China
| | - Yunzhu Ju
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, Innovative Drug Research Center, School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, P. R. China
| | - Yangfeng Li
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, Innovative Drug Research Center, School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, P. R. China
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, P. R. China
| | - Gong Zhang
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, Innovative Drug Research Center, School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, P. R. China
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, P. R. China
| | - Yizhou Li
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, Innovative Drug Research Center, School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, P. R. China
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, P. R. China
- Beijing National Laboratory for Molecular Sciences, Beijing 100190, P. R. China
| |
Collapse
|
4
|
Michenfelder RT, Delafresnaye L, Truong VX, Barner-Kowollik C, Wagenknecht HA. DNA labelling in live cells via visible light-induced [2+2] photocycloaddition. Chem Commun (Camb) 2023; 59:4012-4015. [PMID: 36920883 DOI: 10.1039/d3cc00817g] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/05/2023]
Abstract
We introduce a visible light-driven (λmax = 451 nm) photo-chemical strategy for labelling of DNA in living HeLa cells via the [2+2] cycloaddition of a styrylquinoxaline moiety, which we incorporate into both the DNA and the fluorescent label. Our methodology offers advanced opportunities for the mild remote labelling of DNA in water while avoiding UV light activation.
Collapse
Affiliation(s)
- Rita T Michenfelder
- Institute of Organic Chemistry, Karlsruhe Institute of Technology (KIT), Fritz-Haber Weg 6, Karlsruhe 76131, Germany.
- School of Chemistry and Physics, Centre for Materials Science, Queensland University of Technology (QUT), 2 George St, Brisbane QLD 4000, Australia.
| | - Laura Delafresnaye
- School of Chemistry and Physics, Centre for Materials Science, Queensland University of Technology (QUT), 2 George St, Brisbane QLD 4000, Australia.
| | - Vinh X Truong
- School of Chemistry and Physics, Centre for Materials Science, Queensland University of Technology (QUT), 2 George St, Brisbane QLD 4000, Australia.
- Institute of Materials Research and Engineering, Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, 138634, Singapore.
| | - Christopher Barner-Kowollik
- School of Chemistry and Physics, Centre for Materials Science, Queensland University of Technology (QUT), 2 George St, Brisbane QLD 4000, Australia.
- Institute of Nanotechnology, Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, Eggenstein-Leopoldshafen 76344, Germany.
| | - Hans-Achim Wagenknecht
- Institute of Organic Chemistry, Karlsruhe Institute of Technology (KIT), Fritz-Haber Weg 6, Karlsruhe 76131, Germany.
| |
Collapse
|
5
|
Makarenkov AV, Kiselev SS, Kononova EG, Dolgushin FM, Peregudov AS, Borisov YA, Ol’shevskaya VA. Synthesis, Characterization and DFT Study of a New Family of High-Energy Compounds Based on s-Triazine, Carborane and Tetrazoles. Molecules 2022; 27:7484. [PMID: 36364313 PMCID: PMC9656522 DOI: 10.3390/molecules27217484] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 10/26/2022] [Accepted: 10/28/2022] [Indexed: 06/21/2024] Open
Abstract
An efficient one-pot synthesis of carborane-containing high-energy compounds was developed via the exploration of carbon-halogen bond functionalization strategies in commercially available 2,4,6-trichloro-1,3,5-triazine. The synthetic pathway first included the substitution of two chlorine atoms in s-triazine with 5-R-tetrazoles (R = H, Me, Et) units to form disubstituted tetrazolyl 1,3,5-triazines followed by the sequential substitution of the remaining chlorine atom in 1,3,5-triazine with carborane N- or S-nucleophiles. All new compounds were characterized by IR- and NMR spectroscopy. The structure of four new compounds was confirmed by single crystal X-ray diffraction analysis. The density functional theory method (DFT B3LYP/6-311 + G*) was used to study the geometrical structures, enthalpies of formation (EOFs), energetic properties and highest occupied and lowest unoccupied molecular orbital (HOMO and LUMO) energies and the detonation properties of synthesized compounds. The DFT calculation revealed compounds processing the maximum value of the detonation velocity or the maximum value of the detonation pressure. Theoretical terahertz frequencies for potential high-energy density materials (HEDMs) were computed, which allow the opportunity for the remote detection of these compounds.
Collapse
Affiliation(s)
- Anton V. Makarenkov
- A.N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, 28, bld. 1 Vavilova Street, 119334 Moscow, Russia
| | - Sergey S. Kiselev
- A.N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, 28, bld. 1 Vavilova Street, 119334 Moscow, Russia
| | - Elena G. Kononova
- A.N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, 28, bld. 1 Vavilova Street, 119334 Moscow, Russia
| | - Fedor M. Dolgushin
- N.S. Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences, 31 Leninsky Prosp., 119071 Moscow, Russia
| | - Alexander S. Peregudov
- A.N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, 28, bld. 1 Vavilova Street, 119334 Moscow, Russia
| | - Yurii A. Borisov
- A.N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, 28, bld. 1 Vavilova Street, 119334 Moscow, Russia
| | - Valentina A. Ol’shevskaya
- A.N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, 28, bld. 1 Vavilova Street, 119334 Moscow, Russia
| |
Collapse
|
6
|
Freddi S, Perilli D, Vaghi L, Monti M, Papagni A, Di Valentin C, Sangaletti L. Pushing Down the Limit of NH 3 Detection of Graphene-Based Chemiresistive Sensors through Functionalization by Thermally Activated Tetrazoles Dimerization. ACS NANO 2022; 16:10456-10469. [PMID: 35731131 DOI: 10.1021/acsnano.2c01095] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
An easy and cost-effective method is presented to functionalize graphene through thermally activated dimerization of 2,5-diaryltetrazoles. Consistently with the experimental spectroscopic results, theoretical calculations demonstrate that during the thermal treatment a dimerization process to tetrazine is energetically more favorable than covalent grafting. Since both the functionalization method by thermal activation and the use of tetrazoles have never been considered before to prepare graphene-based chemiresistors, this represents a promising approach to develop graphene-related sensing platforms. Five different 2,5-diaryltetrazoles have been tested here for the effective functionalization of low-defect graphene layers on silicon nitride. Based on these layers, an array of sensors has been prepared for testing upon ammonia exposure. The tests on the sensing performances clearly show sensitivity to ammonia, extending the current range of ammonia detection with a graphene-based chemiresistor down to the sub-ppm range, as results from a benchmarking with data available in the literature. Furthermore, all sensors perform better than bare graphene. Density functional theory (DFT) calculations, carried out on a model of the best performing layer of the array, provided the theoretical framework to rationalize the sensing mechanism and disclose a dual role played by the tetrazine molecules, (i) acting as ammonia concentrators and (ii) mediating the electron transfer between ammonia and graphene.
Collapse
Affiliation(s)
- Sonia Freddi
- Surface Science and Spectroscopy Lab @ I-Lamp, Department of Mathematics and Physics, Università Cattolica del Sacro Cuore, Via della Garzetta, 25123 Brescia, Italy
- Department of Chemistry, Division of Molecular Imaging and Photonics, KU Leuven, Celestijnenlaan 200F, 3001 Leuven, Belgium
| | - Daniele Perilli
- Department of Materials Science, University of Milano-Bicocca, via Cozzi 55, 20125 Milano, Italy
| | - Luca Vaghi
- Department of Materials Science, University of Milano-Bicocca, via Cozzi 55, 20125 Milano, Italy
| | - Mauro Monti
- Department of Materials Science, University of Milano-Bicocca, via Cozzi 55, 20125 Milano, Italy
| | - Antonio Papagni
- Department of Materials Science, University of Milano-Bicocca, via Cozzi 55, 20125 Milano, Italy
| | - Cristiana Di Valentin
- Department of Materials Science, University of Milano-Bicocca, via Cozzi 55, 20125 Milano, Italy
| | - Luigi Sangaletti
- Surface Science and Spectroscopy Lab @ I-Lamp, Department of Mathematics and Physics, Università Cattolica del Sacro Cuore, Via della Garzetta, 25123 Brescia, Italy
| |
Collapse
|
7
|
Deepthi A, Acharjee N, Sruthi S, Meenakshy C. An overview of nitrile imine based [3+2] cycloadditions over half a decade. Tetrahedron 2022. [DOI: 10.1016/j.tet.2022.132812] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
8
|
Earley D, Guillou A, Klingler S, Fay R, Gut M, d’Orchymont F, Behmaneshfar S, Reichert L, Holland JP. Charting the Chemical and Mechanistic Scope of Light-Triggered Protein Ligation. JACS AU 2022; 2:646-664. [PMID: 35373206 PMCID: PMC8970001 DOI: 10.1021/jacsau.1c00530] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Indexed: 05/04/2023]
Abstract
The creation of discrete, covalent bonds between a protein and a functional molecule like a drug, fluorophore, or radiolabeled complex is essential for making state-of-the-art tools that find applications in basic science and clinical medicine. Photochemistry offers a unique set of reactive groups that hold potential for the synthesis of protein conjugates. Previous studies have demonstrated that photoactivatable desferrioxamine B (DFO) derivatives featuring a para-substituted aryl azide (ArN3) can be used to produce viable zirconium-89-radiolabeled monoclonal antibodies (89Zr-mAbs) for applications in noninvasive diagnostic positron emission tomography (PET) imaging of cancers. Here, we report on the synthesis, 89Zr-radiochemistry, and light-triggered photoradiosynthesis of 89Zr-labeled human serum albumin (HSA) using a series of 14 different photoactivatable DFO derivatives. The photoactive groups explore a range of substituted, and isomeric ArN3 reagents, as well as derivatives of benzophenone, a para-substituted trifluoromethyl phenyl diazirine, and a tetrazole species. For the compounds studied, efficient photochemical activation occurs inside the UVA-to-visible region of the electromagnetic spectrum (∼365-450 nm) and the photochemical reactions with HSA in water were complete within 15 min under ambient conditions. Under standardized experimental conditions, photoradiosynthesis with compounds 1-14 produced the corresponding 89ZrDFO-PEG3-HSA conjugates with decay-corrected isolated radiochemical yields between 18.1 ± 1.8% and 62.3 ± 3.6%. Extensive density functional theory (DFT) calculations were used to explore the reaction mechanisms and chemoselectivity of the light-induced bimolecular conjugation of compounds 1-14 to protein. The photoactivatable DFO-derivatives operate by at least five distinct mechanisms, each producing a different type of bioconjugate bond. Overall, the experimental and computational work presented here confirms that photochemistry is a viable option for making diverse, functionalized protein conjugates.
Collapse
|
9
|
Pirota V, Benassi A, Doria F. Lights on 2,5-diaryl tetrazoles: applications and limits of a versatile photoclick reaction. Photochem Photobiol Sci 2022; 21:879-898. [DOI: 10.1007/s43630-022-00173-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Accepted: 01/13/2022] [Indexed: 01/14/2023]
Abstract
AbstractRecently, photoclick chemistry emerged as a powerful tool employed in several research fields, from medicinal chemistry and biology to material sciences. The growing interest in this type of chemical process is justified by the possibility to produce complex molecular systems using mild reaction conditions. However, the elevated spatio-temporal control offered by photoclick chemistry is highly intriguing, as it expands the range of applications. In this context, the light-triggered reaction of 2,5-diaryl tetrazoles with dipolarophiles emerged for its interesting features: excellent stability of the substrates, fast reaction kinetic, and the formation of a highly fluorescent product, fundamental for sensing applications. In the last years, 2,5-diaryl tetrazoles have been extensively employed, especially for bioorthogonal ligations, to label biomolecules and nucleic acids. In this review, we summarized recent applications of this interesting photoclick reaction, with a particular focus on biological fields. Moreover, we described the main limits that affect this system and current strategies proposed to overcome these issues. The general discussion here presented could prompt further optimization of the process and pave the way for the development of new original structures and innovative applications.
Graphical abstract
Collapse
|
10
|
Taylor MT. Photochemical protein modification in complex biological environments: recent advances and considerations for future chemical methods development. Biol Chem 2022; 403:413-420. [PMID: 35073619 PMCID: PMC10163948 DOI: 10.1515/hsz-2021-0351] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Accepted: 01/12/2022] [Indexed: 12/29/2022]
Abstract
Abstract
The development of organic reactions that covalently modify biological matter in complex biological mixtures has become an invaluable asset in drug discovery. Out of the techniques developed to date, optically controlled chemistries are of particular utility owing to both the spatiotemporal control afforded by optical control as well as the impressive array of transformations that are driven by the highly reactive intermediates generated upon excitation. This minireview discusses recent advances in the development of photochemical reactions for use in complex mixtures and highlights key considerations for future photochemical reaction designs.
Collapse
Affiliation(s)
- Michael T Taylor
- Department of Chemistry, University of Wyoming, 1000 E. University Ave., Laramie, WY 82071, USA
| |
Collapse
|
11
|
Zhao X, Zhou Y, Li BL, Du G, Yu Z. Highly diastereoselective cascade dearomatization of 3-(2-isocyanoethyl)indoles with nitrile imines: a facile access to unexpected polycyclic indolines. Org Chem Front 2022. [DOI: 10.1039/d1qo01731d] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A novel cascade annulation between 2-isocyanoethylindoles and hydrazonyl chlorides has been realized to assemble a variety of unexpected polycyclic indoline derivatives with excellent diastereoselectivities under simple reaction conditions.
Collapse
Affiliation(s)
- Xiaohu Zhao
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, China
| | - Yuqiao Zhou
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, China
| | - Bao-Lin Li
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, China
| | - Guangxi Du
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, China
| | - Zhipeng Yu
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, China
| |
Collapse
|
12
|
McKenna SM, Fay EM, McGouran JF. Flipping the Switch: Innovations in Inducible Probes for Protein Profiling. ACS Chem Biol 2021; 16:2719-2730. [PMID: 34779621 PMCID: PMC8689647 DOI: 10.1021/acschembio.1c00572] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
![]()
Over the past two
decades, activity-based probes have enabled a
range of discoveries, including the characterization of new enzymes
and drug targets. However, their suitability in some labeling experiments
can be limited by nonspecific reactivity, poor membrane permeability,
or high toxicity. One method for overcoming these issues is through
the development of “inducible” activity-based probes.
These probes are added to samples in an unreactive state and require in situ transformation to their active form before labeling
can occur. In this Review, we discuss a variety of approaches to inducible
activity-based probe design, different means of probe activation,
and the advancements that have resulted from these applications. Additionally,
we highlight recent developments which may provide opportunities for
future inducible activity-based probe innovations.
Collapse
Affiliation(s)
- Sean M. McKenna
- School of Chemistry and Trinity Biomedical Sciences Institute, Trinity College Dublin, 152-160 Pearse St, Dublin 2, Ireland
- Synthesis and Solid State Pharmaceutical Centre (SSPC), Bernal Institute, Limerick V94 T9PX, Ireland
| | - Ellen M. Fay
- School of Chemistry and Trinity Biomedical Sciences Institute, Trinity College Dublin, 152-160 Pearse St, Dublin 2, Ireland
| | - Joanna F. McGouran
- School of Chemistry and Trinity Biomedical Sciences Institute, Trinity College Dublin, 152-160 Pearse St, Dublin 2, Ireland
- Synthesis and Solid State Pharmaceutical Centre (SSPC), Bernal Institute, Limerick V94 T9PX, Ireland
| |
Collapse
|
13
|
Yang YL, Li S, Zhang FG, Ma JA. N-Iodosuccinimide-Promoted [3 + 2] Annulation Reaction of Aryldiazonium Salts with Guanidines To Construct Aminotetrazoles. Org Lett 2021; 23:8894-8898. [PMID: 34748357 DOI: 10.1021/acs.orglett.1c03395] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
A N-iodosuccinimide (NIS)-promoted [3 + 2] annulation reaction of aryldiazonium salts with guanidines has been developed for the construction of previously elusive 2-aryl-5-amino-2H-tetrazoles. This transformation takes advantage of readily available starting materials, proceeds under metal-free, mild, and robust conditions, and holds broad functional group compatibility. The utility of this protocol is further manifested via coupling, annulation, deamination, and denitrogenation derivatizations.
Collapse
Affiliation(s)
- Yi-Lin Yang
- Department of Chemistry, Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Frontiers Science Center for Synthetic Biology (Ministry of Education), and Tianjin Collaborative Innovation Center of Chemical Science & Engineering, Tianjin University, Tianjin 300072, P. R. of China.,Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou 350207, P. R. of China
| | - Shen Li
- Department of Chemistry, Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Frontiers Science Center for Synthetic Biology (Ministry of Education), and Tianjin Collaborative Innovation Center of Chemical Science & Engineering, Tianjin University, Tianjin 300072, P. R. of China.,Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou 350207, P. R. of China
| | - Fa-Guang Zhang
- Department of Chemistry, Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Frontiers Science Center for Synthetic Biology (Ministry of Education), and Tianjin Collaborative Innovation Center of Chemical Science & Engineering, Tianjin University, Tianjin 300072, P. R. of China.,Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou 350207, P. R. of China
| | - Jun-An Ma
- Department of Chemistry, Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Frontiers Science Center for Synthetic Biology (Ministry of Education), and Tianjin Collaborative Innovation Center of Chemical Science & Engineering, Tianjin University, Tianjin 300072, P. R. of China.,Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou 350207, P. R. of China
| |
Collapse
|
14
|
Vaghi L, Monti M, Marelli M, Motto E, Papagni A, Cipolla L. Photoinduced Porcine Gelatin Cross-Linking by Homobi- and Homotrifunctional Tetrazoles. Gels 2021; 7:124. [PMID: 34449602 PMCID: PMC8395868 DOI: 10.3390/gels7030124] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2021] [Revised: 08/14/2021] [Accepted: 08/16/2021] [Indexed: 11/16/2022] Open
Abstract
Gelatin is a costless polypeptide material of natural origin, able to form hydrogels that are potentially useful in biomaterial scaffold design for drug delivery, cell cultures, and tissue engineering. However, gelatin hydrogels are unstable at physiological conditions, losing their features only after a few minutes at 37 °C. Accordingly, treatments to address this issue are of great interest. In the present work, we propose for the first time the use of bi- and trifunctional tetrazoles, most of them unknown to date, for photoinduced gelatin cross-linking towards the production of physiologically stable hydrogels. Indeed, after UV-B irradiation, aryl tetrazoles generate a nitrilimine intermediate that is reactive towards different functionalities, some of them constitutively present in the amino acid side chains of gelatin. The efficacy of the treatment strictly depends on the structure of the cross-linking agent used, and substantial improved stability was observed by switching from bifunctional to trifunctional cross-linkers.
Collapse
Affiliation(s)
- Luca Vaghi
- Dipartimento di Scienza dei Materiali, Università degli Studi di Milano—Bicocca, via R. Cozzi 55, 20125 Milano, Italy;
| | - Mauro Monti
- Dipartimento di Scienza dei Materiali, Università degli Studi di Milano—Bicocca, via R. Cozzi 55, 20125 Milano, Italy;
| | - Marcello Marelli
- Istituto di Scienze e Tecnologie Chimiche “Giulio Natta”, CNR-SCITEC, Sede Fantoli, via Fantoli 16/15, 20138 Milano, Italy;
| | - Elisa Motto
- Dipartimento di Biotecnologie e Bioscienze, Università degli Studi di Milano—Bicocca, Piazza della Scienza 2, 20126 Milano, Italy;
| | - Antonio Papagni
- Dipartimento di Scienza dei Materiali, Università degli Studi di Milano—Bicocca, via R. Cozzi 55, 20125 Milano, Italy;
| | - Laura Cipolla
- Dipartimento di Biotecnologie e Bioscienze, Università degli Studi di Milano—Bicocca, Piazza della Scienza 2, 20126 Milano, Italy;
| |
Collapse
|
15
|
Fu Y, Helbert H, Simeth NA, Crespi S, Spoelstra GB, van Dijl JM, van Oosten M, Nazario LR, van der Born D, Luurtsema G, Szymanski W, Elsinga PH, Feringa BL. Ultrafast Photoclick Reaction for Selective 18F-Positron Emission Tomography Tracer Synthesis in Flow. J Am Chem Soc 2021; 143:10041-10047. [PMID: 34181410 PMCID: PMC8283755 DOI: 10.1021/jacs.1c02229] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
![]()
The development of
very fast, clean, and selective methods for
indirect labeling in PET tracer synthesis is an ongoing challenge.
Here we present the development of an ultrafast photoclick method
for the synthesis of short-lived 18F-PET tracers based
on the photocycloaddition reaction of 9,10-phenanthrenequinones
with electron-rich alkenes. The respective precursors are synthetically
easily accessible and can be functionalized with various target groups.
Using a flow photo-microreactor, the photoclick reaction can be performed
in 60 s, and clinically relevant tracers for prostate cancer and bacterial
infection imaging were prepared to demonstrate practicality of the
method.
Collapse
Affiliation(s)
- Youxin Fu
- Centre for Systems Chemistry, Stratingh Institute for Chemistry, Faculty for Science and Engineering, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| | - Hugo Helbert
- Centre for Systems Chemistry, Stratingh Institute for Chemistry, Faculty for Science and Engineering, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands.,Department of Nuclear Medicine and Molecular Imaging, University of Groningen, University Medical Centre Groningen, Hanzeplein 1, 9713 GZ Groningen, The Netherlands
| | - Nadja A Simeth
- Centre for Systems Chemistry, Stratingh Institute for Chemistry, Faculty for Science and Engineering, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| | - Stefano Crespi
- Centre for Systems Chemistry, Stratingh Institute for Chemistry, Faculty for Science and Engineering, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| | - Gerbren B Spoelstra
- Department of Nuclear Medicine and Molecular Imaging, University of Groningen, University Medical Centre Groningen, Hanzeplein 1, 9713 GZ Groningen, The Netherlands
| | - Jan Maarten van Dijl
- Department of Medical Microbiology and Infection Prevention, University of Groningen, University Medical Center Groningen, 9713 GZ Groningen, The Netherlands
| | - Marleen van Oosten
- Department of Medical Microbiology and Infection Prevention, University of Groningen, University Medical Center Groningen, 9713 GZ Groningen, The Netherlands
| | - Luiza Reali Nazario
- Department of Nuclear Medicine and Molecular Imaging, University of Groningen, University Medical Centre Groningen, Hanzeplein 1, 9713 GZ Groningen, The Netherlands
| | - Dion van der Born
- FutureChemistry, Agro Business Park 10, 6708 PW Wageningen, The Netherlands
| | - Gert Luurtsema
- Department of Nuclear Medicine and Molecular Imaging, University of Groningen, University Medical Centre Groningen, Hanzeplein 1, 9713 GZ Groningen, The Netherlands
| | - Wiktor Szymanski
- Centre for Systems Chemistry, Stratingh Institute for Chemistry, Faculty for Science and Engineering, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands.,Department of Radiology, Medical Imaging Center, University of Groningen, University Medical Centre Groningen, Hanzeplein 1, 9713 GZ Groningen, The Netherlands
| | - Philip H Elsinga
- Department of Nuclear Medicine and Molecular Imaging, University of Groningen, University Medical Centre Groningen, Hanzeplein 1, 9713 GZ Groningen, The Netherlands
| | - Ben L Feringa
- Centre for Systems Chemistry, Stratingh Institute for Chemistry, Faculty for Science and Engineering, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| |
Collapse
|
16
|
Fairbanks BD, Macdougall LJ, Mavila S, Sinha J, Kirkpatrick BE, Anseth KS, Bowman CN. Photoclick Chemistry: A Bright Idea. Chem Rev 2021; 121:6915-6990. [PMID: 33835796 PMCID: PMC9883840 DOI: 10.1021/acs.chemrev.0c01212] [Citation(s) in RCA: 102] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
At its basic conceptualization, photoclick chemistry embodies a collection of click reactions that are performed via the application of light. The emergence of this concept has had diverse impact over a broad range of chemical and biological research due to the spatiotemporal control, high selectivity, and excellent product yields afforded by the combination of light and click chemistry. While the reactions designated as "photoclick" have many important features in common, each has its own particular combination of advantages and shortcomings. A more extensive realization of the potential of this chemistry requires a broader understanding of the physical and chemical characteristics of the specific reactions. This review discusses the features of the most frequently employed photoclick reactions reported in the literature: photomediated azide-alkyne cycloadditions, other 1,3-dipolarcycloadditions, Diels-Alder and inverse electron demand Diels-Alder additions, radical alternating addition chain transfer additions, and nucleophilic additions. Applications of these reactions in a variety of chemical syntheses, materials chemistry, and biological contexts are surveyed, with particular attention paid to the respective strengths and limitations of each reaction and how that reaction benefits from its combination with light. Finally, challenges to broader employment of these reactions are discussed, along with strategies and opportunities to mitigate such obstacles.
Collapse
Affiliation(s)
- Benjamin D Fairbanks
- Department of Chemical and Biological Engineering, University of Colorado, Boulder, Colorado 80303, United States
| | - Laura J Macdougall
- Department of Chemical and Biological Engineering, University of Colorado, Boulder, Colorado 80303, United States
| | - Sudheendran Mavila
- Department of Chemical and Biological Engineering, University of Colorado, Boulder, Colorado 80303, United States
| | - Jasmine Sinha
- Department of Chemical and Biological Engineering, University of Colorado, Boulder, Colorado 80303, United States
| | - Bruce E Kirkpatrick
- Department of Chemical and Biological Engineering, University of Colorado, Boulder, Colorado 80303, United States
- The BioFrontiers Institute, University of Colorado, Boulder, Colorado 80303, United States
- Medical Scientist Training Program, School of Medicine, University of Colorado, Aurora, Coorado 80045, United States
| | - Kristi S Anseth
- Department of Chemical and Biological Engineering, University of Colorado, Boulder, Colorado 80303, United States
- The BioFrontiers Institute, University of Colorado, Boulder, Colorado 80303, United States
| | - Christopher N Bowman
- Department of Chemical and Biological Engineering, University of Colorado, Boulder, Colorado 80303, United States
- Materials Science and Engineering Program, University of Colorado, Boulder, Colorado 80303, United States
| |
Collapse
|
17
|
Abstract
The merging of click chemistry with discrete photochemical processes has led to the creation of a new class of click reactions, collectively known as photoclick chemistry. These light-triggered click reactions allow the synthesis of diverse organic structures in a rapid and precise manner under mild conditions. Because light offers unparalleled spatiotemporal control over the generation of the reactive intermediates, photoclick chemistry has become an indispensable tool for a wide range of spatially addressable applications including surface functionalization, polymer conjugation and cross-linking, and biomolecular labeling in the native cellular environment. Over the past decade, a growing number of photoclick reactions have been developed, especially those based on the 1,3-dipolar cycloadditions and Diels-Alder reactions owing to their excellent reaction kinetics, selectivity, and biocompatibility. This review summarizes the recent advances in the development of photoclick reactions and their applications in chemical biology and materials science. A particular emphasis is placed on the historical contexts and mechanistic insights into each of the selected reactions. The in-depth discussion presented here should stimulate further development of the field, including the design of new photoactivation modalities, the continuous expansion of λ-orthogonal tandem photoclick chemistry, and the innovative use of these unique tools in bioconjugation and nanomaterial synthesis.
Collapse
Affiliation(s)
- Gangam Srikanth Kumar
- Department of Chemistry, State University of New York at Buffalo, Buffalo, New York 14260-3000, United States
| | - Qing Lin
- Department of Chemistry, State University of New York at Buffalo, Buffalo, New York 14260-3000, United States
| |
Collapse
|
18
|
Roman BI. The Expanding Role of Chemistry in Optimizing Proteins for Human Health Applications. J Med Chem 2021; 64:7179-7188. [PMID: 34014084 DOI: 10.1021/acs.jmedchem.1c00294] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Over the past decades, therapeutics based on biological macromolecules and cells have successfully entered the clinical arena and progressively occupied an increasing share of what once was almost exclusively small molecule territory. This perspective explores the opportunities for chemists at the interface between biologics and small molecule-based products. It provides concrete examples by zooming in on the area of post-translational protein modification. The conclusion is that, rather than diminishing the relevance of chemistry in the pharmaceutical enterprise, the advent of the biologics has provided an additional playing field for synthetic and medicinal chemists, where they can contribute to the efficacy and scope of applicability of biological entities in a collaborative effort to transformatively address unmet medical needs.
Collapse
Affiliation(s)
- Bart I Roman
- Research Group SynBioC, Department of Green Chemistry and Technology, Faculty of Bioscience Engineering, Universiteit Gent, Coupure Links 653, 9000 Gent, Belgium.,Cancer Research Institute Ghent (CRIG), Corneel Heymanslaan 10, 9000 Gent, Belgium
| |
Collapse
|
19
|
Conway LP, Jadhav AM, Homan RA, Li W, Rubiano JS, Hawkins R, Lawrence RM, Parker CG. Evaluation of fully-functionalized diazirine tags for chemical proteomic applications. Chem Sci 2021; 12:7839-7847. [PMID: 34168837 PMCID: PMC8188597 DOI: 10.1039/d1sc01360b] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Accepted: 04/28/2021] [Indexed: 12/13/2022] Open
Abstract
The use of photo-affinity reagents for the mapping of noncovalent small molecule-protein interactions has become widespread. Recently, several 'fully-functionalized' (FF) chemical tags have been developed wherein a photoactivatable capture group, an enrichment handle, and a functional group for synthetic conjugation to a molecule of interest are integrated into a single modular tag. Diazirine-based FF tags in particular are increasingly employed in chemical proteomic investigations; however, despite routine usage, their relative utility has not been established. Here, we systematically evaluate several diazirine-containing FF tags, including a terminal diazirine analog developed herein, for chemical proteomic investigations. Specifically, we compared the general reactivity of five diazirine tags and assessed their impact on the profiles of various small molecules, including fragments and known inhibitors revealing that such tags can have profound effects on the proteomic profiles of chemical probes. Our findings should be informative for chemical probe design, photo-affinity reagent development, and chemical proteomic investigations.
Collapse
Affiliation(s)
- Louis P Conway
- Department of Chemistry, The Scripps Research Institute Jupiter FL USA
| | - Appaso M Jadhav
- Department of Chemistry, The Scripps Research Institute Jupiter FL USA
| | - Rick A Homan
- Department of Chemistry, The Scripps Research Institute Jupiter FL USA
| | - Weichao Li
- Department of Chemistry, The Scripps Research Institute Jupiter FL USA
| | | | - Richard Hawkins
- Department of Chemistry, The Scripps Research Institute Jupiter FL USA
| | | | | |
Collapse
|
20
|
Fay R, Holland JP. Tuning Tetrazole Photochemistry for Protein Ligation and Molecular Imaging. Chemistry 2021; 27:4893-4897. [PMID: 33427351 DOI: 10.1002/chem.202100061] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Indexed: 02/01/2023]
Abstract
Photochemistry provides a wide range of alternative reagents that hold potential for use in bimolecular functionalisation of proteins. Here, we report the synthesis and characterisation of metal ion binding chelates derivatised with disubstituted tetrazoles for the photoradiochemical labelling of monoclonal antibodies (mAbs). The photophysical properties of tetrazoles featuring extended aromatic systems and auxochromic substituents to tune excitation toward longer wavelengths (365 and 395 nm) were studied. Two photoactivatable chelates based on desferrioxamine B (DFO) and the aza-macrocycle NODAGA were functionalised with a tetrazole and developed for protein labelling with 89 Zr, 64 Cu and 68 Ga radionuclides. DFO-tetrazole (1) was assessed by direct conjugation to formulated trastuzumab and subsequent radiolabelling with 89 Zr. Radiochemical studies and cellular-based binding assays demonstrated that the radiotracer remained stable in vitro retained high immunoreactivity. Positron emission tomography (PET) imaging and biodistribution studies were used to measure the tumour specific uptake and pharmacokinetic profile in mice bearing SK-OV-3 xenografts. Experiments demonstrate that tetrazole-based photochemistry is a viable approach for the light-induced synthesis of PET radiotracers.
Collapse
Affiliation(s)
- Rachael Fay
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, 8057, Zurich, Switzerland
| | - Jason P Holland
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, 8057, Zurich, Switzerland
| |
Collapse
|
21
|
Guo AD, Wu KH, Chen XH. Light-induced efficient and residue-selective bioconjugation of native proteins via indazolone formation. RSC Adv 2021; 11:2235-2241. [PMID: 35424183 PMCID: PMC8693682 DOI: 10.1039/d0ra10154k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Accepted: 12/15/2020] [Indexed: 12/03/2022] Open
Abstract
Chemical modification of proteins has emerged as a powerful tool to realize enormous applications, such as development of novel biologics and functional studies of individual protein. We report a light-induced lysine-selective native protein conjugation approach via indazolone formation, conferring reliable chemoselectivity, excellent efficiency, temporal control and biocompatibility under operationally simple and mild conditions, in vitro and in living systems. This straightforward protocol demonstrates the generality and accessibility for direct and rapid functionalization of diverse native proteins, which suggests a new avenue of great importance to bioconjugation, medicinal chemistry and chemical biology.
Collapse
Affiliation(s)
- An-Di Guo
- Chinese Academy of Sciences Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences Shanghai 201203 China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Ke-Huan Wu
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine Nanjing 210023 China
| | - Xiao-Hua Chen
- Chinese Academy of Sciences Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences Shanghai 201203 China
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine Nanjing 210023 China
- University of Chinese Academy of Sciences Beijing 100049 China
| |
Collapse
|
22
|
Macias‐Contreras M, Zhu L. The Collective Power of Genetically Encoded Protein/Peptide Tags and Bioorthogonal Chemistry in Biological Fluorescence Imaging. CHEMPHOTOCHEM 2020. [DOI: 10.1002/cptc.202000215] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Miguel Macias‐Contreras
- Department of Chemistry and Biochemistry Florida State University 95 Chieftan Way Tallahassee FL 32306-4390 USA
| | - Lei Zhu
- Department of Chemistry and Biochemistry Florida State University 95 Chieftan Way Tallahassee FL 32306-4390 USA
| |
Collapse
|
23
|
Dai SY, Yang D. A Visible and Near-Infrared Light Activatable Diazocoumarin Probe for Fluorogenic Protein Labeling in Living Cells. J Am Chem Soc 2020; 142:17156-17166. [PMID: 32870680 DOI: 10.1021/jacs.0c08068] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Chemical modification of proteins in living cells permits valuable glimpses into the molecular interactions that underpin dynamic cellular events. While genetic engineering methods are often preferred, selective labeling of endogenous proteins in a complex intracellular milieu with chemical approaches represents a significant challenge. In this study, we report novel diazocoumarin compounds that can be photoactivated by visible (430-490 nm) and near-infrared light (800 nm) irradiation to photo-uncage reactive carbene intermediates, which could subsequently undergo an insertion reaction with concomitant fluorescence "turned on". With these new molecules in hand, we have developed a new approach for rapid, selective, and fluorogenic labeling of endogenous protein in living cells. By using CA-II and eDHFR as model proteins, we demonstrated that subcellular localization of proteins can be precisely visualized by live-cell imaging and protein levels can be reliably quantified in multiple cell types using flow cytometry. Dynamic protein regulations such as hypoxia-induced CA-IX accumulation can also be detected. In addition, by two-photon excitation with an 800 nm laser, cell-selective labeling can also be achieved with spatially controlled irradiation. Our method circumvents the cytotoxicity of UV light and obviates the need for introducing external reporters with "click chemistries". We believe that this approach of fluorescence labeling of endogenous protein by bioorthogonal photoirradiation opens up exciting opportunities for discoveries and mechanistic interrogation in chemical biology.
Collapse
Affiliation(s)
- Sheng-Yao Dai
- Morningside Laboratory for Chemical Biology, Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong, China
| | - Dan Yang
- Morningside Laboratory for Chemical Biology, Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong, China
| |
Collapse
|
24
|
Liu X, Zhai S, Feng F, Zhang F, Ma J. Silver‐Catalyzed [3+2] Cycloaddition Approach to Coumarin‐Decorated Tetrazoles. ChemCatChem 2020. [DOI: 10.1002/cctc.202001143] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Xuan‐Yu Liu
- Department of chemistry Tianjin Key Laboratory of Molecular Optoelectronic Sciences Frontiers Science Center for Synthetic Biology (Ministry of Education) and Tianjin Collaborative Innovation Centre of Chemical Science & Engineering Tianjin University Tianjin 300072 P.R. China
| | - Shi‐Jing Zhai
- Department of chemistry Tianjin Key Laboratory of Molecular Optoelectronic Sciences Frontiers Science Center for Synthetic Biology (Ministry of Education) and Tianjin Collaborative Innovation Centre of Chemical Science & Engineering Tianjin University Tianjin 300072 P.R. China
| | - Fang‐Fang Feng
- Department of chemistry Tianjin Key Laboratory of Molecular Optoelectronic Sciences Frontiers Science Center for Synthetic Biology (Ministry of Education) and Tianjin Collaborative Innovation Centre of Chemical Science & Engineering Tianjin University Tianjin 300072 P.R. China
| | - Fa‐Guang Zhang
- Department of chemistry Tianjin Key Laboratory of Molecular Optoelectronic Sciences Frontiers Science Center for Synthetic Biology (Ministry of Education) and Tianjin Collaborative Innovation Centre of Chemical Science & Engineering Tianjin University Tianjin 300072 P.R. China
- Joint School of National University of Singapore and Tianjin University International Campus of Tianjin University Binhai New City, Fuzhou 350207 P.R. China
| | - Jun‐An Ma
- Department of chemistry Tianjin Key Laboratory of Molecular Optoelectronic Sciences Frontiers Science Center for Synthetic Biology (Ministry of Education) and Tianjin Collaborative Innovation Centre of Chemical Science & Engineering Tianjin University Tianjin 300072 P.R. China
- Joint School of National University of Singapore and Tianjin University International Campus of Tianjin University Binhai New City, Fuzhou 350207 P.R. China
| |
Collapse
|
25
|
Boase NRB. Shining a Light on Bioorthogonal Photochemistry for Polymer Science. Macromol Rapid Commun 2020; 41:e2000305. [DOI: 10.1002/marc.202000305] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 06/29/2020] [Indexed: 01/05/2023]
Affiliation(s)
- Nathan R. B. Boase
- Centre for Materials Science Queensland University of Technology 2 George Street Brisbane QLD 4000 Australia
- School of Chemistry and Physics Queensland University of Technology 2 George Street Brisbane QLD 4000 Australia
| |
Collapse
|
26
|
Livingstone K, Bertrand S, Jamieson C. One-Pot Suzuki-Hydrogenolysis Protocol for the Modular Synthesis of 2,5-Diaryltetrazoles. J Org Chem 2020; 85:7413-7423. [PMID: 32392054 PMCID: PMC7304064 DOI: 10.1021/acs.joc.0c00807] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Indexed: 12/20/2022]
Abstract
2,5-Diaryltetrazoles are a diverse range of compounds of considerable interest within the field of photochemistry as a valuable precursor of the nitrile imine 1,3-dipole. Current literature approaches toward this heterocycle remain unsuitable for the practical synthesis of a library of these derivatives. Herein, we disclose the development of a modular approach toward 2,5-diaryltetrazoles compatible with an array-type protocol, facilitated by a tandem Suzuki-hydrogenolysis approach.
Collapse
Affiliation(s)
- Keith Livingstone
- Department
of Pure and Applied Chemistry, University
of Strathclyde, 295 Cathedral Street, Glasgow G1 1XL, U.K.
| | - Sophie Bertrand
- GlaxoSmithKline
Medicines Research Centre, Gunnels Wood Road, Stevenage, Hertfordshire SG1 2NY, U.K.
| | - Craig Jamieson
- Department
of Pure and Applied Chemistry, University
of Strathclyde, 295 Cathedral Street, Glasgow G1 1XL, U.K.
| |
Collapse
|
27
|
Wu Y, Zheng J, Xing D, Zhang T. Near-infrared light controlled fluorogenic labeling of glycoengineered sialic acids in vivo with upconverting photoclick nanoprobe. NANOSCALE 2020; 12:10361-10368. [PMID: 32369049 DOI: 10.1039/c9nr10286h] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Sialic acid serves as an important determinant for profiling cell activities in diverse biological and pathological processes. The precise control of sialic acid labeling to visualize its biological pathways under endogenous conditions is significant but still challenging due to the lack of reliable methods. Herein, we developed an effective strategy to spatiotemporally label thesialic acids with a near-infrared (NIR) light activated upconverting nanoprobe (Tz-UCNP). With this photoclickable nanoprobe and a stable N-alkene-d-mannosamine (Ac4ManNIPFA), metabolically synthesized alkene sialic acids on the cell surface were labeled and imaged in real time through fluorogenic cycloaddition. More importantly, we achieved spatially selective visualization of sialic acids in specific tumor tissues of the mice under NIR light activation in a spatially controlled manner. This in situ controllable labeling strategy thus enables the metabolic labeling of specific sialic acids in complex biological systems.
Collapse
Affiliation(s)
- Yunxia Wu
- MOE key Laboratory of Laser Life Science & Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, 510631, P.R. China.
| | | | | | | |
Collapse
|
28
|
Bach K, Beerkens BLH, Zanon PRA, Hacker SM. Light-Activatable, 2,5-Disubstituted Tetrazoles for the Proteome-wide Profiling of Aspartates and Glutamates in Living Bacteria. ACS CENTRAL SCIENCE 2020; 6:546-554. [PMID: 32342004 PMCID: PMC7181327 DOI: 10.1021/acscentsci.9b01268] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Indexed: 05/10/2023]
Abstract
Covalent inhibitors have recently seen a resurgence of interest in drug development. Nevertheless, compounds, which do not rely on an enzymatic activity, have almost exclusively been developed to target cysteines. Expanding the scope to other amino acids would be largely facilitated by the ability to globally monitor their engagement by covalent inhibitors. Here, we present the use of light-activatable 2,5-disubstituted tetrazoles that allow quantifying 8971 aspartates and glutamates in the bacterial proteome with excellent selectivity. Using these probes, we competitively map the binding sites of two isoxazolium salts and introduce hydrazonyl chlorides as a new class of carboxylic-acid-directed covalent protein ligands. As the probes are unreactive prior to activation, they allow global profiling even in living Gram-positive and Gram-negative bacteria. Taken together, this method to monitor aspartates and glutamates proteome-wide will lay the foundation to efficiently develop covalent inhibitors targeting these amino acids.
Collapse
|
29
|
Krell K, Harijan D, Ganz D, Doll L, Wagenknecht HA. Postsynthetic Modifications of DNA and RNA by Means of Copper-Free Cycloadditions as Bioorthogonal Reactions. Bioconjug Chem 2020; 31:990-1011. [DOI: 10.1021/acs.bioconjchem.0c00072] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Katja Krell
- Karlsruhe Institute of Technology (KIT), Institute for Organic Chemistry, Fritz-Haber-Weg 6, 76131 Karlsruhe, Germany
| | - Dennis Harijan
- Karlsruhe Institute of Technology (KIT), Institute for Organic Chemistry, Fritz-Haber-Weg 6, 76131 Karlsruhe, Germany
| | - Dorothée Ganz
- Karlsruhe Institute of Technology (KIT), Institute for Organic Chemistry, Fritz-Haber-Weg 6, 76131 Karlsruhe, Germany
| | - Larissa Doll
- Karlsruhe Institute of Technology (KIT), Institute for Organic Chemistry, Fritz-Haber-Weg 6, 76131 Karlsruhe, Germany
| | - Hans-Achim Wagenknecht
- Karlsruhe Institute of Technology (KIT), Institute for Organic Chemistry, Fritz-Haber-Weg 6, 76131 Karlsruhe, Germany
| |
Collapse
|
30
|
Gao J, Xiong Q, Wu X, Deng J, Zhang X, Zhao X, Deng P, Yu Z. Direct ring-strain loading for visible-light accelerated bioorthogonal ligation via diarylsydnone-dibenzo[b,f ][1,4,5]thiadiazepine photo-click reactions. Commun Chem 2020; 3:29. [PMID: 36703431 PMCID: PMC9814081 DOI: 10.1038/s42004-020-0273-6] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Accepted: 02/07/2020] [Indexed: 01/29/2023] Open
Abstract
Ultra-fast and selective covalent-bond forming reactions with spatiotemporal controllability are foundational for developing a bioorthogonal approach with high manipulability. However, it is challenging to exploit a reporter functional group to achieve these requirements simultaneously. Here, 11H-Dibenzo[c,f][1,2]diazepine and a set of heterocyclic analogues are investigated for both their photo-switching natures and their ability to serve as dipolarophiles in photo-click reactions with diarylsydnone. Sulfur-containing dibenzothiadiazepine (DBTD) is discovered to be an excellent chemical reporter in cycloaddition with visible-light excitation for in-situ ring-strain loading via its (Z) → (E) photo-isomerization. The bioorthogonal utility of the DBTD tag in spatiotemporally controlled ligation for protein modifications on live cells is also demonstrated.
Collapse
Affiliation(s)
- Jingshuo Gao
- grid.13291.380000 0001 0807 1581Key Laboratory of Green Chemistry and Technology, Ministry of Education, College of Chemistry, Sichuan University, 29 Wangjiang Road, 610064 Chengdu, China
| | - Qin Xiong
- grid.13291.380000 0001 0807 1581Key Laboratory of Green Chemistry and Technology, Ministry of Education, College of Chemistry, Sichuan University, 29 Wangjiang Road, 610064 Chengdu, China
| | - Xueting Wu
- grid.13291.380000 0001 0807 1581Key Laboratory of Green Chemistry and Technology, Ministry of Education, College of Chemistry, Sichuan University, 29 Wangjiang Road, 610064 Chengdu, China
| | - Jiajie Deng
- grid.13291.380000 0001 0807 1581Key Laboratory of Green Chemistry and Technology, Ministry of Education, College of Chemistry, Sichuan University, 29 Wangjiang Road, 610064 Chengdu, China
| | - Xiaocui Zhang
- grid.13291.380000 0001 0807 1581Key Laboratory of Green Chemistry and Technology, Ministry of Education, College of Chemistry, Sichuan University, 29 Wangjiang Road, 610064 Chengdu, China
| | - Xiaohu Zhao
- grid.13291.380000 0001 0807 1581Key Laboratory of Green Chemistry and Technology, Ministry of Education, College of Chemistry, Sichuan University, 29 Wangjiang Road, 610064 Chengdu, China
| | - Pengchi Deng
- grid.13291.380000 0001 0807 1581Analytical and Testing Center, Sichuan University, 29 Wangjiang Road, 610064 Chengdu, China
| | - Zhipeng Yu
- grid.13291.380000 0001 0807 1581Key Laboratory of Green Chemistry and Technology, Ministry of Education, College of Chemistry, Sichuan University, 29 Wangjiang Road, 610064 Chengdu, China
| |
Collapse
|
31
|
Wang C, Liu Y, Bao C, Xue Y, Zhou Y, Zhang D, Lin Q, Zhu L. Phototriggered labeling and crosslinking by 2-nitrobenzyl alcohol derivatives with amine selectivity. Chem Commun (Camb) 2020; 56:2264-2267. [PMID: 31984385 DOI: 10.1039/c9cc09449k] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Here we report the use of 2-nitrobenzyl alcohol (NB) as a photoreactive group with amine selectivity and explore its applications for photoaffinity labeling and crosslinking of biomolecules. This work confirms that NB is an efficient photoreactive group and has great potential in drug discovery, chemical biology and protein engineering.
Collapse
Affiliation(s)
- Chenxi Wang
- Shanghai Key Laboratory of Functional Materials Chemistry, School of Chemistry & Molecular Engineering, East China University of Science & Technology, Shanghai, 200237, P. R. China.
| | - Yuan Liu
- Shanghai Key Laboratory of Functional Materials Chemistry, School of Chemistry & Molecular Engineering, East China University of Science & Technology, Shanghai, 200237, P. R. China.
| | - Chunyan Bao
- Shanghai Key Laboratory of Functional Materials Chemistry, School of Chemistry & Molecular Engineering, East China University of Science & Technology, Shanghai, 200237, P. R. China.
| | - Yuan Xue
- Shanghai Key Laboratory of Functional Materials Chemistry, School of Chemistry & Molecular Engineering, East China University of Science & Technology, Shanghai, 200237, P. R. China.
| | - Yaowu Zhou
- Shanghai Key Laboratory of Functional Materials Chemistry, School of Chemistry & Molecular Engineering, East China University of Science & Technology, Shanghai, 200237, P. R. China.
| | - Dasheng Zhang
- Shanghai Key Laboratory of Functional Materials Chemistry, School of Chemistry & Molecular Engineering, East China University of Science & Technology, Shanghai, 200237, P. R. China.
| | - Qiuning Lin
- Shanghai Key Laboratory of Functional Materials Chemistry, School of Chemistry & Molecular Engineering, East China University of Science & Technology, Shanghai, 200237, P. R. China.
| | - Linyong Zhu
- Shanghai Key Laboratory of Functional Materials Chemistry, School of Chemistry & Molecular Engineering, East China University of Science & Technology, Shanghai, 200237, P. R. China.
| |
Collapse
|
32
|
Reddy NC, Kumar M, Molla R, Rai V. Chemical methods for modification of proteins. Org Biomol Chem 2020; 18:4669-4691. [DOI: 10.1039/d0ob00857e] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The field of protein bioconjugation draws attention from stakeholders in chemistry, biology, and medicine. This review provides an overview of the present status, challenges, and opportunities for organic chemists.
Collapse
Affiliation(s)
- Neelesh C. Reddy
- Department of Chemistry
- Indian Institute of Science Education and Research Bhopal
- India
| | - Mohan Kumar
- Department of Chemistry
- Indian Institute of Science Education and Research Bhopal
- India
| | - Rajib Molla
- Department of Chemistry
- Indian Institute of Science Education and Research Bhopal
- India
| | - Vishal Rai
- Department of Chemistry
- Indian Institute of Science Education and Research Bhopal
- India
| |
Collapse
|
33
|
Delafresnaye L, Jung K, Boyer C, Barner-Kowollik C. Two colours of light drive PET–RAFT photoligation. Polym Chem 2020. [DOI: 10.1039/d0py01078b] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
By fusing the realms of photopolymerisation and photoligation, our contribution exploits two orthogonal wavelengths of visible light to readily synthesise and functionalise well defined polymers from a unique dual functionality RAFT agent.
Collapse
Affiliation(s)
- Laura Delafresnaye
- Centre for Materials Science
- Queensland University of Technology (QUT)
- 4000 Brisbane
- Australia
- School of Chemistry and Physics
| | - Kenward Jung
- Centre for Advanced Macromolecular Design (CAMD) and Australian Centre for NanoMedicine (ACN)
- School of Chemical Engineering
- The University of New South Wales
- Sydney
- Australia
| | - Cyrille Boyer
- Centre for Advanced Macromolecular Design (CAMD) and Australian Centre for NanoMedicine (ACN)
- School of Chemical Engineering
- The University of New South Wales
- Sydney
- Australia
| | - Christopher Barner-Kowollik
- Centre for Materials Science
- Queensland University of Technology (QUT)
- 4000 Brisbane
- Australia
- School of Chemistry and Physics
| |
Collapse
|
34
|
Livingstone K, Bertrand S, Mowat J, Jamieson C. Metal-free C-C bond formation via coupling of nitrile imines and boronic acids. Chem Sci 2019; 10:10412-10416. [PMID: 32110332 PMCID: PMC6988605 DOI: 10.1039/c9sc03032h] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Accepted: 09/16/2019] [Indexed: 12/20/2022] Open
Abstract
The challenges of developing sustainable methods of carbon-carbon bond formation remains a topic of considerable importance in synthetic chemistry. Capitalizing on the highly reactive nature of the nitrile imine 1,3-dipole, we have developed a novel metal-free coupling of this species with aryl boronic acids. Photochemical generation of a nitrile imine intermediate and trapping with a palette of boronic acids enabled rapid and facile access to a broad library of more than 25 hydrazone derivatives in up to 92% yield, forming a carbon-carbon bond in a metal free fashion. This represents the first reported example of direct reaction between boronic acids and a 1,3-dipole.
Collapse
Affiliation(s)
- Keith Livingstone
- Department of Pure and Applied Chemistry , University of Strathclyde , 295 Cathedral St , Glasgow G1 1XL , UK .
| | - Sophie Bertrand
- GlaxoSmithKline Medicines Research Centre , Gunnels Wood Road, Stevenage , Hertfordshire SG1 2NY , UK
| | - Jenna Mowat
- Department of Pure and Applied Chemistry , University of Strathclyde , 295 Cathedral St , Glasgow G1 1XL , UK .
| | - Craig Jamieson
- Department of Pure and Applied Chemistry , University of Strathclyde , 295 Cathedral St , Glasgow G1 1XL , UK .
| |
Collapse
|
35
|
Holland JP, Gut M, Klingler S, Fay R, Guillou A. Photochemical Reactions in the Synthesis of Protein-Drug Conjugates. Chemistry 2019; 26:33-48. [PMID: 31599057 DOI: 10.1002/chem.201904059] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Indexed: 12/15/2022]
Abstract
The ability to modify biologically active molecules such as antibodies with drug molecules, fluorophores or radionuclides is crucial in drug discovery and target identification. Classic chemistry used for protein functionalisation relies almost exclusively on thermochemically mediated reactions. Our recent experiments have begun to explore the use of photochemistry to effect rapid and efficient protein functionalisation. This article introduces some of the principles and objectives of using photochemically activated reagents for protein ligation. The concept of simultaneous photoradiosynthesis of radiolabelled antibodies for use in molecular imaging is introduced as a working example. Notably, the goal of producing functionalised proteins in the absence of pre-association (non-covalent ligand-protein binding) introduces requirements that are distinct from the more regular use of photoactive groups in photoaffinity labelling. With this in mind, the chemistry of thirteen different classes of photoactivatable reagents that react through the formation of intermediate carbenes, electrophiles, dienes, or radicals, is assessed.
Collapse
Affiliation(s)
- Jason P Holland
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, 8057, Zurich, Switzerland
| | - Melanie Gut
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, 8057, Zurich, Switzerland
| | - Simon Klingler
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, 8057, Zurich, Switzerland
| | - Rachael Fay
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, 8057, Zurich, Switzerland
| | - Amaury Guillou
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, 8057, Zurich, Switzerland
| |
Collapse
|
36
|
Khine YY, Batchelor R, Raveendran R, Stenzel MH. Photo‐Induced Modification of Nanocellulose: The Design of Self‐Fluorescent Drug Carriers. Macromol Rapid Commun 2019; 41:e1900499. [DOI: 10.1002/marc.201900499] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Revised: 11/02/2019] [Indexed: 12/13/2022]
Affiliation(s)
- Yee Yee Khine
- Center for Advanced Macromolecular DesignSchool of ChemistryThe University of New South Wales Sydney 2052 Australia
| | - Rhiannon Batchelor
- Center for Advanced Macromolecular DesignSchool of ChemistryThe University of New South Wales Sydney 2052 Australia
| | - Radhika Raveendran
- Center for Advanced Macromolecular DesignSchool of ChemistryThe University of New South Wales Sydney 2052 Australia
| | - Martina H. Stenzel
- Center for Advanced Macromolecular DesignSchool of ChemistryThe University of New South Wales Sydney 2052 Australia
| |
Collapse
|
37
|
Hu W, Yuan Y, Wang CH, Tian HT, Guo AD, Nie HJ, Hu H, Tan M, Tang Z, Chen XH. Genetically Encoded Residue-Selective Photo-Crosslinker to Capture Protein-Protein Interactions in Living Cells. Chem 2019. [DOI: 10.1016/j.chempr.2019.08.020] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
38
|
Ortiz‐Rojano L, Rojas‐Martín J, Rodríguez‐Diaz C, Carreño MC, Ribagorda M. Light‐Induced Tetrazole‐Quinone 1,3‐Dipolar Cycloadditions. Chemistry 2019; 25:15050-15054. [DOI: 10.1002/chem.201904138] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Revised: 10/01/2019] [Indexed: 01/31/2023]
Affiliation(s)
- Laura Ortiz‐Rojano
- Departamento de Química OrgánicaFacultad de CienciasUniversidad Autónoma de Madrid C/Francisco TomásyValiente 7 28049 Madrid Spain
| | - Jaime Rojas‐Martín
- Departamento de Química OrgánicaFacultad de CienciasUniversidad Autónoma de Madrid C/Francisco TomásyValiente 7 28049 Madrid Spain
| | - Ciro Rodríguez‐Diaz
- Departamento de Química OrgánicaFacultad de CienciasUniversidad Autónoma de Madrid C/Francisco TomásyValiente 7 28049 Madrid Spain
| | - M. Carmen Carreño
- Departamento de Química OrgánicaFacultad de CienciasUniversidad Autónoma de Madrid C/Francisco TomásyValiente 7 28049 Madrid Spain
- Institute for Advanced Research in Chemical Sciences (IAdChem)Universidad Autónoma de Madrid 28049 Madrid Spain
| | - Maria Ribagorda
- Departamento de Química OrgánicaFacultad de CienciasUniversidad Autónoma de Madrid C/Francisco TomásyValiente 7 28049 Madrid Spain
- Institute for Advanced Research in Chemical Sciences (IAdChem)Universidad Autónoma de Madrid 28049 Madrid Spain
| |
Collapse
|
39
|
Won Y, Pagar AD, Patil MD, Dawson PE, Yun H. Recent Advances in Enzyme Engineering through Incorporation of Unnatural Amino Acids. BIOTECHNOL BIOPROC E 2019. [DOI: 10.1007/s12257-019-0163-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
40
|
Mishiro K. Phototriggered Functionalization of a Carboxy Group Using a Tetrazole. J SYN ORG CHEM JPN 2019. [DOI: 10.5059/yukigoseikyokaishi.77.610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Kenji Mishiro
- Institute for Frontier Science Initiative, Kanazawa University
| |
Collapse
|
41
|
Mishiro K, Kimura T, Furuyama T, Kunishima M. Phototriggered Active Alkyne Generation from Cyclopropenones with Visible Light-Responsive Photocatalysts. Org Lett 2019; 21:4101-4105. [DOI: 10.1021/acs.orglett.9b01280] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Kenji Mishiro
- Institute for Frontier Science Initiative, Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan
| | - Takeshi Kimura
- Faculty of Pharmaceutical Sciences, Institute of Medical, Pharmaceutical, and Health Sciences, Kanazawa University,
Kakuma-machi, Kanazawa 920-1192, Japan
| | - Taniyuki Furuyama
- Graduate School of Natural Science and Technology, Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan
- Japan Science and Technology Agency (JST)-PRESTO, 4-1-8 Honcho, Kawaguchi, Saitama 332-0012, Japan
| | - Munetaka Kunishima
- Faculty of Pharmaceutical Sciences, Institute of Medical, Pharmaceutical, and Health Sciences, Kanazawa University,
Kakuma-machi, Kanazawa 920-1192, Japan
| |
Collapse
|
42
|
Ray S, Murkin AS. New Electrophiles and Strategies for Mechanism-Based and Targeted Covalent Inhibitor Design. Biochemistry 2019; 58:5234-5244. [PMID: 30990686 DOI: 10.1021/acs.biochem.9b00293] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Covalent inhibitors are experiencing a growing resurgence in drug design and are an increasingly useful tool in molecular biology. The ability to attach inhibitors to their targets by a covalent linkage offers pharmacodynamic and pharmacokinetic advantages, but this can also be a liability if undesired off-target reactions are not mitigated. The discovery of new electrophilic groups that react selectively with specific amino acid residues is therefore highly desirable in the design of targeted covalent inhibitors (TCIs). Additionally, the ability to control the reactivity through exploitation of the target enzyme's machinery, as in mechanism-based inhibitors (MBIs), greatly benefits from the discovery of new strategies. This Perspective showcases recent advances in electrophile development and their application in TCIs and MBIs, exhibiting high selectivity for their targets.
Collapse
Affiliation(s)
- Sneha Ray
- Department of Chemistry , University at Buffalo, The State University of New York , Buffalo , New York 14260-3000 , United States
| | - Andrew S Murkin
- Department of Chemistry , University at Buffalo, The State University of New York , Buffalo , New York 14260-3000 , United States
| |
Collapse
|
43
|
Abstract
The bioorthogonal reaction toolbox contains approximately two-dozen unique chemistries that permit selective tagging and probing of biomolecules. Over the past two decades, significant effort has been devoted to optimizing and discovering bioorthogonal reagents that are faster, fluorogenic, and orthogonal to the already existing bioorthogonal repertoire. Conversely, efforts to explore bioorthogonal reagents whose reactivity can be controlled in space and/or time are limited. The "activatable" bioorthogonal reagents that do exist are often unimodal, meaning that their reagent's activation method cannot be easily modified to enable activation with red-shifted wavelengths, enzymes, or metabolic-byproducts and ions like H2O2 or Fe3+. Here, we summarize the available activatable bioorthogonal reagents with a focus on our recent addition: modular caged cyclopropenes. We designed caged cyclopropenes to be unreactive to their bioorthogonal partner until they are activated through the removal of the cage by light, an enzyme, or another reaction partner. To accomplish this, their structure includes a nitrogen atom at the cyclopropene C3 position that is decorated with the desired caging group through a carbamate linkage. This 3-N cyclopropene system can allow control of cyclopropene reactivity using a multitude of already available photo- and enzyme-caging groups. Additionally, this cyclopropene scaffold can enable metabolic-byproduct or ion activation of bioorthogonal reactions.
Collapse
Affiliation(s)
- Pratik Kumar
- Department of Chemistry, Stony Brook University, Stony Brook, NY, United States
| | - Scott T Laughlin
- Department of Chemistry, Stony Brook University, Stony Brook, NY, United States; Institute of Chemical Biology and Drug Discovery, Stony Brook University, Stony Brook, NY, United States.
| |
Collapse
|
44
|
Wu Y, Guo G, Zheng J, Xing D, Zhang T. Fluorogenic "Photoclick" Labeling and Imaging of DNA with Coumarin-Fused Tetrazole in Vivo. ACS Sens 2019; 4:44-51. [PMID: 30540170 DOI: 10.1021/acssensors.8b00565] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Photoclickable fluorogenic probes will enable visualization of specific biomolecules with precise spatiotemporal control in their native environment. However, the fluorogenic tagging of DNA with current photocontrolled clickable probes is still challenging. Herein, we demonstrated the fast (19.5 ± 2.5 M-1 s-1) fluorogenic labeling and imaging of DNA in vitro and in vivo with rationally designed coumarin-fused tetrazoles under UV LED photoirradiation. With a water-soluble, nuclear-specific coumarin-fused tetrazole (CTz-SO3), the metabolically synthesized DNA in cultured cells was effectively labeled and visualized, without fixation, via "photoclick" reaction. Moreover, the photoclickable CTz-SO3 enabled real-time, spatially controlled imaging of DNA in live zebrafish.
Collapse
Affiliation(s)
- Yunxia Wu
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou 510631, P. R. China
| | - Guanlun Guo
- Hubei Key Laboratory of Advanced Technology for Automotive Components & Hubei Collaborative Innovation Center for Automotive Components Technology, Wuhan University of Technology, Wuhan 430070, P. R. China
| | - Judun Zheng
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou 510631, P. R. China
| | - Da Xing
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou 510631, P. R. China
| | - Tao Zhang
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou 510631, P. R. China
| |
Collapse
|
45
|
Gehringer M, Laufer SA. Emerging and Re-Emerging Warheads for Targeted Covalent Inhibitors: Applications in Medicinal Chemistry and Chemical Biology. J Med Chem 2019; 62:5673-5724. [PMID: 30565923 DOI: 10.1021/acs.jmedchem.8b01153] [Citation(s) in RCA: 421] [Impact Index Per Article: 70.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Targeted covalent inhibitors (TCIs) are designed to bind poorly conserved amino acids by means of reactive groups, the so-called warheads. Currently, targeting noncatalytic cysteine residues with acrylamides and other α,β-unsaturated carbonyl compounds is the predominant strategy in TCI development. The recent ascent of covalent drugs has stimulated considerable efforts to characterize alternative warheads for the covalent-reversible and irreversible engagement of noncatalytic cysteine residues as well as other amino acids. This Perspective article provides an overview of warheads-beyond α,β-unsaturated amides-recently used in the design of targeted covalent ligands. Promising reactive groups that have not yet demonstrated their utility in TCI development are also highlighted. Special emphasis is placed on the discussion of reactivity and of case studies illustrating applications in medicinal chemistry and chemical biology.
Collapse
Affiliation(s)
- Matthias Gehringer
- Department of Pharmaceutical/Medicinal Chemistry , Eberhard Karls University Tübingen , Auf der Morgenstelle 8 , 72076 Tübingen , Germany
| | - Stefan A Laufer
- Department of Pharmaceutical/Medicinal Chemistry , Eberhard Karls University Tübingen , Auf der Morgenstelle 8 , 72076 Tübingen , Germany
| |
Collapse
|
46
|
Li J, Kong H, Huang L, Cheng B, Qin K, Zheng M, Yan Z, Zhang Y. Visible Light-Initiated Bioorthogonal Photoclick Cycloaddition. J Am Chem Soc 2018; 140:14542-14546. [DOI: 10.1021/jacs.8b08175] [Citation(s) in RCA: 72] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Jinbo Li
- State Key Laboratory of Analytical Chemistry for Life Sciences, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Hao Kong
- State Key Laboratory of Analytical Chemistry for Life Sciences, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Lei Huang
- State Key Laboratory of Analytical Chemistry for Life Sciences, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Bo Cheng
- College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Ke Qin
- College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Mengmeng Zheng
- State Key Laboratory of Analytical Chemistry for Life Sciences, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Zheng Yan
- State Key Laboratory of Analytical Chemistry for Life Sciences, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Yan Zhang
- State Key Laboratory of Analytical Chemistry for Life Sciences, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| |
Collapse
|
47
|
Chemoproteomics reveals baicalin activates hepatic CPT1 to ameliorate diet-induced obesity and hepatic steatosis. Proc Natl Acad Sci U S A 2018; 115:E5896-E5905. [PMID: 29891721 DOI: 10.1073/pnas.1801745115] [Citation(s) in RCA: 222] [Impact Index Per Article: 31.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Obesity and related metabolic diseases are becoming worldwide epidemics that lead to increased death rates and heavy health care costs. Effective treatment options have not been found yet. Here, based on the observation that baicalin, a flavonoid from the herbal medicine Scutellaria baicalensis, has unique antisteatosis activity, we performed quantitative chemoproteomic profiling and identified carnitine palmitoyltransferase 1 (CPT1), the controlling enzyme for fatty acid oxidation, as the key target of baicalin. The flavonoid directly activated hepatic CPT1 with isoform selectivity to accelerate the lipid influx into mitochondria for oxidation. Chronic treatment of baicalin ameliorated diet-induced obesity (DIO) and hepatic steatosis and led to systemic improvement of other metabolic disorders. Disruption of the predicted binding site of baicalin on CPT1 completely abolished the beneficial effect of the flavonoid. Our discovery of baicalin as an allosteric CPT1 activator opens new opportunities for pharmacological treatment of DIO and associated sequelae.
Collapse
|
48
|
Qin LH, Hu W, Long YQ. Bioorthogonal chemistry: Optimization and application updates during 2013–2017. Tetrahedron Lett 2018. [DOI: 10.1016/j.tetlet.2018.04.058] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
49
|
Su F, Lu Y, Kong L, Liu J, Luo T. Total Synthesis of Maoecrystal P: Application of a Strained Bicyclic Synthon. Angew Chem Int Ed Engl 2018; 57:760-764. [DOI: 10.1002/anie.201711084] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2017] [Indexed: 11/12/2022]
Affiliation(s)
- Fan Su
- Key Laboratory of Bioorganic Chemistry and Molecular Engineering of the Ministry of EducationBeijing National Laboratory for Molecular ScienceCollege of Chemistry and Molecular EngineeringPeking University Beijing 100871 China
| | - Yandong Lu
- Key Laboratory of Bioorganic Chemistry and Molecular Engineering of the Ministry of EducationBeijing National Laboratory for Molecular ScienceCollege of Chemistry and Molecular EngineeringPeking University Beijing 100871 China
| | - Lingran Kong
- Key Laboratory of Bioorganic Chemistry and Molecular Engineering of the Ministry of EducationBeijing National Laboratory for Molecular ScienceCollege of Chemistry and Molecular EngineeringPeking University Beijing 100871 China
| | - Jingjing Liu
- Peking-Tsinghua Center for Life SciencesAcademy of Advanced Interdisciplinary Studies, Peking University Beijing 100871 China
| | - Tuoping Luo
- Key Laboratory of Bioorganic Chemistry and Molecular Engineering of the Ministry of EducationBeijing National Laboratory for Molecular ScienceCollege of Chemistry and Molecular EngineeringPeking University Beijing 100871 China
- Peking-Tsinghua Center for Life SciencesAcademy of Advanced Interdisciplinary Studies, Peking University Beijing 100871 China
| |
Collapse
|
50
|
Zhang X, Wang JH, Tan D, Li Q, Li M, Gong Z, Tang C, Liu Z, Dong MQ, Lei X. Carboxylate-Selective Chemical Cross-Linkers for Mass Spectrometric Analysis of Protein Structures. Anal Chem 2018; 90:1195-1201. [DOI: 10.1021/acs.analchem.7b03789] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Xiaoyun Zhang
- Beijing
National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic
Chemistry and Molecular Engineering of Ministry of Education, Department
of Chemical Biology, College of Chemistry and Molecular Engineering,
Synthetic and Functional Biomolecules Center, and Peking-Tsinghua
Center for Life Sciences, Peking University, Beijing 100871, China
| | - Jian-Hua Wang
- Graduate School of Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100730, China
- National Institute of Biological Sciences (NIBS), Beijing 102206, China
| | - Dan Tan
- National Institute of Biological Sciences (NIBS), Beijing 102206, China
| | - Qiang Li
- Beijing
National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic
Chemistry and Molecular Engineering of Ministry of Education, Department
of Chemical Biology, College of Chemistry and Molecular Engineering,
Synthetic and Functional Biomolecules Center, and Peking-Tsinghua
Center for Life Sciences, Peking University, Beijing 100871, China
| | - Maodong Li
- Center
for Quantitative Biology, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Zhou Gong
- CAS
Key Laboratory of Magnetic Resonance in Biological Systems, State
Key Laboratory of Magnetic Resonance and Atomic Molecular Physics,
National Center for Magnetic Resonance at Wuhan, Wuhan Institute of Physics and Mathematics of the Chinese Academy of Sciences, Wuhan, Hubei Province 430071, China
| | - Chun Tang
- CAS
Key Laboratory of Magnetic Resonance in Biological Systems, State
Key Laboratory of Magnetic Resonance and Atomic Molecular Physics,
National Center for Magnetic Resonance at Wuhan, Wuhan Institute of Physics and Mathematics of the Chinese Academy of Sciences, Wuhan, Hubei Province 430071, China
| | - Zhirong Liu
- Center
for Quantitative Biology, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Meng-Qiu Dong
- Graduate School of Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100730, China
- National Institute of Biological Sciences (NIBS), Beijing 102206, China
| | - Xiaoguang Lei
- Beijing
National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic
Chemistry and Molecular Engineering of Ministry of Education, Department
of Chemical Biology, College of Chemistry and Molecular Engineering,
Synthetic and Functional Biomolecules Center, and Peking-Tsinghua
Center for Life Sciences, Peking University, Beijing 100871, China
| |
Collapse
|