• Reference Citation Analysis
  • v
  • v
  • Find an Article
Find an Article PDF (4604935)   Today's Articles (0)   Subscriber (49371)
For:  [Subscribe] [Scholar Register]
Number Cited by Other Article(s)
1
Jiang H, Liu Y, Xiao C, Yang X, Dong W. Reaction Kinetics of CH2OO and syn-CH3CHOO Criegee Intermediates with Acetaldehyde. J Phys Chem A 2024;128:4956-4965. [PMID: 38868987 DOI: 10.1021/acs.jpca.4c01374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2024]
2
Zou M, Hassan Y, Roy TK, McCoy AB, Lester MI. Infrared spectroscopy of the syn-methyl-substituted Criegee intermediate: A combined experimental and theoretical study. J Chem Phys 2024;160:204309. [PMID: 38818894 DOI: 10.1063/5.0210122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 05/06/2024] [Indexed: 06/01/2024]  Open
3
Sun C, Xu B, Zeng Y. Pressure and temperature dependent kinetics and the reaction mechanism of Criegee intermediates with vinyl alcohol: a theoretical study. Phys Chem Chem Phys 2024;26:9524-9533. [PMID: 38451236 DOI: 10.1039/d3cp06115a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/08/2024]
4
Behera B, Lee YP. Detailed mechanism and kinetics of reactions of anti- and syn-CH3CHOO with HC(O)OH: infrared spectra of conformers of hydroperoxyethyl formate. Phys Chem Chem Phys 2024;26:1950-1966. [PMID: 38116617 DOI: 10.1039/d3cp04086k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2023]
5
Wu H, Fu Y, Fu B, Zhang DH. Roaming Dynamics in Hydroxymethyl Hydroperoxide Decomposition Revealed by the Full-Dimensional Potential Energy Surface of the CH2OO + H2O Reaction. J Phys Chem A 2023;127:9098-9105. [PMID: 37870501 DOI: 10.1021/acs.jpca.3c05818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2023]
6
Cheng Y, Ding C, Wang H, Zhang T, Wang R, Muthiah B, Xu H, Zhang Q, Jiang M. Significant influence of water molecules on the SO3 + HCl reaction in the gas phase and at the air-water interface. Phys Chem Chem Phys 2023;25:28885-28894. [PMID: 37853821 DOI: 10.1039/d3cp03172a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2023]
7
Wu YJ, Takahashi K, Lin JJM. Kinetics of the Simplest Criegee Intermediate Reaction with Water Vapor: Revisit and Isotope Effect. J Phys Chem A 2023;127:8059-8072. [PMID: 37734061 DOI: 10.1021/acs.jpca.3c03418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/23/2023]
8
Chen Y, Zhong L, Liu S, Jiang H, Shi J, Jin Y, Yang X, Dong W. The simplest Criegee intermediate CH2OO reaction with dimethylamine and trimethylamine: kinetics and atmospheric implications. Phys Chem Chem Phys 2023;25:23187-23196. [PMID: 37605796 DOI: 10.1039/d3cp02948d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/23/2023]
9
Su ZS, Lee YP. Infrared Characterization of the Products of the Reaction between the Criegee Intermediate CH3CHOO and HCl. J Phys Chem A 2023;127:6902-6915. [PMID: 37561815 DOI: 10.1021/acs.jpca.3c03527] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/12/2023]
10
Sun Y, Long B, Truhlar DG. Unimolecular Reactions of E-Glycolaldehyde Oxide and Its Reactions with One and Two Water Molecules. RESEARCH (WASHINGTON, D.C.) 2023;6:0143. [PMID: 37435010 PMCID: PMC10332847 DOI: 10.34133/research.0143] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Accepted: 04/20/2023] [Indexed: 07/13/2023]
11
Luo PL, Chen IY, Khan MAH, Shallcross DE. Direct gas-phase formation of formic acid through reaction of Criegee intermediates with formaldehyde. Commun Chem 2023;6:130. [PMID: 37349562 DOI: 10.1038/s42004-023-00933-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Accepted: 06/14/2023] [Indexed: 06/24/2023]  Open
12
Karre AV, Valsaraj KT, Vasagar V. Review of air-water interface adsorption and reactions between trace gaseous organic and oxidant compounds. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023;873:162367. [PMID: 36822420 DOI: 10.1016/j.scitotenv.2023.162367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 02/06/2023] [Accepted: 02/17/2023] [Indexed: 06/18/2023]
13
Lee HK, Chantanapongvanij P, Schmidt RR, Stephenson TA. Master Equation Studies of the Unimolecular Decay of Thermalized Methacrolein Oxide: The Impact of Atmospheric Conditions. J Phys Chem A 2023;127:4492-4502. [PMID: 37163697 DOI: 10.1021/acs.jpca.3c00542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
14
Wu H, Fu Y, Dong W, Fu B, Zhang DH. Full-dimensional neural network potential energy surface and dynamics of the CH2OO + H2O reaction. RSC Adv 2023;13:13397-13404. [PMID: 37143908 PMCID: PMC10153484 DOI: 10.1039/d3ra02069j] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 04/16/2023] [Indexed: 05/06/2023]  Open
15
Zhang T, Wen M, Ding C, Zhang Y, Ma X, Wang Z, Lily M, Liu J, Wang R. Multiple evaluations of atmospheric behavior between Criegee intermediates and HCHO: Gas-phase and air-water interface reaction. J Environ Sci (China) 2023;127:308-319. [PMID: 36522063 DOI: 10.1016/j.jes.2022.06.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 05/31/2022] [Accepted: 06/02/2022] [Indexed: 06/17/2023]
16
Liang Q, Zhu C, Yang J. Water Charge Transfer Accelerates Criegee Intermediate Reaction with H2O- Radical Anion at the Aqueous Interface. J Am Chem Soc 2023;145:10159-10166. [PMID: 37011411 DOI: 10.1021/jacs.3c00734] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2023]
17
Chen Y, Jiang H, Liu S, Shi J, Jin Y, Yang X, Dong W. Kinetics of the Simplest Criegee Intermediate CH2OO Reaction with tert-Butylamine. J Phys Chem A 2023;127:2432-2439. [PMID: 36913641 DOI: 10.1021/acs.jpca.2c07854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/15/2023]
18
Karsili TNV, Marchetti B, Lester MI, Ashfold MNR. Electronic Absorption Spectroscopy and Photochemistry of Criegee Intermediates. Photochem Photobiol 2023;99:4-18. [PMID: 35713380 DOI: 10.1111/php.13665] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Accepted: 06/14/2022] [Indexed: 01/26/2023]
19
Li B, Kumar M, Zhou C, Li L, Francisco JS. Mechanistic Insights into Criegee Intermediate-Hydroperoxyl Radical Chemistry. J Am Chem Soc 2022;144:14740-14747. [PMID: 35921588 DOI: 10.1021/jacs.2c05346] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
20
Zhao H, Wang S, Lu C, Tang Y, Guan J. Theoretical investigations on the reactions of criegee intermediates with SO 2 to form SO 3. J PHYS ORG CHEM 2022. [DOI: 10.1002/poc.4394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
21
Vansco MF, Zou M, Antonov IO, Ramasesha K, Rotavera B, Osborn DL, Georgievskii Y, Percival CJ, Klippenstein SJ, Taatjes CA, Lester MI, Caravan RL. Dramatic Conformer-Dependent Reactivity of the Acetaldehyde Oxide Criegee Intermediate with Dimethylamine Via a 1,2-Insertion Mechanism. J Phys Chem A 2021;126:710-719. [PMID: 34939803 DOI: 10.1021/acs.jpca.1c08941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
22
Wang G, Liu T, Caracciolo A, Vansco MF, Trongsiriwat N, Walsh PJ, Marchetti B, Karsili TNV, Lester MI. Photodissociation dynamics of methyl vinyl ketone oxide: A four-carbon unsaturated Criegee intermediate from isoprene ozonolysis. J Chem Phys 2021;155:174305. [PMID: 34742186 DOI: 10.1063/5.0068664] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]  Open
23
Liu S, Zhou X, Chen Y, Liu Y, Yu S, Takahashi K, Ding H, Ding Z, Yang X, Dong W. Experimental and Computational Studies of Criegee Intermediate syn-CH3CHOO Reaction with Hydrogen Chloride. J Phys Chem A 2021;125:8587-8594. [PMID: 34558283 DOI: 10.1021/acs.jpca.1c05578] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
24
Ji YT, Lee YP. Dynamics of Reaction CH3CHI + O2 Investigated via Infrared Emission of Products CO, CO2, and OH. J Phys Chem A 2021;125:8373-8385. [PMID: 34524829 DOI: 10.1021/acs.jpca.1c05610] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
25
Takahashi K. Theoretical analysis on reactions between syn‐ methyl Criegee intermediate and amino alcohols. J CHIN CHEM SOC-TAIP 2021. [DOI: 10.1002/jccs.202100249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
26
Onel L, Lade R, Mortiboy J, Blitz MA, Seakins PW, Heard DE, Stone D. Kinetics of the gas phase reaction of the Criegee intermediate CH2OO with SO2 as a function of temperature. Phys Chem Chem Phys 2021;23:19415-19423. [PMID: 34494054 DOI: 10.1039/d1cp02932k] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
27
Shyama M, Cheviri M, Mano Priya A, Lakshmipathi S. Complexes of criegee intermediate CH2OO with CO, CO2, H2O, SO2, NO2, CH3OH, HCOOH and CH3CH3CO molecules – A DFT study on bonding, energetics and spectra. COMPUT THEOR CHEM 2021. [DOI: 10.1016/j.comptc.2021.113341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
28
Kuo MT, Yang JN, Lin JJM, Takahashi K. Substituent Effect in the Reactions between Criegee Intermediates and 3-Aminopropanol. J Phys Chem A 2021;125:6580-6590. [PMID: 34314585 DOI: 10.1021/acs.jpca.1c03737] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
29
Saheb V. Detailed theoretical kinetics studies on the product formation from the reaction of the criegee intermediate CH2OO with H2O molecule. Theor Chem Acc 2021. [DOI: 10.1007/s00214-021-02779-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
30
Wang R, Wen M, Liu S, Lu Y, Makroni L, Muthiah B, Zhang T, Wang Z, Wang Z. The favorable routes for the hydrolysis of CH2OO with (H2O)n (n = 1-4) investigated by global minimum searching combined with quantum chemical methods. Phys Chem Chem Phys 2021;23:12749-12760. [PMID: 34041511 DOI: 10.1039/d0cp00028k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
31
Long B, Wang Y, Xia Y, He X, Bao JL, Truhlar DG. Atmospheric Kinetics: Bimolecular Reactions of Carbonyl Oxide by a Triple-Level Strategy. J Am Chem Soc 2021;143:8402-8413. [PMID: 34029069 DOI: 10.1021/jacs.1c02029] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
32
Vansco MF, Zuraski K, Winiberg FAF, Au K, Trongsiriwat N, Walsh PJ, Osborn DL, Percival CJ, Klippenstein SJ, Taatjes CA, Lester MI, Caravan RL. Functionalized Hydroperoxide Formation from the Reaction of Methacrolein-Oxide, an Isoprene-Derived Criegee Intermediate, with Formic Acid: Experiment and Theory. Molecules 2021;26:3058. [PMID: 34065491 PMCID: PMC8161369 DOI: 10.3390/molecules26103058] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 05/11/2021] [Accepted: 05/13/2021] [Indexed: 11/16/2022]  Open
33
Liu J, Liu Y, Yang J, Zeng XC, He X. Directional Proton Transfer in the Reaction of the Simplest Criegee Intermediate with Water Involving the Formation of Transient H3O. J Phys Chem Lett 2021;12:3379-3386. [PMID: 33784110 DOI: 10.1021/acs.jpclett.1c00448] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
34
Wang R, Wen M, Chen X, Mu R, Zeng Z, Chai G, Lily M, Wang Z, Zhang T. Atmospheric Chemistry of CH2OO: The Hydrolysis of CH2OO in Small Clusters of Sulfuric Acid. J Phys Chem A 2021;125:2642-2652. [PMID: 33755485 DOI: 10.1021/acs.jpca.1c02006] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
35
Shashikala K, Janardanan D. Degradation mechanism of trans-2-hexenal in the atmosphere. Chem Phys Lett 2020. [DOI: 10.1016/j.cplett.2020.138039] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
36
Tang B, Li Z. Molecular Mechanisms and Atmospheric Implications of Criegee Intermediate-Alcohol Chemistry in the Gas Phase and Aqueous Surface Environments. J Phys Chem A 2020;124:8585-8593. [PMID: 32946233 DOI: 10.1021/acs.jpca.0c06427] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
37
Kumar A, Mallick S, Kumar P. Effect of water on the oxidation of CO by a Criegee intermediate. Phys Chem Chem Phys 2020;22:21257-21266. [PMID: 32935677 DOI: 10.1039/d0cp02682d] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
38
Chhantyal-Pun R, Khan MAH, Taatjes CA, Percival CJ, Orr-Ewing AJ, Shallcross DE. Criegee intermediates: production, detection and reactivity. INT REV PHYS CHEM 2020. [DOI: 10.1080/0144235x.2020.1792104] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
39
Cabezas C, Nakajima M, Endo Y. Criegee intermediates meet rotational spectroscopy. INT REV PHYS CHEM 2020. [DOI: 10.1080/0144235x.2020.1782651] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
40
Hansen AS, Liu Z, Chen S, Schumer MG, Walsh PJ, Lester MI. Unraveling Conformer-Specific Sources of Hydroxyl Radical Production from an Isoprene-Derived Criegee Intermediate by Deuteration. J Phys Chem A 2020;124:4929-4938. [PMID: 32449860 DOI: 10.1021/acs.jpca.0c02867] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
41
Direct kinetic measurements and theoretical predictions of an isoprene-derived Criegee intermediate. Proc Natl Acad Sci U S A 2020;117:9733-9740. [PMID: 32321826 DOI: 10.1073/pnas.1916711117] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]  Open
42
Wang R, Wen M, Chen X, Zhang Y, Geng X, Su Y, Liang M, Shao X, Wang W. Can (H2O)n (n = 1–2) as effective catalysts in the CH2OO + H2S reaction under tropospheric conditions? Mol Phys 2020. [DOI: 10.1080/00268976.2020.1753840] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
43
Chen Y, Zhou XH, Liu YQ, Jin YQ, Dong WR, Yang XM. Kinetics of the simplest criegee intermediate CH2OO reacting with CF3CF=CF2. CHINESE J CHEM PHYS 2020. [DOI: 10.1063/1674-0068/cjcp2002025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
44
Barber VP, Hansen AS, Georgievskii Y, Klippenstein SJ, Lester MI. Experimental and theoretical studies of the doubly substituted methyl-ethyl Criegee intermediate: Infrared action spectroscopy and unimolecular decay to OH radical products. J Chem Phys 2020;152:094301. [PMID: 33480748 DOI: 10.1063/5.0002422] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]  Open
45
Kumar A, Kumar P. CO2 as an auto-catalyst for the oxidation of CO by a Criegee intermediate (CH2OO). Phys Chem Chem Phys 2020;22:6975-6983. [DOI: 10.1039/d0cp00027b] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
46
Mull HF, Aroeira GJR, Turney JM, Schaefer HF. The atmospheric importance of methylamine additions to Criegee intermediates. Phys Chem Chem Phys 2020;22:22555-22566. [DOI: 10.1039/d0cp03781h] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
47
Stephenson TA, Lester MI. Unimolecular decay dynamics of Criegee intermediates: Energy-resolved rates, thermal rates, and their atmospheric impact. INT REV PHYS CHEM 2019. [DOI: 10.1080/0144235x.2020.1688530] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
48
Cai J, Lu Y, Wang W, Chen L, Liu F, Wang W. Reaction mechanism and kinetics of Criegee intermediate CH2OO with CH2 = C(CH3)CHO. COMPUT THEOR CHEM 2019. [DOI: 10.1016/j.comptc.2019.112644] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
49
Chao W, Yin C, Takahashi K, Lin JJM. Hydrogen-Bonding Mediated Reactions of Criegee Intermediates in the Gas Phase: Competition between Bimolecular and Termolecular Reactions and the Catalytic Role of Water. J Phys Chem A 2019;123:8336-8348. [DOI: 10.1021/acs.jpca.9b07117] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
50
Li YL, Lin YH, Yin C, Takahashi K, Chiang CY, Chang YP, Lin JJM. Temperature-Dependent Rate Coefficient for the Reaction of CH3SH with the Simplest Criegee Intermediate. J Phys Chem A 2019;123:4096-4103. [PMID: 31017782 DOI: 10.1021/acs.jpca.8b12553] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
PrevPage 1 of 2 12Next
© 2004-2024 Baishideng Publishing Group Inc. All rights reserved. 7041 Koll Center Parkway, Suite 160, Pleasanton, CA 94566, USA