1
|
Xi Y, Zhao Z, Wang F, Zhang D, Guo Y. IRTIDP: A simple integrated real-time isolation and detection platform for small extracellular vesicles Glypican-1 in pancreatic cancer patients. Talanta 2024; 280:126766. [PMID: 39191106 DOI: 10.1016/j.talanta.2024.126766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 08/12/2024] [Accepted: 08/23/2024] [Indexed: 08/29/2024]
Abstract
Glypican-1 (GPC-1) protein-positive small extracellular vesicles (GPC-1+-sEV) have been proposed as potential biomarkers for early diagnosis of pancreatic cancer. In this study, we present an integrated real-time isolation and detection platform (IRTIDP) to capture and analyze GPC-1+-sEV directly from sera of pancreatic cancer patients. First, CD63 antibody-modified metal-organic framework (MOF) materials were utilized to enrich sEVs with a capture efficiency of 93.93 %. Second, a SERS probe was constructed by Raman reporter 4-MBA and GPC-1 antibody modified SERS active silver nanoparticles (AgNPs), which formed a sandwich complex structure of "MOFs@GPC-1+-sEV@AgNPs-4-MBA" with MOFs-enriched sEVs. The IRTSDP can complete the capture and detection process within 35 min, with a detection limit for 1 GPC-1+-sEV/μL, and linear range between 105∼109 GPC-1+-sEV/mL. Furthermore, this approach has been applied to quantify serum sEV GPC-1 in clinical pancreatic cancer patients. Based on the SERS intensity analysis, pancreatic cancer patients can be distinguished from pancreatic cystadenoma patients and healthy individuals effectively using this innovative platform that provides highly specific and sensitive means for early diagnosis of pancreatic cancer as well as other tumor types.
Collapse
Affiliation(s)
- Yuge Xi
- Nanobiosensing and Microfluidic Point-of-Care Testing, Key Laboratory of Luzhou, Department of Clinical Laboratory, The Affiliated Traditional Chinese Medicine Hospital,Southwest Medical University, Luzhou, 646000, PR China; Department of Laboratory Medicine, The People's Hospital of Chongging Liangjiang New Area, No. 199 Ren Xing Road, Yubei, Chongqing, 401121, PR China
| | - Zijun Zhao
- Nanobiosensing and Microfluidic Point-of-Care Testing, Key Laboratory of Luzhou, Department of Clinical Laboratory, The Affiliated Traditional Chinese Medicine Hospital,Southwest Medical University, Luzhou, 646000, PR China
| | - Fen Wang
- Nanobiosensing and Microfluidic Point-of-Care Testing, Key Laboratory of Luzhou, Department of Clinical Laboratory, The Affiliated Traditional Chinese Medicine Hospital,Southwest Medical University, Luzhou, 646000, PR China
| | - Dan Zhang
- Nanobiosensing and Microfluidic Point-of-Care Testing, Key Laboratory of Luzhou, Department of Clinical Laboratory, The Affiliated Traditional Chinese Medicine Hospital,Southwest Medical University, Luzhou, 646000, PR China
| | - Yongcan Guo
- Nanobiosensing and Microfluidic Point-of-Care Testing, Key Laboratory of Luzhou, Department of Clinical Laboratory, The Affiliated Traditional Chinese Medicine Hospital,Southwest Medical University, Luzhou, 646000, PR China.
| |
Collapse
|
2
|
Xu X, Yue S, Tu K, Yuan B, Bi S, Yu J, Qiu H, Zhang H, Zhang L, Wu HF, Chen XJ, Zhao S, Zhang W, Zhang JN, Jiang LP, Zhang JR, Zhu JJ. Multi-Shell Nanourchin-Integrated Dual Mode Lateral Flow Immunoassay for Sensitive and Rapid Detection of Clinical Cardiac Myosin-Binding Protein C. Anal Chem 2024; 96:11853-11861. [PMID: 38989993 DOI: 10.1021/acs.analchem.4c01514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/12/2024]
Abstract
Cardiac myosin-binding protein C (cMyBP-C) is a novel cardiac marker of acute myocardial infarction (AMI) and acute cardiac injuries (ACI). Construction of point-of-care testing techniques capable of sensing cMyBP-C with high sensitivity and precision is urgently needed. Herein, we synthesized an Au@NGQDs@Au/Ag multi-shell nanoUrchins (MSNUs), and then applied it in a colorimetric/SERS dual-mode immunoassay for detection of cMyBP-C. The MSNUs displayed superior stability, colorimetric brightness, and SERS enhancement ability with an enhanced factor of 5.4 × 109, which were beneficial to improve the detection capability of test strips. The developed MSNU-based test strips can achieve an ultrasensitive immunochromatographic assay of cMyBP-C in both colorimetric and SERS modes with the limits of detection as low as 19.3 and 0.77 pg/mL, respectively. Strikingly, this strip was successfully applied to analyze actual plasma samples with significantly better sensitivity, negative predictive value, and accuracy than commercially available gold test strips. Notably, this method possessed a wide range of application scenarios via combining with a color recognizer application named Color Grab on the smartphone, which can meet various needs of different users. Overall, our MSNU-based test strip as a mobile health monitoring tool shows excellent sensitivity, reproducibility, and rapid detection of the cMyBP-C, which holds great potential for the early clinic diagnosis of AMI and ACI.
Collapse
Affiliation(s)
- Xuan Xu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, P. R. China
| | - Shuzhen Yue
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, P. R. China
| | - Keke Tu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, P. R. China
| | - Baozhen Yuan
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, P. R. China
| | - Sai Bi
- College of Chemistry and Chemical Engineering, Key Laboratory of Shandong Provincial Universities for Functional Molecules and Materials, Qingdao University, Qingdao 266071, P. R. China
| | - Jinjin Yu
- Nanjing Bottests Biotech CO., LTD, Nanjing 211112, P. R. China
| | - Hui Qiu
- Nanjing Bottests Biotech CO., LTD, Nanjing 211112, P. R. China
| | - Haotian Zhang
- Nanjing Bottests Biotech CO., LTD, Nanjing 211112, P. R. China
| | - Lei Zhang
- Nanjing Bottests Biotech CO., LTD, Nanjing 211112, P. R. China
| | - Heng-Fang Wu
- Institute of Cardiovascular Disease, First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, P. R. China
| | - Xiang-Jian Chen
- Institute of Cardiovascular Disease, First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, P. R. China
| | - Sheng Zhao
- Institute of Cardiovascular Disease, First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, P. R. China
| | - Wei Zhang
- Institute of Cardiovascular Disease, First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, P. R. China
| | - Ji-Nan Zhang
- Institute of Cardiovascular Disease, First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, P. R. China
| | - Li-Ping Jiang
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, P. R. China
| | - Jian-Rong Zhang
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, P. R. China
| | - Jun-Jie Zhu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, P. R. China
| |
Collapse
|
3
|
Zhang J, Chen Z, Lv H, Liang J, Yan C, Song C, Wang L. Rapid and accurate SERS assay of disease-related nucleic acids based on isothermal cascade signal amplifications of CRISPR/Cas13a system and catalytic hairpin assembly. Biosens Bioelectron 2024; 253:116196. [PMID: 38467101 DOI: 10.1016/j.bios.2024.116196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2023] [Revised: 02/21/2024] [Accepted: 03/05/2024] [Indexed: 03/13/2024]
Abstract
Developing rapid, accurate and convenient nucleic acid diagnostic techniques is essential for the prevention and control of contagious diseases that are prone to gene mutations and may have homologous sequences, especially emerging infectious diseases such as the SARS-CoV-2 pandemic. Herein, a one-pot SERS assay integrating isothermal cascade signal amplification strategy (i.e., CRISPR/Cas13a system (Cas13a) and catalytic hairpin assembly (CHA), Cas13a-CHA) and SERS-active silver nanorods (AgNRs) sensing chips was proposed for rapid and accurate detection of disease-related nucleic acids. Taking SARS-CoV-2 RNA assay as a model, the Cas13a-CHA based SERS sensing strategy can achieve ultra-high sensitivity low to 5.18 × 102 copies·mL-1 within 60 min, and excellent specificity, i.e., not only the ability to identify SARS-CoV-2 RNA from gene mutations, but also incompatibility with coronaviruses such as severe acute respiratory syndrome (SARS-CoV), Middle East respiratory syndrome (MERS-CoV), and other respiratory viruses. The proposed Cas13a-CHA based SERS assay for SARS-CoV-2 RNA has satisfactory sensitivity, specificity, uniformity, and repeatability, and can be easily expanded and universalized for screening different viruses, which is expected to promise as a crucial role for diagnosis of disease-related nucleic acids in various medical application scenarios.
Collapse
Affiliation(s)
- Jingjing Zhang
- State Key Laboratory for Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts & Telecommunications, Nanjing, 210023, China
| | - Zhilong Chen
- State Key Laboratory for Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts & Telecommunications, Nanjing, 210023, China
| | - Huiming Lv
- State Key Laboratory for Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts & Telecommunications, Nanjing, 210023, China
| | - Jing Liang
- State Key Laboratory for Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts & Telecommunications, Nanjing, 210023, China
| | - Chenlong Yan
- State Key Laboratory for Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts & Telecommunications, Nanjing, 210023, China
| | - Chunyuan Song
- State Key Laboratory for Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts & Telecommunications, Nanjing, 210023, China; State Key Laboratory of Applied Optics, Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun, 130033, China.
| | - Lianhui Wang
- State Key Laboratory for Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts & Telecommunications, Nanjing, 210023, China.
| |
Collapse
|
4
|
Yu X, Park S, Lee S, Joo SW, Choo J. Microfluidics for disease diagnostics based on surface-enhanced raman scattering detection. NANO CONVERGENCE 2024; 11:17. [PMID: 38687445 PMCID: PMC11061072 DOI: 10.1186/s40580-024-00424-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Accepted: 04/08/2024] [Indexed: 05/02/2024]
Abstract
This review reports diverse microfluidic systems utilizing surface-enhanced Raman scattering (SERS) detection for disease diagnosis. Integrating SERS detection technology, providing high-sensitivity detection, and microfluidic technology for manipulating small liquid samples in microdevices has expanded the analytical capabilities previously confined to larger settings. This study explores the principles and uses of various SERS-based microfluidic devices developed over the last two decades. Specifically, we investigate the operational principles of documented SERS-based microfluidic devices, including continuous-flow channels, microarray-embedded microfluidic channels, droplet microfluidic channels, digital droplet channels, and gradient microfluidic channels. We also examine their applications in biomedical diagnostics. In conclusion, we summarize the areas requiring further development to translate these SERS-based microfluidic technologies into practical applications in clinical diagnostics.
Collapse
Affiliation(s)
- Xiangdong Yu
- Department of Chemistry, Chung-Ang University, Seoul, 06974, South Korea
| | - Sohyun Park
- Department of Chemistry, Chung-Ang University, Seoul, 06974, South Korea
| | - Sungwoon Lee
- Department of Chemistry, Chung-Ang University, Seoul, 06974, South Korea
| | - Sang-Woo Joo
- Department of Chemistry, Soongsil University, Seoul, 06978, South Korea.
| | - Jaebum Choo
- Department of Chemistry, Chung-Ang University, Seoul, 06974, South Korea.
| |
Collapse
|
5
|
Huang J, Zhang D, Zu Y, Zhang L. Procalcitonin Detection Using Immunomagnetic Beads-Mediated Surface-Enhanced Raman Spectroscopy. BIOSENSORS 2024; 14:164. [PMID: 38667157 PMCID: PMC11048292 DOI: 10.3390/bios14040164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 03/19/2024] [Accepted: 03/27/2024] [Indexed: 04/28/2024]
Abstract
The early detection of procalcitonin (PCT) is crucial for diagnosing bacterial infections due to its high sensitivity and specificity. While colloidal gold colorimetric and immune-chemiluminescence methods are commonly employed in clinical detection, the former lacks sensitivity, and the latter faces challenges with a brief luminescence process and an elevated background. Here, we introduce a novel approach for the quantitative analysis of PCT using surface-enhanced Raman spectroscopy (SERS), leveraging the enhanced properties of metal nanoparticles. Simultaneously, we employed a magnetic nanoparticle coating and surface biofunctionalization modification to immobilize PCT-trapping antibodies, creating the required immune substrates. The resulting magnetic nanoparticles and antibody complexes, acting as carriers and recognition units, exhibited superparamagnetism and the specific recognition of biomarkers. Then, this complex efficiently underwent magnetic separation with an applied magnetic field, streamlining the cumbersome steps of traditional ELISA and significantly reducing the detection time. In conclusion, the exploration of immunomagnetic bead detection technology based on surface-enhanced Raman spectroscopy holds crucial practical significance for the sensitive detection of PCT.
Collapse
Affiliation(s)
- Jiayue Huang
- Joint Centre of Translational Medicine, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325035, China;
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou 325000, China
- State Key Laboratory of Targeting Oncology, National Center for International Research of Bio-targeting Theranostics, Guangxi Key Laboratory of Bio-targeting Theranostics, Collaborative In-novation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Medical University, Nanning 530021, China
| | - Dagan Zhang
- Department of Rheumatology and Immunology, Nanjing Drum Tower Hospital, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
| | - Yan Zu
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou 325000, China
| | - Lexiang Zhang
- Joint Centre of Translational Medicine, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325035, China;
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou 325000, China
| |
Collapse
|
6
|
Yu HJ, Jang E, Woo A, Han IW, Jeon HG, Linh VTN, Park SG, Jung HS, Lee MY. Cancer screening through surface-enhanced Raman spectroscopy fingerprinting analysis of urinary metabolites using surface-carbonized silver nanowires on a filter membrane. Anal Chim Acta 2024; 1292:342233. [PMID: 38309850 DOI: 10.1016/j.aca.2024.342233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 11/05/2023] [Accepted: 01/09/2024] [Indexed: 02/05/2024]
Abstract
BACKGROUND Label-free surface-enhanced Raman spectroscopy (SERS)-based metabolic profiling has great potential for early cancer diagnosis, but further advancements in analytical methods and clinical evidence studies are required for clinical applications. To improve the cancer diagnostic accuracy of label-free SERS spectral analysis of complex biological fluids, it is necessary to obtain specifically enhanced SERS signals of cancer-related metabolites present at low concentrations. RESULTS This study presents a novel 3D SERS sensor, comprising a surface-carbonized silver nanowire (AgNW)-stacked filter membrane, alongside an optimized urine/methanol/chloroform extraction technique, which specifically changes the molecular adsorption and orientation of aromatic metabolites onto SERS substrates. By analyzing the pretreated urine samples on the surface-carbonized AgNW 3D SERS sensor, distinct and highly enhanced SERS peaks derived from semi-polar aromatic metabolites were observed for pancreatic cancer and prostate cancer samples compared with normal controls. Urine metabolite analysis using SERS fingerprinting successfully differentiated pancreatic cancer and prostate cancer groups from normal control group: normal control (n = 56), pancreatic cancer (n = 40), and prostate cancer (n = 39). SIGNIFICANCE AND NOVELTY We confirmed the clinical feasibility of performing fingerprint analysis of urinary metabolites based on the surface-carbonized AgNW 3D SERS sensor and methanol/chloroform extraction for noninvasive cancer screening. This technology holds potential for large-scale screening owing to its high accuracy, and cost effective, simple and rapid detection method.
Collapse
Affiliation(s)
- Ho-Jae Yu
- Medical Device Research Center, Samsung Medical Center, Seoul, 06351, Republic of Korea
| | - Eunji Jang
- Nano-Bio Convergence Department, Korea Institute of Materials Science (KIMS), Changwon, Gyeongnam, 51508, Republic of Korea
| | - Ayoung Woo
- Medical Device Research Center, Samsung Medical Center, Seoul, 06351, Republic of Korea
| | - In Woong Han
- Division of Hepato Biliary Pancreatic Surgery, Department of Surgery, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, 06351, Republic of Korea
| | - Hwang Gyun Jeon
- Department of Urology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, 06351, Republic of Korea
| | - Vo Thi Nhat Linh
- Nano-Bio Convergence Department, Korea Institute of Materials Science (KIMS), Changwon, Gyeongnam, 51508, Republic of Korea
| | - Sung-Gyu Park
- Nano-Bio Convergence Department, Korea Institute of Materials Science (KIMS), Changwon, Gyeongnam, 51508, Republic of Korea
| | - Ho Sang Jung
- Nano-Bio Convergence Department, Korea Institute of Materials Science (KIMS), Changwon, Gyeongnam, 51508, Republic of Korea.
| | - Min-Young Lee
- Nano-Bio Convergence Department, Korea Institute of Materials Science (KIMS), Changwon, Gyeongnam, 51508, Republic of Korea.
| |
Collapse
|
7
|
Feng R, Fu S, Liu H, Wang Y, Liu S, Wang K, Chen B, Zhang X, Hu L, Chen Q, Cai T, Han X, Wang C. Single-Atom Site SERS Chip for Rapid, Ultrasensitive, and Reproducible Direct-Monitoring of RNA Binding. Adv Healthc Mater 2024; 13:e2301146. [PMID: 38176000 DOI: 10.1002/adhm.202301146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 12/11/2023] [Indexed: 01/06/2024]
Abstract
Ribonucleic acids (RNA) play active roles within cells or viruses by catalyzing biological reactions, controlling gene expression, and communicating responses to cellular signals. Rapid monitoring RNA variation has become extremely important for appropriate clinical decisions and frontier biological research. However, the most widely used method for RNA detection, nucleic acid amplification, is restricted by a mandatory temperature cycling period of ≈1 h required to reach target detection criteria. Herein, a direct detection approach via single-atom site integrated surface-enhanced Raman scattering (SERS) monitoring nucleic acid pairing reaction, can be completed within 3 min and reaches high sensitivity and extreme reproducibility for COVID-19 and two other influenza viruses' detection. The mechanism is that a single-atom site on SERS chip, enabled by positioning a single-atom oxide coordinated with a specific complementary RNA probe on chip nanostructure hotspots, can effectively bind target RNA analytes to enrich them at designed sites so that the binding reaction can be detected through Raman signal variation. This ultrafast, sensitive, and reproducible single-atom site SERS chip approach paves the route for an alternative technique of immediate RNA detection. Moreover, single-atom site SERS is a novel surface enrichment strategy for SERS active sites for other analytes at ultralow concentrations.
Collapse
Affiliation(s)
- Ran Feng
- Ningbo Institute of Life and Health Industry, University of Chinese Academy of Sciences, Key Laboratory of Diagnosis and Treatment of Digestive System Tumors of Zhejiang Province, Ningbo No. 2 Hospital, Ningbo, 315012, China
- Beijing Key Laboratory of Microstructure and Properties of Solids, Faculty of Materials and Manufacturing, Beijing University of Technology, Beijing, 100124, China
| | - Shaohua Fu
- Key Laboratory of Luminescence and Optical Information, Ministry of Education, Institute of Optoelectronic Technology, Beijing Jiaotong University, Beijing, 100044, China
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, China
| | | | - Ying Wang
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, P. R. China
| | - Simiao Liu
- Thorgene Co., Ltd, Beijing, 100176, China
| | - Kaiwen Wang
- Beijing Key Laboratory of Microstructure and Properties of Solids, Faculty of Materials and Manufacturing, Beijing University of Technology, Beijing, 100124, China
| | - Binbin Chen
- Beijing Key Laboratory of Microstructure and Properties of Solids, Faculty of Materials and Manufacturing, Beijing University of Technology, Beijing, 100124, China
| | - Xiaoxian Zhang
- Key Laboratory of Luminescence and Optical Information, Ministry of Education, Institute of Optoelectronic Technology, Beijing Jiaotong University, Beijing, 100044, China
| | - Liming Hu
- Beijing Key Laboratory of Microstructure and Properties of Solids, Faculty of Materials and Manufacturing, Beijing University of Technology, Beijing, 100124, China
| | - Qian Chen
- Thorgene Co., Ltd, Beijing, 100176, China
| | - Ting Cai
- Ningbo Institute of Life and Health Industry, University of Chinese Academy of Sciences, Key Laboratory of Diagnosis and Treatment of Digestive System Tumors of Zhejiang Province, Ningbo No. 2 Hospital, Ningbo, 315012, China
| | - Xiaodong Han
- Beijing Key Laboratory of Microstructure and Properties of Solids, Faculty of Materials and Manufacturing, Beijing University of Technology, Beijing, 100124, China
| | - Cong Wang
- Ningbo Institute of Life and Health Industry, University of Chinese Academy of Sciences, Key Laboratory of Diagnosis and Treatment of Digestive System Tumors of Zhejiang Province, Ningbo No. 2 Hospital, Ningbo, 315012, China
- Beijing Key Laboratory of Microstructure and Properties of Solids, Faculty of Materials and Manufacturing, Beijing University of Technology, Beijing, 100124, China
- Thorgene Co., Ltd, Beijing, 100176, China
| |
Collapse
|
8
|
Terzapulo X, Kassenova A, Bukasov R. Immunoassays: Analytical and Clinical Performance, Challenges, and Perspectives of SERS Detection in Comparison with Fluorescent Spectroscopic Detection. Int J Mol Sci 2024; 25:2080. [PMID: 38396756 PMCID: PMC10889711 DOI: 10.3390/ijms25042080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 01/23/2024] [Accepted: 01/24/2024] [Indexed: 02/25/2024] Open
Abstract
Immunoassays (IAs) with fluorescence-based detection are already well-established commercialized biosensing methods, such as enzyme-linked immunosorbent assay (ELISA) and lateral flow immunoassay (LFIA). Immunoassays with surface-enhanced Raman spectroscopy (SERS) detection have received significant attention from the research community for at least two decades, but so far they still lack a wide clinical commercial application. This review, unlike any other review that we have seen, performs a three-dimensional performance comparison of SERS IAs vs. fluorescence IAs. First, we compared the limit of detection (LOD) as a key performance parameter for 30 fluorescence and 30 SERS-based immunoassays reported in the literature. We also compared the clinical performances of a smaller number of available reports for SERS vs. fluorescence immunoassays (FIAs). We found that the median and geometric average LODs are about 1.5-2 orders of magnitude lower for SERS-based immunoassays in comparison to fluorescence-based immunoassays. For instance, the median LOD for SERS IA is 4.3 × 10-13 M, whereas for FIA, it is 1.5 × 10-11 M. However, there is no significant difference in average relative standard deviation (RSD)-both are about 5-6%. The analysis of sensitivity, selectivity, and accuracy reported for a limited number of the published clinical studies with SERS IA and FIA demonstrates an advantage of SERS IA over FIA, at least in terms of the median value for all three of those parameters. We discussed common and specific challenges to the performances of both SERS IA and FIA, while proposing some solutions to mitigate those challenges for both techniques. These challenges include non-specific protein binding, non-specific interactions in the immunoassays, sometimes insufficient reproducibility, relatively long assay times, photobleaching, etc. Overall, this review may be useful for a large number of researchers who would like to use immunoassays, but particularly for those who would like to make improvements and move forward in both SERS-based IAs and fluorescence-based IAs.
Collapse
Affiliation(s)
| | | | - Rostislav Bukasov
- Department of Chemistry, Nazarbayev University, Kabanbay Batyr Ave. 53, Astana 010000, Kazakhstan
| |
Collapse
|
9
|
Naghshgar N, Hosseinzadeh S, Derakhshandeh A, Shaali R, Doroodmand MM. Introducing a portable electrochemical biosensor for Mycobacterium avium subsp. paratuberculosis detection using graphene oxide and chitosan. Sci Rep 2024; 14:34. [PMID: 38167964 PMCID: PMC10761741 DOI: 10.1038/s41598-023-50706-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Accepted: 12/23/2023] [Indexed: 01/05/2024] Open
Abstract
In this contribution, a novel, low-cost, high throughput, and ultra-selective electrochemical DNA nanobiosensor was developed for accurate on-site detection of Mycobacterium avium subspecies paratuberculosis (MAP) in real media for practical diagnosis of Johne's disease (JD). The method was designed based on the immobilization of graphene oxide and chitosan biopolymer on the surface of a glassy carbon electrode, modified by electrochemical immobilization of graphene oxide and chitosan biopolymer, followed by activation of biopolymer via 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide hydrochloride and N-hydroxy succinimide (EDC/NHS) coupling system. Afterward, the commercial probe DNA (ssDNA) was stabilized on the activated electrode surface to prepare an ultra-selective ssDNA-stabilized nanobiosensor for MAP sensing called "ssDNA-stabilized GO-CH-EDC/NHS-modified electrode". Several characterization methods distinguished the bioelectrode. The DNA hybridization between the nanobiosensor and target DNA was confirmed by cyclic voltammetry and differential pulse voltammetry. "At optimal experimental conditions, the nanobiosensor showed a linear range of 1.0 × 10-15-1.0 × 10-12 mol L-1, a detection limit as low as 1.53 × 10-13 mol L-1, and a repeatability with a relative standard deviation (%RSD) of 4.7%. The reproducibility was also appropriate, with a %RSD of about 10%. It was used to diagnose MAP in real samples with highly accurate results. Therefore, the developed nanobiosensor can be used for clinical diagnosis of MAP.
Collapse
Affiliation(s)
- Nahid Naghshgar
- Department of Pathobiology, School of Veterinary Medicine, Shiraz University, Shiraz, Iran
| | - Saied Hosseinzadeh
- Department of Food Hygiene and Public Health, School of Veterinary Medicine, Shiraz University, Shiraz, Iran.
| | - Abdollah Derakhshandeh
- Department of Pathobiology, School of Veterinary Medicine, Shiraz University, Shiraz, Iran
| | - Ruhollah Shaali
- Department of Chemistry, College of Science, Shiraz University, Shiraz, 71454, Iran
| | | |
Collapse
|
10
|
Mu R, Li S, Wang T, Lu Z, Qin Q, Cheng SB, Yu D, Zhan J, Chen J. Electric Field Promoted Click Surface-Enhanced Raman Spectroscopy for Rapid and Specific Detection of DNA 2-Deoxyribose 5'-Aldehyde Oxidation Products in Plasma. Anal Chem 2023; 95:14324-14330. [PMID: 37713587 DOI: 10.1021/acs.analchem.3c02620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/17/2023]
Abstract
Rapid identification of DNA oxidative damage sites is of great significance for disease diagnosis. In this work, electric field-regulated click reaction surface-enhanced Raman spectroscopy (e-Click-SERS) was developed aiming at the rapid and specific analysis of furfural, the biomarker of oxidative damage to the 5-carbon site of DNA deoxyribose. In e-Click-SERS, cysteamine-modified porous Ag filaments (cys@p-Ag) were prepared and used as electrodes, amine-aldehyde click reaction sites, and SERS substrates. Cysteamine was controlled as an "end-on" conformation by setting the voltage of cys@p-Ag at -0.1 V, which ensures its activity in participating in the amine-aldehyde click reaction during the detection of furfural. Benefiting from this, the proposed e-Click-SERS method was found to be sensitive, rapid-responding, and interference-resistant in analyzing furfural from plasma. The method detection limits of furfural were 5 ng mL-1 in plasma, and the whole "extraction and detection" procedure was completed within 30 min with satisfactory recovery. Interference from 13 kinds of common plasma metabolites was investigated and found to not interfere with the analysis, according to the exclusive adaptation of the amine-aldehyde click reaction. Notably, the e-Click-SERS technique allows in situ analysis of biological samples, which offers great potential to be a point-of-care testing tool for detecting DNA oxidative damage.
Collapse
Affiliation(s)
- Run Mu
- School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China
| | - Shu Li
- School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China
| | - Tong Wang
- School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China
| | - Zhengwei Lu
- School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China
| | - Qian Qin
- College of Medical Laboratory, Dalian Medical University, Dalian, Liaoning 116044, China
| | - Shi-Bo Cheng
- School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China
| | - Dexin Yu
- Department of Radiology, Qilu Hospital of Shandong University, Jinan 250012, China
| | - Jinhua Zhan
- School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China
| | - Jing Chen
- School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China
| |
Collapse
|
11
|
Liu L, Chang Y, Lou J, Zhang S, Yi X. Overview on the Development of Alkaline-Phosphatase-Linked Optical Immunoassays. Molecules 2023; 28:6565. [PMID: 37764341 PMCID: PMC10536125 DOI: 10.3390/molecules28186565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 09/05/2023] [Accepted: 09/07/2023] [Indexed: 09/29/2023] Open
Abstract
The drive to achieve ultrasensitive target detection with exceptional efficiency and accuracy requires the advancement of immunoassays. Optical immunoassays have demonstrated significant potential in clinical diagnosis, food safety, environmental protection, and other fields. Through the innovative and feasible combination of enzyme catalysis and optical immunoassays, notable progress has been made in enhancing analytical performances. Among the kinds of reporter enzymes, alkaline phosphatase (ALP) stands out due to its high catalytic activity, elevated turnover number, and broad substrate specificity, rendering it an excellent candidate for the development of various immunoassays. This review provides a systematic evaluation of the advancements in optical immunoassays by employing ALP as the signal label, encompassing fluorescence, colorimetry, chemiluminescence, and surface-enhanced Raman scattering. Particular emphasis is placed on the fundamental signal amplification strategies employed in ALP-linked immunoassays. Furthermore, this work briefly discusses the proposed solutions and challenges that need to be addressed to further enhance the performances of ALP-linked immunoassays.
Collapse
Affiliation(s)
- Lin Liu
- College of Chemistry and Chemical Engineering, Anyang Normal University, Anyang 455000, China
| | - Yong Chang
- College of Chemistry and Chemical Engineering, Anyang Normal University, Anyang 455000, China
| | - Jiaxin Lou
- College of Chemistry and Chemical Engineering, Anyang Normal University, Anyang 455000, China
| | - Shuo Zhang
- College of Chemistry and Chemical Engineering, Anyang Normal University, Anyang 455000, China
| | - Xinyao Yi
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, China
| |
Collapse
|
12
|
Jones RR, Miksch C, Kwon H, Pothoven C, Rusimova KR, Kamp M, Gong K, Zhang L, Batten T, Smith B, Silhanek AV, Fischer P, Wolverson D, Valev VK. Dense Arrays of Nanohelices: Raman Scattering from Achiral Molecules Reveals the Near-Field Enhancements at Chiral Metasurfaces. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2209282. [PMID: 36631958 DOI: 10.1002/adma.202209282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Revised: 12/11/2022] [Indexed: 06/17/2023]
Abstract
Against the background of the current healthcare and climate emergencies, surface enhanced Raman scattering (SERS) is becoming a highly topical technique for identifying and fingerprinting molecules, e.g., within viruses, bacteria, drugs, and atmospheric aerosols. Crucial for SERS is the need for substrates with strong and reproducible enhancements of the Raman signal over large areas and with a low fabrication cost. Here, dense arrays of plasmonic nanohelices (≈100 nm in length), which are of interest for many advanced nanophotonics applications, are investigated, and they are shown to present excellent SERS properties. As an illustration, two new ways to probe near-field enhancement generated with circular polarization at chiral metasurfaces are presented, first using the Raman spectra of achiral molecules (crystal violet) and second using a single, element-specific, achiral molecular vibrational mode (i.e., a single Raman peak). The nanohelices can be fabricated over large areas at a low cost and they provide strong, robust and uniform Raman enhancement. It is anticipated that these advanced materials will find broad applications in surface enhanced Raman spectroscopies and material science.
Collapse
Affiliation(s)
- Robin R Jones
- Centre for Photonics and Photonic Materials and Centre for Nanoscience and Nanotechnology, Department of Physics, University of Bath, Claverton Down, BA2 7AY, UK
| | - Cornelia Miksch
- Max Planck Institute for Intelligent Systems, Heisenbergstraße 3, 70569, Stuttgart, Germany
| | - Hyunah Kwon
- Max Planck Institute for Intelligent Systems, Heisenbergstraße 3, 70569, Stuttgart, Germany
| | - Coosje Pothoven
- VSPARTICLE, Molengraaffsingel 10, JD Delft, 2629, The Netherlands
| | - Kristina R Rusimova
- Centre for Photonics and Photonic Materials and Centre for Nanoscience and Nanotechnology, Department of Physics, University of Bath, Claverton Down, BA2 7AY, UK
| | - Maarten Kamp
- VSPARTICLE, Molengraaffsingel 10, JD Delft, 2629, The Netherlands
| | - Kedong Gong
- Department of Environmental Science and Engineering, Fudan University, Shanghai, 200433, China
| | - Liwu Zhang
- Department of Environmental Science and Engineering, Fudan University, Shanghai, 200433, China
| | - Tim Batten
- Renishaw plc, New Mills, Kingswood, Wotton-under-Edge, GL12 8JR, UK
| | - Brian Smith
- Renishaw plc, New Mills, Kingswood, Wotton-under-Edge, GL12 8JR, UK
| | - Alejandro V Silhanek
- Experimental Physics of Nanostructured Materials, Q-MAT, CESAM, University of Liége, Sart Tilman, B-4000, Belgium
| | - Peer Fischer
- Max Planck Institute for Intelligent Systems, Heisenbergstraße 3, 70569, Stuttgart, Germany
- Institute of Physical Chemistry, University of Stuttgart, Pfaffenwaldring 55, 70569, Stuttgart, Germany
| | - Daniel Wolverson
- Centre for Photonics and Photonic Materials and Centre for Nanoscience and Nanotechnology, Department of Physics, University of Bath, Claverton Down, BA2 7AY, UK
| | - Ventsislav K Valev
- Centre for Photonics and Photonic Materials and Centre for Nanoscience and Nanotechnology, Department of Physics, University of Bath, Claverton Down, BA2 7AY, UK
- Centre for Therapeutic Innovation, University of Bath, Bath, BA2 7AY, UK
| |
Collapse
|
13
|
John P, Vasa NJ, Zam A. Optical Biosensors for the Diagnosis of COVID-19 and Other Viruses-A Review. Diagnostics (Basel) 2023; 13:2418. [PMID: 37510162 PMCID: PMC10378272 DOI: 10.3390/diagnostics13142418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 07/12/2023] [Accepted: 07/18/2023] [Indexed: 07/30/2023] Open
Abstract
The sudden outbreak of the COVID-19 pandemic led to a huge concern globally because of the astounding increase in mortality rates worldwide. The medical imaging computed tomography technique, whole-genome sequencing, and electron microscopy are the methods generally used for the screening and identification of the SARS-CoV-2 virus. The main aim of this review is to emphasize the capabilities of various optical techniques to facilitate not only the timely and effective diagnosis of the virus but also to apply its potential toward therapy in the field of virology. This review paper categorizes the potential optical biosensors into the three main categories, spectroscopic-, nanomaterial-, and interferometry-based approaches, used for detecting various types of viruses, including SARS-CoV-2. Various classifications of spectroscopic techniques such as Raman spectroscopy, near-infrared spectroscopy, and fluorescence spectroscopy are discussed in the first part. The second aspect highlights advances related to nanomaterial-based optical biosensors, while the third part describes various optical interferometric biosensors used for the detection of viruses. The tremendous progress made by lab-on-a-chip technology in conjunction with smartphones for improving the point-of-care and portability features of the optical biosensors is also discussed. Finally, the review discusses the emergence of artificial intelligence and its applications in the field of bio-photonics and medical imaging for the diagnosis of COVID-19. The review concludes by providing insights into the future perspectives of optical techniques in the effective diagnosis of viruses.
Collapse
Affiliation(s)
- Pauline John
- Division of Engineering, New York University Abu Dhabi (NYUAD), Abu Dhabi 129188, United Arab Emirates
| | - Nilesh J Vasa
- Department of Engineering Design, Indian Institute of Technology Madras, Chennai 600036, India
| | - Azhar Zam
- Division of Engineering, New York University Abu Dhabi (NYUAD), Abu Dhabi 129188, United Arab Emirates
- Tandon School of Engineering, New York University, Brooklyn, NY 11201, USA
| |
Collapse
|
14
|
Dong T, Wang M, Liu J, Ma P, Pang S, Liu W, Liu A. Diagnostics and analysis of SARS-CoV-2: current status, recent advances, challenges and perspectives. Chem Sci 2023; 14:6149-6206. [PMID: 37325147 PMCID: PMC10266450 DOI: 10.1039/d2sc06665c] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Accepted: 05/03/2023] [Indexed: 06/17/2023] Open
Abstract
The disastrous spread of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has induced severe public healthcare issues and weakened the global economy significantly. Although SARS-CoV-2 infection is not as fatal as the initial outbreak, many infected victims suffer from long COVID. Therefore, rapid and large-scale testing is critical in managing patients and alleviating its transmission. Herein, we review the recent advances in techniques to detect SARS-CoV-2. The sensing principles are detailed together with their application domains and analytical performances. In addition, the advantages and limits of each method are discussed and analyzed. Besides molecular diagnostics and antigen and antibody tests, we also review neutralizing antibodies and emerging SARS-CoV-2 variants. Further, the characteristics of the mutational locations in the different variants with epidemiological features are summarized. Finally, the challenges and possible strategies are prospected to develop new assays to meet different diagnostic needs. Thus, this comprehensive and systematic review of SARS-CoV-2 detection technologies may provide insightful guidance and direction for developing tools for the diagnosis and analysis of SARS-CoV-2 to support public healthcare and effective long-term pandemic management and control.
Collapse
Affiliation(s)
- Tao Dong
- Institute for Chemical Biology & Biosensing, College of Life Sciences, Qingdao University 308 Ningxia Road Qingdao 266071 China
- School of Pharmacy, Medical College, Qingdao University 308 Ningxia Road Qingdao 266071 China
| | - Mingyang Wang
- Institute for Chemical Biology & Biosensing, College of Life Sciences, Qingdao University 308 Ningxia Road Qingdao 266071 China
| | - Junchong Liu
- Institute for Chemical Biology & Biosensing, College of Life Sciences, Qingdao University 308 Ningxia Road Qingdao 266071 China
| | - Pengxin Ma
- Institute for Chemical Biology & Biosensing, College of Life Sciences, Qingdao University 308 Ningxia Road Qingdao 266071 China
| | - Shuang Pang
- Institute for Chemical Biology & Biosensing, College of Life Sciences, Qingdao University 308 Ningxia Road Qingdao 266071 China
| | - Wanjian Liu
- Qingdao Hightop Biotech Co., Ltd 369 Hedong Road, Hi-tech Industrial Development Zone Qingdao 266112 China
| | - Aihua Liu
- Institute for Chemical Biology & Biosensing, College of Life Sciences, Qingdao University 308 Ningxia Road Qingdao 266071 China
| |
Collapse
|
15
|
Pang Y, Jin M. Fabrication of Silver Nanobowl Arrays on Patterned Sapphire Substrate for Surface-Enhanced Raman Scattering. MICROMACHINES 2023; 14:1197. [PMID: 37374782 DOI: 10.3390/mi14061197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Revised: 05/31/2023] [Accepted: 06/01/2023] [Indexed: 06/29/2023]
Abstract
The current article discusses surface-enhanced Raman spectroscopy (SERS) as a powerful technique for detecting molecules or ions by analyzing their molecular vibration signals for fingerprint peak recognition. We utilized a patterned sapphire substrate (PSS) featuring periodic micron cone arrays. Subsequently, we prepared a three-dimensional (3D) PSS-loaded regular Ag nanobowls (AgNBs) array using self-assembly and surface galvanic displacement reactions based on polystyrene (PS) nanospheres. The SERS performance and structure of the nanobowl arrays were optimized by manipulating the reaction time. We discovered that the PSS substrates featuring periodic patterns exhibited superior light-trapping effects compared to the planar substrates. The SERS performance of the prepared AgNBs-PSS substrates was tested under the optimized experimental parameters with 4-mercaptobenzoic acid (4-MBA) as the probe molecule, and the enhancement factor (EF) was calculated to be 8.96 × 104. Finite-difference time-domain (FDTD) simulations were conducted to explain that the AgNBs arrays' hot spots were distributed at the bowl wall locations. Overall, the current research offers a potential route for developing high-performance, low-cost 3D SERS substrates.
Collapse
Affiliation(s)
- Yanzhao Pang
- South China Academy of Advanced Optoelectronics, South China Normal University, Guangzhou 510006, China
- International Academy of Optoelectronics at Zhaoqing, South China Normal University, Zhaoqing 526060, China
| | - Mingliang Jin
- South China Academy of Advanced Optoelectronics, South China Normal University, Guangzhou 510006, China
- International Academy of Optoelectronics at Zhaoqing, South China Normal University, Zhaoqing 526060, China
| |
Collapse
|
16
|
Wang X, Li W, Dai S, Dou M, Jiao S, Yang J, Li W, Su Y, Li Q, Li J. High-throughput, highly sensitive and rapid SERS detection of Escherichia coli O157:H7 using aptamer-modified Au@macroporous silica magnetic photonic microsphere array. Food Chem 2023; 424:136433. [PMID: 37244192 DOI: 10.1016/j.foodchem.2023.136433] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Revised: 05/16/2023] [Accepted: 05/18/2023] [Indexed: 05/29/2023]
Abstract
The aim of this research was to develop a simple, rapid, sensitive, high-throughput detection method for foodborne Escherichia coli (E. coli) O157:H7 based on the aptamer-modified gold nanoparticles@macroporous magnetic silica photonic microsphere (Au@MMSPM). Such Au@MMSPM array system for E. coli O157:H7 not only integrated sample pretreatment with rapid detection, but also showed highly enhanced effect to develop a highly sensitive SERS assay. The established SERS assay platform gave a wide linear detection range (10-106 CFU/mL) and low limit of detection (2.20 CFU/mL) for E. coli O157:H7. The whole analysis time including sample pretreatment and detection was 110 min. This SERS-based assay platform provided a new high-throughput, highly sensitive and fast detection technology for monitoring E. coli O157:H7 in real samples from the fields of food industry, medicine and environment.
Collapse
Affiliation(s)
- Xiu Wang
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210023, China
| | - Wei Li
- Medical Imaging Center, the First Affiliated Hospital, Jinan University, Guangdong 510630, China
| | - Shijie Dai
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210023, China
| | - Menghua Dou
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210023, China
| | - Saisai Jiao
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210023, China
| | - Jing Yang
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210023, China
| | - Weiwei Li
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210023, China
| | - Ya Su
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210023, China
| | - Qianjin Li
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210023, China.
| | - Jianlin Li
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210023, China.
| |
Collapse
|
17
|
Liu X, Li W, Sun J, Dai S, Wang X, Yang J, Li Q, Li Y, Ge H, Zhao J, Li J. A point-of-care detection platform for Escherichia coli O157:H7 by integration of smartphone and the structural colour of photonic microsphere. Food Chem 2023; 423:136339. [PMID: 37192558 DOI: 10.1016/j.foodchem.2023.136339] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Revised: 05/05/2023] [Accepted: 05/07/2023] [Indexed: 05/18/2023]
Abstract
A smartphone-based sensitive, rapid, label-free and high-throughput detection platform for Escherichia coli O157:H7 was established. The specific recognition capability of this platform was dependent of the aptamer modified on the silica photonic microsphere (SPM), whose structural colour was utilized for the quantification of the target bacterium. Gold nanoparticles and silver staining technique were employed to improve the sensitivity of the detection platform. Such smartphone-based detection platform gave a wide linear detection range of 102 ∼ 108 CFU/mL with a low limit of detection (LOD) of 68 CFU/mL and high specificity for Escherichia coli O157:H7. Moreover, the recovery rates of the detection method were measured in the range of 99 ∼ 108% in the milk, pork and purified water samples. Furthermore, the developed detection platform did not require complex sample pretreatment and could be easily manipulated, displaying great application potential in the fields of food safety, environmental monitoring and disease diagnosis.
Collapse
Affiliation(s)
- Xiaomeng Liu
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210023, China
| | - Wei Li
- Medical Imaging Center, the First Affiliated Hospital, Jinan University, Guangdong 510630, China
| | - Jialong Sun
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210023, China
| | - Shijie Dai
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210023, China
| | - Xiu Wang
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210023, China
| | - Jing Yang
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210023, China
| | - Qianjin Li
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210023, China.
| | - Yao Li
- Shannxi Xifeng Jiu Co., Ltd., Fengxiang, Shannxi 721406, China
| | - Hongyu Ge
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210023, China
| | - Jianning Zhao
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210023, China
| | - Jianlin Li
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210023, China.
| |
Collapse
|
18
|
de Olazarra AS, Wang SX. Advances in point-of-care genetic testing for personalized medicine applications. BIOMICROFLUIDICS 2023; 17:031501. [PMID: 37159750 PMCID: PMC10163839 DOI: 10.1063/5.0143311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2023] [Accepted: 04/12/2023] [Indexed: 05/11/2023]
Abstract
Breakthroughs within the fields of genomics and bioinformatics have enabled the identification of numerous genetic biomarkers that reflect an individual's disease susceptibility, disease progression, and therapy responsiveness. The personalized medicine paradigm capitalizes on these breakthroughs by utilizing an individual's genetic profile to guide treatment selection, dosing, and preventative care. However, integration of personalized medicine into routine clinical practice has been limited-in part-by a dearth of widely deployable, timely, and cost-effective genetic analysis tools. Fortunately, the last several decades have been characterized by tremendous progress with respect to the development of molecular point-of-care tests (POCTs). Advances in microfluidic technologies, accompanied by improvements and innovations in amplification methods, have opened new doors to health monitoring at the point-of-care. While many of these technologies were developed with rapid infectious disease diagnostics in mind, they are well-suited for deployment as genetic testing platforms for personalized medicine applications. In the coming years, we expect that these innovations in molecular POCT technology will play a critical role in enabling widespread adoption of personalized medicine methods. In this work, we review the current and emerging generations of point-of-care molecular testing platforms and assess their applicability toward accelerating the personalized medicine paradigm.
Collapse
Affiliation(s)
- A. S. de Olazarra
- Department of Electrical Engineering, Stanford University, Stanford, California 94305, USA
| | - S. X. Wang
- Author to whom correspondence should be addressed:
| |
Collapse
|
19
|
Eskandari V, Sahbafar H, Karooby E, Heris MH, Mehmandoust S, Razmjoue D, Hadi A. Surface-Enhanced Raman scattering (SERS) filter paper substrates decorated with silver nanoparticles for the detection of molecular vibrations of Acyclovir drug. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2023; 298:122762. [PMID: 37130482 DOI: 10.1016/j.saa.2023.122762] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 04/07/2023] [Accepted: 04/17/2023] [Indexed: 05/04/2023]
Abstract
Acyclovir (ACV) drug, a common antiviral agent, is frequently used as the primary clinical treatment method for treating hepatitis B, herpes simplex, and varicella zoster viruses due to its potent therapeutic effect. In patients with compromised immune systems, this medication can stop cytomegalovirus infections, and high doses of this drug are required; however, such prescription leads to kidney toxicity. Therefore, timely and accurate detection of ACV is crucial in many areas. Surface-Enhanced Raman Scattering (SERS) is a reliable, rapid, and precise approach for the identification of trace biomaterials and chemicals. Filter paper substrates decorated with silver nanoparticles (AgNPs) were applied as SERS biosensors to detect ACV and control its adverse effects. Initially, a chemical reduction procedure was utilized to produce AgNPs. Afterward, UV-Vis, FE-SEM, XRD, TEM, DLS, and AFM were employed to examine the properties of prepared AgNPs. In order to prepare SERS-active filter paper substrates (SERS-FPS) to detect Molecular vibrations of ACV, AgNPs prepared by immersion method were coated on filter paper substrates. Moreover, the UV-Vis DRS analysis was carried out to assess the stability of filter paper substrates and SERS-FPS. The AgNPs reacted with ACV after being coated on SERS-active plasmonic substrates and could sensitively detect ACV in small concentrations. It was discovered that the limit of detection of SERS plasmonic substrates was 10-12 M. Moreover, the mean RSD for ten repeated tests was calculated as 4.19%. The enhancement factor for detecting ACV using the developed biosensors was calculated to be 3.024 × 105 and 3.058 × 105 experimentally and via simulation, respectively. According to the Raman results, SERS-FPS for the detection of ACV, fabricated by the present methods, showed promising results for SERS-based investigations. Furthermore, these substrates showed significant disposablity, reproducibility, and chemical stability. Therefore, the fabricated substrates are capable to be employed as potential SERS biosensors to detect trace substances.
Collapse
Affiliation(s)
- Vahid Eskandari
- Cellular and Molecular Research Center, Yasuj University of Medical Sciences, Yasuj, Iran
| | - Hossein Sahbafar
- Cellular and Molecular Research Center, Yasuj University of Medical Sciences, Yasuj, Iran; School of Mechanical Engineering, College of Engineering, University of Tehran, Tehran, Iran
| | - Elaheh Karooby
- Department of Electrical and Computer Engineering, Montana State University, P.O. Box 173780, Bozeman, MT 59717-3780, USA
| | - Masoud Hakimi Heris
- Department of Electrical and Computer Engineering, Montana State University, P.O. Box 173780, Bozeman, MT 59717-3780, USA
| | - Saeideh Mehmandoust
- Cellular and Molecular Research Center, Yasuj University of Medical Sciences, Yasuj, Iran
| | - Damoun Razmjoue
- Cellular and Molecular Research Center, Yasuj University of Medical Sciences, Yasuj, Iran
| | - Amin Hadi
- Cellular and Molecular Research Center, Yasuj University of Medical Sciences, Yasuj, Iran
| |
Collapse
|
20
|
Pang Y, Jin M. Self-Assembly of Silver Nanowire Films for Surface-Enhanced Raman Scattering Applications. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:1358. [PMID: 37110942 PMCID: PMC10146873 DOI: 10.3390/nano13081358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 03/31/2023] [Accepted: 04/11/2023] [Indexed: 06/19/2023]
Abstract
The development of SERS detection technology is challenged by the difficulty in obtaining SERS active substrates that are easily prepared, highly sensitive, and reliable. Many high-quality hotspot structures exist in aligned Ag nanowires (NWs) arrays. This study used a simple self-assembly method with a liquid surface to prepare a highly aligned AgNW array film to form a sensitive and reliable SERS substrate. To estimate the signal reproducibility of the AgNW substrate, the RSD of SERS intensity of 1.0 × 10-10 M Rhodamine 6G (R6G) in an aqueous solution at 1364 cm-1 was calculated to be as low as 4.7%. The detection ability of the AgNW substrate was close to the single molecule level, and even the R6G signal of 1.0 × 10-16 M R6G could be detected with a resonance enhancement factor (EF) as high as 6.12 × 1011 under 532 nm laser excitation. The EF without the resonance effect was 2.35 × 106 using 633 nm laser excitation. FDTD simulations have confirmed that the uniform distribution of hot spots inside the aligned AgNW substrate amplifies the SERS signal.
Collapse
Affiliation(s)
- Yanzhao Pang
- South China Academy of Advanced Optoelectronics, South China Normal University, Guangzhou 510006, China
- International Academy of Optoelectronics at Zhaoqing, South China Normal University, Zhaoqing 526060, China
| | - Mingliang Jin
- South China Academy of Advanced Optoelectronics, South China Normal University, Guangzhou 510006, China
- International Academy of Optoelectronics at Zhaoqing, South China Normal University, Zhaoqing 526060, China
| |
Collapse
|
21
|
Li Z, Hu J, Zhan Y, Shao Z, Gao M, Yao Q, Li Z, Sun S, Wang L. Coupling Bifunctional Nanozyme-Mediated Catalytic Signal Amplification and Label-Free SERS with Immunoassays for Ultrasensitive Detection of Pathogens in Milk Samples. Anal Chem 2023; 95:6417-6424. [PMID: 37031399 DOI: 10.1021/acs.analchem.3c00251] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/10/2023]
Abstract
Rapid and sensitive detection of foodborne bacteria is of great significance in guaranteeing food safety and preventing foodborne diseases. A bifunctional Au@Pt core-shell nanozyme with excellent catalytic properties and high surface-enhanced Raman scattering (SERS) activity was developed for the highly sensitive detection of Salmonella typhimurium based on a label-free SERS strategy. The ultrathin Pt shell (about 1 nm) can catalyze Raman-inactive molecules into Raman-active reporters, greatly amplifying the amount of signal molecules. Moreover, the Au core serves as an active SERS substrate to enhance the signal of reporter molecules, further significantly improving the detection sensitivity. Benefiting from the excellent properties, such a bifunctional Au@Pt nanozyme was integrated with a magnetic immunoassay to construct a label-free SERS platform for the highly sensitive detection of S. typhi with a low detection limit of 10 CFU mL-1. Also, the Au@Pt-based SERS platform exhibited excellent selectivity and was successfully utilized for the detection of S. typhi in milk samples by a portable Raman spectrometer. Our demonstration of the bifunctional nanozyme-based SERS strategy provides an efficient pathway to improve the sensitivity of label-free SERS detection of pathogens and holds great promise in food safety, environmental analysis, and other biosensing fields.
Collapse
Affiliation(s)
- Zhihao Li
- Wuhan Academy of Agricultural Sciences, Wuhan 430072, China
| | - Jiao Hu
- Hubei Key Laboratory of Environmental and Health Effects of Persistent Toxic Substances, School of Environment and Health, Jianghan University, Wuhan 430056, China
| | - Yifang Zhan
- Wuhan Academy of Agricultural Sciences, Wuhan 430072, China
| | - Zhiyong Shao
- Wuhan Academy of Agricultural Sciences, Wuhan 430072, China
| | - Mengyue Gao
- Wuhan Academy of Agricultural Sciences, Wuhan 430072, China
| | - Qi Yao
- Wuhan Academy of Agricultural Sciences, Wuhan 430072, China
| | - Zheng Li
- Wuhan Academy of Agricultural Sciences, Wuhan 430072, China
| | - Shaowen Sun
- Wuhan Academy of Agricultural Sciences, Wuhan 430072, China
| | - Lihua Wang
- Wuhan Academy of Agricultural Sciences, Wuhan 430072, China
| |
Collapse
|
22
|
Tian XD, Zhang Y. Tunable orientation of two-dimensional assembled Au octahedron superlattices in polymer films as flexible SERS substrates. NANOSCALE 2023; 15:4317-4324. [PMID: 36762517 DOI: 10.1039/d2nr07165g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Anisotropic nanoparticles have been widely used as building blocks for preparing surface-enhanced Raman spectroscopy (SERS) substrates. However, tailoring the SERS activity at the self-assembly level through the anisotropic nanoparticle orientation is a big challenge, mainly due to the lack of simple assembly methods. In the present work, we report an air-water interface mediated co-assembly (AWIMCoA) strategy to prepare flexible 2D superlattices of Au octahedra with tunable orientations. We have demonstrated that Au octahedra can self-assemble into face-up, edge-up and vertex-up orientations on changing the surface wettability of Au octahedra, which determines the interparticle anisotropic interactions and the interaction between Au octahedra and the poly(styrene-ethylene-butylene-styrene) (SEBS) nanomembrane. The effect of assembly orientation on the SERS performance of 2D superlattices has been studied through correlated SEM characterization and SERS mapping. Among all the orientational modes, flexible 2D superlattices with the vertex-up orientation show the highest enhancement performance and uniformity, which is further demonstrated by theoretical simulation. Partially embedded 2D superlattices in the SEBS nanomembrane are robust to remove the surface ligands without breaking the whole nanostructure. This post-treatment process boosts the SERS performance of the 2D superlattice with the edge-up orientation by forming fused nanostructures among neighboring Au octahedra. We expect that the co-assembly method will be widely applied in the preparation of reusable and high-performance SERS substrates for broad application.
Collapse
Affiliation(s)
- Xiang-Dong Tian
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China.
- Xiamen Key Laboratory of Rare Earth Photoelectric Functional Materials, Xiamen Institute of Rare Earth Materials, Haixi Institute, Chinese Academy of Sciences, Xiamen 361021, China
| | - Yun Zhang
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China.
- Xiamen Key Laboratory of Rare Earth Photoelectric Functional Materials, Xiamen Institute of Rare Earth Materials, Haixi Institute, Chinese Academy of Sciences, Xiamen 361021, China
| |
Collapse
|
23
|
Amara U, Hussain I, Ahmad M, Mahmood K, Zhang K. 2D MXene-Based Biosensing: A Review. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2205249. [PMID: 36412074 DOI: 10.1002/smll.202205249] [Citation(s) in RCA: 23] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 10/24/2022] [Indexed: 06/16/2023]
Abstract
MXene emerged as decent 2D material and has been exploited for numerous applications in the last decade. The remunerations of the ideal metallic conductivity, optical absorbance, mechanical stability, higher heterogeneous electron transfer rate, and good redox capability have made MXene a potential candidate for biosensing applications. The hydrophilic nature, biocompatibility, antifouling, and anti-toxicity properties have opened avenues for MXene to perform in vitro and in vivo analysis. In this review, the concept, operating principle, detailed mechanism, and characteristic properties are comprehensively assessed and compiled along with breakthroughs in MXene fabrication and conjugation strategies for the development of unique electrochemical and optical biosensors. Further, the current challenges are summarized and suggested future aspects. This review article is believed to shed some light on the development of MXene for biosensing and will open new opportunities for the future advanced translational application of MXene bioassays.
Collapse
Affiliation(s)
- Umay Amara
- Institute of Chemical Sciences, Bahauddin Zakariya University, Multan, 60800, Pakistan
| | - Iftikhar Hussain
- Department of Mechanical Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong
| | - Muhmmad Ahmad
- Department of Mechanical Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong
| | - Khalid Mahmood
- Institute of Chemical Sciences, Bahauddin Zakariya University, Multan, 60800, Pakistan
| | - Kaili Zhang
- Department of Mechanical Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong
| |
Collapse
|
24
|
Yadav S, Senapati S, Kumar S, Gahlaut SK, Singh JP. GLAD Based Advanced Nanostructures for Diversified Biosensing Applications: Recent Progress. BIOSENSORS 2022; 12:1115. [PMID: 36551082 PMCID: PMC9775079 DOI: 10.3390/bios12121115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 11/18/2022] [Accepted: 11/23/2022] [Indexed: 06/17/2023]
Abstract
Glancing angle deposition (GLAD) is a technique for the fabrication of sculpted micro- and nanostructures under the conditions of oblique vapor flux incident and limited adatom diffusion. GLAD-based nanostructures are emerging platforms with broad sensing applications due to their high sensitivity, enhanced optical and catalytic properties, periodicity, and controlled morphology. GLAD-fabricated nanochips and substrates for chemical and biosensing applications are replacing conventionally used nanomaterials due to their broad scope, ease of fabrication, controlled growth parameters, and hence, sensing abilities. This review focuses on recent advances in the diverse nanostructures fabricated via GLAD and their applications in the biomedical field. The effects of morphology and deposition conditions on GLAD structures, their biosensing capability, and the use of these nanostructures for various biosensing applications such as surface plasmon resonance (SPR), fluorescence, surface-enhanced Raman spectroscopy (SERS), and colorimetric- and wettability-based bio-detection will be discussed in detail. GLAD has also found diverse applications in the case of molecular imaging techniques such as fluorescence, super-resolution, and photoacoustic imaging. In addition, some in vivo applications, such as drug delivery, have been discussed. Furthermore, we will also provide an overview of the status of GLAD technology as well as future challenges associated with GLAD-based nanostructures in the mentioned areas.
Collapse
Affiliation(s)
- Sarjana Yadav
- Department of Physics, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
| | - Sneha Senapati
- School of Interdisciplinary Research, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
| | - Samir Kumar
- Department of Electronics and Information Engineering, Korea University, Sejong 30019, Republic of Korea
| | - Shashank K. Gahlaut
- Department of Physics, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
| | - Jitendra P. Singh
- Department of Physics, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
| |
Collapse
|
25
|
Basak M, Mitra S, Gogoi M, Sinha S, Nemade HB, Bandyopadhyay D. Point-of-Care Biosensing of Urinary Tract Infections Employing Optoplasmonic Surfaces Embedded with Metal Nanotwins. ACS APPLIED BIO MATERIALS 2022; 5:5321-5332. [PMID: 36222059 DOI: 10.1021/acsabm.2c00720] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
We report the synthesis of gold nanotwins (Au NTs) on a solid and transparent glass substrate which in turn has been employed for the selective optoplasmonic detection of Escherichia coli (EC) bacteria in human urine for the point-of-care diagnosis of urinary tract infections (UTIs). As compared to the single nanoparticle systems (Au NPs), the Au NTs show an enriched localized surface plasmon resonance (LSPR) due to the enhancement of the electric field under electromagnetic irradiation, e.g., photon, which helps in improving the limits of detection. For this purpose, initially a simple glass surface has been coated with Au NPs, with the help of the linker 3-aminopropyl-triethoxysilane - APTES. The surface has been linked further with another Au NP with the help of the 1,10-alkane-dithiol linker with two thiol ends, which eventually leads to the development of the optoplasmonic surface with Au NTs and an enhanced LSPR response. Subsequently, the EC specific aptamer has been chemically immobilized on the surface of Au NTs with the blocking of free sites via bovine serum albumin (BSA). Remarkably, Raman spectroscopy unfolds a 7-fold increase in the peak intensities with the Au NTs on the glass surface as compared to the surface coated with isolated Au NPs. The enhancement in the LSPR response of glass substrates coated with Au NTs and the EC specific aptamer has been further utilized for the selective and sensitive detection of UTIs. The results have been verified with the help of UV-visible spectroscopy to establish the utility of the proposed sensing methodology. An extensive interference study with other bacterial species unveils the selectivity and specificity of the proposed optoplasmonic sensors toward EC with a detection range of 5 × 103 to 107 CFU/mL. Intuitively, the method is more versatile in a sense that the sensor can be made specific to any other pathogens by simply changing the design of the aptamer. Finally, a low-cost, portable, and point-of-care optoplasmonic transduction setup is designed with a laser light illumination source, a sample holder, and a sensitive photodetector for the detection of UTIs in human urine.
Collapse
Affiliation(s)
- Mitali Basak
- Centre for Nanotechnology, Indian Institute of Technology Guwahati, Guwahati, Assam781039, India
| | - Shirsendu Mitra
- Department of Chemical Engineering, Indian Institute of Technology Guwahati, Guwahati, Assam781039, India
| | - Mousumi Gogoi
- Altanostics Laboratories Private Limited, Indian Institute of Technology Guwahati, Guwahati, Assam781039, India
| | - Swapnil Sinha
- Altanostics Laboratories Private Limited, Indian Institute of Technology Guwahati, Guwahati, Assam781039, India
| | - Harshal B Nemade
- Centre for Nanotechnology, Indian Institute of Technology Guwahati, Guwahati, Assam781039, India
| | - Dipankar Bandyopadhyay
- Centre for Nanotechnology, Indian Institute of Technology Guwahati, Guwahati, Assam781039, India.,Department of Chemical Engineering, Indian Institute of Technology Guwahati, Guwahati, Assam781039, India.,School of Health Sciences and Technology, Indian Institute of Technology Guwahati, Guwahati, Assam781039, India
| |
Collapse
|
26
|
Eskandari V, Sahbafar H, Zeinalizad L, Sabzian F, Abbas MH, Hadi A. A Surface-Enhanced Raman Scattering (SERS) Biosensor Fabricated Using the Electrodeposition Method for Ultrasensitive Detection of Amino Acid Histidine. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.134497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
27
|
Bari RZA, Nawaz H, Majeed MI, Rashid N, Tahir M, ul Hasan HM, Ishtiaq S, Sadaf N, Raza A, Zulfiqar A, Rehman AU, Shahid M. Characterization of Bacteria Inducing Chronic Sinusitis Using Surface-Enhanced Raman Spectroscopy (SERS) with Multivariate Data Analysis. ANAL LETT 2022. [DOI: 10.1080/00032719.2022.2130349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
Affiliation(s)
- Rana Zaki Abdul Bari
- Department of Chemistry, University of Agriculture Faisalabad, Faisalabad, Pakistan
| | - Haq Nawaz
- Department of Chemistry, University of Agriculture Faisalabad, Faisalabad, Pakistan
| | | | - Nosheen Rashid
- Department of Chemistry, University of Education, Faisalabad, Pakistan
| | - Muhammad Tahir
- Department of Chemistry, University of Agriculture Faisalabad, Faisalabad, Pakistan
| | | | - Shazra Ishtiaq
- Department of Chemistry, University of Agriculture Faisalabad, Faisalabad, Pakistan
| | - Nimra Sadaf
- Department of Chemistry, University of Agriculture Faisalabad, Faisalabad, Pakistan
| | - Ali Raza
- Department of Chemistry, University of Agriculture Faisalabad, Faisalabad, Pakistan
| | - Anam Zulfiqar
- Department of Chemistry, University of Agriculture Faisalabad, Faisalabad, Pakistan
| | - Aziz ur Rehman
- Department of Chemistry, Government College University Lahore, Lahore, Pakistan
| | - Muhammad Shahid
- Department of Biochemistry, University of Agriculture Faisalabad, Faisalabad, Pakistan
| |
Collapse
|
28
|
Constantinou M, Hadjigeorgiou K, Abalde-Cela S, Andreou C. Label-Free Sensing with Metal Nanostructure-Based Surface-Enhanced Raman Spectroscopy for Cancer Diagnosis. ACS APPLIED NANO MATERIALS 2022; 5:12276-12299. [PMID: 36210923 PMCID: PMC9534173 DOI: 10.1021/acsanm.2c02392] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Accepted: 07/27/2022] [Indexed: 05/03/2023]
Abstract
Surface-Enhanced Raman Spectroscopy (SERS) is a powerful analytical technique for the detection of small analytes with great potential for medical diagnostic applications. Its high sensitivity and excellent molecular specificity, which stems from the unique fingerprint of molecular species, have been applied toward the detection of different types of cancer. The noninvasive and rapid detection offered by SERS highlights its applicability for point-of-care (PoC) deployment for cancer diagnosis, screening, and staging, as well as for predicting tumor recurrence and treatment monitoring. This review provides an overview of the progress in label-free (direct) SERS-based chemical detection for cancer diagnosis with the main focus on the advances in the design and preparation of SERS substrates on the basis of metal nanoparticle structures formed via bottom-up strategies. It begins by introducing a synopsis of the working principles of SERS, including key chemometric approaches for spectroscopic data analysis. Then it introduces the advances of label-free sensing with SERS in cancer diagnosis using biofluids (blood, urine, saliva, sweat) and breath as the detection media. In the end, an outlook of the advances and challenges in cancer diagnosis via SERS is provided.
Collapse
Affiliation(s)
- Marios Constantinou
- Department
of Electrical and Computer Engineering, University of Cyprus, Nicosia, 2112, Cyprus
| | - Katerina Hadjigeorgiou
- Department
of Electrical and Computer Engineering, University of Cyprus, Nicosia, 2112, Cyprus
| | - Sara Abalde-Cela
- International
Iberian Nanotechnology Laboratory, Avenida Mestre José Veiga s/n, Braga 4715-330, Portugal
| | - Chrysafis Andreou
- Department
of Electrical and Computer Engineering, University of Cyprus, Nicosia, 2112, Cyprus
| |
Collapse
|
29
|
Chen J, Zhou Z, Luo S, Liu G, Xiang J, Tian Z. Progress of advanced nanomaterials in diagnosis of neurodegenerative diseases. Biosens Bioelectron 2022; 217:114717. [PMID: 36179434 DOI: 10.1016/j.bios.2022.114717] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 08/25/2022] [Accepted: 09/10/2022] [Indexed: 12/22/2022]
Abstract
Neurodegenerative diseases (NDDs) encompass a wide range of clinically and pathologically diverse diseases characterized by progressive long-term cognitive decline, memory and function loss in daily life. Due to the lack of effective drugs and therapeutic strategies for preventing or delaying neurodegenerative progression, it is urgent to diagnose NDDs as early and accurately as possible. Nanomaterials, emerged as one of the most promising materials in the 21st century, have been widely applied and play a significant role in diagnosis and treatment of NDDs because of their remarkable properties including stability, prominent biocompatibility, unique structure, novel physical and chemical characteristics. In this review, we outlined general strategies for the application of different types of advanced materials in early and staged diagnosis of NDDs in vivo and in vitro. According to applied technology, in vivo research mainly involves magnetic resonance, fluorescence, and surface enhanced Raman imaging on structures of brain tissues, cerebral vessels and related distributions of biomarkers. In vitro research is focused on the detection of fluid biomarkers in cerebrospinal fluid and peripheral blood based on fluorescence, electrochemical, Raman and surface plasmon resonance techniques. Finally, we discussed the current challenges and future perspectives of biomarker-based NDDs diagnosis as well as potential applications regarding advanced nanomaterials.
Collapse
Affiliation(s)
- Jia Chen
- Hunan Provincial Key Laboratory of Micro & Nano Materials Interface Science, College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, PR China
| | - Zhifang Zhou
- State Key Laboratory of Marine Environmental Science, Fujian Provincial Key Laboratory for Coastal Ecology and Environmental Studies, Center for Marine Environmental Chemistry & Toxicology, College of the Environment and Ecology, Xiamen University, Xiamen, 361102, China
| | - Siheng Luo
- State Key Laboratory of Marine Environmental Science, Fujian Provincial Key Laboratory for Coastal Ecology and Environmental Studies, Center for Marine Environmental Chemistry & Toxicology, College of the Environment and Ecology, Xiamen University, Xiamen, 361102, China
| | - Guokun Liu
- State Key Laboratory of Marine Environmental Science, Fujian Provincial Key Laboratory for Coastal Ecology and Environmental Studies, Center for Marine Environmental Chemistry & Toxicology, College of the Environment and Ecology, Xiamen University, Xiamen, 361102, China
| | - Juan Xiang
- Hunan Provincial Key Laboratory of Micro & Nano Materials Interface Science, College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, PR China; National Engineering Research Center of Personalized Diagnostic and Therapeutic Technology, Central South University, Changsha, 410083, PR China.
| | - Zhongqun Tian
- State Key Laboratory for Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian, 361005, China.
| |
Collapse
|
30
|
Current Trends and Challenges in Point-of-care Urinalysis of Biomarkers in Trace Amounts. Trends Analyt Chem 2022. [DOI: 10.1016/j.trac.2022.116786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
31
|
Wu HY, Lin HC, Hung GY, Tu CS, Liu TY, Hong CH, Yu G, Hsu JC. High Sensitivity SERS Substrate of a Few Nanometers Single-Layer Silver Thickness Fabricated by DC Magnetron Sputtering Technology. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:2742. [PMID: 36014606 PMCID: PMC9415801 DOI: 10.3390/nano12162742] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 08/06/2022] [Accepted: 08/09/2022] [Indexed: 05/10/2023]
Abstract
Surface-enhanced Raman spectroscopy (SERS) is commonly used for super-selective analysis through nanostructured silver layers in the environment, food quality, biomedicine, and materials science. To fabricate a high-sensitivity but a more accessible device of SERS, DC magnetron sputtering technology was used to realize high sensitivity, low cost, a stable deposition rate, and rapid mass production. This study investigated various thicknesses of a silver film ranging from 3.0 to 12.1 nm by field emission scanning electron microscope, X-ray diffraction, and X-ray photoelectron spectroscopy. In the rhodamine 6G (R6G) testing irradiated by a He-Ne laser beam, the analytical enhancement factor (AEF) of 9.35 × 108, the limit of detection (LOD) of 10-8 M, and the relative standard deviation (RSD) of 1.61% were better than the other SERS substrates fabricated by the same DC sputtering process because the results showed that the 6 nm thickness silver layer had the highest sensitivity, stability, and lifetime. The paraquat and acetylcholine analytes were further investigated and high sensitivity was also achievable. The proposed SERS samples were evaluated and stored in a low humidity environment for up to forty weeks, and no spectrum attenuation could be detected. Soon, the proposed technology to fabricate high sensitivity, repeatability, and robust SERS substrate will be an optimized process technology in multiple applications.
Collapse
Affiliation(s)
- Hsing-Yu Wu
- System Manufacturing Center, National Chung-Shan Institute of Science and Technology, New Taipei City 237209, Taiwan
- Center for Astronomical Physics and Engineering, Department of Optics and Photonics, National Central University, Taoyuan City 320317, Taiwan
| | - Hung-Chun Lin
- Department of Physics, Fu Jen Catholic University, New Taipei City 242062, Taiwan
| | - Guan-Yi Hung
- Department of International Ph.D. Program in Innovative Technology of Biomedical Engineering and Medical Devices, Ming Chi University of Technology, New Taipei City 243303, Taiwan
| | - Chi-Shun Tu
- Department of Physics, Fu Jen Catholic University, New Taipei City 242062, Taiwan
| | - Ting-Yu Liu
- Department of Materials Engineering, Ming Chi University of Technology, New Taipei City 243303, Taiwan
| | - Chung-Hung Hong
- Kidney Research Center, Department of Nephrology, Chang Gung Memorial Hospital, College of Medicine, Chang Gung University, 5 Fu-Shing St., Taoyuan 33333, Taiwan
| | - Guoyu Yu
- Department of Engineering and Technology, School of Computing and Engineering, University of Huddersfield, Queensgate, Huddersfield HD1 3DH, UK
| | - Jin-Cherng Hsu
- Department of Physics, Fu Jen Catholic University, New Taipei City 242062, Taiwan
- Graduate Institute of Applied Science and Engineering, Fu Jen Catholic University, New Taipei City 242062, Taiwan
| |
Collapse
|
32
|
Wang BX, Duan G, Xu W, Xu C, Jiang J, Yang Z, Wu Y, Pi F. Flexible surface-enhanced Raman scatting substrates: recent advances in their principles, design strategies, diversified material selections and applications. Crit Rev Food Sci Nutr 2022; 64:472-516. [PMID: 35930338 DOI: 10.1080/10408398.2022.2106547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Surface-enhanced Raman scattering (SERS) is widely used as a powerful analytical technology in cutting-edge areas such as food safety, biology, chemistry, and medical diagnosis, providing ultra-fast, ultra-sensitive, nondestructive characterization and achieving ultra-high detection sensitivity even down to the single-molecule level. Development of Raman spectroscopy is strongly dependent on high-performance SERS substrates, which have long evolved from the early days of rough metal electrodes to periodic nanopatterned arrays building on solid supporting substrates. For rigid SERS substrates, however, their applications are restricted by sophisticated pretreatments for detecting solid samples with non-planar surfaces. It is therefore essential to reassert the principles in constructing flexible SERS substrates. Herein, we comprehensively review the state-of-the-art in understanding, preparing and using flexible SERS. The basic mechanisms behind the flexible SERS are briefly outlined, typical design strategies are highlighted and diversified selection of materials in preparing flexible SERS substrates are reviewed. Then the recent achievements of various interdisciplinary applications based on flexible SERS substrates are summarized. Finally, the challenges and perspectives for future evolution of flexible SERS and their applications are demonstrated. We propose new research directions focused on stimulating the real potential of SERS as an advanced analytical technique for commercialization.
Collapse
Affiliation(s)
- Ben-Xin Wang
- School of Science, Jiangnan University, Wuxi, China
| | - Guiyuan Duan
- School of Science, Jiangnan University, Wuxi, China
| | - Wei Xu
- School of Science, Jiangnan University, Wuxi, China
| | - Chongyang Xu
- School of Science, Jiangnan University, Wuxi, China
| | | | | | - Yangkuan Wu
- School of Science, Jiangnan University, Wuxi, China
| | - Fuwei Pi
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, China
| |
Collapse
|
33
|
Eskandari V, Sahbafar H, Zeinalizad L, Mahmoudi R, Karimpour F, Hadi A, Bardania H. Coating of silver nanoparticles (AgNPs) on glass fibers by a chemical method as plasmonic surface-enhanced Raman spectroscopy (SERS) sensors to detect molecular vibrations of Doxorubicin (DOX) drug in blood plasma. ARAB J CHEM 2022. [DOI: 10.1016/j.arabjc.2022.104005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022] Open
|
34
|
Dai B, Xu Y, Wang T, Wang S, Tang L, Tang J. Recent Advances in Agglomeration Detection and Dual-Function Application of Surface-Enhanced Raman Scattering (SERS). J Biomed Nanotechnol 2022. [DOI: 10.1166/jbn.2022.3356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Surface-enhanced Raman scattering (SERS) has been widely utilized in early detection of disease biomarkers, cell imaging, and trace contamination detection, owing to its ultra-high sensitivity. However, it is also subject to certain application restrictions in virtue of its expensive
detection equipment and long-term stability of SERS-active substrate. Recently, great progress has been made in SERS technology, represented by agglomeration method. Dual readout signal detection methods are combined with SERS, including electrochemical detection, fluorescence detection, etc.,
establishing a new fantastic viewpoint for application of SERS. In this review, we have made a comprehensive report on development of agglomeration detection and dual-function detection methods based on SERS. The synthesis methods for plasmonic materials and mainstream SERS enhancement mechanism
are also summarized. Finally, the key facing challenges are discussed and prospects are addressed.
Collapse
Affiliation(s)
- Bailin Dai
- Hunan Key Laboratory of Biomedical Nanomaterials and Devices, National & Local Joint Engineering Research Center for Advanced Packaging Material and Technology, Hunan University of Technology, Zhuzhou 412007, P. R. China
| | - Yue Xu
- Hunan Key Laboratory of Biomedical Nanomaterials and Devices, National & Local Joint Engineering Research Center for Advanced Packaging Material and Technology, Hunan University of Technology, Zhuzhou 412007, P. R. China
| | - Tao Wang
- Hunan Key Laboratory of Biomedical Nanomaterials and Devices, National & Local Joint Engineering Research Center for Advanced Packaging Material and Technology, Hunan University of Technology, Zhuzhou 412007, P. R. China
| | - Shasha Wang
- Engineering Research Center in Biomaterials, Sichuan University, Chengdu 610065, Sichuan, P. R. China
| | - Li Tang
- Hunan Key Laboratory of Biomedical Nanomaterials and Devices, National & Local Joint Engineering Research Center for Advanced Packaging Material and Technology, Hunan University of Technology, Zhuzhou 412007, P. R. China
| | - Jianxin Tang
- Hunan Key Laboratory of Biomedical Nanomaterials and Devices, National & Local Joint Engineering Research Center for Advanced Packaging Material and Technology, Hunan University of Technology, Zhuzhou 412007, P. R. China
| |
Collapse
|
35
|
Stevens AR, Stickland CA, Harris G, Ahmed Z, Goldberg Oppenheimer P, Belli A, Davies DJ. Raman Spectroscopy as a Neuromonitoring Tool in Traumatic Brain Injury: A Systematic Review and Clinical Perspectives. Cells 2022; 11:1227. [PMID: 35406790 PMCID: PMC8997459 DOI: 10.3390/cells11071227] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 04/01/2022] [Accepted: 04/04/2022] [Indexed: 12/22/2022] Open
Abstract
Traumatic brain injury (TBI) is a significant global health problem, for which no disease-modifying therapeutics are currently available to improve survival and outcomes. Current neuromonitoring modalities are unable to reflect the complex and changing pathophysiological processes of the acute changes that occur after TBI. Raman spectroscopy (RS) is a powerful, label-free, optical tool which can provide detailed biochemical data in vivo. A systematic review of the literature is presented of available evidence for the use of RS in TBI. Seven research studies met the inclusion/exclusion criteria with all studies being performed in pre-clinical models. None of the studies reported the in vivo application of RS, with spectral acquisition performed ex vivo and one performed in vitro. Four further studies were included that related to the use of RS in analogous brain injury models, and a further five utilised RS in ex vivo biofluid studies for diagnosis or monitoring of TBI. RS is identified as a potential means to identify injury severity and metabolic dysfunction which may hold translational value. In relation to the available evidence, the translational potentials and barriers are discussed. This systematic review supports the further translational development of RS in TBI to fully ascertain its potential for enhancing patient care.
Collapse
Affiliation(s)
- Andrew R. Stevens
- Neuroscience, Trauma and Ophthalmology, Institute of Inflammation and Ageing, University of Birmingham, Birmingham B15 2TT, UK; (Z.A.); (A.B.); (D.J.D.)
- NIHR Surgical Reconstruction and Microbiology Research Centre, University Hospitals Birmingham, Birmingham B15 2TH, UK
| | - Clarissa A. Stickland
- School of Chemical Engineering, University of Birmingham, Birmingham B15 2TT, UK; (C.A.S.); (G.H.); (P.G.O.)
| | - Georgia Harris
- School of Chemical Engineering, University of Birmingham, Birmingham B15 2TT, UK; (C.A.S.); (G.H.); (P.G.O.)
| | - Zubair Ahmed
- Neuroscience, Trauma and Ophthalmology, Institute of Inflammation and Ageing, University of Birmingham, Birmingham B15 2TT, UK; (Z.A.); (A.B.); (D.J.D.)
- NIHR Surgical Reconstruction and Microbiology Research Centre, University Hospitals Birmingham, Birmingham B15 2TH, UK
- Centre for Trauma Science Research, University of Birmingham, Birmingham B15 2TT, UK
| | - Pola Goldberg Oppenheimer
- School of Chemical Engineering, University of Birmingham, Birmingham B15 2TT, UK; (C.A.S.); (G.H.); (P.G.O.)
| | - Antonio Belli
- Neuroscience, Trauma and Ophthalmology, Institute of Inflammation and Ageing, University of Birmingham, Birmingham B15 2TT, UK; (Z.A.); (A.B.); (D.J.D.)
- NIHR Surgical Reconstruction and Microbiology Research Centre, University Hospitals Birmingham, Birmingham B15 2TH, UK
- Centre for Trauma Science Research, University of Birmingham, Birmingham B15 2TT, UK
| | - David J. Davies
- Neuroscience, Trauma and Ophthalmology, Institute of Inflammation and Ageing, University of Birmingham, Birmingham B15 2TT, UK; (Z.A.); (A.B.); (D.J.D.)
- NIHR Surgical Reconstruction and Microbiology Research Centre, University Hospitals Birmingham, Birmingham B15 2TH, UK
- Centre for Trauma Science Research, University of Birmingham, Birmingham B15 2TT, UK
| |
Collapse
|
36
|
Tabb JS, Rapoport E, Han I, Lombardi J, Green O. An antigen-targeting assay for Lyme disease: Combining aptamers and SERS to detect the OspA protein. NANOMEDICINE : NANOTECHNOLOGY, BIOLOGY, AND MEDICINE 2022; 41:102528. [PMID: 35104673 DOI: 10.1016/j.nano.2022.102528] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 01/05/2022] [Accepted: 01/11/2022] [Indexed: 12/25/2022]
Abstract
Lyme disease is the fastest growing vector-borne disease in the United States. However, current testing modalities are ill suited to detection of Lyme disease, leading to the diagnosis of many cases after treatment is effective. We present an improved, direct method Lyme disease diagnosis, where the Lyme specific biomarker Outer Surface Protein A (OspA) in clinical serum samples is identified using a diagnostic platform combining surface enhanced Raman scattering (SERS) and aptamers. Employing orthogonal projections to latent structures discriminant analysis, the system accurately identified 91% of serum samples from Lyme patients, and 96% of serum samples from symptomatic controls. In addition, the OspA limit-of-detection, determined to be 1 × 10-4 ng/mL, is greater than four orders of magnitude lower than that found in serum samples from early Lyme disease patients. The application of this platform to detect this difficult-to-diagnose disease suggests its potential for detecting other diseases that present similar difficulties.
Collapse
Affiliation(s)
| | | | - Il Han
- Ionica Sciences, Ithaca, NY, USA
| | - John Lombardi
- Department of Chemistry, The City College of New York, New York, NY, USA
| | | |
Collapse
|
37
|
Qin J, Wang W, Gao L, Yao SQ. Emerging biosensing and transducing techniques for potential applications in point-of-care diagnostics. Chem Sci 2022; 13:2857-2876. [PMID: 35382472 PMCID: PMC8905799 DOI: 10.1039/d1sc06269g] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Accepted: 01/11/2022] [Indexed: 12/24/2022] Open
Abstract
With the deepening of our understanding in life science, molecular biology, nanotechnology, optics, electrochemistry and other areas, an increasing number of biosensor design strategies have emerged in recent years, capable of providing potential practical applications for point-of-care (POC) diagnosis in various human diseases. Compared to conventional biosensors, the latest POC biosensor research aims at improving sensor precision, cost-effectiveness and time-consumption, as well as the development of versatile detection strategies to achieve multiplexed analyte detection in a single device and enable rapid diagnosis and high-throughput screening. In this review, various intriguing strategies in the recognition and transduction of POC (from 2018 to 2021) are described in light of recent advances in CRISPR technology, electrochemical biosensing, and optical- or spectra-based biosensing. From the perspective of promoting emerging bioanalytical tools into practical POC detecting and diagnostic applications, we have summarized key advances made in this field in recent years and presented our own perspectives on future POC development and challenges.
Collapse
Affiliation(s)
- Junjie Qin
- Department of Chemistry, National University of Singapore 4 Science Drive 2 Singapore 117544
| | - Wei Wang
- Department of Chemistry, National University of Singapore 4 Science Drive 2 Singapore 117544
- School of Pharmaceutical Sciences, Sun Yat-sen University Shenzhen 518107 P. R. China
| | - Liqian Gao
- School of Pharmaceutical Sciences, Sun Yat-sen University Shenzhen 518107 P. R. China
| | - Shao Q Yao
- Department of Chemistry, National University of Singapore 4 Science Drive 2 Singapore 117544
| |
Collapse
|
38
|
MoS2-Based Substrates for Surface-Enhanced Raman Scattering: Fundamentals, Progress and Perspective. COATINGS 2022. [DOI: 10.3390/coatings12030360] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Surface-enhanced Raman scattering (SERS), as an important tool for interface research, occupies a place in the field of molecular detection and analysis due to its extremely high detection sensitivity and fingerprint characteristics. Substantial efforts have been put into the improvement of the enhancement factor (EF) by way of modifying SERS substrates. Recently, MoS2 has emerged as one of the most promising substrates for SERS, which is also exploited as a complementary platform on the conventional metal SERS substrates to optimize the properties. In this minireview, the fundamentals of MoS2-related SERS are first explicated. Then, the synthesis, advances and applications of MoS2-based substrates are illustrated with special emphasis on their practical applications in food safety, biomedical sensing and environmental monitoring, together with the corresponding challenges. This review is expected to arouse broad interest in nonplasmonic MoS2-related materials along with their mechanisms, and to promote the development of SERS studies.
Collapse
|
39
|
Yan R, Lu N, Han S, Lu Z, Xiao Y, Zhao Z, Zhang M. Simultaneous detection of dual biomarkers using hierarchical MoS 2 nanostructuring and nano-signal amplification-based electrochemical aptasensor toward accurate diagnosis of prostate cancer. Biosens Bioelectron 2022; 197:113797. [PMID: 34818600 DOI: 10.1016/j.bios.2021.113797] [Citation(s) in RCA: 48] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2021] [Revised: 11/06/2021] [Accepted: 11/12/2021] [Indexed: 11/02/2022]
Abstract
Accurate and reliable quantification of tumor biomarkers in clinical samples is of vital importance for early stage diagnosis and treatment of cancer. However, a poor specificity of prostate specific antigen (PSA) testing alone fostering overdetection and overtreatment, remains a great controversy in prostate cancer (PCa) screening. Here we report an electrochemical aptasensor using hierarchical MoS2 nanostructuring and SiO2 nano-signal amplification for simultaneous detection of dual PCa biomarkers, PSA and sarcosine, to enhance the diagnostic performance of PCa. In this strategy, hierarchical flower-like MoS2 nanostructures as functional interface accelerated intermolecular accessibility and improved DNA hybridization efficiency. Moreover, the spherical SiO2 nanoprobe that conjugated with both electroactive tags and DNA probes, allowed effective electrochemical signal amplification. By deliberately designing different hybridization modes, we individually implemented the optimization of PSA and sarcosine sensing system. Based on this, simultaneous determination of PSA and sarcosine was achieved, with limit of detection (LOD) down to 2.5 fg/mL and 14.4 fg/mL, respectively, as well as excellent selectivity. More importantly, using this approach, we could directly differentiate cancer patients with healthy ones for clinical serum samples. The ultrasensitive biosensor provides single-step analysis with simple operation and a small sample volume (∼12 μL), shedding new light on accurate diagnosis and early-detection of cancer in clinical applications.
Collapse
Affiliation(s)
- Ruohong Yan
- School of Materials Engineering, Shanghai University of Engineering Science, Shanghai, 201620, China
| | - Na Lu
- School of Materials Engineering, Shanghai University of Engineering Science, Shanghai, 201620, China.
| | - Suping Han
- Department of Pharmacy, Shandong Medical College, Jinan, 250002, China
| | - Zhanglu Lu
- School of Materials Engineering, Shanghai University of Engineering Science, Shanghai, 201620, China
| | - Yang Xiao
- School of Materials Engineering, Shanghai University of Engineering Science, Shanghai, 201620, China
| | - Zhihang Zhao
- School of Materials Engineering, Shanghai University of Engineering Science, Shanghai, 201620, China
| | - Min Zhang
- College of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, Shanghai, 201620, China
| |
Collapse
|
40
|
Gao W, Wang T, Zhu C, Sha P, Dong P, Wu X. A 'sandwich' structure for highly sensitive detection of TNT based on surface-enhanced Raman scattering. Talanta 2022; 236:122824. [PMID: 34635214 DOI: 10.1016/j.talanta.2021.122824] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 08/15/2021] [Accepted: 08/23/2021] [Indexed: 12/29/2022]
Abstract
Ultra-sensitive detection of 2,4,6-trinitrotoluene (TNT) plays an important role in society security and human health. The Raman probe molecule p-aminothiophenol (PATP) can interact with TNT in three ways to form a TNT-PATP complex. In this paper, a 'sandwich' structure was developed to detect TNT with high sensitivity. Au nano-pillar arrays (AuNPAs) substrates modified by low-concentration PATP through Au-S bonds were acted as capture probe for TNT. Meanwhile, Ag nano-particles (AgNPs) modified by PATP at higher concentration were employed as tags for surface-enhanced Raman scattering (SERS). The formation of the TNT-PATP complex is not only the means by which AuNPAs substrates recognize and capture TNT, but also links the SERS tags to TNT, forming an AuNPAs-TNT-AgNPs 'sandwich' structure. The Raman signal of PATP was greatly enhanced mainly because novel 'hot spots' formed between the AuNPAs and AgNPs of the 'sandwich' structure. The Raman signal of PATP was further amplified by the chemical enhancement effect induced by the TNT-PATP complex formation. Based on this mechanism, the limit of detection (LOD) of TNT was determined from the Raman signal of PATP. The LOD reached 10-9 mg/mL (4.4 × 10-12 M), much lower than that suggested by the US Environmental Protection Agency (88 nM). Moreover, TNT was selectively detected over several TNT analogues 2,4-dinitrotoluene (DNT), p-nitrotoluene (NT) and hexogen (RDX). Finally, the 'sandwich' structure was successfully applied to TNT detection in environmental water and sand.
Collapse
Affiliation(s)
- Weiye Gao
- College of Intelligence Science and Technology, National University of Defense Technology, Changsha, Hunan, China
| | - Tianran Wang
- College of Intelligence Science and Technology, National University of Defense Technology, Changsha, Hunan, China
| | - Chushu Zhu
- College of Intelligence Science and Technology, National University of Defense Technology, Changsha, Hunan, China
| | - Pengxing Sha
- College of Intelligence Science and Technology, National University of Defense Technology, Changsha, Hunan, China
| | - Peitao Dong
- College of Intelligence Science and Technology, National University of Defense Technology, Changsha, Hunan, China.
| | - Xuezhong Wu
- College of Intelligence Science and Technology, National University of Defense Technology, Changsha, Hunan, China
| |
Collapse
|
41
|
Lin B, Wang Y, Yao Y, Chen L, Zeng Y, Li L, Lin Z, Guo L. Oil-Free Gold Nanobipyramid@Ag Microgels as a Functional SERS Substrate for Direct Detection of Small Molecules in a Complex Sample Matrix. Anal Chem 2021; 93:16727-16733. [PMID: 34851090 DOI: 10.1021/acs.analchem.1c04797] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Surface-enhanced Raman scattering (SERS) is a super-sensitive analysis technology based on the target molecular fingerprint information. The enhancement of local electromagnetic field of the SERS substrate would increase the target molecules' Raman intensity which adsorb on the surface of nanoparticles. However, the existing adhesive macromolecules in the complex mixed sample would interfere with the adsorption of small target molecules, and it weakens the Raman intensity of target molecules. Microgels are one of the potential materials to suppress the interference of adhesive macromolecules and to avoid the complex pretreatments. However, most of the current microgel synthesis methods involve complex operations with precise instrumentation or the interference of oil and organic reagents. In this work, a simple and oil-free method was proposed to synthesize the gold nanobipyramid (Au NBP)@Ag@hyaluronic acid microgel via the condensation reaction of carboxyl and amino groups. As a proof-of-concept demonstration for small-molecule detection, the rhodamine 6G (R6G) molecules were allowed to enter inside the microgel through the meshes and adsorb on the surface of Au NBP@Ag nanoparticles within 30 min, while the macromolecule (bovine serum albumin in this case) was retained outside the microgel in the meantime. In addition, under the combined action of lightning rod effect of Au NBP and surface plasmon resonance effect of silver render the microgels with high SERS activity. The synthetic Au NBP@Ag@hyaluronic acid microgels were applied to detect 6-thioguanine in the human serum without any pretreatment process, and it showed a high signal enhancement and stable SERS signal, which can satisfy the requirement of clinical diagnosis. These results show that the proposed microgels have potential applications in the field of point-of-care testing.
Collapse
Affiliation(s)
- Bingyong Lin
- Jiaxing Key Laboratory of Molecular Recognition and Sensing; College of Biological, Chemical Sciences and Engineering, Jiaxing University, Jiaxing 314001, PR China.,Institute of Nanomedicine and Nanobiosensing, MOE Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, College of Chemistry, Fuzhou University, Fuzhou 350116, PR China
| | - Yueliang Wang
- Jiaxing Key Laboratory of Molecular Recognition and Sensing; College of Biological, Chemical Sciences and Engineering, Jiaxing University, Jiaxing 314001, PR China
| | - Yuanyuan Yao
- Jiaxing Key Laboratory of Molecular Recognition and Sensing; College of Biological, Chemical Sciences and Engineering, Jiaxing University, Jiaxing 314001, PR China
| | - Lifen Chen
- Jiaxing Key Laboratory of Molecular Recognition and Sensing; College of Biological, Chemical Sciences and Engineering, Jiaxing University, Jiaxing 314001, PR China
| | - Yanbo Zeng
- Jiaxing Key Laboratory of Molecular Recognition and Sensing; College of Biological, Chemical Sciences and Engineering, Jiaxing University, Jiaxing 314001, PR China
| | - Lei Li
- Jiaxing Key Laboratory of Molecular Recognition and Sensing; College of Biological, Chemical Sciences and Engineering, Jiaxing University, Jiaxing 314001, PR China
| | - Zhenyu Lin
- Institute of Nanomedicine and Nanobiosensing, MOE Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, College of Chemistry, Fuzhou University, Fuzhou 350116, PR China
| | - Longhua Guo
- Jiaxing Key Laboratory of Molecular Recognition and Sensing; College of Biological, Chemical Sciences and Engineering, Jiaxing University, Jiaxing 314001, PR China
| |
Collapse
|
42
|
Song Q, Wang B, Lv Y. Molecularly imprinted monoliths: Recent advances in the selective recognition of biomacromolecules related biomarkers. J Sep Sci 2021; 45:1469-1481. [PMID: 34897964 DOI: 10.1002/jssc.202100824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 11/11/2021] [Accepted: 12/05/2021] [Indexed: 11/11/2022]
Abstract
Biomarkers are significant indicators to assist the early diagnosis of diseases and assess the therapeutic response. However, due to the low-abundance of biomarkers in complex biological fluids, it is highly desirable to explore efficient techniques to attain their selective recognition and capture before the detection. Molecularly imprinted monoliths integrate the high selectivity of imprinted polymers and the rapid convective mass transport of monoliths, and as a result are promising candidates to achieve the specific enrichment of biomarkers from complex samples. This review summarizes the various imprinting approaches for the preparation of molecularly imprinted monoliths. The state-of-art advances as an effective platform for applications in the selective capture of biomacromolecules related biomarkers were also outlined. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Qingmei Song
- Beijing Key Laboratory of Bioprocess, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Bingwu Wang
- Beijing Key Laboratory of Bioprocess, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Yongqin Lv
- Beijing Key Laboratory of Bioprocess, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| |
Collapse
|
43
|
Abstract
Recent global warming has resulted in shifting of weather patterns and led to intensification of natural disasters and upsurges in pests and diseases. As a result, global food systems are under pressure and need adjustments to meet the change—often by pesticides. Unfortunately, such agrochemicals are harmful for humans and the environment, and consequently need to be monitored. Traditional detection methods currently used are time consuming in terms of sample preparation, are high cost, and devices are typically not portable. Recently, Surface Enhanced Raman Scattering (SERS) has emerged as an attractive candidate for rapid, high sensitivity and high selectivity detection of contaminants relevant to the food industry and environmental monitoring. In this review, the principles of SERS as well as recent SERS substrate fabrication methods are first discussed. Following this, their development and applications for agrifood safety is reviewed, with focus on detection of dye molecules, melamine in food products, and the detection of different classes of pesticides such as organophosphate and neonicotinoids.
Collapse
|
44
|
Shu T, Hunter H, Zhou Z, Sun Y, Cheng X, Ma J, Su L, Zhang X, Serpe MJ. Portable point-of-care diagnostic devices: an updated review. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2021; 13:5418-5435. [PMID: 34787609 DOI: 10.1039/d1ay01643a] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
The global pandemic caused by the SARS-CoV-2 (COVID) virus indiscriminately impacted people worldwide with unquantifiable and severe impacts on all aspects of our lives, regardless of socioeconomic status. The pandemic brought to light the very real possibility of pathogens changing and shaping the way we live, and our lack of preparedness to deal with viral/bacterial outbreaks. Importantly, the quick detection of pathogens can help prevent and control the spread of disease, making the importance of diagnostic techniques undeniable. Point-of-care diagnostics started as a supplement to standard lab-based diagnostics, and are gradually becoming mainstream. Because of this, and their importance in detecting pathogens (especially in the developing world), their development has accelerated at an unprecedented rate. In this review, we highlight some important and recent examples of point-of-care diagnostics for detecting nucleic acids, proteins, bacteria, and other biomarkers, with the intent of making apparent their positive impact on society and human health.
Collapse
Affiliation(s)
- Tong Shu
- Research Center for Biosensor and Nanotheranostic, Shenzhen Key Laboratory for Nano-Biosensing Technology, School of Biomedical Engineering, Shenzhen University Health Science Center, Shenzhen 518060, P. R. China
- Beijing Key Laboratory for Bioengineering and Sensing Technology, Research Center for Bioengineering and Sensing Technology, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, P. R. China
| | - Haley Hunter
- Department of Chemistry, University of Alberta, Edmonton, Alberta, Canada, T6G 2G2.
| | - Ziping Zhou
- Research Center for Biosensor and Nanotheranostic, Shenzhen Key Laboratory for Nano-Biosensing Technology, School of Biomedical Engineering, Shenzhen University Health Science Center, Shenzhen 518060, P. R. China
- Beijing Key Laboratory for Bioengineering and Sensing Technology, Research Center for Bioengineering and Sensing Technology, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, P. R. China
| | - Yanping Sun
- Research Center for Biosensor and Nanotheranostic, Shenzhen Key Laboratory for Nano-Biosensing Technology, School of Biomedical Engineering, Shenzhen University Health Science Center, Shenzhen 518060, P. R. China
- Beijing Key Laboratory for Bioengineering and Sensing Technology, Research Center for Bioengineering and Sensing Technology, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, P. R. China
| | - Xiaojun Cheng
- Research Center for Biosensor and Nanotheranostic, Shenzhen Key Laboratory for Nano-Biosensing Technology, School of Biomedical Engineering, Shenzhen University Health Science Center, Shenzhen 518060, P. R. China
- Beijing Key Laboratory for Bioengineering and Sensing Technology, Research Center for Bioengineering and Sensing Technology, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, P. R. China
| | - Jianxin Ma
- Research Center for Biosensor and Nanotheranostic, Shenzhen Key Laboratory for Nano-Biosensing Technology, School of Biomedical Engineering, Shenzhen University Health Science Center, Shenzhen 518060, P. R. China
- Beijing Key Laboratory for Bioengineering and Sensing Technology, Research Center for Bioengineering and Sensing Technology, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, P. R. China
| | - Lei Su
- Research Center for Biosensor and Nanotheranostic, Shenzhen Key Laboratory for Nano-Biosensing Technology, School of Biomedical Engineering, Shenzhen University Health Science Center, Shenzhen 518060, P. R. China
| | - Xueji Zhang
- Research Center for Biosensor and Nanotheranostic, Shenzhen Key Laboratory for Nano-Biosensing Technology, School of Biomedical Engineering, Shenzhen University Health Science Center, Shenzhen 518060, P. R. China
| | - Michael J Serpe
- Department of Chemistry, University of Alberta, Edmonton, Alberta, Canada, T6G 2G2.
| |
Collapse
|
45
|
Magnetic-Optical Imaging for Monitoring Chemodynamic Therapy. Chem Res Chin Univ 2021. [DOI: 10.1007/s40242-021-1315-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
46
|
Fu Q, Zhang Y, Wang P, Pi J, Qiu X, Guo Z, Huang Y, Zhao Y, Li S, Xu J. Rapid identification of the resistance of urinary tract pathogenic bacteria using deep learning-based spectroscopic analysis. Anal Bioanal Chem 2021; 413:7401-7410. [PMID: 34673992 DOI: 10.1007/s00216-021-03691-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2021] [Revised: 09/23/2021] [Accepted: 09/23/2021] [Indexed: 11/24/2022]
Abstract
The resistance of urinary tract pathogenic bacteria to various antibiotics is increasing, which requires the rapid detection of infectious pathogens for accurate and timely antibiotic treatment. Here, we propose a rapid diagnosis strategy for the antibiotic resistance of bacteria in urinary tract infections (UTIs) based on surface-enhanced Raman scattering (SERS) using a positively charged gold nanoparticle planar solid SERS substrate. Then, an intelligent identification model for SERS spectra based on the deep learning technique is constructed to realize the rapid, ultrasensitive, and non-labeled detection of pathogenic bacteria. A total of 54,000 SERS spectra were collected from 18 isolates belonging to 6 species of common UTI bacteria in this work to realize identification of bacterial species, antibiotic sensitivity, and multidrug resistance (MDR) via convolutional neural networks (CNN). This method significantly simplify the Raman data processing processes without background removing and smoothing, however, achieving 96% above classification accuracy, which was significantly greater than the 85% accuracy of the traditional multivariate statistical analysis algorithm principal component analysis combined with the K-nearest neighbor (PCA-KNN). This work clearly elucidated the potential of combining SERS and deep learning technique to realize culture-free identification of pathogenic bacteria and their associated antibiotic sensitivity.
Collapse
Affiliation(s)
- Qiuyue Fu
- Biomedical Photonics Laboratory, School of Biomedical Engineering, Guangdong Medical University, Dongguan, 523808, Guangdong, China
| | - Yanjiao Zhang
- School of Basic Medicine, Guangdong Medical University, Dongguan, 523808, China
| | - Peng Wang
- Biomedical Photonics Laboratory, School of Biomedical Engineering, Guangdong Medical University, Dongguan, 523808, Guangdong, China
| | - Jiang Pi
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Guangdong Medical University, Dongguan, 523808, Guangdong, China
| | - Xun Qiu
- Biomedical Photonics Laboratory, School of Biomedical Engineering, Guangdong Medical University, Dongguan, 523808, Guangdong, China
| | - Zhusheng Guo
- Donghua Hospital Laboratory Department, Dongguan, 523808, Guangdong, China
| | - Ya Huang
- Donghua Hospital Laboratory Department, Dongguan, 523808, Guangdong, China
| | - Yi Zhao
- Guangdong Provincial Key Laboratory of Molecular Diagnosis, Guangdong Medical University, Dongguan, 523808, Guangdong, China
| | - Shaoxin Li
- Biomedical Photonics Laboratory, School of Biomedical Engineering, Guangdong Medical University, Dongguan, 523808, Guangdong, China.
| | - Junfa Xu
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Guangdong Medical University, Dongguan, 523808, Guangdong, China.
| |
Collapse
|
47
|
Berry ME, Kearns H, Graham D, Faulds K. Surface enhanced Raman scattering for the multiplexed detection of pathogenic microorganisms: towards point-of-use applications. Analyst 2021; 146:6084-6101. [PMID: 34492668 PMCID: PMC8504440 DOI: 10.1039/d1an00865j] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 09/22/2021] [Accepted: 08/27/2021] [Indexed: 01/02/2023]
Abstract
Surface enhanced Raman scattering (SERS) is a technique that demonstrates a number of advantages for the rapid, specific and sensitive detection of pathogenic microorganisms. In this review, an overview of label-free and label-based SERS approaches, including microfluidics, nucleic acid detection and immunoassays, for the multiplexed detection of pathogenic bacteria and viruses from the last decade will be discussed, as well as their transition into promising point-of-use detection technologies in industrial and medical settings.
Collapse
Affiliation(s)
- Matthew E Berry
- Centre for Molecular Nanometrology, Department of Pure and Applied Chemistry, Technology and Innovation Centre, University of Strathclyde, 99 George Street, Glasgow, G1 1RD, UK.
| | - Hayleigh Kearns
- Centre for Molecular Nanometrology, Department of Pure and Applied Chemistry, Technology and Innovation Centre, University of Strathclyde, 99 George Street, Glasgow, G1 1RD, UK.
| | - Duncan Graham
- Centre for Molecular Nanometrology, Department of Pure and Applied Chemistry, Technology and Innovation Centre, University of Strathclyde, 99 George Street, Glasgow, G1 1RD, UK.
| | - Karen Faulds
- Centre for Molecular Nanometrology, Department of Pure and Applied Chemistry, Technology and Innovation Centre, University of Strathclyde, 99 George Street, Glasgow, G1 1RD, UK.
| |
Collapse
|
48
|
Sha P, Su Q, Dong P, Wang T, Zhu C, Gao W, Wu X. Fabrication of Ag@Au (core@shell) nanorods as a SERS substrate by the oblique angle deposition process and sputtering technology. RSC Adv 2021; 11:27107-27114. [PMID: 35480685 PMCID: PMC9037617 DOI: 10.1039/d1ra04709d] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Accepted: 07/30/2021] [Indexed: 12/17/2022] Open
Abstract
Gold (Au) and silver (Ag) are the main materials exhibiting strong Surface-Enhanced Raman Scattering (SERS) effects. The Ag nano-rods (AgNRs) and Au nano-rods (AuNRs) SERS substrates prepared using the technology of the oblique angle deposition (OAD) process have received considerable attention in recent years because of their rapid preparation process and good repeatability. However, AgNR substrates are unstable due to the low chemical stability of Ag. To overcome these limitations, an Ag@Au core-shell nano-rod (NR) array SERS substrate was fabricated using the OAD process and sputtering technology. Moreover, simulation analysis was performed using finite-difference time-domain calculations to evaluate the enhancement mechanism of the Ag@Au NR array substrate. Based on the simulation results and actual process conditions, the Ag@Au core-shell NR array substrate with the Au shell thickness of 20 nm was studied. To characterize the substrate's SERS performance, 1,2-bis(4-pyridyl)ethylene (BPE) was used as the Raman probe. The limit of detection of BPE could reach 10-12 M. The Ag@Au NR array substrate demonstrated uniformity with an acceptable relative standard deviation. Despite the strong oxidation of the hydrogen peroxide (H2O2) solution, the Ag@Au NR array substrate maintains good chemical stability and SERS performance. And long-term stability of the Ag@Au NR substrate was observed over 8 months of storage time. Our results show the successful preparation of a highly sensitive, repeatable and stable substrate. Furthermore, this substrate proves great potential in the field of biochemical sensing.
Collapse
Affiliation(s)
- Pengxing Sha
- College of Intelligence Science and Technology, National University of Defense Technology Changsha 410073 People's Republic of China
| | - Qingqing Su
- College of Intelligence Science and Technology, National University of Defense Technology Changsha 410073 People's Republic of China
| | - Peitao Dong
- College of Intelligence Science and Technology, National University of Defense Technology Changsha 410073 People's Republic of China
| | - Tianran Wang
- College of Intelligence Science and Technology, National University of Defense Technology Changsha 410073 People's Republic of China
| | - Chushu Zhu
- College of Intelligence Science and Technology, National University of Defense Technology Changsha 410073 People's Republic of China
| | - Weiye Gao
- College of Intelligence Science and Technology, National University of Defense Technology Changsha 410073 People's Republic of China
| | - Xuezhong Wu
- College of Intelligence Science and Technology, National University of Defense Technology Changsha 410073 People's Republic of China
| |
Collapse
|
49
|
Woo A, Lim K, Cho BH, Jung HS, Lee M. Highly sensitive and repeatable DNA-SERS detection system using silver nanowires-glass fiber filter substrate. ANALYTICAL SCIENCE ADVANCES 2021; 2:397-407. [PMID: 38715958 PMCID: PMC10989524 DOI: 10.1002/ansa.202000096] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 09/29/2020] [Accepted: 09/30/2020] [Indexed: 11/17/2024]
Abstract
This paper describes a new simple DNA detection method based on surface-enhanced Raman scattering (SERS) technology using a silver nanowire stacked-glass fiber filter substrate. In this system, DNA-intercalating dye (EVAGreen) and reference dye (ROX) are used together to improve the repeatability and reliability of the SERS signals. We found that the SERS signal of EVAGreen was reduced by intercalation into DNA amplicons of a polymerase chain reaction on the silver nanowire stacked-glass fiber filter substrate, whereas that of ROX stayed constant. The DNA amplicons could be quantified by correcting the EVAGreen-specific SERS signal intensity with the ROX-specific SERS signal intensity. Multivariate analysis by partial least square methods was also successfully performed. And we further applied it to loop-mediated isothermal amplification with potential use for on-site diagnostics. The sensitivities of the DNA-SERS detection showed about 100 times higher than those of conventional fluorescence-based detection methods. The DNA-SERS detection method can be applied to various isothermal amplification methods, which is expected to realize on-site molecular diagnostics with high sensitivity, repeatability, simplicity, affordability, and convenience.
Collapse
Affiliation(s)
- Ayoung Woo
- Department of Medical Device Management and Research, Samsung Advanced Institute for Health Sciences & TechnologySungkyunkwan UniversitySeoulRepublic of Korea
| | - Kyongmook Lim
- Smart Healthcare Research Institute, Biomedical Engineering Research CenterSamsung Medical CenterSeoulRepublic of Korea
| | - Baek Hwan Cho
- Department of Medical Device Management and Research, Samsung Advanced Institute for Health Sciences & TechnologySungkyunkwan UniversitySeoulRepublic of Korea
- Smart Healthcare Research Institute, Biomedical Engineering Research CenterSamsung Medical CenterSeoulRepublic of Korea
| | - Ho Sang Jung
- Advanced Nano‐Surface DepartmentKorea Institute of Materials Science (KIMS)ChangwonRepublic of Korea
| | - Min‐Young Lee
- Department of Medical Device Management and Research, Samsung Advanced Institute for Health Sciences & TechnologySungkyunkwan UniversitySeoulRepublic of Korea
- Smart Healthcare Research Institute, Biomedical Engineering Research CenterSamsung Medical CenterSeoulRepublic of Korea
| |
Collapse
|
50
|
Tahir MA, Dina NE, Cheng H, Valev VK, Zhang L. Surface-enhanced Raman spectroscopy for bioanalysis and diagnosis. NANOSCALE 2021; 13:11593-11634. [PMID: 34231627 DOI: 10.1039/d1nr00708d] [Citation(s) in RCA: 76] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
In recent years, bioanalytical surface-enhanced Raman spectroscopy (SERS) has blossomed into a fast-growing research area. Owing to its high sensitivity and outstanding multiplexing ability, SERS is an effective analytical technique that has excellent potential in bioanalysis and diagnosis, as demonstrated by its increasing applications in vivo. SERS allows the rapid detection of molecular species based on direct and indirect strategies. Because it benefits from the tunable surface properties of nanostructures, it finds a broad range of applications with clinical relevance, such as biological sensing, drug delivery and live cell imaging assays. Of particular interest are early-stage-cancer detection and the fast detection of pathogens. Here, we present a comprehensive survey of SERS-based assays, from basic considerations to bioanalytical applications. Our main focus is on SERS-based pathogen detection methods as point-of-care solutions for early bacterial infection detection and chronic disease diagnosis. Additionally, various promising in vivo applications of SERS are surveyed. Furthermore, we provide a brief outlook of recent endeavours and we discuss future prospects and limitations for SERS, as a reliable approach for rapid and sensitive bioanalysis and diagnosis.
Collapse
Affiliation(s)
- Muhammad Ali Tahir
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention, Department of Environmental Science & Engineering, Fudan University, Shanghai, 200433, Peoples' Republic of China.
| | | | | | | | | |
Collapse
|