1
|
Bauza M, Leo P, Palomino Cabello C, Martin A, Orcajo G, Turnes Palomino G, Martinez F. Catalytic Advantages of SO 3H-Modified UiO-66(Zr) Materials Obtained via Microwave Synthesis in Friedel-Crafts Acylation Reaction. Inorg Chem 2024; 63:17460-17468. [PMID: 39225690 PMCID: PMC11423395 DOI: 10.1021/acs.inorgchem.4c01792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 07/29/2024] [Accepted: 08/20/2024] [Indexed: 09/04/2024]
Abstract
The catalytic activity and stability of sulfonic-based UiO-66(Zr) materials were tested in the Friedel-Crafts acylation of anisole with acetic anhydride. The materials were prepared using microwave-assisted synthesis, producing microporous materials with remarkable crystallinity and physicochemical features as acid catalysts. Different ratios between both organic ligands, terephthalic acid (H2BDC) and monosodium 2-sulfoterephthalic acid (H2BDC-SO3Na), were used for the synthesis to modulate the sulfonic content. The sulfonic-based UiO-66(Zr) material synthesized with a H2BDC/H2BDC-SO3Na molar ratio of 40/60 exhibited the best catalytic performance in the acidic-catalyzed Friedel-Crafts acylation reaction. This ratio balanced the number of sulfonic acid sites and their accessibility within the UiO-66 microporous structure. The catalytic performance of this material increased remarkably at 200 °C, outperforming reference acids and commercial heterogeneous catalysts such as Nafion-SAC-13 and Amberlyst-70. Additionally, the best sulfonic-based UiO-66(Zr) material proved to be stable in four successive reaction cycles, maintaining both its catalytic activity and its structural integrity.
Collapse
Affiliation(s)
- Marta Bauza
- Department
of Chemistry, University of the Balearic
Islands, Cra. de Valldemossa, Palma de Mallorca 07122, Spain
| | - Pedro Leo
- Chemical
and Environmental Engineering Group. ESCET, Universidad Rey Juan Carlos. c/Tulipán s/n, Móstoles 28933, Spain
| | - Carlos Palomino Cabello
- Department
of Chemistry, University of the Balearic
Islands, Cra. de Valldemossa, Palma de Mallorca 07122, Spain
| | - Antonio Martin
- Chemical
and Environmental Engineering Group. ESCET, Universidad Rey Juan Carlos. c/Tulipán s/n, Móstoles 28933, Spain
| | - Gisela Orcajo
- Chemical
and Environmental Engineering Group. ESCET, Universidad Rey Juan Carlos. c/Tulipán s/n, Móstoles 28933, Spain
| | - Gemma Turnes Palomino
- Department
of Chemistry, University of the Balearic
Islands, Cra. de Valldemossa, Palma de Mallorca 07122, Spain
| | - Fernando Martinez
- Chemical
and Environmental Engineering Group. ESCET, Universidad Rey Juan Carlos. c/Tulipán s/n, Móstoles 28933, Spain
- Instituto
de Tecnologías para la Sostenibilidad. Universidad Rey Juan
Carlos. C/Tulipán s/n, Móstoles 28933, Spain
| |
Collapse
|
2
|
Gao L, Qu X, Meng S, Chen M, He Y, Zhao F, Chu H, Qin S, Jin F. TpBD/UiO-66-NH 2 micro-mesoporous hybrid material as a stationary phase for open tubular capillary electrochromatography. RSC Adv 2024; 14:28148-28159. [PMID: 39228753 PMCID: PMC11369885 DOI: 10.1039/d4ra05097e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Accepted: 08/21/2024] [Indexed: 09/05/2024] Open
Abstract
The excellent stability of covalent organic frameworks (COFs) and the diversity of metal organic frameworks (MOFs) make MOF/COF hybrid materials promising candidates for chromatographic stationary phases. In this paper, a TpBD/UiO-66-NH2 hybrid material was synthesized through a Schiff-base reaction between TpBD COFs and UiO-66-NH2 MOFs; characterized using Fourier-transform infrared spectroscopy, X-ray diffraction, and X-ray photoelectron spectroscopy; and bonded to a capillary to prepare a TpBD/UiO-66-NH2-bonded open tubular capillary electrochromatography (OT-CEC) column. Results suggested that the hybrid material had the crystal morphology of a single COF and MOF, a micro-mesoporous structure, and good thermal stability. The inner surface of the OT-CEC column was tightly and uniformly distributed with the stationary phase (∼1.5 μm). The baseline separation of 13 amino acids and three families (4 acidic antibiotics, 4 preservatives and 6 sulfonamides) of emerging pollutant mixtures was achieved due to the synergistic effect of TpBD and UiO-66-NH2 in the stationary phase. The OT-CEC column showed good reproducibility and stability with relative standard deviations of migration time and resolutions in the range of 1.17-3.93% and 1.79-4.31%, respectively.
Collapse
Affiliation(s)
- Lidi Gao
- College of Chemistry and Chemical Engineering, Qiqihar University Qiqihar 161006 China
- Heilongjiang Industrial Hemp Processing Technology Innovation Center, Qiqihar University Qiqihar 161006 China
| | - Xinran Qu
- College of Chemistry and Chemical Engineering, Qiqihar University Qiqihar 161006 China
| | - Shuang Meng
- College of Chemistry and Chemical Engineering, Qiqihar University Qiqihar 161006 China
| | - Mo Chen
- College of Chemistry and Chemical Engineering, Qiqihar University Qiqihar 161006 China
| | - Yuxin He
- College of Chemistry and Chemical Engineering, Qiqihar University Qiqihar 161006 China
| | - Fuquan Zhao
- College of Chemistry and Chemical Engineering, Qiqihar University Qiqihar 161006 China
| | - Hongtao Chu
- College of Chemistry and Chemical Engineering, Qiqihar University Qiqihar 161006 China
- Heilongjiang Industrial Hemp Processing Technology Innovation Center, Qiqihar University Qiqihar 161006 China
| | - Shili Qin
- College of Chemistry and Chemical Engineering, Qiqihar University Qiqihar 161006 China
- Heilongjiang Industrial Hemp Processing Technology Innovation Center, Qiqihar University Qiqihar 161006 China
| | - Fenglong Jin
- Technology Innovation Center of Industrial Hemp for State Market Regulation, Qiqihar University Qiqihar 161006 China
| |
Collapse
|
3
|
Wu YN, Cai J, Hou S, Chen R, Wang Z, Kabtamu DM, Zelekew OA, Li F. Room-temperature synthesis of a Zr-UiO-66 metal-organic framework via mechanochemical pretreatment for the rapid removal of EDTA-chelated copper from water. Dalton Trans 2024; 53:14098-14107. [PMID: 39120524 DOI: 10.1039/d4dt01671h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/10/2024]
Abstract
Treatment of heavy metal pollution in complexed states within water bodies presents significant challenges in the current water treatment field. Adsorption as a means for the removal of heavy metals is characterized by its simplicity of operation, stable effluent, and minimal equipment requirements. Metal-organic frameworks (MOFs) as adsorbents hold significant interest for applications in water treatment. In this study, we investigated a green synthesis approach for the ball-milling pretreated synthesis of UiO-66(Zr) at room temperature, abbreviated as UiO-66(Zr)-rm. Besides having the same thermal stability and crystal structure as the product from microwave-assisted synthesis (UiO-66(Zr)-mw), the resulting UiO-66(Zr)-rm features smaller particle size and superior mesoporous structure. The adsorption efficiency and mechanism for removing EDTA-chelated copper (EDTA-CuII), a complexed heavy metal in water, were extensively analyzed. UiO-66(Zr)-rm presented a maximum adsorption capacity over EDTA-CuII of 43 mg g-1 and a much higher adsorption rate (0.16 g (mg h)-1) than UiO-66(Zr)-mw (0.06 g (mg h)-1). Hierarchically mesostructured defects allow the sorbate to have more effective diffusion in a shorter time to achieve faster adsorption kinetics. Benefiting from the mild synthesis conditions and nontoxic solvents, UiO-66(Zr) has the potential to be produced at a scaled-up level, thereby exhibiting excellent adsorption performance for the removal of complexed heavy metals in the future.
Collapse
Affiliation(s)
- Yi-Nan Wu
- College of Environmental Science and Engineering, State Key Laboratory of Pollution Control and Resource Reuse, Tongji University, Shanghai 200092, P.R. China.
- Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, P.R. China
| | - Junyi Cai
- College of Environmental Science and Engineering, State Key Laboratory of Pollution Control and Resource Reuse, Tongji University, Shanghai 200092, P.R. China.
- Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, P.R. China
| | - Shuliang Hou
- College of Environmental Science and Engineering, State Key Laboratory of Pollution Control and Resource Reuse, Tongji University, Shanghai 200092, P.R. China.
- Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, P.R. China
| | - Rui Chen
- College of Environmental Science and Engineering, State Key Laboratory of Pollution Control and Resource Reuse, Tongji University, Shanghai 200092, P.R. China.
- Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, P.R. China
| | - Ziqi Wang
- College of Environmental Science and Engineering, State Key Laboratory of Pollution Control and Resource Reuse, Tongji University, Shanghai 200092, P.R. China.
- Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, P.R. China
| | | | - Osman Ahmed Zelekew
- College of Environmental Science and Engineering, State Key Laboratory of Pollution Control and Resource Reuse, Tongji University, Shanghai 200092, P.R. China.
- Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, P.R. China
- Department of Materials Science and Engineering, Adama Science and Technology University, Adama 1888, Ethiopia
| | - Fengting Li
- College of Environmental Science and Engineering, State Key Laboratory of Pollution Control and Resource Reuse, Tongji University, Shanghai 200092, P.R. China.
- Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, P.R. China
| |
Collapse
|
4
|
Bai Z, Wang P, Xu J, Wang R, Li T. Progress and perspectives of sorption-based atmospheric water harvesting for sustainable water generation: Materials, devices, and systems. Sci Bull (Beijing) 2024; 69:671-687. [PMID: 38105159 DOI: 10.1016/j.scib.2023.12.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 11/07/2023] [Accepted: 12/04/2023] [Indexed: 12/19/2023]
Abstract
Establishing alternative methods for freshwater production is imperative to effectively alleviate global water scarcity, particularly in land-locked arid regions. In this context, extracting water from the ubiquitous atmospheric moisture is an ingenious strategy for decentralized freshwater production. Sorption-based atmospheric water harvesting (SAWH) shows strong potential for supplying liquid water in a portable and sustainable way even in desert environments. Herein, the latest progress in SAWH technology in terms of materials, devices, and systems is reviewed. Recent advances in sorbent materials with improved water uptake capacity and accelerated sorption-desorption kinetics, including physical sorbents, polymeric hydrogels, composite sorbents, and ionic solutions, are discussed. The thermal designs of SAWH devices for improving energy utilization efficiency, heat transfer, and mass transport are evaluated, and the development of representative SAWH prototypes is clarified in a chronological order. Thereafter, state-of-the-art operation patterns of SAWH systems, incorporating intermittent, daytime continuous and 24-hour continuous patterns, are examined. Furthermore, current challenges and future research goals of this cutting-edge field are outlined. This review highlights the irreplaceable role of heat and mass transfer enhancement and facile structural improvement for constructing high-yield water harvesters.
Collapse
Affiliation(s)
- Zhaoyuan Bai
- Institute of Refrigeration and Cryogenics, School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Pengfei Wang
- Institute of Refrigeration and Cryogenics, School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Jiaxing Xu
- Institute of Refrigeration and Cryogenics, School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Ruzhu Wang
- Institute of Refrigeration and Cryogenics, School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China; Research Center of Solar Power and Refrigeration (Ministry of Education), Shanghai Jiao Tong University, Shanghai 200240, China
| | - Tingxian Li
- Institute of Refrigeration and Cryogenics, School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China; Research Center of Solar Power and Refrigeration (Ministry of Education), Shanghai Jiao Tong University, Shanghai 200240, China.
| |
Collapse
|
5
|
Shelonchik O, Lemcoff N, Shimoni R, Biswas A, Yehezkel E, Yesodi D, Hod I, Weizmann Y. Light-induced MOF synthesis enabling composite photothermal materials. Nat Commun 2024; 15:1154. [PMID: 38326307 PMCID: PMC10850081 DOI: 10.1038/s41467-024-45333-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Accepted: 01/17/2024] [Indexed: 02/09/2024] Open
Abstract
Metal-organic frameworks (MOFs) are a class of porous materials known for their large surface areas. Thus, over the past few decades the development of MOFs and their applications has been a major topic of interest throughout the scientific community. However, many current conventional syntheses of MOFs are lengthy solvothermal processes carried out at elevated temperatures. Herein, we developed a rapid light-induced synthesis of MOFs by harnessing the plasmonic photothermal abilities of bipyramidal gold nanoparticles (AuBPs). The generality of the photo-induced method was demonstrated by synthesizing four different MOFs utilizing three different wavelengths (520 nm, 660 nm and 850 nm). Furthermore, by regulating light exposure, AuBPs could be embedded in the MOF or maintained in the supernatant. Notably, the AuBPs-embedded MOF (AuBP@UIO-66) retained its plasmonic properties along with the extraordinary surface area typical to MOFs. The photothermal AuBP@UIO-66 demonstrated a significant light-induced heating response that was utilized for ultrafast desorption and MOF activation.
Collapse
Affiliation(s)
- Ofir Shelonchik
- Department of Chemistry, Ben-Gurion University of the Negev, Beer-Sheva, 84105, Israel
| | - Nir Lemcoff
- Department of Chemistry, Ben-Gurion University of the Negev, Beer-Sheva, 84105, Israel
| | - Ran Shimoni
- Department of Chemistry, Ben-Gurion University of the Negev, Beer-Sheva, 84105, Israel
| | - Aritra Biswas
- Department of Chemistry, Ben-Gurion University of the Negev, Beer-Sheva, 84105, Israel
| | - Elad Yehezkel
- Department of Chemistry, Ben-Gurion University of the Negev, Beer-Sheva, 84105, Israel
| | - Doron Yesodi
- Department of Chemistry, Ben-Gurion University of the Negev, Beer-Sheva, 84105, Israel
| | - Idan Hod
- Department of Chemistry, Ben-Gurion University of the Negev, Beer-Sheva, 84105, Israel
- Ilse Katz Institute for Nanotechnology Science, Ben-Gurion University of the Negev, Beer-Sheva, 84105, Israel
- Goldman Sonnenfeldt School of Sustainability and Climate Change, Ben-Gurion University of the Negev, Beer-Sheva, 84105, Israel
| | - Yossi Weizmann
- Department of Chemistry, Ben-Gurion University of the Negev, Beer-Sheva, 84105, Israel.
- Ilse Katz Institute for Nanotechnology Science, Ben-Gurion University of the Negev, Beer-Sheva, 84105, Israel.
- Goldman Sonnenfeldt School of Sustainability and Climate Change, Ben-Gurion University of the Negev, Beer-Sheva, 84105, Israel.
| |
Collapse
|
6
|
Ji C, Pei L, Qin J, Wu P, Su N, Zhang T, Zhang Y, Wang J. Post-Synthetic Modification of an Amino-Functionalized Metal-Organic Framework for Highly In Situ Luminescent Detection of Mercury (II). NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:2784. [PMID: 37887935 PMCID: PMC10610009 DOI: 10.3390/nano13202784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 10/14/2023] [Accepted: 10/16/2023] [Indexed: 10/28/2023]
Abstract
A sulfur-containing metal-organic framework, donated as UiO-66-NSMe, was prepared by the post-synthetic modification (PSM) of UiO-66-NH2 with 2-(Methylthio)benzaldehyde, and the successful synthesis of PSM was confirmed by X-ray photoelectron spectroscopy (XPS), FT-IR and 1H NMR studies. According to the characteristics of mercury thiophilic, UiO-66-NSMe could be used as a luminescent sensor for Hg2+ detection with a high selectivity and sensitivity (Ksv = 2.5 × 104 M-1; LOD = 20 nM), which could be attributed to the coordination between sulfur sites and Hg2+ based on XPS results. In practical applications, UiO-66-NSMe yielded satisfactory recovery rates (ranging from 96.1% to 99.5%) when it was employed for detecting Hg2+ in spiked environmental samples. Furthermore, UiO-66-NSMe was successfully employed to detect mercury (II) residues with the in situ rapid nondestructive imaging in simulated fresh agricultural products. Thus, this PSM strategy could provide good guidance for environmental protection methodologies in the future.
Collapse
Affiliation(s)
| | | | | | - Pengyan Wu
- Jiangsu Key Laboratory of Green Synthetic Chemistry for Functional Materials, School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou 221116, China
| | | | | | | | - Jian Wang
- Jiangsu Key Laboratory of Green Synthetic Chemistry for Functional Materials, School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou 221116, China
| |
Collapse
|
7
|
Lei Y, Xie J, Quan W, Chen Q, Long X, Wang A. Advances in the adsorption of heavy metal ions in water by UiO-66 composites. Front Chem 2023; 11:1211989. [PMID: 37408555 PMCID: PMC10318541 DOI: 10.3389/fchem.2023.1211989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Accepted: 06/12/2023] [Indexed: 07/07/2023] Open
Abstract
The innovative adsorbents known as the Metal-organic Framework (MOFs) had a high specific surface area, various structural types, and good chemical stability. MOFs have been produced through hydrothermal, mechanochemical, microwave-assisted, gelation, and other synthesis methods, and the solvothermal process is one of them that researchers frequently utilize. The UiO materials have a more comprehensive application potential than different subtypes of MOFs among the numerous MOFs that have been synthesized. The synthesis of MOFs and their composites, as well as the adsorption characteristics of UiO materials in the adsorption of various heavy metal ions, have all been examined and summarized in this study.
Collapse
Affiliation(s)
- Yuanhang Lei
- School of Materials and Architectural Engineering, Guizhou Normal University, Guiyang, Guizhou, China
| | - Jiangqin Xie
- School of Materials and Architectural Engineering, Guizhou Normal University, Guiyang, Guizhou, China
| | - Wenxuan Quan
- Key Laboratory for Information System of Mountainous Area and Protection of Ecological Environment of Guizhou Province, Guizhou Normal University, Guiyang, Guizhou, China
| | - Qi Chen
- School of Materials and Architectural Engineering, Guizhou Normal University, Guiyang, Guizhou, China
| | - Xingyu Long
- School of Chemistry and Materials Science, Guizhou Normal University, Guiyang, Guizhou, China
| | - Anping Wang
- School of Materials and Architectural Engineering, Guizhou Normal University, Guiyang, Guizhou, China
- Key Laboratory for Information System of Mountainous Area and Protection of Ecological Environment of Guizhou Province, Guizhou Normal University, Guiyang, Guizhou, China
| |
Collapse
|
8
|
Vodyashkin AA, Sergorodceva AV, Kezimana P, Stanishevskiy YM. Metal-Organic Framework (MOF)-A Universal Material for Biomedicine. Int J Mol Sci 2023; 24:7819. [PMID: 37175523 PMCID: PMC10178275 DOI: 10.3390/ijms24097819] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 04/21/2023] [Accepted: 04/22/2023] [Indexed: 05/15/2023] Open
Abstract
Metal-organic frameworks (MOFs) are a very promising platform for applications in various industries. In recent years, a variety of methods have been developed for the preparation and modification of MOFs, providing a wide range of materials for different applications in life science. Despite the wide range of different MOFs in terms of properties/sizes/chemical nature, they have not found wide application in biomedical practices at present. In this review, we look at the main methods for the preparation of MOFs that can ensure biomedical applications. In addition, we also review the available options for tuning the key parameters, such as size, morphology, and porosity, which are crucial for the use of MOFs in biomedical systems. This review also analyses possible applications for MOFs of different natures. Their high porosity allows the use of MOFs as universal carriers for different therapeutic molecules in the human body. The wide range of chemical species involved in the synthesis of MOFs makes it possible to enhance targeting and prolongation, as well as to create delivery systems that are sensitive to various factors. In addition, we also highlight how injectable, oral, and even ocular delivery systems based on MOFs can be used. The possibility of using MOFs as therapeutic agents and sensitizers in photodynamic, photothermal, and sonodynamic therapy was also reviewed. MOFs have demonstrated high selectivity in various diagnostic systems, making them promising for future applications. The present review aims to systematize the main ways of modifying MOFs, as well as the biomedical applications of various systems based on MOFs.
Collapse
Affiliation(s)
- Andrey A. Vodyashkin
- Institute of Biochemical Technology and Nanotechnology, Peoples’ Friendship University of Russia (RUDN University), 6 Miklukho-Maklaya Str., 117198 Moscow, Russia; (A.V.S.); (P.K.); (Y.M.S.)
| | - Antonina V. Sergorodceva
- Institute of Biochemical Technology and Nanotechnology, Peoples’ Friendship University of Russia (RUDN University), 6 Miklukho-Maklaya Str., 117198 Moscow, Russia; (A.V.S.); (P.K.); (Y.M.S.)
| | - Parfait Kezimana
- Institute of Biochemical Technology and Nanotechnology, Peoples’ Friendship University of Russia (RUDN University), 6 Miklukho-Maklaya Str., 117198 Moscow, Russia; (A.V.S.); (P.K.); (Y.M.S.)
- Department of Agrobiotechnology, Peoples’ Friendship University of Russia (RUDN University), 6 Miklukho-Maklaya Str., 117198 Moscow, Russia
| | - Yaroslav M. Stanishevskiy
- Institute of Biochemical Technology and Nanotechnology, Peoples’ Friendship University of Russia (RUDN University), 6 Miklukho-Maklaya Str., 117198 Moscow, Russia; (A.V.S.); (P.K.); (Y.M.S.)
| |
Collapse
|
9
|
Phan PT, Hong J, Tran N, Le TH. The Properties of Microwave-Assisted Synthesis of Metal-Organic Frameworks and Their Applications. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:352. [PMID: 36678105 PMCID: PMC9864337 DOI: 10.3390/nano13020352] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 01/11/2023] [Accepted: 01/12/2023] [Indexed: 06/17/2023]
Abstract
Metal-organic frameworks (MOF) are a class of porous materials with various functions based on their host-guest chemistry. Their selectivity, diffusion kinetics, and catalytic activity are influenced by their design and synthetic procedure. The synthesis of different MOFs has been of considerable interest during the past decade thanks to their various applications in the arena of sensors, catalysts, adsorption, and electronic devices. Among the different techniques for the synthesis of MOFs, such as the solvothermal, sonochemical, ionothermal, and mechanochemical processes, microwave-assisted synthesis has clinched a significant place in MOF synthesis. The main assets of microwave-assisted synthesis are the short reaction time, the fast rate of nucleation, and the modified properties of MOFs. The review encompasses the development of the microwave-assisted synthesis of MOFs, their properties, and their applications in various fields.
Collapse
Affiliation(s)
- Pham Thi Phan
- Faculty of Food Science and Engineering, Lac Hong University, Bien Hoa 810000, Vietnam
| | - Jeongsoo Hong
- Department of Electrical Engineering, Gachon University, 1342 Seongnamdaero, Seongnam 13120, Republic of Korea
| | - Ngo Tran
- Institute of Research and Development, Duy Tan University, Da Nang 550000, Vietnam
- Faculty of Natural Sciences, Duy Tan University, Da Nang 550000, Vietnam
| | - Thi Hoa Le
- Department of Chemical and Biological Engineering, Gachon University, Seongnam 13120, Republic of Korea
| |
Collapse
|
10
|
|
11
|
Jiang D, Fang D, Zhou Y, Wang Z, Yang Z, Zhu J, Liu Z. Strategies for improving the catalytic activity of metal-organic frameworks and derivatives in SR-AOPs: Facing emerging environmental pollutants. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 306:119386. [PMID: 35550132 DOI: 10.1016/j.envpol.2022.119386] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 04/28/2022] [Accepted: 04/29/2022] [Indexed: 06/15/2023]
Abstract
As persulfate activator, Metal organic frameworks (MOFs) and derivatives are widely concerned in degradation of emerging environmental pollutants by advanced oxygen technology dominated by sulfate radical () (SR-AOPs). However, the poor stability and low catalytic efficiency limit the performance of MOFs, requiring multiple strategies to further enhance their catalytic activity. The aim of this paper is to improve the catalytic activity of MOFs and their derivatives by physical and chemical enhancement strategies. Physical enhancement strategies mainly refer to the activation strategies including thermal activation, microwave activation and photoactivation. However, the physical enhancement strategies need energy consumption and require high stability of MOFs. As a substitute, chemical enhancement strategies are more widely used and represented by optimization, modification, composites and derivatives. In addition, the identification of reactive oxygen species, active site and electron distribution are important for distinguishing radical and non-radical pathways. Finally, as a new wastewater treatment technology exploration of unknown areas in SR-AOPs could better promote the technology development.
Collapse
Affiliation(s)
- Danni Jiang
- College of Environmental Science and Engineering, Central South University of Forestry and Technology, Changsha, 410004, China; Hunan Engineering Laboratory for Control of Rice Quality and Safety, Central South University of Forestry and Technology, Changsha, 410004, China.
| | - Di Fang
- College of Environmental Science and Engineering, Central South University of Forestry and Technology, Changsha, 410004, China; Hunan Engineering Laboratory for Control of Rice Quality and Safety, Central South University of Forestry and Technology, Changsha, 410004, China
| | - Yu Zhou
- College of Environmental Science and Engineering, Central South University of Forestry and Technology, Changsha, 410004, China; Hunan Engineering Laboratory for Control of Rice Quality and Safety, Central South University of Forestry and Technology, Changsha, 410004, China
| | - Zhiwei Wang
- College of Environmental Science and Engineering, Central South University of Forestry and Technology, Changsha, 410004, China; Hunan Engineering Laboratory for Control of Rice Quality and Safety, Central South University of Forestry and Technology, Changsha, 410004, China
| | - ZiHao Yang
- College of Environmental Science and Engineering, Central South University of Forestry and Technology, Changsha, 410004, China; Hunan Engineering Laboratory for Control of Rice Quality and Safety, Central South University of Forestry and Technology, Changsha, 410004, China
| | - Jian Zhu
- College of Environmental Science and Engineering, Central South University of Forestry and Technology, Changsha, 410004, China; Hunan Engineering Laboratory for Control of Rice Quality and Safety, Central South University of Forestry and Technology, Changsha, 410004, China
| | - Zhiming Liu
- Department of Biology, Eastern New Mexico University, Portales, NM, 88130, USA
| |
Collapse
|
12
|
Annamalai J, Murugan P, Ganapathy D, Nallaswamy D, Atchudan R, Arya S, Khosla A, Barathi S, Sundramoorthy AK. Synthesis of various dimensional metal organic frameworks (MOFs) and their hybrid composites for emerging applications - A review. CHEMOSPHERE 2022; 298:134184. [PMID: 35271904 DOI: 10.1016/j.chemosphere.2022.134184] [Citation(s) in RCA: 39] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2021] [Revised: 02/20/2022] [Accepted: 02/28/2022] [Indexed: 06/14/2023]
Abstract
Metal organic frameworks (MOFs) represent the organic and inorganic hybrid porous materials. MOFs are low dense and highly porous materials which in turn provide large surface area that can accumulate and store numerous molecules within the pores. The pore size may also act as a mesh to separate molecules. The porous nature of MOFs is beneficial for altering the intrinsic properties of the materials. Over the past decade, different types of hybrid MOFs have been reported in combination with polymers, carbon materials, metal nanoparticles, metal oxides, and biomolecules for various applications. MOFs have also been used in the fabrication of electronic devices, sensors, energy storage, gas separation, supercapacitors, drug delivery and environmental clean-up. In this review, the unique structural orientation, exceptional properties and recent applications of MOFs have been discussed in the first section along with their porosity, stability and other influencing factors. In addition, various methods and techniques involved in the synthesis and designing of MOFs such as solvothermal, electrochemical, mechanochemical, ultrasonication and microwave methods are highlighted. In order to understand the scientific feasibility of MOFs in developing new products, various strategies have been applied to obtain different dimensional MOFs (0D, 1D, 2D and 3D) and their composite materials are also been conferred. Finally, the future prospects of MOFs, remaining challenges, research gaps and possible solutions that need to be addressed by advanced experimental design, computational models, simulation techniques and theoretical concepts have been deliberated.
Collapse
Affiliation(s)
- Jayshree Annamalai
- Department of Biotechnology, SRM Institute of Science and Technology, Kattankulathur, 603 203, Tamil Nadu, India
| | - Preethika Murugan
- Department of Chemistry, SRM Institute of Science and Technology, Kattankulathur, 603 203, Tamil Nadu, India
| | - Dhanraj Ganapathy
- Department of Prosthodontics, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Poonamallee High Road, Velappanchavadi, Chennai, 600 077, Tamil Nadu, India
| | - Deepak Nallaswamy
- Department of Prosthodontics, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Poonamallee High Road, Velappanchavadi, Chennai, 600 077, Tamil Nadu, India
| | - Raji Atchudan
- School of Chemical Engineering, Yeungnam University, Gyeongsan, 38541, Republic of Korea
| | - Sandeep Arya
- Department of Physics, University of Jammu, Jammu and Kashmir, 180006, India
| | - Ajit Khosla
- Department of Mechanical System Engineering, Graduate School of Science and Engineering, Yamagata University, Jonan 4-3-16, Yonezawa, Yamagata, 992-8510, Japan
| | - Seetharaman Barathi
- Department of Biotechnology, SRM Institute of Science and Technology, Kattankulathur, 603 203, Tamil Nadu, India
| | - Ashok K Sundramoorthy
- Department of Prosthodontics, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Poonamallee High Road, Velappanchavadi, Chennai, 600 077, Tamil Nadu, India.
| |
Collapse
|
13
|
Synthesis, characterization, ion-exchange, and catalytic properties of three isostructural copper(II) coordination polymers with a flexible bis(triazole) ligand. J SOLID STATE CHEM 2022. [DOI: 10.1016/j.jssc.2022.123201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
14
|
Sun L, Yin M, Li Z, Tang S. Facile microwave-assisted solvothermal synthesis of rod-like aluminum terephthalate [MIL-53(Al)] for CO2 adsorption. J IND ENG CHEM 2022. [DOI: 10.1016/j.jiec.2022.05.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
15
|
Dourandish Z, Tajik S, Beitollahi H, Jahani PM, Nejad FG, Sheikhshoaie I, Di Bartolomeo A. A Comprehensive Review of Metal-Organic Framework: Synthesis, Characterization, and Investigation of Their Application in Electrochemical Biosensors for Biomedical Analysis. SENSORS (BASEL, SWITZERLAND) 2022; 22:2238. [PMID: 35336408 PMCID: PMC8953394 DOI: 10.3390/s22062238] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 03/09/2022] [Accepted: 03/10/2022] [Indexed: 06/01/2023]
Abstract
Many studies have addressed electrochemical biosensors because of their simple synthesis process, adjustability, simplification, manipulation of materials' compositions and features, and wide ranges of detection of different kinds of biomedical analytes. Performant electrochemical biosensors can be achieved by selecting materials that enable faster electron transfer, larger surface areas, very good electrocatalytic activities, and numerous sites for bioconjugation. Several studies have been conducted on the metal-organic frameworks (MOFs) as electrode modifiers for electrochemical biosensing applications because of their respective acceptable properties and effectiveness. Nonetheless, researchers face challenges in designing and preparing MOFs that exhibit higher stability, sensitivity, and selectivity to detect biomedical analytes. The present review explains the synthesis and description of MOFs, and their relative uses as biosensors in the healthcare sector by dealing with the biosensors for drugs, biomolecules, as well as biomarkers with smaller molecular weight, proteins, and infectious disease.
Collapse
Affiliation(s)
- Zahra Dourandish
- Department of Chemistry, Faculty of Science, Shahid Bahonar University of Kerman, Kerman 7616913439, Iran; (Z.D.); (F.G.N.); (I.S.)
| | - Somayeh Tajik
- Research Center of Tropical and Infectious Diseases, Kerman University of Medical Sciences, Kerman 7616913555, Iran;
| | - Hadi Beitollahi
- Environment Department, Institute of Science and High Technology and Environmental Sciences, Graduate University of Advanced Technology, Kerman 7631885356, Iran
| | | | - Fariba Garkani Nejad
- Department of Chemistry, Faculty of Science, Shahid Bahonar University of Kerman, Kerman 7616913439, Iran; (Z.D.); (F.G.N.); (I.S.)
| | - Iran Sheikhshoaie
- Department of Chemistry, Faculty of Science, Shahid Bahonar University of Kerman, Kerman 7616913439, Iran; (Z.D.); (F.G.N.); (I.S.)
| | - Antonio Di Bartolomeo
- Dipartimento di Fisica “E.R. Caianiello”, Università di Salerno, 84084 Fisciano, SA, Italy
| |
Collapse
|
16
|
Chen X, Li Y, Fu Q, Qin H, Lv J, Yang K, Zhang Q, Zhang H, Wang M. An efficient modulated synthesis of zirconium metal-organic framework UiO-66. RSC Adv 2022; 12:6083-6092. [PMID: 35424546 PMCID: PMC8981973 DOI: 10.1039/d1ra07848h] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2021] [Accepted: 02/10/2022] [Indexed: 11/21/2022] Open
Abstract
The use of large amounts of deleterious solvents in the synthesis of metal-organic frameworks (MOFs) is one of the important factors limiting their application in industry. Herein, we present a detailed study of the synthesis of UiO-66, which was conducted with hydrobromic (HBr) acid as a modulator for the first time, at a high concentration of precursor solution (ZrCl4 and H2BDC, both 0.2 mol L-1). Powder crystals with atypical cuboctahedron structure were obtained which indicated that the HBr acid modulator played roles by competitive coordination and deprotonation modulation, thereby controlling the processes of nucleation and crystal growth. The properties of the obtained materials were systematically characterized and compared with those of materials synthesized with hydrofluoric (HF) acid and hydrochloric (HCl) acid modulators. Despite the high concentration of defectivity, the UiO-66 material synthesized with the HBr acid additive has the characteristics of larger specific surface area, excellent thermal stability and higher porosity in the structure. Besides that, the present protocol has the advantages of high reaction mass efficiency (RME), and feasibility of scalable synthesis, providing a facile and sustainable route to diverse Zr-based MOFs.
Collapse
Affiliation(s)
- Xia Chen
- School of Chemistry and Chemical Engineering, Shandong University of Technology Zibo 255000 China
| | - Yongjie Li
- School of Chemistry and Chemical Engineering, Shandong University of Technology Zibo 255000 China
| | - Qiang Fu
- School of Chemistry and Chemical Engineering, Shandong University of Technology Zibo 255000 China
| | - Hongyun Qin
- School of Chemistry and Chemical Engineering, Shandong University of Technology Zibo 255000 China
| | - Junnan Lv
- School of Chemistry and Chemical Engineering, Shandong University of Technology Zibo 255000 China
| | - Kun Yang
- School of Chemistry and Chemical Engineering, Shandong University of Technology Zibo 255000 China
| | - Qicheng Zhang
- School of Chemistry and Chemical Engineering, Shandong University of Technology Zibo 255000 China
| | - Hui Zhang
- School of Chemistry and Chemical Engineering, Shandong University of Technology Zibo 255000 China
| | - Ming Wang
- School of Chemistry and Chemical Engineering, Shandong University of Technology Zibo 255000 China
| |
Collapse
|
17
|
Zhang Y, Jia H, Ma W, Xu S, Li S, Qu Y, Zhang M. Preparation of High‐Strength and High‐Permeability EC/PI/MOF Mixed Matrix Membrane**. ChemistrySelect 2022. [DOI: 10.1002/slct.202104099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Yushu Zhang
- College of Chemical and Chemical engineering Qiqihar University Wenhua Street Qiqihar 161006 China
| | - Hongge Jia
- College of Chemical and Chemical engineering Qiqihar University Wenhua Street Qiqihar 161006 China
| | - Wenqiang Ma
- College of Materials Science and Engineering Heilongjiang Provinces Key Laboratory of Polymeric Composite materials Qiqihar University Wenhua Street Qiqihar 161006 China
| | - Shuangping Xu
- College of Materials Science and Engineering Heilongjiang Provinces Key Laboratory of Polymeric Composite materials Qiqihar University Wenhua Street Qiqihar 161006 China
| | - Shaobin Li
- College of Materials Science and Engineering Heilongjiang Provinces Key Laboratory of Polymeric Composite materials Qiqihar University Wenhua Street Qiqihar 161006 China
| | - Yanqing Qu
- College of Materials Science and Engineering Heilongjiang Provinces Key Laboratory of Polymeric Composite materials Qiqihar University Wenhua Street Qiqihar 161006 China
| | - Mingyu Zhang
- College of Materials Science and Engineering Heilongjiang Provinces Key Laboratory of Polymeric Composite materials Qiqihar University Wenhua Street Qiqihar 161006 China
| |
Collapse
|
18
|
Zhang Y, Jia H, Wang Q, Ma W, Yang G, Xu S, Li S, Su G, Qu Y, Zhang M, Jiang P. Optimization of a MOF Blended with Modified Polyimide Membrane for High-Performance Gas Separation. MEMBRANES 2021; 12:membranes12010034. [PMID: 35054560 PMCID: PMC8777778 DOI: 10.3390/membranes12010034] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Revised: 12/22/2021] [Accepted: 12/22/2021] [Indexed: 11/16/2022]
Abstract
The preparation, characterization and gas separation properties of mixed matrix membranes (MMMs) were obtained from polyimide capped with ionic liquid and blended with metal-organic frameworks (MOFs). The synthesized MOF was amine functionalized to produce UiO-66-NH2, and its amino group has a higher affinity for CO2. Mixed matrix membranes exhibited good membrane forming ability, heat resistance and mechanical properties. The polyimide membrane exclusively capped by ionic liquid exhibited good permselectivity of 74.1 for CO2/CH4, which was 6.2 times that of the pure polyimide membrane. It is worth noting that MMM blended with UiO-66-NH2 demonstrated the highest ideal selectivity for CO2/CH4 (95.1) with a CO2 permeability of 7.61 Barrer, which is close to the 2008 Robeson upper bound. The addition of UiO-66-NH2 and ionic liquid enhanced the permselectivity of MMMs, which may be one of the promising technologies for high performance CO2/CH4 gas separation.
Collapse
Affiliation(s)
- Yushu Zhang
- Heilongjiang Provinces Key Laboratory of Polymeric Composite Materials, Department of Chemical and Chemical Engineering, Qiqihar University, Wenhua Street, Qiqihar 161006, China; (Y.Z.); (W.M.); (S.L.); (Y.Q.); (M.Z.); (P.J.)
| | - Hongge Jia
- Heilongjiang Provinces Key Laboratory of Polymeric Composite Materials, Department of Chemical and Chemical Engineering, Qiqihar University, Wenhua Street, Qiqihar 161006, China; (Y.Z.); (W.M.); (S.L.); (Y.Q.); (M.Z.); (P.J.)
- Correspondence: (H.J.); (S.X.)
| | - Qingji Wang
- CNPC Reasearch Institute of Safety & Environment Technology, Changping District, Beijing 102249, China;
| | - Wenqiang Ma
- Heilongjiang Provinces Key Laboratory of Polymeric Composite Materials, Department of Chemical and Chemical Engineering, Qiqihar University, Wenhua Street, Qiqihar 161006, China; (Y.Z.); (W.M.); (S.L.); (Y.Q.); (M.Z.); (P.J.)
| | - Guoxing Yang
- Synthetic Resin Laboratory, Daqing Petrochemical Research Center, Petrochemical Research Institute, No. 2, Chengxiang Road, Wolitun, Longfeng District, Daqing 163714, China;
| | - Shuangping Xu
- Heilongjiang Provinces Key Laboratory of Polymeric Composite Materials, Department of Chemical and Chemical Engineering, Qiqihar University, Wenhua Street, Qiqihar 161006, China; (Y.Z.); (W.M.); (S.L.); (Y.Q.); (M.Z.); (P.J.)
- Correspondence: (H.J.); (S.X.)
| | - Shaobin Li
- Heilongjiang Provinces Key Laboratory of Polymeric Composite Materials, Department of Chemical and Chemical Engineering, Qiqihar University, Wenhua Street, Qiqihar 161006, China; (Y.Z.); (W.M.); (S.L.); (Y.Q.); (M.Z.); (P.J.)
| | - Guiming Su
- Institute of Advanced Technology, Heilongjiang Academy of Sciences, No. 52, Renhe Street, Nangang District, Harbin 150009, China;
| | - Yanqing Qu
- Heilongjiang Provinces Key Laboratory of Polymeric Composite Materials, Department of Chemical and Chemical Engineering, Qiqihar University, Wenhua Street, Qiqihar 161006, China; (Y.Z.); (W.M.); (S.L.); (Y.Q.); (M.Z.); (P.J.)
| | - Mingyu Zhang
- Heilongjiang Provinces Key Laboratory of Polymeric Composite Materials, Department of Chemical and Chemical Engineering, Qiqihar University, Wenhua Street, Qiqihar 161006, China; (Y.Z.); (W.M.); (S.L.); (Y.Q.); (M.Z.); (P.J.)
| | - Pengfei Jiang
- Heilongjiang Provinces Key Laboratory of Polymeric Composite Materials, Department of Chemical and Chemical Engineering, Qiqihar University, Wenhua Street, Qiqihar 161006, China; (Y.Z.); (W.M.); (S.L.); (Y.Q.); (M.Z.); (P.J.)
| |
Collapse
|
19
|
Salehipour M, Rezaei S, Rezaei M, Yazdani M, Mogharabi-Manzari M. Opportunities and Challenges in Biomedical Applications of Metal–Organic Frameworks. J Inorg Organomet Polym Mater 2021. [DOI: 10.1007/s10904-021-02118-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
20
|
Kadota K, Hong YL, Nishiyama Y, Sivaniah E, Packwood D, Horike S. One-Pot, Room-Temperature Conversion of CO 2 into Porous Metal-Organic Frameworks. J Am Chem Soc 2021; 143:16750-16757. [PMID: 34605645 DOI: 10.1021/jacs.1c08227] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The conversion of CO2 into functional materials under ambient conditions is a major challenge to realize a carbon-neutral society. Metal-organic frameworks (MOFs) have been extensively studied as designable porous materials. Despite the fact that CO2 is an attractive renewable resource, the synthesis of MOFs from CO2 remains unexplored. Chemical inertness of CO2 has hampered its conversion into typical MOF linkers such as carboxylates without high energy reactants and/or harsh conditions. Here, we present a one-pot conversion of CO2 into highly porous crystalline MOFs at ambient temperature and pressure. Cubic [Zn4O(piperazine dicarbamate)3] is synthesized via in situ formation of bridging dicarbamate linkers from piperazines and CO2 and shows high surface areas (∼2366 m2 g-1) and CO2 contents (>30 wt %). Whereas the dicarbamate linkers are thermodynamically unstable by themselves and readily release CO2, the formation of an extended coordination network in the MOF lattices stabilizes the linker enough to demonstrate stable permanent porosity.
Collapse
Affiliation(s)
| | - You-Lee Hong
- NMR Science and Development Division, RIKEN SPring-8 Center and RIKEN-JEOL Collaboration Center, Yokohama, Kanagawa 230-0045, Japan.,Institute for Integrated Cell-Material Sciences, Institute for Advanced Study, Kyoto University, Yoshida-Honmachi, Sakyo-ku, Kyoto 606-8501, Japan
| | - Yusuke Nishiyama
- NMR Science and Development Division, RIKEN SPring-8 Center and RIKEN-JEOL Collaboration Center, Yokohama, Kanagawa 230-0045, Japan.,JEOL RESONANCE Inc., Musashino, Akishima, Tokyo 196-8558, Japan
| | - Easan Sivaniah
- Institute for Integrated Cell-Material Sciences, Institute for Advanced Study, Kyoto University, Yoshida-Honmachi, Sakyo-ku, Kyoto 606-8501, Japan
| | - Daniel Packwood
- Institute for Integrated Cell-Material Sciences, Institute for Advanced Study, Kyoto University, Yoshida-Honmachi, Sakyo-ku, Kyoto 606-8501, Japan
| | - Satoshi Horike
- Institute for Integrated Cell-Material Sciences, Institute for Advanced Study, Kyoto University, Yoshida-Honmachi, Sakyo-ku, Kyoto 606-8501, Japan.,AIST-Kyoto University Chemical Energy Materials Open Innovation Laboratory (ChEM-OIL), National Institute of Advanced Industrial Science and Technology (AIST), Yoshida-Honmachi, Sakyo-ku, Kyoto 606-8501, Japan.,Department of Materials Science and Engineering, School of Molecular Science and Engineering, Vidyasirimedhi Institute of Science and Technology, Rayong 21210, Thailand
| |
Collapse
|
21
|
Ultrasound-assisted continuous-flow synthesis of PEGylated MIL-101(Cr) nanoparticles for hematopoietic radioprotection. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2021; 129:112369. [PMID: 34579888 DOI: 10.1016/j.msec.2021.112369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2021] [Revised: 07/16/2021] [Accepted: 08/10/2021] [Indexed: 10/20/2022]
Abstract
Metal-organic frameworks (MOFs) are useful as drug delivery carriers with high loading capacity and excellent biocompatibility. We fabricated a new drug carrier based on MIL-101(Cr) environmentally and loaded it with 47.2 wt% WR-1065 (active metabolite of amifostine). Moreover, the permeability and stability of these nanoparticles increased after PEGylation by the N-hydroxysuccinimide active ester protocol. Then, a "green" continuous-flow system equipped with an ultrasound applicator was newly designed to prepare the nanoparticles under the effect of acoustic cavitation. Response surface methodology (RSM) was used to optimize the large-scale process conditions with Box-Behnken design to obtain high space-time yield (5785 kg m-3 day-1). These less toxic MOFs nanoparticles increased cell viability by scavenging the accumulated reactive oxygen species and resisting DNA damage after irradiation. They are capable of mitigating radiation injury, achieving a 30-d survival rate of 90% in mice after lethal total body irradiation (8.0 Gy). This countermeasure significantly improved the peripheral blood cell count, hematopoietic stem and progenitor cells frequency, and clonogenic function of hematopoietic progenitor cells. It probably prevents irradiation-induced hematopoietic damage through the p53-dependent apoptotic pathway. Therefore, ultrasound-assisted continuous-flow synthesis is a sustainable method to produce MOFs on a large scale for radioprotection.
Collapse
|
22
|
Fu J, Wu YN. A Showcase of Green Chemistry: Sustainable Synthetic Approach of Zirconium-Based MOF Materials. Chemistry 2021; 27:9967-9987. [PMID: 33955075 DOI: 10.1002/chem.202005151] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Indexed: 11/08/2022]
Abstract
Zirconium-based metal-organic framework materials (Zr-MOFs) have more practical usage over most conventional benchmark porous materials and even many other MOFs due to the excellent structural stability, rich coordination forms, and various active sites. However, their mass-production and application are restricted by the high-cost raw materials, complex synthesis procedures, harsh reaction conditions, and unexpected environmental impact. Based on the principles of "Green Chemistry", considerable efforts have been done for breaking through the limitations, and significant progress has been made in the sustainable synthesis of Zr-MOFs over the past decade. In this review, the advancements of green raw materials and green synthesis methods in the synthesis of Zr-MOFs are reviewed, along with the corresponding drawbacks. The challenges and prospects are discussed and outlooked, expecting to provide guidance for the acceleration of the industrialization and commercialization of Zr-MOFs.
Collapse
Affiliation(s)
- Jiarui Fu
- College of Environmental Science and Engineering State Key Laboratory of Pollution Control and Resource Reuse, Tongji University, Siping Rd 1239, 200092, Shanghai, P.R. China.,Shanghai Institute of Pollution Control and Ecological Security, Siping Rd 1239, 200092, Shanghai, P.R. China
| | - Yi-Nan Wu
- College of Environmental Science and Engineering State Key Laboratory of Pollution Control and Resource Reuse, Tongji University, Siping Rd 1239, 200092, Shanghai, P.R. China.,Shanghai Institute of Pollution Control and Ecological Security, Siping Rd 1239, 200092, Shanghai, P.R. China
| |
Collapse
|
23
|
Wang W, Sun Z, Chen S, Qian J, He M, Chen Q. Microwave‐assisted fabrication of a mixed‐ligand [Cu
4
(μ
3
‐OH)
2
]‐cluster‐based metal–organic framework with coordinatively unsaturated metal sites for carboxylation of terminal alkynes with carbon dioxide. Appl Organomet Chem 2021. [DOI: 10.1002/aoc.6288] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Wen‐Jing Wang
- Jiangsu Key Laboratory of Advanced Catalytic Materials & Technology, Advanced Catalysis and Green Manufacturing Collaborative Innovation Center Changzhou University Changzhou China
| | - Zhong‐Hua Sun
- Jiangsu Key Laboratory of Advanced Catalytic Materials & Technology, Advanced Catalysis and Green Manufacturing Collaborative Innovation Center Changzhou University Changzhou China
| | - Sheng‐Chun Chen
- Jiangsu Key Laboratory of Advanced Catalytic Materials & Technology, Advanced Catalysis and Green Manufacturing Collaborative Innovation Center Changzhou University Changzhou China
| | - Jun‐Feng Qian
- Jiangsu Key Laboratory of Advanced Catalytic Materials & Technology, Advanced Catalysis and Green Manufacturing Collaborative Innovation Center Changzhou University Changzhou China
| | - Ming‐Yang He
- Jiangsu Key Laboratory of Advanced Catalytic Materials & Technology, Advanced Catalysis and Green Manufacturing Collaborative Innovation Center Changzhou University Changzhou China
| | - Qun Chen
- Jiangsu Key Laboratory of Advanced Catalytic Materials & Technology, Advanced Catalysis and Green Manufacturing Collaborative Innovation Center Changzhou University Changzhou China
| |
Collapse
|
24
|
Ryu U, Jee S, Rao PC, Shin J, Ko C, Yoon M, Park KS, Choi KM. Recent advances in process engineering and upcoming applications of metal-organic frameworks. Coord Chem Rev 2021; 426:213544. [PMID: 32981945 PMCID: PMC7500364 DOI: 10.1016/j.ccr.2020.213544] [Citation(s) in RCA: 130] [Impact Index Per Article: 43.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2020] [Revised: 08/05/2020] [Accepted: 08/07/2020] [Indexed: 12/25/2022]
Abstract
Progress in metal-organic frameworks (MOFs) has advanced from fundamental chemistry to engineering processes and applications, resulting in new industrial opportunities. The unique features of MOFs, such as their permanent porosity, high surface area, and structural flexibility, continue to draw industrial interest outside the traditional MOF field, both to solve existing challenges and to create new businesses. In this context, diverse research has been directed toward commercializing MOFs, but such studies have been performed according to a variety of individual goals. Therefore, there have been limited opportunities to share the challenges, goals, and findings with most of the MOF field. In this review, we examine the issues and demands for MOF commercialization and investigate recent advances in MOF process engineering and applications. Specifically, we discuss the criteria for MOF commercialization from the views of stability, producibility, regulations, and production cost. This review covers progress in the mass production and formation of MOFs along with future applications that are not currently well known but have high potential for new areas of MOF commercialization.
Collapse
Key Words
- 2,4-DNT, 2,4-dinitrotoluene
- 4-NP, 4-nitrophenol
- ABS, acrylonitril-butadiene-styrene
- BET, Brunauer–Emmett–Teller
- CA, Cellulose-acetate
- CEES, 2-Chloroethyl ethyl sulfide
- CIE, Commission international ed’Eclairage
- CNF, Cellulose nanofiber
- CNG, compressed natural gas
- CVD, Chemical vapor deposition
- CWA, Chemical warfare agent
- CWC, Chemical weapons convention
- Commercialization
- DCP, Diethylchlorophosphonate
- DDM, n-dodecyl β-D-maltoside
- DEF, N,N-Diethyl formamide
- DFP, Diisopropyl fluorophosphate
- DFT, Density functional theory
- DIFP, Diisopropylfluorophosphate
- DLS, Dynamic light scattering
- DMA, Dimethylacetamide
- DMF, N,N-Dimethyl formamide
- DMMP, Dimethyl methylphosphonate
- DRIFTS, Diffuse reflectance infrared fourier transform spectroscopy
- Dispersion
- E. Coli, Escherichia coli
- ECS, Extrusion-crushing-sieving
- EDLCs, Electrochemical double-layer capacitors
- EPA, Environmental protection agency
- EXAFS, Extended X-ray absorption fine structure
- FT-IR, Fourier-transform infrared spectroscopy
- Fn, Fusobacterium nucleatum
- Future applications
- GC–MS, Gas chromatography–mass spectrometry
- GRGDS, Gly-Arg-Gly-Asp-Ser
- ILDs, Interlayer dielectrics
- ITRS, International technology roadmap for semiconductors
- LED, Light-emitting diode
- LIBs, Lithium-ion batteries
- LMOF, Luminescent metal–organic framework
- LOD, Limit of detection
- MB, methylene blue
- MBC, Minimum bactericidal concentration
- MIC, Minimum inhibitory concentration
- MIM, Metal-insulator–metal
- MMP, Methyl methylphosphonate
- MOF, metal–organic framework
- MOGs, Metal-organic gels
- MRA, mesoporous ρ-alumina
- MRSA, Methicillin-resistant staphylococcus aureus
- MVTR, Moisture vapor transport rate
- Mass production
- Metal–organic framework
- NMP, N-methyl-2-pyrrolidone
- NMR, Nuclear magnetic resonance
- PAN, Polyacrylonitrile
- PANI, Polyaniline
- PEG-CCM, polyethylene-glycol-modified mono-functional curcumin
- PEI, Polyetherimide
- PEMFCs, Proton-exchange membrane fuel cells
- PM, Particulate matter
- POM, Polyoxometalate
- PPC, Polypropylene/polycarbonate
- PS, Polystyrene
- PSM, Post-synthetic modification
- PVA, Polyvinyl alcohol
- PVB, Polyvinyl Butyral
- PVC, Polyvinylchloride
- PVF, Polyvinylformal
- PXRD, Powder x-ray diffraction
- Pg, Porphyromonas gingivalis
- RDX, 1,3,5-trinitro-1,3,5-triazinane
- ROS, Reactive oxygen species
- SALI, Solvent assisted ligand incorporation
- SBU, Secondary building unit
- SCXRD, Single-crystal X-ray diffraction
- SEM, Scanning electron microscope
- SIBs, Sodium-ion batteries
- SSEs, Solid-state electrolytes
- STY, space–time yield, grams of MOF per cubic meter of reaction mixture per day of synthesis
- Shaping
- TEA, Triethylamine
- TIPS-HoP, Thermally induced phase separation-hot pressing
- TNP, 2,4,6-trinitrophenol
- TNT, 2,4,6-trinitrotoluene
- UPS, Ultraviolet photoelectron spectroscopy
- VOC, Volatile organic compound
- WHO, World health organization
- WLED, White light emitting diode
- XPS, X-ray photoelectron spectroscopy
- ZIF, zeolitic imidazolate framework
- hXAS, Hard X-ray absorption spectroscopy
- sXAS, Soft X-ray absorption spectroscopy
Collapse
Affiliation(s)
- UnJin Ryu
- Department of Chemical and Biological Engineering, Sookmyung Women's University, 100 Cheongpa-ro 47 gil, Yongsan-gu, Seoul 04310, Republic of Korea
| | - Seohyeon Jee
- Department of Chemical and Biological Engineering, Sookmyung Women's University, 100 Cheongpa-ro 47 gil, Yongsan-gu, Seoul 04310, Republic of Korea
| | - Purna Chandra Rao
- Department of Chemistry & Green-Nano Materials Research Center, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Jeeyoung Shin
- Department of Mechanical Systems Engineering, Sookmyung Women's University, Seoul 04310, Republic of Korea
- Institute of Advanced Materials & Systems, Sookmyung Women's University, 100 Cheongpa-ro 47 gil, Yongsan-gu, Seoul 04310, Republic of Korea
| | - Changhyun Ko
- Institute of Advanced Materials & Systems, Sookmyung Women's University, 100 Cheongpa-ro 47 gil, Yongsan-gu, Seoul 04310, Republic of Korea
- Department of Applied Physics, College of Engineering, Sookmyung Women's University, Seoul 04310, Republic of Korea
| | - Minyoung Yoon
- Department of Chemistry & Green-Nano Materials Research Center, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Kyo Sung Park
- Corporation R&D, Research Park, LG Chem, LG Science Park, 30, Magokjungang-10-Ro, Gangseo-Gu, Seoul, Republic of Korea
| | - Kyung Min Choi
- Department of Chemical and Biological Engineering, Sookmyung Women's University, 100 Cheongpa-ro 47 gil, Yongsan-gu, Seoul 04310, Republic of Korea
- Institute of Advanced Materials & Systems, Sookmyung Women's University, 100 Cheongpa-ro 47 gil, Yongsan-gu, Seoul 04310, Republic of Korea
| |
Collapse
|
25
|
Kim H, Kim N, Ryu J. Porous framework-based hybrid materials for solar-to-chemical energy conversion: from powder photocatalysts to photoelectrodes. Inorg Chem Front 2021. [DOI: 10.1039/d1qi00543j] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Porous framework materials such as metal organic frameworks (MOFs) and covalent organic frameworks (COFs) can be considered promising materials for solar-to-chemical energy conversion.
Collapse
Affiliation(s)
- Hyunwoo Kim
- Department of Energy Engineering, School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
- Emergent Hydrogen Technology R&D Center, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Nayeong Kim
- Department of Energy Engineering, School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
- Emergent Hydrogen Technology R&D Center, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Jungki Ryu
- Department of Energy Engineering, School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
- Emergent Hydrogen Technology R&D Center, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| |
Collapse
|
26
|
Sud D, Kaur G. A comprehensive review on synthetic approaches for metal-organic frameworks: From traditional solvothermal to greener protocols. Polyhedron 2021. [DOI: 10.1016/j.poly.2020.114897] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
27
|
Shi J, Xia ZX, Chen SC, He MY, Chen Q. Microwave synthesis of a blue luminescent silver(I) coordination polymer with a rigid tris-triazole ligand. ZEITSCHRIFT FUR NATURFORSCHUNG SECTION B-A JOURNAL OF CHEMICAL SCIENCES 2020. [DOI: 10.1515/znb-2020-0019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
Microwave-assisted hydrothermal reaction of 2-fluoro-3,5,6-tri(1H-1,2,4-triazol-1-yl)-1,4-benzenedicarbonitrile (L1) with silver(I) nitrate yields a coordination polymer [Ag3(L2)2(NO3)]
n
(1), in which the L2 ligand (HL2 = 2-hydroxy-3,5,6-tri(1H-1,2,4-triazol-1-yl)terephthalonitrile) is obtained by in situ ligand transformation from the L1 precursor. HL2 monohydrate has also been isolated by the microwave-mediated hydrolysis of L1 and structurally characterized. Single-crystal X-ray diffraction reveals that HL2 monohydrate comprises a zwitterionic HL2 moiety, while complex 1 displays an infinite L2-bridged double-chain structure. Given that the HL2 molecule has a large conjugated π system, complex 1 exhibits strong blue luminescence in the solid state at room temperature.
Collapse
Affiliation(s)
- Juan Shi
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, School of Petrochemical Engineering , Changzhou University , Changzhou , 213164 , PR China
| | - Zhen-Xiang Xia
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, School of Petrochemical Engineering , Changzhou University , Changzhou , 213164 , PR China
| | - Sheng-Chun Chen
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, School of Petrochemical Engineering , Changzhou University , Changzhou , 213164 , PR China
| | - Ming-Yang He
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, School of Petrochemical Engineering , Changzhou University , Changzhou , 213164 , PR China
| | - Qun Chen
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, School of Petrochemical Engineering , Changzhou University , Changzhou , 213164 , PR China
| |
Collapse
|
28
|
Gaikwad S, Kim SJ, Han S. Novel metal–organic framework of UTSA-16 (Zn) synthesized by a microwave method: Outstanding performance for CO2 capture with improved stability to acid gases. J IND ENG CHEM 2020. [DOI: 10.1016/j.jiec.2020.04.015] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
29
|
Yao CX, Zhao N, Liu JC, Chen LJ, Liu JM, Fang GZ, Wang S. Recent Progress on Luminescent Metal-Organic Framework-Involved Hybrid Materials for Rapid Determination of Contaminants in Environment and Food. Polymers (Basel) 2020; 12:E691. [PMID: 32244951 PMCID: PMC7183274 DOI: 10.3390/polym12030691] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Revised: 03/17/2020] [Accepted: 03/18/2020] [Indexed: 01/28/2023] Open
Abstract
The high speed of contaminants growth needs the burgeoning of new analytical techniques to keep up with the continuous demand for monitoring and legislation on food safety and environmental pollution control. Metal-organic frameworks (MOFs) are a kind of advanced crystal porous materials with controllable apertures, which are self-assembled by organic ligands and inorganic metal nodes. They have the merits of large specific surface areas, high porosity and the diversity of structures and functions. Latterly, the utilization of metal-organic frameworks has attracted much attention in environmental protection and the food industry. MOFs have exhibited great value as sensing materials for many targets. Among many sensing methods, fluorometric sensing is one of the widely studied methods in the detection of harmful substances in food and environmental samples. Fluorometric detection based on MOFs and its functional materials is currently one of the most key research subjects in the food and environmental fields. It has gradually become a hot research direction to construct the highly sensitive rapid sensors to detect harmful substances in the food matrix based on metal-organic frameworks. In this paper, we introduced the synthesis and detection application characteristics (absorption, fluorescence, etc.) of metal-organic frameworks. We summarized their applications in the MOFs-based fluorometric detection of harmful substances in food and water over the past few years. The harmful substances mainly include heavy metals, organic pollutants and other small molecules, etc. On this basis, the future development and possible application of the MOFs have prospected in this review paper.
Collapse
Affiliation(s)
- Chi-Xuan Yao
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science & Technology, Tianjin 300457, China; (C.-X.Y.); (G.-Z.F.)
| | - Ning Zhao
- Tianjin Key Laboratory of Food Science and Health, School of Medicine, Nankai University, Tianjin 300071, China; (N.Z.); (J.-M.L.)
| | - Ji-Chao Liu
- Beijing San Yuan foods co., LTD., No. 8 Yingchang Road, Yinghai, Daxing District, Beijing 100076, China;
| | - Li-Jun Chen
- Beijing San Yuan foods co., LTD., No. 8 Yingchang Road, Yinghai, Daxing District, Beijing 100076, China;
| | - Jing-Min Liu
- Tianjin Key Laboratory of Food Science and Health, School of Medicine, Nankai University, Tianjin 300071, China; (N.Z.); (J.-M.L.)
| | - Guo-Zhen Fang
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science & Technology, Tianjin 300457, China; (C.-X.Y.); (G.-Z.F.)
| | - Shuo Wang
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science & Technology, Tianjin 300457, China; (C.-X.Y.); (G.-Z.F.)
- Tianjin Key Laboratory of Food Science and Health, School of Medicine, Nankai University, Tianjin 300071, China; (N.Z.); (J.-M.L.)
| |
Collapse
|
30
|
Zheng P, Liu Q, Wang D, Li Z, Meng Y, Zheng Y. Preparation of Covalent-Ionically Cross-Linked UiO-66-NH 2/Sulfonated Aromatic Composite Proton Exchange Membranes With Excellent Performance. Front Chem 2020; 8:56. [PMID: 32133339 PMCID: PMC7039937 DOI: 10.3389/fchem.2020.00056] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Accepted: 01/17/2020] [Indexed: 01/14/2023] Open
Abstract
Metal-organic frameworks (MOFs), as newly emerging filler materials for polyelectrolytes, show many compelling intrinsic features, such as variable structural designability and modifiability of proton conductivity. In this manuscript, UiO-66-NH2, a stable MOF with -NH2 functional groups in its ligands, was selected to achieve a high-performance sulfonated poly(arylene ether nitrile)s (SPENs)/UiO-66-NH2-x covalent-ionically cross-linked composite membrane. Simultaneously, the obtained composite membranes displayed excellent thermal stability and dimensional stability. The as-prepared SPEN/UiO-66-NH2-x cross-linked membranes exhibited higher proton conductivity than recast SPENs, which can be attributed to the construction of ionic clusters and well-connected ionic nanochannels along the interface between UiO-66-NH2-x and SPEN matrix via molecular interactions. Meanwhile, the methanol permeability of the SPEN/UiO-66-NH2-x composite membrane had been effectively reduced due to the barrier effect of cross-linking and the addition of UiO-66-NH2-x. The SPEN/UiO-66-NH2-5 composite membrane had the highest selectivity of 6.42 × 105 S·s·cm−3: 14.3-times higher than that of Nafion 117. The preparation of cross-linked UiO-66-NH2/SPEN composite was facile, which provides a new strategy for preparing high performance proton exchange membrane.
Collapse
Affiliation(s)
- Penglun Zheng
- College of Civil Aviation Safety Engineering, Civil Aviation Flight University of China, Guanghan, China
| | - Quanyi Liu
- College of Civil Aviation Safety Engineering, Civil Aviation Flight University of China, Guanghan, China
| | - Donghui Wang
- College of Civil Aviation Safety Engineering, Civil Aviation Flight University of China, Guanghan, China
| | - Zekun Li
- College of Civil Aviation Safety Engineering, Civil Aviation Flight University of China, Guanghan, China
| | - Yawei Meng
- College of Civil Aviation Safety Engineering, Civil Aviation Flight University of China, Guanghan, China
| | - Yun Zheng
- Key Laboratory of Optoelectronic Chemical Materials and Devices, Ministry of Education, Jianghan University, Wuhan, China
| |
Collapse
|
31
|
Nguyen LHT, Nguyen TTT, Dang YT, Tran PH, Le Hoang Doan T. Microwave‐Assisted Synthesis as an Efficient Method to Enhance the Catalytic Activity of Zr‐Based Metal Organic Framework UiO‐66 in a Heterocyclization Reaction. ASIAN J ORG CHEM 2019. [DOI: 10.1002/ajoc.201900556] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Linh Ho Thuy Nguyen
- Center for Innovative Materials and Architectures (INOMAR)Vietnam National University Ho Chi Minh City (VNU-HCM) Ho Chi Minh City 721337 Vietnam
- Department of Organic Chemistry, Faculty of Chemistry University of ScienceVietnam National University-Ho Chi Minh City Ho Chi Minh City 721337 Vietnam
| | - Trang Thi Thu Nguyen
- Center for Innovative Materials and Architectures (INOMAR)Vietnam National University Ho Chi Minh City (VNU-HCM) Ho Chi Minh City 721337 Vietnam
- Department of Organic Chemistry, Faculty of Chemistry University of ScienceVietnam National University-Ho Chi Minh City Ho Chi Minh City 721337 Vietnam
| | - Y. Thi Dang
- Center for Innovative Materials and Architectures (INOMAR)Vietnam National University Ho Chi Minh City (VNU-HCM) Ho Chi Minh City 721337 Vietnam
| | - Phuong Hoang Tran
- Department of Organic Chemistry, Faculty of Chemistry University of ScienceVietnam National University-Ho Chi Minh City Ho Chi Minh City 721337 Vietnam
| | - Tan Le Hoang Doan
- Center for Innovative Materials and Architectures (INOMAR)Vietnam National University Ho Chi Minh City (VNU-HCM) Ho Chi Minh City 721337 Vietnam
- Department of Organic Chemistry, Faculty of Chemistry University of ScienceVietnam National University-Ho Chi Minh City Ho Chi Minh City 721337 Vietnam
| |
Collapse
|
32
|
Current and emerging applications of nanostructured metal–organic frameworks in cancer-targeted theranostics. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 105:110091. [DOI: 10.1016/j.msec.2019.110091] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Revised: 08/12/2019] [Accepted: 08/14/2019] [Indexed: 02/08/2023]
|
33
|
He B, Sadiq MM, Batten MP, Suzuki K, Rubio‐Martinez M, Gardiner J, Hill MR. Continuous Flow Synthesis of a Zr Magnetic Framework Composite for Post‐Combustion CO
2
Capture. Chemistry 2019; 25:13184-13188. [DOI: 10.1002/chem.201902560] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Indexed: 12/28/2022]
Affiliation(s)
- Brandon He
- Department of Chemical EngineeringMonash University Clayton VIC 3800 Australia
- CSIRO Private Bag 10 Clayton South VIC 3169 Australia
| | - Muhammad Munir Sadiq
- Department of Chemical EngineeringMonash University Clayton VIC 3800 Australia
- CSIRO Private Bag 10 Clayton South VIC 3169 Australia
| | | | - Kiyonori Suzuki
- Department of Materials Science and EngineeringMonash University Clayton VIC 3800 Australia
| | | | | | - Matthew R. Hill
- Department of Chemical EngineeringMonash University Clayton VIC 3800 Australia
- CSIRO Private Bag 10 Clayton South VIC 3169 Australia
| |
Collapse
|
34
|
Interconversion of lanthanide-organic frameworks based on the anions of 2,5-dihydroxyterephthalic acid as connectors. Inorganica Chim Acta 2019. [DOI: 10.1016/j.ica.2019.05.036] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
35
|
Chen SC, Chai NN, Huang KL, Tian F, Shi J, He MY, Chen Q. Microwave synthesis of 1-D, 2-D, and 3-D blue luminescent coordination polymers of d10 metals with a new rigid tris-triazole ligand. Inorganica Chim Acta 2019. [DOI: 10.1016/j.ica.2019.05.033] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
36
|
Hu Z, Lu F, Liu Y, Zhao L, Yu L, Xu X, Yuan W, Zhang Q, Huang Y. Construction of Anti-Ultraviolet "Shielding Clothes" on Poly( p-phenylene benzobisoxazole) Fibers: Metal Organic Framework-Mediated Absorption Strategy. ACS APPLIED MATERIALS & INTERFACES 2018; 10:43262-43274. [PMID: 30379514 DOI: 10.1021/acsami.8b16845] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
A metal-organic framework (MOF)-mediated adsorption strategy is first developed for improving the anti-ultraviolet (UV) properties of poly( p-phenylene benzobisoxazole) (PBO) fibers. In this work, UIO-66 was successfully anchored onto the surface of PBO fibers by one-step microwave-assisted heating method. The experimental results showed an obviously enhanced surface energy (91.1%), roughness (268.4%), interfacial shear strength (49.0%), and anti-UV properties (66.7%) compared to pristine PBO fibers. The anti-UV dye (tartrazine) was further immobilized onto the surface of PBO fibers via an adsorption strategy mediated by UIO-66. Interestingly, the PBO@tartrazine fibers demonstrated superior anti-UV performance (further up to 81.5%) compared to PBO@UIO-66 fibers. The extraordinary anti-UV properties of PBO@tartrazine fibers could be rationally ascribed to the synergistic effects of UIO-66 and tartrazine molecules. Considering the diversities and functionalities of MOFs and targeted materials, our work indicates that the MOF-mediated adsorption strategy would promisingly endow PBO fibers with other desired performance and applications such as solar-thermal transition and self-healing abilities.
Collapse
Affiliation(s)
- Zhen Hu
- School of Chemistry and Chemical Engineering, MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage , Harbin Institute of Technology , Harbin 150001 , China
| | - Fei Lu
- School of Chemistry and Chemical Engineering, MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage , Harbin Institute of Technology , Harbin 150001 , China
| | - Yingying Liu
- School of Chemistry and Chemical Engineering, MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage , Harbin Institute of Technology , Harbin 150001 , China
| | - Lei Zhao
- School of Chemistry and Chemical Engineering, MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage , Harbin Institute of Technology , Harbin 150001 , China
| | - Long Yu
- School of Chemistry and Chemical Engineering, MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage , Harbin Institute of Technology , Harbin 150001 , China
| | - Xirong Xu
- School of Chemistry and Chemical Engineering, MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage , Harbin Institute of Technology , Harbin 150001 , China
| | - Weihao Yuan
- School of Chemistry and Chemical Engineering, MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage , Harbin Institute of Technology , Harbin 150001 , China
| | - Qian Zhang
- School of Chemistry and Chemical Engineering, MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage , Harbin Institute of Technology , Harbin 150001 , China
| | - Yudong Huang
- School of Chemistry and Chemical Engineering, MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage , Harbin Institute of Technology , Harbin 150001 , China
| |
Collapse
|
37
|
Farid S, Ren S, Hao C. MOF-derived metal/carbon materials as oxygen evolution reaction catalysts. INORG CHEM COMMUN 2018. [DOI: 10.1016/j.inoche.2018.06.008] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
38
|
Embaby MS, Elwany SD, Setyaningsih W, Saber MR. The adsorptive properties of UiO-66 towards organic dyes: A record adsorption capacity for the anionic dye Alizarin Red S. Chin J Chem Eng 2018. [DOI: 10.1016/j.cjche.2017.07.014] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
39
|
Rubio-Martinez M, Avci-Camur C, Thornton AW, Imaz I, Maspoch D, Hill MR. New synthetic routes towards MOF production at scale. Chem Soc Rev 2018; 46:3453-3480. [PMID: 28530737 DOI: 10.1039/c7cs00109f] [Citation(s) in RCA: 320] [Impact Index Per Article: 53.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The potential commercial applications for metal organic frameworks (MOFs) are tantalizing. To address the opportunity, many novel approaches for their synthesis have been developed recently. These strategies present a critical step towards harnessing the myriad of potential applications of MOFs by enabling larger scale production and hence real-world applications. This review provides an up-to-date survey ( references) of the most promising novel synthetic routes, i.e., electrochemical, microwave, mechanochemical, spray drying and flow chemistry synthesis. Additionally, the essential topic of downstream processes, especially for large scale synthesis, is critically reviewed. Lastly we present the current state of MOF commercialization with direct feedback from commercial players.
Collapse
|
40
|
Donnadio A, Narducci R, Casciola M, Marmottini F, D'Amato R, Jazestani M, Chiniforoshan H, Costantino F. Mixed Membrane Matrices Based on Nafion/UiO-66/SO 3H-UiO-66 Nano-MOFs: Revealing the Effect of Crystal Size, Sulfonation, and Filler Loading on the Mechanical and Conductivity Properties. ACS APPLIED MATERIALS & INTERFACES 2017; 9:42239-42246. [PMID: 29115824 DOI: 10.1021/acsami.7b14847] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Mixed membrane matrices (MMMs) made up with Nafion and nanocrystals of zirconium metal-organic framework (MOF) UiO-66 or the analogous sulfonated SO3H-UiO-66 were prepared by varying the filler loading and the size of the crystals. The combined effects of size and loading, together with the presence of sulfonic groups covalently linked to the MOFs, were studied with regard to the conductivity and mechanical properties of the obtained composite matrices. A large screening of membranes was preliminarily made and, on the most promising samples, an accurate conductivity study at different relative humidities and temperatures was also carried out. The results showed that membranes containing large crystals (200 nm average size) in low amounts (around 2%) displayed the best results in terms of proton conductivity values, reaching values by 30% higher than those of pure Nafion, while leaving the mechanical properties substantially unchanged. On the contrary, MMMs containing MOFs of small size (20 nm average size) did not show any conductivity improvements if compared to pure Nafion membranes. The effect of MOF sulfonation was negligible at low filler loading whereas it became important at loading values around 10%. Finally, membranes with a high filler loading (up to 60 wt %) of sulfonated UiO-66 showed a slight reduction of conductivity in comparison with membranes loaded at 20% of nonsulfonated ones.
Collapse
Affiliation(s)
- Anna Donnadio
- Department of Pharmaceutical Sciences, University of Perugia , Via A. Fabretti 48, 06123 Perugia, Italy
| | - Riccardo Narducci
- Department of Industrial Engineering, University of Rome Tor Vergata (URoma2) , Via del Politecnico 1, 00133 Roma, Italy
| | - Mario Casciola
- Department of Chemistry, Biology and Biotechnologies, University of Perugia , Via Elce di Sotto 8, 06123 Perugia, Italy
| | - Fabio Marmottini
- Department of Chemistry, Biology and Biotechnologies, University of Perugia , Via Elce di Sotto 8, 06123 Perugia, Italy
| | - Roberto D'Amato
- Department of Chemistry, Biology and Biotechnologies, University of Perugia , Via Elce di Sotto 8, 06123 Perugia, Italy
| | - Mehdi Jazestani
- Department of Chemistry, Isfahan University of Technology , Isfahan 84156-83111, Iran
| | - Hossein Chiniforoshan
- Department of Chemistry, Isfahan University of Technology , Isfahan 84156-83111, Iran
| | - Ferdinando Costantino
- Department of Chemistry, Biology and Biotechnologies, University of Perugia , Via Elce di Sotto 8, 06123 Perugia, Italy
| |
Collapse
|
41
|
Tansell AJ, Jones CL, Easun TL. MOF the beaten track: unusual structures and uncommon applications of metal-organic frameworks. Chem Cent J 2017; 11:100. [PMID: 29086865 PMCID: PMC5636780 DOI: 10.1186/s13065-017-0330-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2017] [Accepted: 09/22/2017] [Indexed: 12/20/2022] Open
Abstract
Over the past few decades, metal-organic frameworks (MOFs) have proved themselves as strong contenders in the world of porous materials, standing alongside established classes of compounds such as zeolites and activated carbons. Following extensive investigation into the porosity of these materials and their gas uptake properties, the MOF community are now branching away from these heavily researched areas, and venturing into unexplored avenues. Ranging from novel synthetic routes to post-synthetic functionalisation of frameworks, host-guest properties to sensing abilities, this review takes a sidestep away from increasingly 'traditional' approaches in the field, and details some of the more curious qualities of this relatively young family of materials.
Collapse
Affiliation(s)
- Alexander J. Tansell
- School of Chemistry, Cardiff University, Main Building, Park Place, Cardiff, CF10 3AT UK
| | - Corey L. Jones
- School of Chemistry, Cardiff University, Main Building, Park Place, Cardiff, CF10 3AT UK
| | - Timothy L. Easun
- School of Chemistry, Cardiff University, Main Building, Park Place, Cardiff, CF10 3AT UK
| |
Collapse
|
42
|
Vinu M, Lin WC, Senthil Raja D, Han JL, Lin CH. Microwave-Assisted Synthesis of Nanoporous Aluminum-Based Coordination Polymers as Catalysts for Selective Sulfoxidation Reaction. Polymers (Basel) 2017; 9:E498. [PMID: 30965801 PMCID: PMC6418783 DOI: 10.3390/polym9100498] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2017] [Revised: 10/01/2017] [Accepted: 10/03/2017] [Indexed: 11/22/2022] Open
Abstract
A series of aluminum-based coordination polymers or metal⁻organic frameworks (Al⁻MOFs), i.e., DUT-4, DUT-5, MIL-53, NH₂-MIL-53, and MIL-100, have been facile prepared by microwave (MW)-assisted reactions and used as catalysts for selective sulfoxidation reactions. The MW-assisted synthesis drastically reduced the reaction time from few days to hours. The prepared MOFs have smaller and uniform particle sizes and better yield compared to conventional hydrothermal method. Furthermore, the Al⁻MOFs have been successfully demonstrated as catalysts in oxidation reaction of methyl phenyl sulfide with H₂O₂ as oxidant, even under mild conditions, with more than 95% conversion.
Collapse
Affiliation(s)
- Madhan Vinu
- Department of Chemistry, Chung Yuan Christian University, Chung Li, Taoyuan 32023, Taiwan.
| | - Wei-Cheng Lin
- Department of Chemistry, Chung Yuan Christian University, Chung Li, Taoyuan 32023, Taiwan.
| | - Duraisamy Senthil Raja
- Department of Chemistry, Chung Yuan Christian University, Chung Li, Taoyuan 32023, Taiwan.
| | - Jeng-Liang Han
- Department of Chemistry, Chung Yuan Christian University, Chung Li, Taoyuan 32023, Taiwan.
| | - Chia-Her Lin
- Department of Chemistry, Chung Yuan Christian University, Chung Li, Taoyuan 32023, Taiwan.
| |
Collapse
|
43
|
Taddei M. When defects turn into virtues: The curious case of zirconium-based metal-organic frameworks. Coord Chem Rev 2017. [DOI: 10.1016/j.ccr.2017.04.010] [Citation(s) in RCA: 180] [Impact Index Per Article: 25.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
44
|
|
45
|
Mondal SS, Dey S, Attallah AG, Krause-Rehberg R, Janiak C, Holdt HJ. Insights into the pores of microwave-assisted metal–imidazolate frameworks showing enhanced gas sorption. Dalton Trans 2017; 46:4824-4833. [DOI: 10.1039/c7dt00350a] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Microwave assisted synthesized materials have an inherent ability to trap extra linkers, thereby reducing the pore sizes of CE- heating materials to ultra/micropores. These ultramicropores are responsible for high gas sorption.
Collapse
Affiliation(s)
| | - Subarna Dey
- Institut für Anorganische Chemie und Strukturchemie
- Heinrich-Heine-Universität Düsseldorf
- Germany
| | - Ahmed G. Attallah
- Institut für Physik
- Martin-Luther-Universität Halle-Wittenberg
- 06120 Halle
- Germany
- Physics Department
| | | | - Christoph Janiak
- Institut für Anorganische Chemie und Strukturchemie
- Heinrich-Heine-Universität Düsseldorf
- Germany
| | - Hans-Jürgen Holdt
- Institut für Chemie
- Anorganische Chemie
- Universität Potsdam
- 14476 Potsdam
- Germany
| |
Collapse
|
46
|
Firmino AD, Mendes RF, Ananias D, Vilela SM, Carlos LD, Tomé JP, Rocha J, Almeida Paz FA. Microwave Synthesis of a photoluminescent Metal-Organic Framework based on a rigid tetraphosphonate linker. Inorganica Chim Acta 2017. [DOI: 10.1016/j.ica.2016.05.029] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
47
|
Taddei M, Casati N, Steitz DA, Dümbgen KC, van Bokhoven JA, Ranocchiari M. In situ high-resolution powder X-ray diffraction study of UiO-66 under synthesis conditions in a continuous-flow microwave reactor. CrystEngComm 2017. [DOI: 10.1039/c7ce00867h] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
48
|
Taddei M, Steitz DA, van Bokhoven JA, Ranocchiari M. Continuous-Flow Microwave Synthesis of Metal-Organic Frameworks: A Highly Efficient Method for Large-Scale Production. Chemistry 2016; 22:3245-3249. [DOI: 10.1002/chem.201505139] [Citation(s) in RCA: 99] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2015] [Indexed: 11/05/2022]
Affiliation(s)
- Marco Taddei
- Laboratory for Catalysis and Sustainable Chemistry; Paul Scherrer Institut; 5232 Villigen-PSI Switzerland
| | - Daniel Antti Steitz
- Institute for Chemical and Bioengineering; ETH Zürich; Vladimir Prelog Weg 1 8093 Zürich Switzerland
| | - Jeroen Anton van Bokhoven
- Laboratory for Catalysis and Sustainable Chemistry; Paul Scherrer Institut; 5232 Villigen-PSI Switzerland
- Institute for Chemical and Bioengineering; ETH Zürich; Vladimir Prelog Weg 1 8093 Zürich Switzerland
| | - Marco Ranocchiari
- Laboratory for Catalysis and Sustainable Chemistry; Paul Scherrer Institut; 5232 Villigen-PSI Switzerland
| |
Collapse
|
49
|
Bai Y, Dou Y, Xie LH, Rutledge W, Li JR, Zhou HC. Zr-based metal–organic frameworks: design, synthesis, structure, and applications. Chem Soc Rev 2016; 45:2327-67. [DOI: 10.1039/c5cs00837a] [Citation(s) in RCA: 1527] [Impact Index Per Article: 190.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
This review summarizes the advances in the study of Zr-based metal–organic frameworks in terms of their design, synthesis, structure, and potential applications.
Collapse
Affiliation(s)
- Yan Bai
- Beijing Key Laboratory for Green Catalysis and Separation and Department of Chemistry and Chemical Engineering
- College of Environmental and Energy Engineering
- Beijing University of Technology
- Beijing 100124
- P. R. China
| | - Yibo Dou
- Beijing Key Laboratory for Green Catalysis and Separation and Department of Chemistry and Chemical Engineering
- College of Environmental and Energy Engineering
- Beijing University of Technology
- Beijing 100124
- P. R. China
| | - Lin-Hua Xie
- Beijing Key Laboratory for Green Catalysis and Separation and Department of Chemistry and Chemical Engineering
- College of Environmental and Energy Engineering
- Beijing University of Technology
- Beijing 100124
- P. R. China
| | | | - Jian-Rong Li
- Beijing Key Laboratory for Green Catalysis and Separation and Department of Chemistry and Chemical Engineering
- College of Environmental and Energy Engineering
- Beijing University of Technology
- Beijing 100124
- P. R. China
| | - Hong-Cai Zhou
- Department of Chemistry
- Texas A&M University
- Texas 77842-3012
- USA
| |
Collapse
|
50
|
Hu Z, Zhao D. De facto methodologies toward the synthesis and scale-up production of UiO-66-type metal–organic frameworks and membrane materials. Dalton Trans 2015; 44:19018-40. [DOI: 10.1039/c5dt03359d] [Citation(s) in RCA: 131] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The recent development in the synthetic methods and scale-up production of UiO-66-type MOFs and their related composites is presented.
Collapse
Affiliation(s)
- Zhigang Hu
- Department of Chemical and Biomolecular Engineering
- National University of Singapore
- Singapore
| | - Dan Zhao
- Department of Chemical and Biomolecular Engineering
- National University of Singapore
- Singapore
| |
Collapse
|