1
|
Li Y, Tamizmani M, Akram MO, Martin CD. Carborane-arene fused boracyclic analogues of polycyclic aromatic hydrocarbons accessed by intramolecular borylation. Chem Sci 2024; 15:7568-7575. [PMID: 38784749 PMCID: PMC11110167 DOI: 10.1039/d4sc00990h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2024] [Accepted: 04/13/2024] [Indexed: 05/25/2024] Open
Abstract
Arenes are 2D aromatics while dicarbadodecaborane clusters are branded as 3D aromatic molecules. In this work we prepare molecules that feature fused 2D/3D aromatic systems that represent boron-doped analogues of polycyclic aromatic hydrocarbons. The electron withdrawing nature of the ortho-carborane substituent enables swift arene borylation on boron bromide or hydride precursors to furnish five- and six-membered boracycles in conjugation with the arene. The mechanism was modeled by DFT computations implying a concerted transition state and analyzing the photophysical properties revealed high quantum yields in the six-membered systems.
Collapse
Affiliation(s)
- Yijie Li
- Baylor University, Department of Chemistry and Biochemistry One Bear Place #97348 Waco TX 76798 USA
| | - Masilamani Tamizmani
- Baylor University, Department of Chemistry and Biochemistry One Bear Place #97348 Waco TX 76798 USA
| | - Manjur O Akram
- Baylor University, Department of Chemistry and Biochemistry One Bear Place #97348 Waco TX 76798 USA
| | - Caleb D Martin
- Baylor University, Department of Chemistry and Biochemistry One Bear Place #97348 Waco TX 76798 USA
| |
Collapse
|
2
|
Nandi RP, Chandra B, Ghosh S, Sarma SP, Geremia S, Hickey N, Thilagar P. Pyrrole βC-B-N Fused Porphyrins: Molecular Structures and Opto-Electrochemical Studies. Chemistry 2024; 30:e202304219. [PMID: 38155424 DOI: 10.1002/chem.202304219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 12/28/2023] [Indexed: 12/30/2023]
Abstract
Herein, we report the design, synthesis, structure, and electrochemical study of doubly βC-B-N fused Ni(II) porphyrins (1-trans, 1-cis, 2-trans, and 2-cis). These compounds have been synthesized from A2B2 type dipyridyl Ni(II) porphyrins (Ar=Ph for 1 a; Ar=C6F5 for 2 a) via Lewis base-directed electrophilic aromatic borylation reactions. The solution state structures of these compounds have been established using 1H NMR, 11B NMR, 1H-1H COSY, 1H-13C HSQC, and 19F-13C HSQC NMR techniques. Single crystal X-ray analysis have revealed that 1-trans, 1-cis, and 2-trans adopt ruffled conformations, with alternate meso-carbons on the opposite sides of the mean porphyrin plane. The Soret bands in the absorption spectra of the B-N fused molecules are ~40 nm redshifted compared to unfused Ni(II) porphyrin precursors. The B-N fusion have diminished the redox potential of fused porphyrins. Although 1-trans and 1-cis, show four oxidation processes, 2-trans and 2-cis show only three oxidation processes. DFT studies have revealed that the tetrahedral geometry of the boron has induced a twist in the π-conjugation, which destabilizes the HOMO and stabilizes the LUMO in 1-trans, 1-cis, 2-trans, and 2-cis.
Collapse
Affiliation(s)
- Rajendra Prasad Nandi
- Department of Inorganic and Physical Chemistry, Indian Institute of Science, Bangalore, 560012, INDIA
| | - Brijesh Chandra
- Department of Inorganic and Physical Chemistry, Indian Institute of Science, Bangalore, 560012, INDIA
| | - Subhajit Ghosh
- Department of Inorganic and Physical Chemistry, Indian Institute of Science, Bangalore, 560012, INDIA
| | - Siddhartha P Sarma
- Molecular Biophysics Unit, Division of Biological Sciences, Indian Institute of Science, Bangalore, 560012, INDIA
| | - Silvano Geremia
- Department of Chemical and Pharmaceutical Sciences, University of Trieste, via L. Giorgieri 1, 34127, Trieste, ITALY
| | - Neal Hickey
- Department of Chemical and Pharmaceutical Sciences, University of Trieste, via L. Giorgieri 1, 34127, Trieste, ITALY
| | - Pakkirisamy Thilagar
- Department of Inorganic and Physical Chemistry, Indian Institute of Science, Bangalore, 560012, INDIA
| |
Collapse
|
3
|
Shinde GH, Sundén H. Boron-Mediated Regioselective Aromatic C-H Functionalization via an Aryl BF 2 Complex. Chemistry 2023; 29:e202203505. [PMID: 36383388 DOI: 10.1002/chem.202203505] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 11/15/2022] [Accepted: 11/16/2022] [Indexed: 11/17/2022]
Abstract
An efficient regioselective functionalization of 2-aryl-heteroarenes and aryl aldehydes via an azaaryl BF2 complex has been developed. Mechanistically the reaction comprises fluoride to bromide ligand exchange on an aryl boron species and consecutive C-B bond cleavage to deliver a broad range of functionalized products. The reaction is high yielding, has a broad substrate scope where several different heteroarenes can be functionalized with chloro, bromo, iodo, hydroxyl, amine and BF2 in a highly regioselective fashion. The method can be applied for late-stage functionalization or for rapid skeleton remodeling with for instance cross-couplings.
Collapse
Affiliation(s)
- Ganesh H Shinde
- Department of Chemistry and Molecular Biology, University of Gothenburg, 412 96, Gothenburg, Sweden
| | - Henrik Sundén
- Department of Chemistry and Molecular Biology, University of Gothenburg, 412 96, Gothenburg, Sweden.,Department of Chemistry and Chemical Engineering, Chalmers University of Technology, 412 96, Gothenburg, Sweden
| |
Collapse
|
4
|
Alahmadi AF, Zuo J, Jäkle F. B-N Lewis pair-fused dipyridylfluorene copolymers incorporating electron-deficient benzothiadiazole comonomers. Polym J 2022. [DOI: 10.1038/s41428-022-00723-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
5
|
Liu K, Jiang Z, Lalancette RA, Tang X, Jäkle F. Near-Infrared-Absorbing B-N Lewis Pair-Functionalized Anthracenes: Electronic Structure Tuning, Conformational Isomerism, and Applications in Photothermal Cancer Therapy. J Am Chem Soc 2022; 144:18908-18917. [PMID: 36194812 DOI: 10.1021/jacs.2c06538] [Citation(s) in RCA: 54] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
B-N-fused dianthracenylpyrazine derivatives are synthesized to generate new low gap chromophores. Photophysical and electrochemical, crystal packing, and theoretical studies have been performed. Two energetically similar conformers are identified by density functional theory calculations, showing that the core unit adopts a curved saddle-like shape (x-isomer) or a zig-zag conformation (z-isomer). In the solid state, the z-isomer is prevalent according to an X-ray crystal structure of a C6F5-substituted derivative (4-Pf), but variable-temperature nuclear magnetic resonance studies suggest a dynamic behavior in solution. B-N fusion results in a large decrease of the HOMO-LUMO gap and dramatically lowers the LUMO energy compared to the all-carbon analogues. 4-Pf in particular shows significant absorbance at greater than 700 nm while being almost transparent throughout the visible region. After encapsulation in the biodegradable polymer DSPE-mPEG2000, 4-Pf nanoparticles (4-Pf-NPs) exhibit good water solubility, high photostability, and an excellent photothermal conversion efficiency of ∼41.8%. 4-Pf-NPs are evaluated both in vitro and in vivo as photothermal therapeutic agents. These results uncover B-N Lewis pair functionalization of PAHs as a promising strategy toward new NIR-absorbing materials for photothermal applications.
Collapse
Affiliation(s)
- Kanglei Liu
- Department of Chemistry, Rutgers University-Newark, 73 Warren Street, Newark, New Jersey 07102, United States.,Key Laboratory of Cluster Science, Ministry of Education of China, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 102400, P. R. China
| | - Zhenqi Jiang
- Key Laboratory of Cluster Science, Ministry of Education of China, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 102400, P. R. China.,School of Medical Technology, Beijing Institute of Technology, Beijing 102400, P. R. China
| | - Roger A Lalancette
- Department of Chemistry, Rutgers University-Newark, 73 Warren Street, Newark, New Jersey 07102, United States
| | - Xiaoying Tang
- School of Medical Technology, Beijing Institute of Technology, Beijing 102400, P. R. China
| | - Frieder Jäkle
- Department of Chemistry, Rutgers University-Newark, 73 Warren Street, Newark, New Jersey 07102, United States
| |
Collapse
|
6
|
Rej S, Chatani N. Regioselective Transition‐Metal‐Free C(sp
2
)−H Borylation: A Subject of Practical and Ongoing Interest in Synthetic Organic Chemistry. Angew Chem Int Ed Engl 2022; 61:e202209539. [DOI: 10.1002/anie.202209539] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Indexed: 12/22/2022]
Affiliation(s)
- Supriya Rej
- Department of Applied Chemistry Faculty of Engineering and Research Center for Environmental Preservation Osaka University Suita, Osaka 565-0871 Japan
- Institut für Chemie Technische Universität Berlin Strasse des 17. Juni 115 10623 Berlin Germany
| | - Naoto Chatani
- Department of Applied Chemistry Faculty of Engineering and Research Center for Environmental Preservation Osaka University Suita, Osaka 565-0871 Japan
| |
Collapse
|
7
|
Cappello D, Buguis FL, Gilroy JB. Tuning the Properties of Donor-Acceptor and Acceptor-Donor-Acceptor Boron Difluoride Hydrazones via Extended π-Conjugation. ACS OMEGA 2022; 7:32727-32739. [PMID: 36120012 PMCID: PMC9476501 DOI: 10.1021/acsomega.2c04401] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Accepted: 08/12/2022] [Indexed: 06/15/2023]
Abstract
Molecular materials with π-conjugated donor-acceptor (D-A) and acceptor-donor-acceptor (A-D-A) electronic structures have received significant attention due to their usage in organic photovoltaic materials, in organic light-emitting diodes, and as biological imaging agents. Boron-containing molecular materials have been explored as electron-accepting units in compounds with D-A and A-D-A properties as they often exhibit unique and tunable optoelectronic and redox properties. Here, we utilize Stille cross-coupling chemistry to prepare a series of compounds with boron difluoride hydrazones (BODIHYs) as acceptors and benzene, thiophene, or 9,9-dihexylfluorene as donors. BODIHYs with D-A and A-D-A properties exhibited multiple reversible redox waves, solid-state emission with photoluminescence quantum yields up to 10%, and aggregation-induced emission (AIE). Optical band gaps (or highest occupied molecular orbital (HOMO)-lowest unoccupied molecular orbital (LUMO) gaps) determined for these compounds (2.02-2.25 eV) agree well with those determined from cyclic voltammetry experiments (2.05-2.42 eV). The optoelectronic properties described herein are rationalized with density functional theory calculations that support the interpretation of the experimental findings. This work provides a foundation of understanding that will allow for the consideration of D-A and A-D-A BODIHYs to be incorporated into applications (e.g., organic electronics) where fine-tuning of band gaps is required.
Collapse
|
8
|
Nayak P, Murali AC, Pal PK, Priyakumar UD, Chandrasekhar V, Venkatasubbaiah K. Tetra-Coordinated Boron-Functionalized Phenanthroimidazole-Based Zinc Salen as a Photocatalyst for the Cycloaddition of CO 2 and Epoxides. Inorg Chem 2022; 61:14511-14516. [PMID: 36074754 DOI: 10.1021/acs.inorgchem.2c02693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A unique B-N coordinated phenanthroimidazole-based zinc salen was synthesized. The zinc salen thus synthesized acts as a photocatalyst for the cycloaddition of carbon dioxide with terminal epoxides under ambient conditions. DFT study of the cycloaddition of carbon dioxide with terminal epoxide indicates the preference of the reaction pathway when photocatalyzed by zinc salen. We anticipate that this strategy will help to design new photocatalysts for CO2 fixation.
Collapse
Affiliation(s)
- Prakash Nayak
- School of Chemical Sciences, National Institute of Science Education and Research (NISER), an OCC of Homi Bhaba National Institute, Bhubaneswar 752050, Odisha, India
| | - Anna Chandrasekar Murali
- School of Chemical Sciences, National Institute of Science Education and Research (NISER), an OCC of Homi Bhaba National Institute, Bhubaneswar 752050, Odisha, India
| | - Pradeep Kumar Pal
- International Institute of Information Technology, Hyderabad 500 032, India
| | - U Deva Priyakumar
- International Institute of Information Technology, Hyderabad 500 032, India
| | - Vadapalli Chandrasekhar
- Tata Institute of Fundamental Research Hyderabad, Gopanpally, Hyderabad 500 046, India.,Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur 208016, India
| | - Krishnan Venkatasubbaiah
- School of Chemical Sciences, National Institute of Science Education and Research (NISER), an OCC of Homi Bhaba National Institute, Bhubaneswar 752050, Odisha, India
| |
Collapse
|
9
|
Rej S, Chatani N. Regio‐Selective Transition‐Metal‐Free C(sp2)‒H Borylation: A Subject of Practical and Ongoing Interest in Synthetic Organic Chemistry. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202209539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Supriya Rej
- Osaka University School of Engineering Graduate School of Engineering: Osaka Daigaku Kogakubu Daigakuin Kogaku Kenkyuka Applied Chemistry JAPAN
| | - Naoto Chatani
- Osaka University School of Engineering Graduate School of Engineering: Osaka Daigaku Kogakubu Daigakuin Kogaku Kenkyuka Applied Chemistry 2-1 Yamadaoka 566-0871 Suita, Osaka JAPAN
| |
Collapse
|
10
|
Fell VHK, Cameron J, Kanibolotsky AL, Hussien EJ, Skabara PJ. Introducing a new 7-ring fused diindenone-dithieno[3,2- b:2',3'- d]thiophene unit as a promising component for organic semiconductor materials. Beilstein J Org Chem 2022; 18:944-955. [PMID: 35965856 PMCID: PMC9359197 DOI: 10.3762/bjoc.18.94] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Accepted: 07/13/2022] [Indexed: 11/23/2022] Open
Abstract
A novel π-conjugated molecule, EtH-T-DI-DTT is reported, which is fused, rigid, and planar, featuring the electron-rich dithieno[3,2-b:2',3'-d]thiophene (DTT) unit in the core of the structure. Adjacent to the electron-donating DTT core, there are indenone units with electron-withdrawing keto groups. To enable solubility in common organic solvents, the fused system is flanked by ethylhexylthiophene groups. The material is a dark, amorphous solid with an onset of absorption at 638 nm in CH2Cl2 solution, which corresponds to an optical gap of 1.94 eV. In films, the absorption onset wavelength is at 701 nm, which corresponds to 1.77 eV. An ionisation energy of 5.5 eV and an electron affinity of 3.3 eV were estimated by cyclic voltammetry measurements. We have applied this new molecule in organic field effect transistors. The material exhibited a p-type mobility up to 1.33 × 10-4 cm2 V-1 s-1.
Collapse
Affiliation(s)
- Valentin H K Fell
- WestCHEM, School of Chemistry, University of Glasgow, Joseph Black Building, University Avenue, Glasgow, G12 8QQ, Scotland
| | - Joseph Cameron
- WestCHEM, School of Chemistry, University of Glasgow, Joseph Black Building, University Avenue, Glasgow, G12 8QQ, Scotland
| | - Alexander L Kanibolotsky
- WestCHEM, School of Chemistry, University of Glasgow, Joseph Black Building, University Avenue, Glasgow, G12 8QQ, Scotland
- Institute of Physical-Organic Chemistry and Coal Chemistry, 02160 Kyiv, Ukraine
| | - Eman J Hussien
- WestCHEM, School of Chemistry, University of Glasgow, Joseph Black Building, University Avenue, Glasgow, G12 8QQ, Scotland
| | - Peter J Skabara
- WestCHEM, School of Chemistry, University of Glasgow, Joseph Black Building, University Avenue, Glasgow, G12 8QQ, Scotland
| |
Collapse
|
11
|
Murali AC, Nayak P, Venkatasubbaiah K. Recent advances in the synthesis of luminescent tetra-coordinated boron compounds. Dalton Trans 2022; 51:5751-5771. [PMID: 35343524 DOI: 10.1039/d2dt00160h] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Tetra-coordinated boron compounds offer a plethora of luminescent materials. Different chelation around the boron center (O,O-, N,C-, N,O-, and N,N-) has been explored to tune the electronic and photophysical properties of tetra-coordinated boron compounds. A number of fascinating molecules with interesting properties such as aggregation induced emission, mechanochromism and tunable emission by changing the solvent polarity were realised. Owing to their rich and unique properties, some of the molecules have shown applications in making optoelectronic devices, probes and so on. This perspective provides an overview of the recent developments of tetra-coordinated boron compounds and their potential applications.
Collapse
Affiliation(s)
- Anna Chandrasekar Murali
- School of Chemical Sciences, National Institute of Science Education and Research (NISER), an OCC of Homi Bhabha National Institute, Bhubaneswar-752050, Odisha, India.
| | - Prakash Nayak
- School of Chemical Sciences, National Institute of Science Education and Research (NISER), an OCC of Homi Bhabha National Institute, Bhubaneswar-752050, Odisha, India.
| | - Krishnan Venkatasubbaiah
- School of Chemical Sciences, National Institute of Science Education and Research (NISER), an OCC of Homi Bhabha National Institute, Bhubaneswar-752050, Odisha, India.
| |
Collapse
|
12
|
Wu G, Xu X, Wang S, Chen L, Pang B, Ma T, Ji Y. Metal-free directed C−H borylation of 2-(N-methylanilino)-5-fluoropyridines and 2-benzyl-5-fluoropyridines. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2021.09.081] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
13
|
Nguyen T, Hannah T, Piers WE, Gelfand B. Stable, π-conjugated radical anions of boron-nitrogen dihydroindeno[1,2-b]fluorenes. CAN J CHEM 2022. [DOI: 10.1139/cjc-2022-0039] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We have recently reported the synthesis and application of boron-nitrogen dihydroindeno[1,2-b]fluorene derivatives as acceptors in organic photovoltaic (OPV) devices. Their modest observed efficiencies may be related to the properties of their reduced congeners. In this work, we report two new members of this family of compounds prepared via the electrophilic borylation of 2,5-di-p-tolylpyrazine followed by an arylation of the boron centre with ZnAr2 reagents. Two derivatives, 1 (Ar = 2,4,6-F3C6H2) and 2 (Ar = C6F5) were synthesized, and their radical anions, 1•− and 2•−, were formed via chemical reductions with CoCp*2 and CoCp2, respectively. Through comparison of structural parameters, as well as spectroscopic and computational data, the unpaired electron in the radical anions is localized in the planar core of the molecule, and dimerization is disfavored as a result. However, unlike the neutral starting materials, 1•− and 2•− are reactive towards ambient atmosphere. These observations suggest that the reduced compounds are stable towards intrinsic degradation pathways but subject to extrinsic degradation in device operation.
Collapse
Affiliation(s)
- Tony Nguyen
- University of Calgary, 2129, Chemistry, Calgary, Alberta, Canada
| | - Tyler Hannah
- University of Calgary, 2129, Chemistry, Calgary, Alberta, Canada
| | - Warren E. Piers
- University of Calgary, 2129, Chemistry, Calgary, Alberta, Canada
| | - Benjamin Gelfand
- University of Calgary, 2129, Chemistry, Calgary, Alberta, Canada
| |
Collapse
|
14
|
Vanga M, Sahoo A, Lalancette RA, Jäkle F. Linear Extension of Anthracene via B←N Lewis Pair Formation: Effects on Optoelectronic Properties and Singlet O
2
Sensitization. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202113075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Mukundam Vanga
- Department of Chemistry Rutgers University-Newark 73 Warren Street Newark NJ 07102 USA
| | - Ashutosh Sahoo
- Department of Chemistry Rutgers University-Newark 73 Warren Street Newark NJ 07102 USA
| | - Roger A. Lalancette
- Department of Chemistry Rutgers University-Newark 73 Warren Street Newark NJ 07102 USA
| | - Frieder Jäkle
- Department of Chemistry Rutgers University-Newark 73 Warren Street Newark NJ 07102 USA
| |
Collapse
|
15
|
Yamazaki K, Rej S, Ano Y, Chatani N. Origin of the Enhanced Reactivity in the ortho C-H Borylation of Benzaldehydes with BBr 3. Org Lett 2021; 24:213-217. [PMID: 34939820 DOI: 10.1021/acs.orglett.1c03829] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The metal-free ortho C-H borylation of benzaldehyde derivatives using a transient imine directing group was recently developed by our group, providing an efficient strategy for the synthesis of organoboron reagents. Herein, we report on an extensive investigation of the reaction mechanism using density functional theory (DFT) calculations. Computations for the reaction pathway with various imine substrates, as well as the effect of an added base were examined, and the experimentally observed reactivity enhancement is proposed to originate from the tunability of the destabilizing strain energies that results in a reversible complexation process with BBr3.
Collapse
Affiliation(s)
- Ken Yamazaki
- Department of Applied Chemistry, Faculty of Engineering, Osaka University, Suita, Osaka 565-0871, Japan
| | - Supriya Rej
- Department of Applied Chemistry, Faculty of Engineering, Osaka University, Suita, Osaka 565-0871, Japan
| | - Yusuke Ano
- Department of Applied Chemistry, Faculty of Engineering, Osaka University, Suita, Osaka 565-0871, Japan
| | - Naoto Chatani
- Department of Applied Chemistry, Faculty of Engineering, Osaka University, Suita, Osaka 565-0871, Japan
| |
Collapse
|
16
|
Vanga M, Sahoo A, Lalancette RA, Jäkle F. Linear Extension of Anthracene via B←N Lewis Pair Formation: Effects on Optoelectronic Properties and Singlet O 2 Sensitization. Angew Chem Int Ed Engl 2021; 61:e202113075. [PMID: 34847268 DOI: 10.1002/anie.202113075] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Indexed: 11/12/2022]
Abstract
The functionalization of polycyclic aromatic hydrocarbons (PAHs) via B←N Lewis pair formation offers an opportunity to judiciously fine-tune the structural features and optoelectronic properties, to suit the demands of applications in organic electronic devices, bioimaging, and as sensitizers for singlet oxygen generation. We demonstrate that the N-directed electrophilic borylation of 2,6-di(pyrid-2-yl)anthracene offers access to linearly extended acene derivatives Py-BR (R=Et, Ph, C6 F5 ). In comparison to indeno-fused 9,10-diphenylanthracene, the formal "BN for CC" replacement in Py-BR selectively lowers the LUMO, resulting in a much reduced HOMO-LUMO gap. An even more extended conjugated system with seven six-membered rings in a row (Qu-BEt) is obtained by borylation of 2,6-di(quinolin-8-yl)anthracene. Fluorinated Py-BPf shows particularly advantageous properties, including relatively lower-lying HOMO and LUMO levels, strong yellow-green fluorescence, and effective singlet oxygen sensitization, while resisting self-sensitized conversion to its endoperoxide.
Collapse
Affiliation(s)
- Mukundam Vanga
- Department of Chemistry, Rutgers University-Newark, 73 Warren Street, Newark, NJ, 07102, USA
| | - Ashutosh Sahoo
- Department of Chemistry, Rutgers University-Newark, 73 Warren Street, Newark, NJ, 07102, USA
| | - Roger A Lalancette
- Department of Chemistry, Rutgers University-Newark, 73 Warren Street, Newark, NJ, 07102, USA
| | - Frieder Jäkle
- Department of Chemistry, Rutgers University-Newark, 73 Warren Street, Newark, NJ, 07102, USA
| |
Collapse
|
17
|
Schepper JDW, Orthaber A, Pammer F. Preparation of Structurally and Electronically Diverse N → B-Ladder Boranes by [2 + 2 + 2] Cycloaddition. J Org Chem 2021; 86:14767-14776. [PMID: 34613723 DOI: 10.1021/acs.joc.1c01402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We report the synthesis of a series of eight N → B-ladder boranes through cobalt-mediated cyclotrimerization of (2-cyanophenyl)-dimesitylborane with different dialkynes. The resulting tetracoordinate boranes show variable electrochemical and optical properties depending on the substitution pattern in the backbone of the coordinating pyridine-derivatives. While boranes containing alkyl-substituted pyridines show lower electron affinities than the known parent compound, boranes featuring π-extended pyridine derivatives show higher electron affinities in the range of acceptor substituted triarylboranes. All derivatives show larger Stokes shifts (8790-6920 cm-1) compared to the N → B-ladder borane coordinated by an unsubstituted pyridine.
Collapse
Affiliation(s)
- Jonas D W Schepper
- Institute of Organic Chemistry II and Advanced Materials, University of Ulm, Albert-Einstein-Allee 11, 89081 Ulm, Germany
| | - Andreas Orthaber
- Department of Chemistry, Ångström Laboratories, Uppsala University, Box 523, 75120 Uppsala, Sweden
| | - Frank Pammer
- Institute of Organic Chemistry II and Advanced Materials, University of Ulm, Albert-Einstein-Allee 11, 89081 Ulm, Germany.,Helmholtz-Institut Ulm, Helmholtzstrasse 11, D-89081 Ulm, Germany
| |
Collapse
|
18
|
Rej S, Das A, Chatani N. Pyrimidine-directed metal-free C-H borylation of 2-pyrimidylanilines: a useful process for tetra-coordinated triarylborane synthesis. Chem Sci 2021; 12:11447-11454. [PMID: 34567499 PMCID: PMC8409464 DOI: 10.1039/d1sc02937a] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Accepted: 07/22/2021] [Indexed: 12/15/2022] Open
Abstract
Convenient, easily handled, laboratory friendly, robust approaches to afford synthetically important organoboron compounds are currently of great interest to researchers. Among the various available strategies, a metal-free approach would be overwhelmingly accepted, since the target boron compounds can be prepared in a metal-free state. We herein present a detailed study of the metal-free directed ortho-C–H borylation of 2-pyrimidylaniline derivatives. The approach allowed us to synthesize various boronates, which are synthetically important compounds and various four-coordinated triarylborane derivatives, which could be useful in materials science as well as Lewis-acid catalysts. This metal-free directed C–H borylation reaction proceeds smoothly without any interference by external impurities, such as inorganic salts, reactive functionalities, heterocycles and even transition metal precursors, which further enhance its importance. We present the metal-free ortho-C–H borylation of 2-pyrimidylanilines to afford synthetically important boronic esters and tetra-coordinated triarylboranes, which could be useful in materials science as well as Lewis-acid catalysts.![]()
Collapse
Affiliation(s)
- Supriya Rej
- Department of Applied Chemistry, Faculty of Engineering, Osaka University Suita Osaka 5650871 Japan
| | - Amrita Das
- Department of Applied Chemistry, Faculty of Engineering, Osaka University Suita Osaka 5650871 Japan
| | - Naoto Chatani
- Department of Applied Chemistry, Faculty of Engineering, Osaka University Suita Osaka 5650871 Japan
| |
Collapse
|
19
|
Rej S, Chatani N. Transient Imine as a Directing Group for the Metal-Free o-C-H Borylation of Benzaldehydes. J Am Chem Soc 2021; 143:2920-2929. [PMID: 33586953 DOI: 10.1021/jacs.0c13013] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Organoboron reagents are important synthetic intermediates and have wide applications in synthetic organic chemistry. The selective borylation strategies that are currently in use largely rely on the use of transition-metal catalysts. Hence, identifying much milder conditions for transition-metal-free borylation would be highly desirable. We herein present a unified strategy for the selective C-H borylation of electron-deficient benzaldehyde derivatives using a simple metal-free approach, utilizing an imine transient directing group. The strategy covers a wide spectrum of reactions and (i) even highly sterically hindered C-H bonds can be borylated smoothly, (ii) despite the presence of other potential directing groups, the reaction selectively occurs at the o-C-H bond of the benzaldehyde moiety, and (iii) natural products appended to benzaldehyde derivatives can also give the appropriate borylated products. Moreover, the efficacy of the protocol was confirmed by the fact that the reaction proceeds even in the presence of a series of external impurities.
Collapse
Affiliation(s)
- Supriya Rej
- Department of Applied Chemistry, Faculty of Engineering, Osaka University, Suita, Osaka 565-0871, Japan
| | - Naoto Chatani
- Department of Applied Chemistry, Faculty of Engineering, Osaka University, Suita, Osaka 565-0871, Japan
| |
Collapse
|
20
|
Haque A, Al-Balushi RA, Raithby PR, Khan MS. Recent Advances in π-Conjugated N^C-Chelate Organoboron Materials. Molecules 2020; 25:E2645. [PMID: 32517244 PMCID: PMC7321365 DOI: 10.3390/molecules25112645] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2020] [Revised: 06/03/2020] [Accepted: 06/04/2020] [Indexed: 11/17/2022] Open
Abstract
Boron-containing π-conjugated materials are archetypical candidates for a variety of molecular scale applications. The incorporation of boron into the π-conjugated frameworks significantly modifies the nature of the parent π-conjugated systems. Several novel boron-bridged π-conjugated materials with intriguing structural, photo-physical and electrochemical properties have been reported over the last few years. In this paper, we review the properties and multi-dimensional applications of the boron-bridged fused-ring π-conjugated systems. We critically highlight the properties of π-conjugated N^C-chelate organoboron materials. This is followed by a discussion on the potential applications of the new materials in opto-electronics (O-E) and other areas. Finally, attempts will be made to predict the future direction/outlook for this class of materials.
Collapse
Affiliation(s)
- Ashanul Haque
- Department of Chemistry, College of Science, University of Hail, Ha’il 81451, Saudi Arabia
| | - Rayya A. Al-Balushi
- Department of Basic Sciences, College of Applied and Health Sciences, A’Sharqiyah University, P.O. Box 42, Ibra 400, Sultanate of Oman;
| | - Paul R. Raithby
- Department of Chemistry, University of Bath, Claverton Down BA2 7AY, UK
| | - Muhammad S. Khan
- Department of Chemistry, Sultan Qaboos University, P.O. Box 36, Al-Khod 123, Sultanate of Oman
| |
Collapse
|
21
|
Iqbal SA, Pahl J, Yuan K, Ingleson MJ. Intramolecular (directed) electrophilic C-H borylation. Chem Soc Rev 2020; 49:4564-4591. [PMID: 32495755 DOI: 10.1039/c9cs00763f] [Citation(s) in RCA: 126] [Impact Index Per Article: 31.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/28/2024]
Abstract
The intramolecular C-H borylation of (hetero)arenes and alkenes using electrophilic boranes is a powerful transition metal free methodology for forming C-B bonds. These C-H borylation reactions are preceded by intermolecular bond (both dative and covalent) formation, with examples proceeding via initial C-B and N-B bond formation dominating this field thus both are discussed in depth herein. Less prevalent intramolecular electrophilic C-H borylation reactions that proceed by intermolecular O-B, S-B and P-B bond formation are also summarised. Mechanistic studies are presented that reveal two mechanisms for C-H borylation, (i) electrophilic aromatic substitution (prevalent with B-X electrophiles); (ii) σ-bond metathesis mediated (prevalent with B-H and B-R electrophiles). To date, intramolecular electrophilic C-H borylation is utilised mainly for accessing boron containing conjugated organic materials, however recent developments, summarized herein alongside early studies, have highlighted the applicability of this methodology for forming synthetically versatile organo-boronate esters and boron containing bioactives. The multitude of synthetic procedures reported for intramolecular electrophilic C-H borylation contain many common features and this enables key requirements for successful C-H borylation and the factors effecting regioselectivity and substrate scope to be identified, discussed and summarized.
Collapse
Affiliation(s)
- S A Iqbal
- EastCHEM School of Chemistry, University of Edinburgh, Edinburgh, EH9 3FJ, UK.
| | - J Pahl
- EastCHEM School of Chemistry, University of Edinburgh, Edinburgh, EH9 3FJ, UK.
| | - K Yuan
- EastCHEM School of Chemistry, University of Edinburgh, Edinburgh, EH9 3FJ, UK.
| | - M J Ingleson
- EastCHEM School of Chemistry, University of Edinburgh, Edinburgh, EH9 3FJ, UK.
| |
Collapse
|
22
|
Vanga M, Sa S, Kumari A, Murali AC, Nayak P, Das R, Venkatasubbaiah K. Synthesis of π-extended B ← N coordinated phenanthroimidazole dimers and their linear and nonlinear optical properties. Dalton Trans 2020; 49:7737-7746. [DOI: 10.1039/d0dt01024c] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
B ← N coordinated phenanthroimidazole dimers exhibit excellent fluorescence quantum yields in solution and conjugation length dependant two-photon-absorption properties.
Collapse
Affiliation(s)
- Mukundam Vanga
- School of Chemical Sciences
- National Institute of Science Education and Research (NISER)
- HBNI
- Bhubaneswar-752050
- India
| | - Shreenibasa Sa
- School of Chemical Sciences
- National Institute of Science Education and Research (NISER)
- HBNI
- Bhubaneswar-752050
- India
| | - Anupa Kumari
- School of Physical Sciences
- National Institute of Science Education and Research (NISER)
- HBNI
- Bhubaneswar-752050
- India
| | - Anna Chandrasekar Murali
- School of Chemical Sciences
- National Institute of Science Education and Research (NISER)
- HBNI
- Bhubaneswar-752050
- India
| | - Prakash Nayak
- School of Chemical Sciences
- National Institute of Science Education and Research (NISER)
- HBNI
- Bhubaneswar-752050
- India
| | - Ritwick Das
- School of Physical Sciences
- National Institute of Science Education and Research (NISER)
- HBNI
- Bhubaneswar-752050
- India
| | - Krishnan Venkatasubbaiah
- School of Chemical Sciences
- National Institute of Science Education and Research (NISER)
- HBNI
- Bhubaneswar-752050
- India
| |
Collapse
|
23
|
Li Y, Meng H, Liu T, Xiao Y, Tang Z, Pang B, Li Y, Xiang Y, Zhang G, Lu X, Yu G, Yan H, Zhan C, Huang J, Yao J. 8.78% Efficient All-Polymer Solar Cells Enabled by Polymer Acceptors Based on a B←N Embedded Electron-Deficient Unit. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2019; 31:e1904585. [PMID: 31532877 DOI: 10.1002/adma.201904585] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Revised: 08/19/2019] [Indexed: 06/10/2023]
Abstract
In the field of all-polymer solar cells (all-PSCs), all efficient polymer acceptors that exhibit efficiencies beyond 8% are based on either imide or dicyanoethylene. To boost the development of this promising solar cell type, creating novel electron-deficient units to build high-performance polymer acceptors is critical. A novel electron-deficient unit containing B←N bonds, namely, BNIDT, is synthesized. Systematic investigation of BNIDT reveals desirable properties including good coplanarity, favorable single-crystal structure, narrowed bandgap and downshifted energy levels, and extended absorption profiles. By copolymerizing BNIDT with thiophene and 3,4-difluorothiophene, two novel conjugated polymers named BN-T and BN-2fT are developed, respectively. It is shown that these polymers possess wide absorption spectra covering 350-800 nm, low-lying energy levels, and ambipolar film-transistor characteristics. Using PBDB-T as the donor and BN-2fT as the acceptor, all-PSCs afford an encouraging efficiency of 8.78%, which is the highest for all-PSCs excluding the devices based on imide and dicyanoethylene-type acceptors. Considering that the structure of BNIDT is totally different from these classical units, this work opens up a new class of electron-deficient unit for constructing efficient polymer acceptors that can realize efficiencies beyond 8% for the first time.
Collapse
Affiliation(s)
- Yongchun Li
- College of Materials Science and Engineering, Huaqiao University, Xiamen, 361021, China
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Photochemistry Institute of Chemistry Chinese Academy of Sciences, Beijing, 100190, China
| | - Huifeng Meng
- College of Materials Science and Engineering, Huaqiao University, Xiamen, 361021, China
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Photochemistry Institute of Chemistry Chinese Academy of Sciences, Beijing, 100190, China
| | - Tao Liu
- Department of Chemistry and Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration & Reconstruction, Hong Kong University of Science and Technology Clear Water Bay, Kowloon, Hong Kong
| | - Yiqun Xiao
- Department of Physics, The Chinese University of Hong Kong New Territories, Sha Tin, Hong Kong
| | - Zhonghai Tang
- Beijing National Laboratory for Molecular Sciences Organic Solids Laboratory, CAS Research/Education Center for Excellence in Molecular Sciences Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Bo Pang
- College of Materials Science and Engineering, Huaqiao University, Xiamen, 361021, China
| | - Yuqing Li
- College of Materials Science and Engineering, Huaqiao University, Xiamen, 361021, China
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Photochemistry Institute of Chemistry Chinese Academy of Sciences, Beijing, 100190, China
| | - Ying Xiang
- College of Materials Science and Engineering, Huaqiao University, Xiamen, 361021, China
| | - Guangye Zhang
- EFlexPV Limited, Longhua District, Shenzhen, 518000, China
| | - Xinhui Lu
- Department of Physics, The Chinese University of Hong Kong New Territories, Sha Tin, Hong Kong
| | - Gui Yu
- Beijing National Laboratory for Molecular Sciences Organic Solids Laboratory, CAS Research/Education Center for Excellence in Molecular Sciences Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - He Yan
- Department of Chemistry and Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration & Reconstruction, Hong Kong University of Science and Technology Clear Water Bay, Kowloon, Hong Kong
| | - Chuanlang Zhan
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Photochemistry Institute of Chemistry Chinese Academy of Sciences, Beijing, 100190, China
| | - Jianhua Huang
- College of Materials Science and Engineering, Huaqiao University, Xiamen, 361021, China
| | - Jiannian Yao
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Photochemistry Institute of Chemistry Chinese Academy of Sciences, Beijing, 100190, China
| |
Collapse
|
24
|
Synthesis of aromatic substituted B ← N embedded units with good stability and strong electron-affinity. Tetrahedron Lett 2019. [DOI: 10.1016/j.tetlet.2019.151286] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
25
|
Pang B, Tang Z, Li Y, Meng H, Xiang Y, Li Y, Huang J. Synthesis of Conjugated Polymers Containing B←N Bonds with Strong Electron Affinity and Extended Absorption. Polymers (Basel) 2019; 11:polym11101630. [PMID: 31600910 PMCID: PMC6835370 DOI: 10.3390/polym11101630] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Revised: 09/29/2019] [Accepted: 09/30/2019] [Indexed: 11/16/2022] Open
Abstract
The B←N is isoelectronic to the C-C, with the former having stronger dipole moment and higher electron affinity. Replacing the C-C bonds in conjugated polymers with B←N bonds is an effective pathway toward novel polymers with strong electron affinity and adjustable optoelectronic properties. In this work, we synthesize a conjugated copolymer, namely, BNIDT-DPP, based on a B←N embedded unit, BNIDT, and a typical electron-deficient unit, diketopyrrolopyrrole (DPP). For comparison, the C-C counterpart, i.e., IDT-DPP, is also synthesized. In contrast to IDT-DPP, the B←N embedded polymer BNIDT-DPP shows an extended absorption edge (836 versus 978 nm), narrowed optical bandgap (1.48 versus 1.27 eV), and higher electron affinity (3.54 versus 3.74 eV). The Gaussian simulations reveal that the B←N embedded polymer BNIDT-DPP is more electron-deficient in contrast to IDT-DPP, supporting the decreased bandgap and energy levels of BNIDT-DPP. Organic thin-film transistor (OTFT) tests indicate a well-defined p-type characteristic for both IDT-DPP and BNIDT-DPP. The hole mobilities of IDT-DPP and BNIDT-DPP tested by OTFTs are 0.059 and 0.035 cm2/V·s, respectively. The preliminary fabrication of all-polymer solar cells based on BNIDT-DPP and PBDB-T affords a PCE of 0.12%. This work develops a novel B←N embedded polymer with strong electron affinity and extended absorption, which is potentially useful for electronic device application.
Collapse
Affiliation(s)
- Bo Pang
- College of Materials Science and Engineering, Huaqiao University, Xiamen 361021, China.
| | - Zhonghai Tang
- Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China.
| | - Yongchun Li
- College of Materials Science and Engineering, Huaqiao University, Xiamen 361021, China.
- Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China.
| | - Huifeng Meng
- College of Materials Science and Engineering, Huaqiao University, Xiamen 361021, China.
- Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China.
| | - Ying Xiang
- College of Materials Science and Engineering, Huaqiao University, Xiamen 361021, China.
| | - Yuqing Li
- College of Materials Science and Engineering, Huaqiao University, Xiamen 361021, China.
- Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China.
| | - Jianhua Huang
- College of Materials Science and Engineering, Huaqiao University, Xiamen 361021, China.
| |
Collapse
|
26
|
Shishido R, Sasaki I, Seki T, Ishiyama T, Ito H. Direct Dimesitylborylation of Benzofuran Derivatives by an Iridium-Catalyzed C-H Activation with Silyldimesitylborane. Chemistry 2019; 25:12924-12928. [PMID: 31432548 DOI: 10.1002/chem.201903776] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2019] [Indexed: 12/23/2022]
Abstract
Direct dimesitylborylation of benzofuran derivatives by a C-H activation catalyzed by an iridium(I)/N-heterocyclic carbene (NHC) complex in the presence of Ph2 MeSi-BMes2 afforded the corresponding dimesitylborylation products in good to high yield with excellent regioselectivity. This method provides a straightforward route to donor-(π-spacer)-acceptor systems with intriguing solvatochromic luminescence properties.
Collapse
Affiliation(s)
- Ryosuke Shishido
- Division of Applied Chemistry, Graduate School of Engineering Hokkaido University, Kita 13 Nishi 8 Kita-ku, Sapporo, Hokkaido, 060-8628, Japan
| | - Ikuo Sasaki
- Department of Chemistry and Bioscience, Faculty of Science and Technology, Aoyama Gakuin University, 5-10-1, Fuchinobe, Chuo-ku, Sagamihara, 252-5258, Japan
| | - Tomohiro Seki
- Division of Applied Chemistry, Graduate School of Engineering Hokkaido University, Kita 13 Nishi 8 Kita-ku, Sapporo, Hokkaido, 060-8628, Japan.,Institute for Chemical Reaction Design and Discovery (WPI-ICRD), Hokkaido University, Kita 21, Nishi 10, Kita-ku, Sapporo, 001-0021, Japan
| | - Tatsuo Ishiyama
- Division of Applied Chemistry, Graduate School of Engineering Hokkaido University, Kita 13 Nishi 8 Kita-ku, Sapporo, Hokkaido, 060-8628, Japan
| | - Hajime Ito
- Division of Applied Chemistry, Graduate School of Engineering Hokkaido University, Kita 13 Nishi 8 Kita-ku, Sapporo, Hokkaido, 060-8628, Japan.,Institute for Chemical Reaction Design and Discovery (WPI-ICRD), Hokkaido University, Kita 21, Nishi 10, Kita-ku, Sapporo, 001-0021, Japan
| |
Collapse
|
27
|
Vanga M, Lalancette RA, Jäkle F. Controlling the Optoelectronic Properties of Pyrene by Regioselective Lewis Base‐Directed Electrophilic Aromatic Borylation. Chemistry 2019; 25:10133-10140. [DOI: 10.1002/chem.201901231] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2019] [Indexed: 11/10/2022]
Affiliation(s)
- Mukundam Vanga
- Department of Chemistry Rutgers University-Newark 73 Warren Street Newark NJ 07102 USA
| | - Roger A. Lalancette
- Department of Chemistry Rutgers University-Newark 73 Warren Street Newark NJ 07102 USA
| | - Frieder Jäkle
- Department of Chemistry Rutgers University-Newark 73 Warren Street Newark NJ 07102 USA
| |
Collapse
|
28
|
Cao Y, Arsenault NE, Hean D, Wolf MO. Fluorescence Switching of Intramolecular Lewis Acid–Base Pairs on a Flexible Backbone. J Org Chem 2019; 84:5394-5403. [DOI: 10.1021/acs.joc.9b00398] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Yang Cao
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, British Columbia V6T 1Z1, Canada
| | - Nicole E. Arsenault
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, British Columbia V6T 1Z1, Canada
| | - Duane Hean
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, British Columbia V6T 1Z1, Canada
| | - Michael O. Wolf
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, British Columbia V6T 1Z1, Canada
| |
Collapse
|
29
|
Liu K, Lalancette RA, Jäkle F. Tuning the Structure and Electronic Properties of B–N Fused Dipyridylanthracene and Implications on the Self-Sensitized Reactivity with Singlet Oxygen. J Am Chem Soc 2019; 141:7453-7462. [DOI: 10.1021/jacs.9b01958] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Kanglei Liu
- Department of Chemistry, Rutgers University−Newark, 73 Warren Street, Newark, New Jersey 07102, United States
| | - Roger A. Lalancette
- Department of Chemistry, Rutgers University−Newark, 73 Warren Street, Newark, New Jersey 07102, United States
| | - Frieder Jäkle
- Department of Chemistry, Rutgers University−Newark, 73 Warren Street, Newark, New Jersey 07102, United States
| |
Collapse
|
30
|
Kunchala D, Sa S, Nayak P, Ponniah S J, Venkatasubbaiah K. Tetrahydrodibenzophenanthridine-Based Boron-Bridged Polycyclic Aromatic Hydrocarbons: Synthesis, Structural Diversity, and Optical Properties. Organometallics 2019. [DOI: 10.1021/acs.organomet.8b00853] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Dhanunjayarao Kunchala
- School of Chemical Sciences, National Institute of Science Education and Research (NISER), Bhubaneswar, HBNI, Bhubaneswar 752050, Odisha, India
| | - Shreenibasa Sa
- School of Chemical Sciences, National Institute of Science Education and Research (NISER), Bhubaneswar, HBNI, Bhubaneswar 752050, Odisha, India
| | - Prakash Nayak
- School of Chemical Sciences, National Institute of Science Education and Research (NISER), Bhubaneswar, HBNI, Bhubaneswar 752050, Odisha, India
| | - Joseph Ponniah S
- School of Chemical Sciences, National Institute of Science Education and Research (NISER), Bhubaneswar, HBNI, Bhubaneswar 752050, Odisha, India
| | - Krishnan Venkatasubbaiah
- School of Chemical Sciences, National Institute of Science Education and Research (NISER), Bhubaneswar, HBNI, Bhubaneswar 752050, Odisha, India
| |
Collapse
|
31
|
Grandl M, Schepper J, Maity S, Peukert A, von Hauff E, Pammer F. N → B Ladder Polymers Prepared by Postfunctionalization: Tuning of Electron Affinity and Evaluation as Acceptors in All-Polymer Solar Cells. Macromolecules 2019. [DOI: 10.1021/acs.macromol.8b02595] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Markus Grandl
- Wacker Chemie
AG, Johannes-Hess-Strasse 24, 84489 Burghausen, Germany
| | - Jonas Schepper
- Institute of Organic Chemistry II and Advanced Materials, University of Ulm, Albert-Einstein-Allee 11, D-89081 Ulm, Germany
| | - Sudeshna Maity
- Department of Physics and Astronomy, Vrije Universiteit Amsterdam, De Boelelaan 1081, NL-1081 HV Amsterdam, Netherlands
| | - Andreas Peukert
- Department of Physics and Astronomy, Vrije Universiteit Amsterdam, De Boelelaan 1081, NL-1081 HV Amsterdam, Netherlands
| | - Elizabeth von Hauff
- Department of Physics and Astronomy, Vrije Universiteit Amsterdam, De Boelelaan 1081, NL-1081 HV Amsterdam, Netherlands
| | - Frank Pammer
- Institute of Organic Chemistry II and Advanced Materials, University of Ulm, Albert-Einstein-Allee 11, D-89081 Ulm, Germany
| |
Collapse
|
32
|
Pammer F, Schepper J, Glöckler J, Sun Y, Orthaber A. Expansion of the scope of alkylboryl-bridged N → B-ladder boranes: new substituents and alternative substrates. Dalton Trans 2019; 48:10298-10312. [DOI: 10.1039/c9dt01555h] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
A series of new boranes capable of forming intramolecular N → B-heterocycles has been prepared and their properties have been studied by electrochemical methods and UV-vis-spectroscopy complemented by DFT calculations.
Collapse
Affiliation(s)
- Frank Pammer
- Institute of Organic Chemistry II and Advanced Materials
- University of Ulm
- 89081 Ulm
- Germany
| | - Jonas Schepper
- Institute of Organic Chemistry II and Advanced Materials
- University of Ulm
- 89081 Ulm
- Germany
| | - Johannes Glöckler
- Institut of Analytical and Bioanalytical Chemistry
- University of Ulm
- 89081 Ulm
- Germany
| | - Yu Sun
- Fachbereich Chemie
- Technische Universität Kaiserslautern
- D-67663 Kaiserslautern
- Germany
| | - Andreas Orthaber
- Department of Chemistry – Ångström laboratories
- Uppsala University
- 75120 Uppsala
- Sweden
| |
Collapse
|
33
|
Zhu C, Ji X, You D, Chen TL, Mu AU, Barker KP, Klivansky LM, Liu Y, Fang L. Extraordinary Redox Activities in Ladder-Type Conjugated Molecules Enabled by B ← N Coordination-Promoted Delocalization and Hyperconjugation. J Am Chem Soc 2018; 140:18173-18182. [PMID: 30507169 DOI: 10.1021/jacs.8b11337] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The introduction of B ← N coordinate bond-isoelectronic to C-C single bond-into π-systems represents a promising strategy to impart exotic redox and electrochromic properties into conjugated organic molecules and macromolecules. To achieve both reductive and oxidative activities using this strategy, a cruciform ladder-type molecular constitution was designed to accommodate oxidation-active, reduction-active, and B ← N coordination units into a compact structure. Two such compounds (BN-F and BN-Ph) were synthesized via highly efficient N-directed borylation. These molecules demonstrated well-separated, two reductive and two oxidative electron-transfer processes, corresponding to five distinct yet stable oxidation states, including a rarely observed boron-containing radical cation. Spectroelectrochemical measurements revealed unique optical characteristics for each of these reduced/oxidized species, demonstrating multicolor electrochromism with excellent recyclability. Distinct color changes were observed between each redox state with clear isosbestic points on the absorption spectra. The underlying redox mechanism was elucidated by a combination of computational and experimental investigations. Single-crystal X-ray diffraction analysis on the neutral state, the oxidized radical cation, and the reduced dianion of BN-Ph revealed structural transformations into two distinct quinonoid constitutions during the oxidation and reduction processes, respectively. B ← N coordination played an important role in rendering the robust and reversible multistage redox properties, by extending the charge and spin delocalization, by modulating the π-electron density, and by a newly established hyperconjugation mechanism.
Collapse
Affiliation(s)
| | | | | | - Teresa L Chen
- The Molecular Foundry , Lawrence Berkeley National Laboratory , One Cyclotron Road, Berkeley , California 94720 , United States
| | | | | | - Liana M Klivansky
- The Molecular Foundry , Lawrence Berkeley National Laboratory , One Cyclotron Road, Berkeley , California 94720 , United States
| | - Yi Liu
- The Molecular Foundry , Lawrence Berkeley National Laboratory , One Cyclotron Road, Berkeley , California 94720 , United States
| | | |
Collapse
|
34
|
Cai Z, Awais MA, Zhang N, Yu L. Exploration of Syntheses and Functions of Higher Ladder-type π-Conjugated Heteroacenes. Chem 2018. [DOI: 10.1016/j.chempr.2018.08.017] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
35
|
Huang J, Li Y. BN Embedded Polycyclic π-Conjugated Systems: Synthesis, Optoelectronic Properties, and Photovoltaic Applications. Front Chem 2018; 6:341. [PMID: 30131955 PMCID: PMC6090378 DOI: 10.3389/fchem.2018.00341] [Citation(s) in RCA: 81] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Accepted: 07/19/2018] [Indexed: 01/01/2023] Open
Abstract
In the periodic table of elements, boron (B, atomic number, 5) and nitrogen (N, atomic number, 7) are neighboring to the carbon (C, atomic number, 6). Thus, the total electronic number of two carbons (12) is equal to the electronic sum of one boron (5) and one nitrogen (7). Accordingly, replacing two carbons with one boron and one nitrogen in a π-conjugated structure gives an isoelectronic system, i.e., the BN perturbed π-conjugated system, comparing to their all-carbon analogs. The BN embedded π-conjugated systems have unique properties, e.g., optical absorption, emission, energy levels, bandgaps, and packing order in contrast to their all-carbon analogs and have been intensively studied in terms of novel synthesis, photophysical characterizations, and electronic applications in recent years. In this review, we try to summarize the synthesis methods, optoelectronic properties, and progress in organic photovoltaic (OPV) applications of the representative BN embedded polycyclic π-conjugated systems. Firstly, the narrative will be commenced with a general introduction to the BN units, i.e., B←N coordination bond, B-N covalent bond, and N-B←N group. Then, the representative synthesis strategies toward π-conjugated systems containing B←N coordination bond, B-N covalent bond, and N-B←N group will be summarized. Afterwards, the frontier orbital energy levels, optical absorption, packing order in solid state, charge transportation ability, and photovoltaic performances of typical BN embedded π-conjugated systems will be discussed. Finally, a prospect will be proposed on the OPV materials of BN doped π-conjugated systems, especially their potential applications to the small molecules organic solar cells.
Collapse
Affiliation(s)
- Jianhua Huang
- College of Materials Science and Engineering, Huaqiao University, Xiamen, China
| | | |
Collapse
|
36
|
Alahmadi AF, Lalancette RA, Jäkle F. Highly Luminescent Ladderized Fluorene Copolymers Based on B-N Lewis Pair Functionalization. Macromol Rapid Commun 2018; 39:e1800456. [PMID: 30073729 DOI: 10.1002/marc.201800456] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Revised: 07/05/2018] [Indexed: 11/08/2022]
Abstract
A new B-N functionalized polyaromatic building block for conjugated hybrid polymers is developed. Bromine-functionalized dipyridylfluorene is first subjected to Lewis-base-directed electrophilic borylation and subsequently incorporated into conjugated polymers via transition-metal-catalyzed cross-coupling reactions. The borane monomer exhibits bright blue luminescence in solution, as a result of the rigid ladder-type structure generated upon electrophilic borylation. Yamamoto coupling gives rise to a homopolymer and Stille coupling to a vinylene-bridged copolymer. Polymerization of the BN-fused ladder molecules leads to large bathochromic shifts in absorption and emission, which are most pronounced for the vinylene-bridged copolymer. The polymers display strong luminescence in solution with quantum yields of 55% and 78% and sub-ns fluorescence lifetimes; the copolymer also exhibits bright yellow luminescence in the solid state when precipitated from solution.
Collapse
Affiliation(s)
- Abdullah F Alahmadi
- Department of Chemistry, Rutgers University-Newark, 73 Warren Street, Newark, NJ, 07102, USA
| | - Roger A Lalancette
- Department of Chemistry, Rutgers University-Newark, 73 Warren Street, Newark, NJ, 07102, USA
| | - Frieder Jäkle
- Department of Chemistry, Rutgers University-Newark, 73 Warren Street, Newark, NJ, 07102, USA
| |
Collapse
|
37
|
Li Y, Meng H, Yan D, Li Y, Pang B, Zhang K, Luo G, Huang J, Zhan C. Synthesis of B←N embedded indacenodithiophene chromophores and effects of bromine atoms on photophysical properties and energy levels. Tetrahedron 2018. [DOI: 10.1016/j.tet.2018.06.035] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
38
|
Wang T, Dou C, Liu J, Wang L. Effects of the Substituents of Boron Atoms on Conjugated Polymers Containing B←N Units. Chemistry 2018; 24:13043-13048. [PMID: 29907978 DOI: 10.1002/chem.201802496] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Revised: 06/14/2018] [Indexed: 11/10/2022]
Abstract
Organoboron chemistry is a new tool to tune the electronic structures and properties of conjugated polymers, which are important for applications in organic optoelectronic devices. To investigate the effects of substituents of boron atoms on conjugated polymers, we synthesized three conjugated polymers based on double B←N-bridged bipyridine (BNBP) with various substituents on the boron atoms. By changing the substituents from four phenyl groups and two phenyl groups/two fluorine atoms to four fluorine atoms, the BNBP-based polymers show blue-shifted absorption spectra, decreased LUMO/HOMO energy levels, and enhanced electron affinities, as well as increased electron mobilities. Moreover, these BNBP-based polymers can be used as electron acceptors for all-polymer solar cells. These results demonstrate that substituents of boron atoms can effectively modulate the electronic properties and applications of conjugated polymers.
Collapse
Affiliation(s)
- Tao Wang
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, P.R. China.,University of Chinese Academy of Sciences, Beijing, 100864, P.R. China
| | - Chuandong Dou
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, P.R. China
| | - Jun Liu
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, P.R. China
| | - Lixiang Wang
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, P.R. China
| |
Collapse
|
39
|
Crossley DL, Kulapichitr P, Radcliffe JE, Dunsford JJ, Vitorica‐Yrezabal I, Kahan RJ, Woodward AW, Turner ML, McDouall JJW, Ingleson MJ. C-H Borylation/Cross-Coupling Forms Twisted Donor-Acceptor Compounds Exhibiting Donor-Dependent Delayed Emission. Chemistry 2018; 24:10521-10530. [PMID: 29781115 PMCID: PMC6099339 DOI: 10.1002/chem.201801799] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Revised: 05/17/2018] [Indexed: 02/03/2023]
Abstract
Benzothiadiazole (BT) directed C-H borylation using BCl3 , followed by B-Cl hydrolysis and Suzuki-Miyaura cross-coupling enables facile access to twisted donor-acceptor compounds. A subsequent second C-H borylation step provides, on arylation of boron, access to borylated highly twisted D-A compounds with a reduced bandgap, or on B-Cl hydrolysis/cross-coupling to twisted D-A-D compounds. Photophysical studies revealed that in this series there is long lifetime emission only when the donor is triphenylamine. Computational studies indicated that the key factor in observing the donor dependent long lifetime emission is the energy gap between the S1 /T2 excited states, which are predominantly intramolecular charge-transfer states, and the T1 excited state, which is predominantly a local excited state on the BT acceptor moiety.
Collapse
Affiliation(s)
- Daniel L. Crossley
- School of ChemistryThe University of ManchesterOxford RoadManchesterM13 9PLUK
| | - Pakapol Kulapichitr
- School of ChemistryThe University of ManchesterOxford RoadManchesterM13 9PLUK
| | - James E. Radcliffe
- School of ChemistryThe University of ManchesterOxford RoadManchesterM13 9PLUK
| | - Jay J. Dunsford
- School of ChemistryThe University of ManchesterOxford RoadManchesterM13 9PLUK
| | | | - Rachel J. Kahan
- School of ChemistryThe University of ManchesterOxford RoadManchesterM13 9PLUK
| | - Adam W. Woodward
- School of ChemistryThe University of ManchesterOxford RoadManchesterM13 9PLUK
| | - Michael L. Turner
- School of ChemistryThe University of ManchesterOxford RoadManchesterM13 9PLUK
| | | | - Michael J. Ingleson
- School of ChemistryThe University of ManchesterOxford RoadManchesterM13 9PLUK
| |
Collapse
|
40
|
Grandl M, Sun Y, Pammer F. Electronic and structural properties of N → B-ladder boranes with high electron affinity. Org Chem Front 2018. [DOI: 10.1039/c7qo00876g] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
A series of electronically and structurally diverse N → B-ladder boranes has been prepared by hydroboration.
Collapse
Affiliation(s)
| | - Yu Sun
- Fachbereich Chemie
- Technische Universität Kaiserslautern
- 67663 Kaiserslautern
- Germany
| | - Frank Pammer
- Institute of Organic Chemistry II and Advanced Materials
- University of Ulm
- 89081 Ulm
- Germany
| |
Collapse
|
41
|
Stolar M, Baumgartner T. Functional conjugated pyridines via main-group element tuning. Chem Commun (Camb) 2018. [DOI: 10.1039/c8cc00373d] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The functional properties arising from a combination of main-group elements with pyridine-based organic conjugated scaffolds are highlighted.
Collapse
|
42
|
Liu K, Lalancette RA, Jäkle F. B–N Lewis Pair Functionalization of Anthracene: Structural Dynamics, Optoelectronic Properties, and O2 Sensitization. J Am Chem Soc 2017; 139:18170-18173. [DOI: 10.1021/jacs.7b11062] [Citation(s) in RCA: 116] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Kanglei Liu
- Department of Chemistry, Rutgers University Newark, Newark, New Jersey 07102, United States
| | - Roger A. Lalancette
- Department of Chemistry, Rutgers University Newark, Newark, New Jersey 07102, United States
| | - Frieder Jäkle
- Department of Chemistry, Rutgers University Newark, Newark, New Jersey 07102, United States
| |
Collapse
|
43
|
Crossley DL, Urbano L, Neumann R, Bourke S, Jones J, Dailey LA, Green M, Humphries MJ, King SM, Turner ML, Ingleson MJ. Post-polymerization C-H Borylation of Donor-Acceptor Materials Gives Highly Efficient Solid State Near-Infrared Emitters for Near-IR-OLEDs and Effective Biological Imaging. ACS APPLIED MATERIALS & INTERFACES 2017; 9:28243-28249. [PMID: 28783304 DOI: 10.1021/acsami.7b08473] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Post-polymerization modification of the donor-acceptor polymer, poly(9,9-dioctylfluorene-alt-benzothiadiazole), PF8-BT, by electrophilic C-H borylation is a simple method to introduce controllable quantities of near-infrared (near-IR) emitting chromophore units into the backbone of a conjugated polymer. The highly stable borylated unit possesses a significantly lower LUMO energy than the pristine polymer resulting in a reduction in the band gap of the polymer by up to 0.63 eV and a red shift in emission of more than 150 nm. Extensively borylated polymers absorb strongly in the deep red/near-IR and are highly emissive in the near-IR region of the spectrum in solution and solid state. Photoluminescence quantum yield (PLQY) values are extremely high in the solid state for materials with emission maxima ≥ 700 nm with PLQY values of 44% at 700 nm and 11% at 757 nm for PF8-BT with different borylation levels. This high brightness enables efficient solution processed near-IR emitting OLEDs to be fabricated and highly emissive borylated polymer loaded conjugated polymer nanoparticles (CPNPs) to be prepared. The latter are bright, photostable, low toxicity bioimaging agents that in phantom mouse studies show higher signal to background ratios for emission at 820 nm than the ubiquitous near-IR emissive bioimaging agent indocyanine green. This methodology represents a general approach for the post-polymerization functionalization of donor-acceptor polymers to reduce the band gap as confirmed by the C-H borylation of poly((9,9-dioctylfluorene)-2,7-diyl-alt-[4,7-bis(3-hexylthien-5-yl)-2,1,3-benzothiadiazole]-2c,2cc-diyl) (PF8TBT) resulting in a red shift in emission of >150 nm, thereby shifting the emission maximum to 810 nm.
Collapse
Affiliation(s)
- Daniel L Crossley
- School of Chemistry, University of Manchester , Manchester M13 9PL, United Kingdom
| | - Laura Urbano
- Institute of Pharmaceutical Sciences, King's College London , Waterloo Campus, London SE1 9NH, United Kingdom
| | - Robert Neumann
- Institute of Pharmacy, Martin-Luther University Halle-Wittenberg , Wolfgang-Langenbeck-Strasse 4, 06120 Halle, Saale, Germany
| | - Struan Bourke
- Department of Physics, King's College London , Strand Campus, London WC2R 2LS, United Kingdom
| | - Jennifer Jones
- School of Chemistry, University of Manchester , Manchester M13 9PL, United Kingdom
| | - Lea Ann Dailey
- Institute of Pharmacy, Martin-Luther University Halle-Wittenberg , Wolfgang-Langenbeck-Strasse 4, 06120 Halle, Saale, Germany
| | - Mark Green
- Department of Physics, King's College London , Strand Campus, London WC2R 2LS, United Kingdom
| | - Martin J Humphries
- Cambridge Display Technology Ltd. (Company Number 02672530), Unit 12, Cardinal Park, Cardinal Way, Godmanchester PE29 2XG, United Kingdom
| | - Simon M King
- Cambridge Display Technology Ltd. (Company Number 02672530), Unit 12, Cardinal Park, Cardinal Way, Godmanchester PE29 2XG, United Kingdom
| | - Michael L Turner
- School of Chemistry, University of Manchester , Manchester M13 9PL, United Kingdom
| | - Michael J Ingleson
- School of Chemistry, University of Manchester , Manchester M13 9PL, United Kingdom
| |
Collapse
|
44
|
Crossley DL, Goh R, Cid J, Vitorica-Yrezabal I, Turner ML, Ingleson MJ. Borylated Arylamine–Benzothiadiazole Donor–Acceptor Materials as Low-LUMO, Low-Band-Gap Chromophores. Organometallics 2017. [DOI: 10.1021/acs.organomet.7b00188] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Affiliation(s)
- Daniel L. Crossley
- School of Chemistry, University of Manchester, Manchester M13 9PL, United Kingdom
| | - Rosanne Goh
- School of Chemistry, University of Manchester, Manchester M13 9PL, United Kingdom
| | - Jessica Cid
- School of Chemistry, University of Manchester, Manchester M13 9PL, United Kingdom
| | | | - Michael L. Turner
- School of Chemistry, University of Manchester, Manchester M13 9PL, United Kingdom
| | - Michael J. Ingleson
- School of Chemistry, University of Manchester, Manchester M13 9PL, United Kingdom
| |
Collapse
|
45
|
John A, Bolte M, Lerner HW, Wagner M. A Vicinal Electrophilic Diborylation Reaction Furnishes Doubly Boron-Doped Polycyclic Aromatic Hydrocarbons. Angew Chem Int Ed Engl 2017. [DOI: 10.1002/ange.201701591] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Alexandra John
- Institut für Anorganische Chemie; Goethe-Universität Frankfurt; Max-von-Laue-Strasse 7 60438 Frankfurt am Main Germany
| | - Michael Bolte
- Institut für Anorganische Chemie; Goethe-Universität Frankfurt; Max-von-Laue-Strasse 7 60438 Frankfurt am Main Germany
| | - Hans-Wolfram Lerner
- Institut für Anorganische Chemie; Goethe-Universität Frankfurt; Max-von-Laue-Strasse 7 60438 Frankfurt am Main Germany
| | - Matthias Wagner
- Institut für Anorganische Chemie; Goethe-Universität Frankfurt; Max-von-Laue-Strasse 7 60438 Frankfurt am Main Germany
| |
Collapse
|
46
|
John A, Bolte M, Lerner HW, Wagner M. A Vicinal Electrophilic Diborylation Reaction Furnishes Doubly Boron-Doped Polycyclic Aromatic Hydrocarbons. Angew Chem Int Ed Engl 2017; 56:5588-5592. [DOI: 10.1002/anie.201701591] [Citation(s) in RCA: 70] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2017] [Revised: 03/08/2017] [Indexed: 11/05/2022]
Affiliation(s)
- Alexandra John
- Institut für Anorganische Chemie; Goethe-Universität Frankfurt; Max-von-Laue-Strasse 7 60438 Frankfurt am Main Germany
| | - Michael Bolte
- Institut für Anorganische Chemie; Goethe-Universität Frankfurt; Max-von-Laue-Strasse 7 60438 Frankfurt am Main Germany
| | - Hans-Wolfram Lerner
- Institut für Anorganische Chemie; Goethe-Universität Frankfurt; Max-von-Laue-Strasse 7 60438 Frankfurt am Main Germany
| | - Matthias Wagner
- Institut für Anorganische Chemie; Goethe-Universität Frankfurt; Max-von-Laue-Strasse 7 60438 Frankfurt am Main Germany
| |
Collapse
|
47
|
Grandl M, Rudolf B, Sun Y, Bechtel DF, Pierik AJ, Pammer F. Intramolecular N→B Coordination as a Stabilizing Scaffold for π-Conjugated Radical Anions with Tunable Redox Potentials. Organometallics 2017. [DOI: 10.1021/acs.organomet.6b00916] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Affiliation(s)
- Markus Grandl
- Institute
of Organic Chemistry II and Advanced Materials, Ulm University, Albert-Einstein-Allee 11, 89081 Ulm, Germany
| | - Benjamin Rudolf
- Institute
of Organic Chemistry II and Advanced Materials, Ulm University, Albert-Einstein-Allee 11, 89081 Ulm, Germany
| | - Yu Sun
- Fachbereich
Chemie, Technische Universität Kaiserslautern, Erwin-Schrödinger-Strasse
54, 67663 Kaiserslautern, Germany
| | - Dominique F. Bechtel
- Fachbereich
Chemie, Technische Universität Kaiserslautern, Erwin-Schrödinger-Strasse
54, 67663 Kaiserslautern, Germany
| | - Antonio J. Pierik
- Fachbereich
Chemie, Technische Universität Kaiserslautern, Erwin-Schrödinger-Strasse
54, 67663 Kaiserslautern, Germany
| | - Frank Pammer
- Institute
of Organic Chemistry II and Advanced Materials, Ulm University, Albert-Einstein-Allee 11, 89081 Ulm, Germany
| |
Collapse
|
48
|
Crossley DL, Vitorica-Yrezabal I, Humphries MJ, Turner ML, Ingleson MJ. Highly Emissive Far Red/Near-IR Fluorophores Based on Borylated Fluorene-Benzothiadiazole Donor-Acceptor Materials. Chemistry 2016; 22:12439-48. [PMID: 27460768 PMCID: PMC6680280 DOI: 10.1002/chem.201602010] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2016] [Indexed: 01/25/2023]
Abstract
Stille, Suzuki-Miyaura and Negishi cross-coupling reactions of bromine-functionalised borylated precursors enable the facile, high yielding, synthesis of borylated donor-acceptor materials that contain electron-rich aromatic units and/or extended effective conjugation lengths. These materials have large Stokes shifts, low LUMO energies, small band-gaps and significant fluorescence emission >700 nm in solution and when dispersed in a host polymer.
Collapse
Affiliation(s)
- Daniel L Crossley
- School of Chemistry, University of Manchester, Manchester, M13 9PL, UK
| | | | - Martin J Humphries
- Cambridge Display Technology Ltd. (Company Number 02672530) Unit 12, Cardinal Park, Cardinal Way, Godmanchester, PE29 2XG, UK
| | - Michael L Turner
- School of Chemistry, University of Manchester, Manchester, M13 9PL, UK.
| | | |
Collapse
|
49
|
Grandl M, Kaese T, Krautsieder A, Sun Y, Pammer F. Hydroboration as an Efficient Tool for the Preparation of Electronically and Structurally Diverse N→B-Heterocycles. Chemistry 2016; 22:14373-82. [DOI: 10.1002/chem.201602458] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2016] [Indexed: 01/29/2023]
Affiliation(s)
- Markus Grandl
- Institute of Organic Chemistry II and Advanced Materials; University of Ulm, Albert-Einstein-Allee 11; 89081 Ulm Germany
| | - Thomas Kaese
- Institut für Anorganische und Analytische Chemie; Goethe-Universität Frankfurt; Max-von-Laue-Strasse 7 30438 Frankfurt am Main Germany
| | - Anke Krautsieder
- Institute of Organic Chemistry II and Advanced Materials; University of Ulm, Albert-Einstein-Allee 11; 89081 Ulm Germany
| | - Yu Sun
- Fachbereich Chemie; Technische Universität Kaiserslautern; Erwin-Schrödinger-Strasse 54 67663 Kaiserslautern Germany
| | - Frank Pammer
- Institute of Organic Chemistry II and Advanced Materials; University of Ulm, Albert-Einstein-Allee 11; 89081 Ulm Germany
| |
Collapse
|
50
|
Bachollet SPJT, Volz D, Fiser B, Münch S, Rönicke F, Carrillo J, Adams H, Schepers U, Gómez-Bengoa E, Bräse S, Harrity JPA. A Modular Class of Fluorescent Difluoroboranes: Synthesis, Structure, Optical Properties, Theoretical Calculations and Applications for Biological Imaging. Chemistry 2016; 22:12430-8. [DOI: 10.1002/chem.201601915] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2016] [Indexed: 12/12/2022]
Affiliation(s)
- Sylvestre P. J. T. Bachollet
- Department of Chemistry; University of Sheffield; Brook Hill Sheffield S3 7HF UK
- Institute of Organic Chemistry; Karlsruhe Institute of Technology; Fritz-Haber-Weg 6 76131 Karlsruhe Germany
| | - Daniel Volz
- Cynora GmbH; Werner-von-Siemens-Straße 2-6 76646 Bruchsal Germany
| | - Béla Fiser
- Departamento de Química Organica I; Universidad del País Vasco; Manuel Lardizabal 3 20018 San Sebastian Spain
| | - Stephan Münch
- Institute of Organic Chemistry; Karlsruhe Institute of Technology; Fritz-Haber-Weg 6 76131 Karlsruhe Germany
| | - Franziska Rönicke
- Institute of Toxicology and Genetics; Karlsruhe Institute of Technology; Hermann-von-Helmholtz-Platz 1 76344 Eggenstein-Leopoldshafen Germany
| | - Jokin Carrillo
- Department of Chemistry; University of Sheffield; Brook Hill Sheffield S3 7HF UK
| | - Harry Adams
- Department of Chemistry; University of Sheffield; Brook Hill Sheffield S3 7HF UK
| | - Ute Schepers
- Institute of Toxicology and Genetics; Karlsruhe Institute of Technology; Hermann-von-Helmholtz-Platz 1 76344 Eggenstein-Leopoldshafen Germany
| | - Enrique Gómez-Bengoa
- Departamento de Química Organica I; Universidad del País Vasco; Manuel Lardizabal 3 20018 San Sebastian Spain
| | - Stefan Bräse
- Institute of Organic Chemistry; Karlsruhe Institute of Technology; Fritz-Haber-Weg 6 76131 Karlsruhe Germany
- Institute of Toxicology and Genetics; Karlsruhe Institute of Technology; Hermann-von-Helmholtz-Platz 1 76344 Eggenstein-Leopoldshafen Germany
| | - Joseph P. A. Harrity
- Department of Chemistry; University of Sheffield; Brook Hill Sheffield S3 7HF UK
| |
Collapse
|