1
|
Singh PR, Nagaraja V. Epigenetic maneuvering: an emerging strategy for mycobacterial intracellular survival. Trends Microbiol 2024:S0966-842X(24)00281-6. [PMID: 39613689 DOI: 10.1016/j.tim.2024.10.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 10/21/2024] [Accepted: 10/30/2024] [Indexed: 12/01/2024]
Abstract
Mycobacterium tuberculosis (Mtb) has elaborated numerous mechanisms for its pathogenesis. Mtb manipulates host signaling pathways to interfere with the immune response and cell death pathways. By employing virulence factors - of which secretory proteins are emerging as significant components - it ensures successful survival in the host. In this review, we discuss advances made on the largely unexplored secretory modifiers of Mtb that alter the host epigenome to impact host pathways for the pathogen's advantage. We highlight the findings on the Mtb-encoded modification enzymes and their role in maneuvering the host machinery. We also provide pointers to the gaps that still exist in this area and approaches to address these questions for a better appreciation of the uncanny success of Mtb as an intracellular pathogen.
Collapse
Affiliation(s)
- Prakruti R Singh
- Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), Bengaluru, India; Department of Microbiology and Cell Biology, Indian Institute of Science (IISc), Bengaluru, India
| | - Valakunja Nagaraja
- Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), Bengaluru, India; Department of Microbiology and Cell Biology, Indian Institute of Science (IISc), Bengaluru, India.
| |
Collapse
|
2
|
Malik AA, Shariq M, Sheikh JA, Fayaz H, Srivastava G, Thakuri D, Ahuja Y, Ali S, Alam A, Ehtesham NZ, Hasnain SE. Regulation of Type I Interferon and Autophagy in Immunity against Mycobacterium Tuberculosis: Role of CGAS and STING1. Adv Biol (Weinh) 2024; 8:e2400174. [PMID: 38977406 DOI: 10.1002/adbi.202400174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 05/22/2024] [Indexed: 07/10/2024]
Abstract
Mycobacterium tuberculosis (M. tb) is a significant intracellular pathogen responsible for numerous infectious disease-related deaths worldwide. It uses ESX-1 T7SS to damage phagosomes and to enter the cytosol of host cells after phagocytosis. During infection, M. tb and host mitochondria release dsDNA, which activates the CGAS-STING1 pathway. This pathway leads to the production of type I interferons and proinflammatory cytokines and activates autophagy, which targets and degrades bacteria within autophagosomes. However, the role of type I IFNs in immunity against M. tb is controversial. While previous research has suggested a protective role, recent findings from cgas-sting1 knockout mouse studies have contradicted this. Additionally, a study using knockout mice and non-human primate models uncovered a new mechanism by which neutrophils recruited to lung infections form neutrophil extracellular traps. Activating plasmacytoid dendritic cells causes them to produce type I IFNs, which interfere with the function of interstitial macrophages and increase the likelihood of tuberculosis. Notably, M. tb uses its virulence proteins to disrupt the CGAS-STING1 signaling pathway leading to enhanced pathogenesis. Investigating the CGAS-STING1 pathway can help develop new ways to fight tuberculosis.
Collapse
Affiliation(s)
- Asrar Ahmad Malik
- Department of Life Sciences, Sharda School of Basic Sciences and Research, Sharda University, Knowledge Park III, Greater Noida, Uttar Pradesh, 201306, India
| | - Mohd Shariq
- ICMR-National Institute of Pathology, Ansari Nagar West, New Delhi, 110029, India
| | - Javaid Ahmad Sheikh
- Department of Biotechnology, School of Chemical and Life Sciences, Jamia Hamdard, Hamdard Nagar, New Delhi, 110062, India
| | - Haleema Fayaz
- Department of Life Sciences, Sharda School of Basic Sciences and Research, Sharda University, Knowledge Park III, Greater Noida, Uttar Pradesh, 201306, India
| | - Gauri Srivastava
- Department of Life Sciences, Sharda School of Basic Sciences and Research, Sharda University, Knowledge Park III, Greater Noida, Uttar Pradesh, 201306, India
| | - Deeksha Thakuri
- Department of Life Sciences, Sharda School of Basic Sciences and Research, Sharda University, Knowledge Park III, Greater Noida, Uttar Pradesh, 201306, India
| | - Yashika Ahuja
- Department of Life Sciences, Sharda School of Basic Sciences and Research, Sharda University, Knowledge Park III, Greater Noida, Uttar Pradesh, 201306, India
| | - Saquib Ali
- Department of Life Sciences, Sharda School of Basic Sciences and Research, Sharda University, Knowledge Park III, Greater Noida, Uttar Pradesh, 201306, India
| | - Anwar Alam
- Department of Life Sciences, Sharda School of Basic Sciences and Research, Sharda University, Knowledge Park III, Greater Noida, Uttar Pradesh, 201306, India
| | - Nasreen Z Ehtesham
- Department of Life Sciences, Sharda School of Basic Sciences and Research, Sharda University, Knowledge Park III, Greater Noida, Uttar Pradesh, 201306, India
| | - Seyed E Hasnain
- Department of Life Sciences, Sharda School of Basic Sciences and Research, Sharda University, Knowledge Park III, Greater Noida, Uttar Pradesh, 201306, India
- Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology, Delhi (IIT-D), Hauz Khas, New Delhi, 110 016, India
| |
Collapse
|
3
|
Tanweer S, Sharma T, Grover A, Agarwal M, Grover S. Mycobacterium tuberculosis Essential Gene Thymidylate Synthase Is Involved in Immune Modulation and Survival inside the Host. ACS OMEGA 2024; 9:33743-33750. [PMID: 39130601 PMCID: PMC11308015 DOI: 10.1021/acsomega.4c02919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 07/01/2024] [Accepted: 07/03/2024] [Indexed: 08/13/2024]
Abstract
A Mycobacterium tuberculosis essential gene, ThyX (Rv2754c), plays a key role in intermediate metabolism and respiration by catalyzing the formation of dTMP and tetrahydrofolate from dUMP and methylenetetrahydrofolate. ThyX is present in the M.tb complex and in M. smegmatis a nonpathogenic strain of Mycobacteria. In this study, we identified a novel function of ThyX, an enzyme with immune-modulating properties. We have shown that ThyX can activate the macrophages in the host toward M1 response. Overexpression of ThyX stimulates the production of nitrite oxide (NO) and induces apoptosis in macrophages; indeed both responses help the host to control growth of M.tb. ThyX was also discovered to play a role in the recombinant bacterium's ability to survive when it was subjected to oxidative and hypoxic stress by macrophages. These findings demonstrate the protein's functional importance in M.tb. Indeed these findings represent ThyX as a potential candidate for future research and show this as a therapeutic target.
Collapse
Affiliation(s)
- Sana Tanweer
- Department
of Molecular Medicine, Jamia Hamdard, New Delhi-110065, India
| | - Tarina Sharma
- New
Jersey Medical School, Rutgers, The State
University of New Jersey, Newark, New Jersey 07103, United States
| | - Abhinav Grover
- School
of Biotechnology, Jawaharlal University, New Delhi-110069, India
| | - Meetu Agarwal
- Department
of Molecular Medicine, Jamia Hamdard, New Delhi-110065, India
| | - Sonam Grover
- Department
of Molecular Medicine, Jamia Hamdard, New Delhi-110065, India
| |
Collapse
|
4
|
Manjunath P, Ahmad J, Samal J, Rani A, Sheikh JA, Zarin S, Ahuja Y, Alam A, Hasnain SE, Ehtesham NZ. Expression of a unique M. tuberculosis DNA MTase Rv1509 in M. smegmatis alters the gene expression pattern and enhances virulence. Front Microbiol 2024; 15:1344857. [PMID: 38803374 PMCID: PMC11129820 DOI: 10.3389/fmicb.2024.1344857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 04/15/2024] [Indexed: 05/29/2024] Open
Abstract
Mycobacterium tuberculosis (M. tb) genome encompasses 4,173 genes, about a quarter of which remain uncharacterized and hypothetical. Considering the current limitations associated with the diagnosis and treatment of tuberculosis, it is imperative to comprehend the pathomechanism of the disease and host-pathogen interactions to identify new drug targets for intervention strategies. Using in-silico comparative genome analysis, we identified one of the M. tb genes, Rv1509, as a signature protein exclusively present in M. tb. To explore the role of Rv1509, a likely methyl transferase, we constructed a knock-in Mycobacterium smegmatis (M. smegmatis) constitutively expressing Rv1509 (Ms_Rv1509). The Ms_Rv1509 led to differential expression of many transcriptional regulator genes as assessed by RNA-seq analysis. Further, in-vitro and in-vivo studies demonstrated an enhanced survival of Ms_Rv1509 inside the host macrophages. Ms_Rv1509 also promoted phagolysosomal escape inside macrophages to boost bacterial replication and dissemination. In-vivo infection studies revealed that Ms_Rv1509 survives better than BCG and causes pathological manifestations in the pancreas after intraperitoneal infection. Long-time survival of Ms_Rv1509 resulted in lymphocyte migration, increased T regulatory cells, giant cell formation, and likely granuloma formation in the pancreas, pointing toward the role of Rv1509 in M. tb pathogenesis.
Collapse
Affiliation(s)
- P. Manjunath
- Inflammation Biology and Cell Signaling Laboratory, National Institute of Pathology, New Delhi, India
- Department of Biotechnology, Jamia Hamdard, New Delhi, India
| | - Javeed Ahmad
- Molecular Biology Section, Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States
| | - Jasmine Samal
- Inflammation Biology and Cell Signaling Laboratory, National Institute of Pathology, New Delhi, India
| | - Anshu Rani
- Kusuma School of Biological Sciences, Indian Institute of Technology, New Delhi, India
| | | | - Sheeba Zarin
- Department of Biotechnology, Jamia Hamdard, New Delhi, India
- Department of Life Science, Sharda School of Basic Sciences and Research, Sharda University, Greater Noida, Uttar Pradesh, India
| | - Yashika Ahuja
- Department of Life Science, Sharda School of Basic Sciences and Research, Sharda University, Greater Noida, Uttar Pradesh, India
| | - Anwar Alam
- Department of Biotechnology, Sharda School of Engineering Sciences and Technology, Sharda University, Greater Noida, Uttar Pradesh, India
| | - Seyed E. Hasnain
- Department of Life Science, Sharda School of Basic Sciences and Research, Sharda University, Greater Noida, Uttar Pradesh, India
- Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology, New Delhi, India
| | - Nasreen Z. Ehtesham
- Department of Life Science, Sharda School of Basic Sciences and Research, Sharda University, Greater Noida, Uttar Pradesh, India
| |
Collapse
|
5
|
Nazim T, Kumar V, Ahmed F, Ehtesham NZ, Hasnain SE, Sundar D, Grover S. Computational analysis of RNA methyltransferase Rv3366 as a potential drug target for combating drug-resistant Mycobacterium tuberculosis. Front Mol Biosci 2024; 10:1348337. [PMID: 38274093 PMCID: PMC10808684 DOI: 10.3389/fmolb.2023.1348337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Accepted: 12/28/2023] [Indexed: 01/27/2024] Open
Abstract
Mycobacterium tuberculosis (M.tb) remains a formidable global health threat. The increasing drug resistance among M.tb clinical isolates is exacerbating the current tuberculosis (TB) burden. In this study we focused on identifying novel repurposed drugs that could be further investigated as potential anti-TB drugs. We utilized M.tb RNA methyltransferase Rv3366 (spoU) as a potential drug target due to its imperative activity in RNA modification and no structural homology with human proteins. Using computational modeling approaches the structure of Rv3366 was determined followed by high throughput virtual screening of Food and Drug Administration (FDA) approved drugs to screen potential binders of Rv3366. Molecular dynamics (MD) simulations were performed to assess the drug-protein binding interactions, complex stability and rigidity. Through this multi-step structure-based drug repurposing workflow two promising inhibitors of Rv3366 were identified, namely, Levodopa and Droxidopa. This study highlights the significance of targeting M.tb RNA methyltransferases to combat drug-resistant M.tb. and proposes Levodopa and Droxidopa as promising inhibitors of Rv3366 for future pre-clinical investigations.
Collapse
Affiliation(s)
- Tasmin Nazim
- Department of Molecular Medicine, Jamia Hamdard, New Delhi, India
| | - Vipul Kumar
- Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology Delhi, New Delhi, India
| | - Faraz Ahmed
- Department of Molecular Medicine, Jamia Hamdard, New Delhi, India
| | - Nasreen Z. Ehtesham
- Department of Life Sciences, School of Basic Science and Research, Sharda University, Greater Noida, India
| | - Seyed E. Hasnain
- Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology Delhi, New Delhi, India
- Department of Life Sciences, School of Basic Science and Research, Sharda University, Greater Noida, India
| | - Durai Sundar
- Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology Delhi, New Delhi, India
| | - Sonam Grover
- Department of Molecular Medicine, Jamia Hamdard, New Delhi, India
| |
Collapse
|
6
|
Shariq M, Quadir N, Alam A, Zarin S, Sheikh JA, Sharma N, Samal J, Ahmad U, Kumari I, Hasnain SE, Ehtesham NZ. The exploitation of host autophagy and ubiquitin machinery by Mycobacterium tuberculosis in shaping immune responses and host defense during infection. Autophagy 2023; 19:3-23. [PMID: 35000542 PMCID: PMC9809970 DOI: 10.1080/15548627.2021.2021495] [Citation(s) in RCA: 45] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Intracellular pathogens have evolved various efficient molecular armaments to subvert innate defenses. Cellular ubiquitination, a normal physiological process to maintain homeostasis, is emerging one such exploited mechanism. Ubiquitin (Ub), a small protein modifier, is conjugated to diverse protein substrates to regulate many functions. Structurally diverse linkages of poly-Ub to target proteins allow enormous functional diversity with specificity being governed by evolutionarily conserved enzymes (E3-Ub ligases). The Ub-binding domain (UBD) and LC3-interacting region (LIR) are critical features of macroautophagy/autophagy receptors that recognize Ub-conjugated on protein substrates. Emerging evidence suggests that E3-Ub ligases unexpectedly protect against intracellular pathogens by tagging poly-Ub on their surfaces and targeting them to phagophores. Two E3-Ub ligases, PRKN and SMURF1, provide immunity against Mycobacterium tuberculosis (M. tb). Both enzymes conjugate K63 and K48-linked poly-Ub to M. tb for successful delivery to phagophores. Intriguingly, M. tb exploits virulence factors to effectively dampen host-directed autophagy utilizing diverse mechanisms. Autophagy receptors contain LIR-motifs that interact with conserved Atg8-family proteins to modulate phagophore biogenesis and fusion to the lysosome. Intracellular pathogens have evolved a vast repertoire of virulence effectors to subdue host-immunity via hijacking the host ubiquitination process. This review highlights the xenophagy-mediated clearance of M. tb involving host E3-Ub ligases and counter-strategy of autophagy inhibition by M. tb using virulence factors. The role of Ub-binding receptors and their mode of autophagy regulation is also explained. We also discuss the co-opting and utilization of the host Ub system by M. tb for its survival and virulence.Abbreviations: APC: anaphase promoting complex/cyclosome; ATG5: autophagy related 5; BCG: bacille Calmette-Guerin; C2: Ca2+-binding motif; CALCOCO2: calcium binding and coiled-coil domain 2; CUE: coupling of ubiquitin conjugation to ER degradation domains; DUB: deubiquitinating enzyme; GABARAP: GABA type A receptor-associated protein; HECT: homologous to the E6-AP carboxyl terminus; IBR: in-between-ring fingers; IFN: interferon; IL1B: interleukin 1 beta; KEAP1: kelch like ECH associated protein 1; LAMP1: lysosomal associated membrane protein 1; LGALS: galectin; LIR: LC3-interacting region; MAPK11/p38: mitogen-activated protein kinase 11; MAP1LC3/LC3: microtubule associated protein 1 light chain 3; MAP3K7/TAK1: mitogen-activated protein kinase kinase kinase 7; MAPK8/JNK: mitogen-activated protein kinase 8; MHC-II: major histocompatibility complex-II; MTOR: mechanistic target of rapamycin kinase; NBR1: NBR1 autophagy cargo receptor; NFKB1/p50: nuclear factor kappa B subunit 1; OPTN: optineurin; PB1: phox and bem 1; PE/PPE: proline-glutamic acid/proline-proline-glutamic acid; PknG: serine/threonine-protein kinase PknG; PRKN: parkin RBR E3 ubiquitin protein ligase; RBR: RING-in between RING; RING: really interesting new gene; RNF166: RING finger protein 166; ROS: reactive oxygen species; SMURF1: SMAD specific E3 ubiquitin protein ligase 1; SQSTM1: sequestosome 1; STING1: stimulator of interferon response cGAMP interactor 1; TAX1BP1: Tax1 binding protein 1; TBK1: TANK binding kinase 1; TNF: tumor necrosis factor; TRAF6: TNF receptor associated factor 6; Ub: ubiquitin; UBA: ubiquitin-associated; UBAN: ubiquitin-binding domain in ABIN proteins and NEMO; UBD: ubiquitin-binding domain; UBL: ubiquitin-like; ULK1: unc-51 like autophagy activating kinase 1.
Collapse
Affiliation(s)
- Mohd Shariq
- Inflammation Biology and Cell Signaling Laboratory, National Institute of Pathology-ICMR, Ansari Nagar West, New Delhi, India
| | - Neha Quadir
- Inflammation Biology and Cell Signaling Laboratory, National Institute of Pathology-ICMR, Ansari Nagar West, New Delhi, India,Department of Molecular Medicine, Jamia Hamdard-Institute of Molecular Medicine, Jamia Hamdard, New Delhi, India
| | - Anwar Alam
- Inflammation Biology and Cell Signaling Laboratory, National Institute of Pathology-ICMR, Ansari Nagar West, New Delhi, India
| | - Sheeba Zarin
- Inflammation Biology and Cell Signaling Laboratory, National Institute of Pathology-ICMR, Ansari Nagar West, New Delhi, India,Department of Molecular Medicine, Jamia Hamdard-Institute of Molecular Medicine, Jamia Hamdard, New Delhi, India
| | - Javaid A. Sheikh
- Department of Biotechnology, School of Chemical and Life Sciences, Jamia Hamdard, New Delhi, India
| | - Neha Sharma
- Inflammation Biology and Cell Signaling Laboratory, National Institute of Pathology-ICMR, Ansari Nagar West, New Delhi, India,Department of Molecular Medicine, Jamia Hamdard-Institute of Molecular Medicine, Jamia Hamdard, New Delhi, India
| | - Jasmine Samal
- Inflammation Biology and Cell Signaling Laboratory, National Institute of Pathology-ICMR, Ansari Nagar West, New Delhi, India
| | - Uzair Ahmad
- Inflammation Biology and Cell Signaling Laboratory, National Institute of Pathology-ICMR, Ansari Nagar West, New Delhi, India
| | - Indu Kumari
- Inflammation Biology and Cell Signaling Laboratory, National Institute of Pathology-ICMR, Ansari Nagar West, New Delhi, India
| | - Seyed E. Hasnain
- Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology, Delhi (IIT-D), New Delhi, India,Department of Life Science, School of Basic Sciences and Research, Sharda University, Greater Noida, India,Seyed E. Hasnain ; ; Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology, Delhi (IIT-D), Hauz Khas, New Delhi 110 016, India
| | - Nasreen Z. Ehtesham
- Inflammation Biology and Cell Signaling Laboratory, National Institute of Pathology-ICMR, Ansari Nagar West, New Delhi, India,CONTACT Nasreen Z. Ehtesham ; ICMR-National Institute of Pathology, Ansari Nagar West, New Delhi110029, India
| |
Collapse
|
7
|
Majumdar S, Gupta U, Chinnasamy HV, Laxmipathy S, Matheshwaran S. Zn 2+-Induced Conformational Change Affects the SAM Binding in a Mycobacterial SAM-Dependent Methyltransferase. ACS OMEGA 2022; 7:35901-35910. [PMID: 36249403 PMCID: PMC9558604 DOI: 10.1021/acsomega.2c04555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Accepted: 09/16/2022] [Indexed: 06/16/2023]
Abstract
Zinc is a cofactor for enzymes involved in DNA replication, peptidoglycan hydrolysis, and pH maintenance, in addition to the transfer of the methyl group to thiols. Here, we discovered a new role of Zn2+ as an inhibitor for S-adenosyl methionine (SAM) binding in a mycobacterial methyltransferase. Rv1377c is annotated as a putative methyltransferase that is upregulated upon the mitomycin C treatment of Mycobacterium tuberculosis. Sequence analysis and experimental validation allowed the identification of distinct motifs responsible for SAM binding. A detailed analysis of the AlphaFold-predicted structure of Rv1377c revealed four cysteine residues capable of coordinating a Zn2+ ion located in proximity to the SAM-binding site. Further, experimental studies showed distinct conformational changes upon Zn2+ binding to the protein, which compromised its ability to bind SAM. This is the first report wherein Zn2+-driven conformational changes in a methyltransferase undermines its ability to bind SAM.
Collapse
Affiliation(s)
- Soneya Majumdar
- Department
of Biological Sciences and Bioengineering, Indian Institute of Technology, Kanpur 208016, Uttar Pradesh India
| | - Umang Gupta
- Department
of Biological Sciences and Bioengineering, Indian Institute of Technology, Kanpur 208016, Uttar Pradesh India
| | - Hariharan V. Chinnasamy
- Department
of Biological Sciences and Bioengineering, Indian Institute of Technology, Kanpur 208016, Uttar Pradesh India
| | - Sathishkumar Laxmipathy
- Department
of Biological Sciences and Bioengineering, Indian Institute of Technology, Kanpur 208016, Uttar Pradesh India
| | - Saravanan Matheshwaran
- Department
of Biological Sciences and Bioengineering, Indian Institute of Technology, Kanpur 208016, Uttar Pradesh India
- Center
for Environmental Science and Engineering, Indian Institute of Technology, Kanpur 208016, Uttar
Pradesh India
- Mehta
Family Centre for Engineering in Medicine, Indian Institute of Technology, Kanpur 208016, Uttar
Pradesh India
| |
Collapse
|
8
|
DNA Methyltransferases: From Evolution to Clinical Applications. Int J Mol Sci 2022; 23:ijms23168994. [PMID: 36012258 PMCID: PMC9409253 DOI: 10.3390/ijms23168994] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Revised: 07/28/2022] [Accepted: 08/02/2022] [Indexed: 11/18/2022] Open
Abstract
DNA methylation is an epigenetic mark that living beings have used in different environments. The MTases family catalyzes DNA methylation. This process is conserved from archaea to eukaryotes, from fertilization to every stage of development, and from the early stages of cancer to metastasis. The family of DNMTs has been classified into DNMT1, DNMT2, and DNMT3. Each DNMT has been duplicated or deleted, having consequences on DNMT structure and cellular function, resulting in a conserved evolutionary reaction of DNA methylation. DNMTs are conserved in the five kingdoms of life: bacteria, protists, fungi, plants, and animals. The importance of DNMTs in whether methylate or not has a historical adaptation that in mammals has been discovered in complex regulatory mechanisms to develop another padlock to genomic insurance stability. The regulatory mechanisms that control DNMTs expression are involved in a diversity of cell phenotypes and are associated with pathologies transcription deregulation. This work focused on DNA methyltransferases, their biology, functions, and new inhibitory mechanisms reported. We also discuss different approaches to inhibit DNMTs, the use of non-coding RNAs and nucleoside chemical compounds in recent studies, and their importance in biological, clinical, and industry research.
Collapse
|
9
|
Rani A, Alam A, Ahmad F, P. M, Saurabh A, Zarin S, Mitra DK, Hasnain SE, Ehtesham NZ. Mycobacterium tuberculosis Methyltransferase Rv1515c Can Suppress Host Defense Mechanisms by Modulating Immune Functions Utilizing a Multipronged Mechanism. Front Mol Biosci 2022; 9:906387. [PMID: 35813825 PMCID: PMC9263924 DOI: 10.3389/fmolb.2022.906387] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Accepted: 05/30/2022] [Indexed: 11/13/2022] Open
Abstract
Mycobacterium tuberculosis (M. tb) gene Rv1515c encodes a conserved hypothetical protein exclusively present within organisms of MTB complex and absent in non-pathogenic mycobacteria. In silico analysis revealed that Rv1515c contain S-adenosylmethionine binding site and methyltransferase domain. The DNA binding and DNA methyltransferase activity of Rv1515c was confirmed in vitro. Knock-in of Rv1515c in a model mycobacteria M. smegmatis (M. s_Rv1515c) resulted in remarkable physiological and morphological changes and conferred the recombinant strain with an ability to adapt to various stress conditions, including resistance to TB drugs. M. s_Rv1515c was phagocytosed at a greater rate and displayed extended intra-macrophage survival in vitro. Recombinant M. s_Rv1515c contributed to enhanced virulence by suppressing the host defense mechanisms including RNS and ROS production, and apoptotic clearance. M. s_Rv1515c, while suppressing the phagolysosomal maturation, modulated pro-inflammatory cytokine production and also inhibited antigen presentation by downregulating the expression of MHC-I/MHC-II and co-stimulatory signals CD80 and CD86. Mice infected with M. s_Rv1515c produced more Treg cells than vector control (M. s_Vc) and exhibited reduced effector T cell responses, along-with reduced expression of macrophage activation markers in the chronic phase of infection. M. s_Rv1515c was able to survive in the major organs of mice up to 7 weeks post-infection. These results indicate a crucial role of Rv1515c in M. tb pathogenesis.
Collapse
Affiliation(s)
- Anshu Rani
- Kusuma School of Biological Sciences, Indian Institute of Technology Delhi (IIT-D), New Delhi, India
- ICMR-National Institute of Pathology, Safdarjung Hospital Campus, New Delhi, India
| | - Anwar Alam
- ICMR-National Institute of Pathology, Safdarjung Hospital Campus, New Delhi, India
| | - Faraz Ahmad
- ICMR-National Institute of Pathology, Safdarjung Hospital Campus, New Delhi, India
| | - Manjunath P.
- ICMR-National Institute of Pathology, Safdarjung Hospital Campus, New Delhi, India
| | - Abhinav Saurabh
- Department of Transplant Immunology and Immunogenetics, All India Institute of Medical Sciences, New Delhi, India
| | - Sheeba Zarin
- ICMR-National Institute of Pathology, Safdarjung Hospital Campus, New Delhi, India
| | - Dipendra Kumar Mitra
- Department of Transplant Immunology and Immunogenetics, All India Institute of Medical Sciences, New Delhi, India
| | - Seyed E. Hasnain
- Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology Delhi (IIT-D), New Delhi, India
- Department of Life Science, School of Basic Sciences and Research, Sharda University, Greater Noida, India
- *Correspondence: Seyed E. Hasnain, , , , Nasreen Z. Ehtesham, ,
| | - Nasreen Z. Ehtesham
- ICMR-National Institute of Pathology, Safdarjung Hospital Campus, New Delhi, India
- *Correspondence: Seyed E. Hasnain, , , , Nasreen Z. Ehtesham, ,
| |
Collapse
|
10
|
Kaushik A, Bandyopadhyay S, Porwal C, Srinivasan A, Rukmangadachar LA, Hariprasad G, Kola S, Kataria J, Singh UB. 2D-DIGE based urinary proteomics and functional enrichment studies to reveal novel Mycobacterium tuberculosis and human protein biomarker candidates for pulmonary tuberculosis. Biochem Biophys Res Commun 2022; 619:15-21. [PMID: 35728279 DOI: 10.1016/j.bbrc.2022.06.021] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 06/01/2022] [Accepted: 06/08/2022] [Indexed: 11/30/2022]
Abstract
In the absence of a sensitive and specific diagnostic modality capable of detecting all forms of tuberculosis (TB), proteomics may identify specific Mycobacterium tuberculosis (M.tb) proteins in urine, with a potential as biomarkers. To identify candidate biomarkers for TB, proteome profile of urine from pulmonary TB patients was compared with non-disease controls (NDC) and disease controls (DC, Streptococcus pneumonia infected patients) using a combination of two-dimensional difference gel electrophoresis (2D-DIGE) and liquid chromatography tandem mass spectrometry (LCMS/MS). Eleven differentially expressed host proteins and Eighteen high abundant M.tb proteins were identified. Protein-protein interactome (PPI) and functional enrichment analyses like Gene Ontologies, Reactome pathway etc. demonstrated that the human proteins mainly belong to extracellular space and show physiological pathways for immune response and hematological disorders. Whereas, M.tb proteins belong to the cell periphery, plasma membrane and cell wall, and demonstrated catalytic, nucleotide binding and ATPase activities along with other functional processes. The study findings provide valuable inputs about the biomarkers of TB and shed light on the probable disease consequences as an outcome of the bacterial pathogenicity.
Collapse
Affiliation(s)
- Amit Kaushik
- Department of Microbiology, All India Institute of Medical Sciences, New Delhi, 110029, India
| | | | - Chhavi Porwal
- Department of Microbiology, All India Institute of Medical Sciences, New Delhi, 110029, India
| | - Alagiri Srinivasan
- Department of Biophysics, All India Institute of Medical Sciences, New Delhi, 110029, India
| | | | - Gururao Hariprasad
- Department of Biophysics, All India Institute of Medical Sciences, New Delhi, 110029, India
| | - Srujana Kola
- Department of Biophysics, All India Institute of Medical Sciences, New Delhi, 110029, India
| | - Jitender Kataria
- Department of Biophysics, All India Institute of Medical Sciences, New Delhi, 110029, India
| | - Urvashi B Singh
- Department of Microbiology, All India Institute of Medical Sciences, New Delhi, 110029, India.
| |
Collapse
|
11
|
Tarashi S, Zamani MS, Bahramali G, Fuso A, Vaziri F, Karimipoor M, Fateh A, Siadat SD. RNA Expression Analysis of Mycobacterial Methyltransferases Genes in Different Resistant Strains of Mycobacterium tuberculosis. IRANIAN BIOMEDICAL JOURNAL 2022; 26:240-51. [PMID: 35216515 PMCID: PMC9440689 DOI: 10.52547/ibj.26.3.240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Accepted: 08/03/2021] [Indexed: 06/14/2023]
Abstract
Background Tuberculosis infection still represents a global health issue affecting patients worldwide. Strategies for its control may be not as effective as it should be, specifically in case of resistant strains of Mycobacterium tuberculosis (M.tb.) In this regard, the role of mycobacterial methyltransferases (MTases) in TB infection can be fundamental, though it has not been broadly deciphered. Methods Five resistant isolates of M.tb were obtained. M.tb H37Rv (ATCC 27249) was used as a reference strain. Seven putative mycobacterial MTase genes (Rv0645c, Rv2966c, Rv1988, Rv1694, Rv3919c, Rv2756c, and Rv3263) and Rv1392 as SAM synthase were selected for analysis. PCR-sequencing and qRT-PCR were performed to compare mutations and expression levels of MTases in different strains. The 2-ΔΔCt method was employed to calculate the relative expression levels of these genes. Results Only two mutations were found in isoniazid resistance (INHR) strain for Rv3919c (T to G in codon 341) and Rv1392 (G to A in codon 97) genes. Overexpression of Rv0645c, Rv2756c, Rv3263, and Rv2966c was detected in all sensitive and resistant isolates. However, Rv1988 and Rv3919c decreased and Rv1694 increased in the sensitive strains. The Rv1392 expression level also decreased in INHR isolate. Conclusion We found a correlation between mycobacterial MTases expression and resistance to antibiotics in M.tb strains. Some MTases undeniably are virulence factors that specifically hijack the host defense mechanism. Further evaluations are needed to explore the complete impact of mycobacterial MTases within specific strains of M.tb to introduce novel diagnosis and treatment strategies.
Collapse
Affiliation(s)
- Samira Tarashi
- Department of Mycobacteriology and Pulmonary Research, Pasteur Institute of Iran, Tehran, Iran
- Microbiology Research Center, Pasteur Institute of Iran, Tehran, Iran
| | | | - Golnaz Bahramali
- Department of Hepatitis and AIDS, Pasteur Institute of Iran, Tehran, Iran
- Viral Vaccine Research Center, Pasteur Institute of Iran, Tehran, Iran
| | - Andrea Fuso
- Department of Experimental Medicine, Sapienza University of Rome, Italy
| | - Farzam Vaziri
- Department of Mycobacteriology and Pulmonary Research, Pasteur Institute of Iran, Tehran, Iran
- Microbiology Research Center, Pasteur Institute of Iran, Tehran, Iran
| | - Morteza Karimipoor
- Molecular Medicine Department, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran
| | - Abolfazl Fateh
- Department of Mycobacteriology and Pulmonary Research, Pasteur Institute of Iran, Tehran, Iran
- Microbiology Research Center, Pasteur Institute of Iran, Tehran, Iran
| | - Seyed Davar Siadat
- Department of Mycobacteriology and Pulmonary Research, Pasteur Institute of Iran, Tehran, Iran
- Microbiology Research Center, Pasteur Institute of Iran, Tehran, Iran
| |
Collapse
|
12
|
Bhattacharya M, Sharma AR, Ghosh P, Patra P, Mallick B, Patra BC, Lee SS, Chakraborty C. TN strain proteome mediated therapeutic target mapping and multi-epitopic peptide-based vaccine development for Mycobacterium leprae. INFECTION, GENETICS AND EVOLUTION : JOURNAL OF MOLECULAR EPIDEMIOLOGY AND EVOLUTIONARY GENETICS IN INFECTIOUS DISEASES 2022; 99:105245. [PMID: 35150891 DOI: 10.1016/j.meegid.2022.105245] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 02/04/2022] [Accepted: 02/07/2022] [Indexed: 12/24/2022]
Abstract
Leprosy is a significant universal health problem that is remarkably still a concern in developing countries due to infection frequency. New therapeutic molecules and next-generation vaccines are urgently needed to accelerate the leprosy-free world. In this direction, the present study was performed using two routes: proteome-mediated therapeutic target identification and mapping as well as multi-epitopic peptide-based novel vaccine development using state of the art of computational biology for the TN strain of M. leprae. The TN strain was selected from 65 Mycobacterium strains, and TN strain proteome mediated 83 therapeutic protein targets were mapped and characterized according to subcellular localization. Also, drug molecules were mapped with respect to protein targets localization. The Druggability potential of proteins was also evaluated. For multi-epitope peptide-based vaccine development, the four common types of B and T cell epitopes were identified (SLFQSHNRK, VVGIGQHAA, MMHRSPRTR, LGVDQTQPV) and combined with the suitable peptide linker. The vaccine component had an acceptable protective antigenic score (0.9751). The molecular docking of vaccine components with TLR4/MD2 complex exhibited a low ACE value (-244.12) which signifies the proper binding between the two molecules. The estimated free Gibbs binding energy ensured accurate protein-protein interactions (-112.46 kcal/mol). The vaccine was evaluated through adaptive immunity stimulation as well as immune interactions. The molecular dynamic simulation was carried out by using CHARMM topology-based parameters to minimize the docked complex. Subsequently, the Normal Mode Analysis in the internal coordinates showed a low eigen-value (1.3982892e-05), which also signifies the stability of molecular docking. Finally, the vaccine components were adopted for reverse transcription and codon optimization in E. coli strain K12 for the pGEX-4T1 vector, which supports in silico cloning of the vaccine components against the pathogen. The study directs the experimental study for therapeutics molecules discovery and vaccine candidate development with higher reliability.
Collapse
Affiliation(s)
- Manojit Bhattacharya
- Department of Zoology, Fakir Mohan University, Vyasa Vihar, Balasore 756020, Odisha, India
| | - Ashish Ranjan Sharma
- Institute for Skeletal Aging & Orthopedic Surgery, Hallym University-Chuncheon Sacred Heart Hospital, Chuncheon-si 24252, Gangwon-do, Republic of Korea
| | - Pratik Ghosh
- Department of Zoology, Vidyasagar University, Midnapore, West Bengal 721102, India
| | - Prasanta Patra
- Department of Zoology, Vidyasagar University, Midnapore, West Bengal 721102, India
| | - Bidyut Mallick
- Department of Applied Science, Galgotias College of Engineering and Technology, Knowledge Park-II, Greater Noida, 201306, India
| | - Bidhan Chandra Patra
- Department of Zoology, Vidyasagar University, Midnapore, West Bengal 721102, India
| | - Sang-Soo Lee
- Institute for Skeletal Aging & Orthopedic Surgery, Hallym University-Chuncheon Sacred Heart Hospital, Chuncheon-si 24252, Gangwon-do, Republic of Korea.
| | - Chiranjib Chakraborty
- Department of Biotechnology, School of Life Science and Biotechnology, Adamas University, Barasat-Barrackpore Rd, Kolkata, West Bengal 700126, India.
| |
Collapse
|
13
|
Birhanu AG, Gómez-Muñoz M, Kalayou S, Riaz T, Lutter T, Yimer SA, Abebe M, Tønjum T. Proteome Profiling of Mycobacterium tuberculosis Cells Exposed to Nitrosative Stress. ACS OMEGA 2022; 7:3470-3482. [PMID: 35128256 PMCID: PMC8811941 DOI: 10.1021/acsomega.1c05923] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Accepted: 12/08/2021] [Indexed: 06/14/2023]
Abstract
Reactive nitrogen species (RNS) are secreted by human cells in response to infection by Mycobacterium tuberculosis (Mtb). Although RNS can kill Mtb under some circumstances, Mtb can adapt and survive in the presence of RNS by a process that involves modulation of gene expression. Previous studies focused primarily on stress-related changes in the Mtb transcriptome. This study unveils changes in the Mtb proteome in response to a sub-lethal dose of nitric oxide (NO) over several hours of exposure. Proteins were identified using liquid chromatography coupled with electrospray ionization mass spectrometry (LC-MS/MS). A total of 2911 Mtb proteins were identified, of which 581 were differentially abundant (DA) after exposure to NO in at least one of the four time points (30 min, 2 h, 6 h, and 20 h). The proteomic response to NO was marked by two phases, with few DA proteins in the early phase and a multitude of DA proteins in the later phase. The efflux pump Rv1687 stood out as being the only protein more abundant at all the time points and might play a role in the early protection of Mtb against nitrosative stress. These changes appeared to be compensatory in nature, contributing to iron homeostasis, energy metabolism, and other stress responses. This study thereby provides new insights into the response of Mtb to NO at the level of proteomics.
Collapse
Affiliation(s)
- Alemayehu Godana Birhanu
- Department
of Microbiology, University of Oslo, P.O. Box 4950, Nydalen, NO-0424 Oslo, Norway
- Institute
of Biotechnology, Addis Ababa University, P.O. Box 1176, Addis Ababa, Ethiopia
| | - Marta Gómez-Muñoz
- Department
of Microbiology, University of Oslo, P.O. Box 4950, Nydalen, NO-0424 Oslo, Norway
| | - Shewit Kalayou
- Department
of Microbiology, Oslo University Hospital, P.O. Box 4950, Nydalen, NO-0424 Oslo, Norway
- International
Center of Insect Physiology and Ecology (ICIPE), P.O. Box 30772-00100 Nairobi, Kenya
| | - Tahira Riaz
- Department
of Microbiology, University of Oslo, P.O. Box 4950, Nydalen, NO-0424 Oslo, Norway
| | - Timo Lutter
- Department
of Microbiology, University of Oslo, P.O. Box 4950, Nydalen, NO-0424 Oslo, Norway
| | - Solomon Abebe Yimer
- Department
of Microbiology, University of Oslo, P.O. Box 4950, Nydalen, NO-0424 Oslo, Norway
- Coalition
for Epidemic Preparedness Innovations (CEPI), P.O. Box 123, Torshov, 0412 Oslo, Norway
| | - Markos Abebe
- Armauer
Hansen Research Institute, Jimma Road, P.O. Box 1005 Addis Ababa, Ethiopia
| | - Tone Tønjum
- Department
of Microbiology, University of Oslo, P.O. Box 4950, Nydalen, NO-0424 Oslo, Norway
- Department
of Microbiology, Oslo University Hospital, P.O. Box 4950, Nydalen, NO-0424 Oslo, Norway
| |
Collapse
|
14
|
Ali S, Ehtram A, Arora N, Manjunath P, Roy D, Ehtesham NZ, Hasnain SE. The M. tuberculosis Rv1523 Methyltransferase Promotes Drug Resistance Through Methylation-Mediated Cell Wall Remodeling and Modulates Macrophages Immune Responses. Front Cell Infect Microbiol 2021; 11:622487. [PMID: 33777836 PMCID: PMC7994892 DOI: 10.3389/fcimb.2021.622487] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Accepted: 01/25/2021] [Indexed: 12/17/2022] Open
Abstract
The acquisition of antibiotics resistance is a major clinical challenge limiting the effective prevention and treatment of the deadliest human infectious disease tuberculosis. The molecular mechanisms by which initially Mycobacterium tuberculosis (M.tb) develop drug resistance remain poorly understood. In this study, we report the novel role of M.tb Rv1523 MTase in the methylation of mycobacterial cell envelope lipids and possible mechanism of its contribution in the virulence and drug resistance. Initial interactome analyses predicted association of Rv1523 with proteins related to fatty acid biosynthetic pathways. This promoted us to investigate methylation activity of Rv1523 using cell wall fatty acids or lipids as a substrate. Rv1523 catalyzed the transfer of methyl group from SAM to the cell wall components of mycobacterium. To investigate further the in vivo methylating role of Rv1523, we generated a recombinant Mycobacterium smegmatis strain that expressed the Rv1523 gene. The M. smegmatis strain expressing Rv1523 exhibited altered cell wall lipid composition, leading to an increased survival under surface stress, acidic condition and resistance to antibiotics. Macrophages infected with recombinant M. smegmatis induced necrotic cell death and modulated the host immune responses. In summary, these findings reveal a hitherto unknown role of Rv1523 encoded MTase in cell wall remodeling and modulation of immune responses. Functional gain of mycolic acid Rv1523 methyltransferase induced virulence and resistance to antibiotics in M. smegmatis. Thus, mycolic acid methyltransferase may serve as an excellent target for the discovery and development of novel anti-TB agents.
Collapse
Affiliation(s)
- Sabeeha Ali
- Molecular Infection and Functional Biology Lab, Kusuma School of Biological Sciences, Indian Institute of Technology, New Delhi, India
| | - Aquib Ehtram
- Molecular Infection and Functional Biology Lab, Kusuma School of Biological Sciences, Indian Institute of Technology, New Delhi, India
| | - Naresh Arora
- JH Institute of Molecular Medicine, Jamia Hamdard, New Delhi, India
| | - P Manjunath
- JH Institute of Molecular Medicine, Jamia Hamdard, New Delhi, India.,National Institute of Pathology, Safdarjung Hospital Campus, New Delhi, India
| | - Deodutta Roy
- JH Institute of Molecular Medicine, Jamia Hamdard, New Delhi, India
| | - Nasreen Z Ehtesham
- National Institute of Pathology, Safdarjung Hospital Campus, New Delhi, India
| | - Seyed E Hasnain
- JH Institute of Molecular Medicine, Jamia Hamdard, New Delhi, India.,Dr Reddy's Institute of Life Sciences, University of Hyderabad Campus, Hyderabad, India.,Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology, New Delhi, India
| |
Collapse
|
15
|
Shariq M, Quadir N, Sheikh JA, Singh AK, Bishai WR, Ehtesham NZ, Hasnain SE. Post translational modifications in tuberculosis: ubiquitination paradox. Autophagy 2020; 17:814-817. [PMID: 33190592 DOI: 10.1080/15548627.2020.1850009] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Innate immune signaling and xenophagy are crucial innate defense strategies exploited by the host to counteract intracellular pathogens with ubiquitination as a critical regulator of these processes. These pathogens, including Mycobacterium tuberculosis (M. tb), co-opt the host ubiquitin machinery by utilizing secreted or cell surface effectors to dampen innate host defenses. Inversely, the host utilizes ubiquitin ligase-mediated ubiquitination of intracellular pathogens and recruits autophagy receptors to induce xenophagy. In the current article, we discuss the co-option of the ubiquitin pathway by the M. tb virulence effectors.Abbreviations: ANAPC2: anaphase promoting complex subunit 2; IL: interleukin; Lys: lysine (K); MAPK: mitogen-activated protein kinase; MAP3K7/TAK1; mitogen-activated protein kinase kinase kinase 7; M. tb: Mycobacterium tuberculosis; NFKB/NF-κB: nuclear factor kappa B subunit; PtpA: protein tyrosine phosphatase; SQSTM1/p62: sequestosome 1; V-ATPase: vacuolar-type H+-ATPase; UBA: a eukaryotic-like ubiquitin-associated domain.
Collapse
Affiliation(s)
- Mohd Shariq
- ICMR-National Institute of Pathology, New Delhi, India
| | - Neha Quadir
- ICMR-National Institute of Pathology, New Delhi, India.,JH-Institute of Molecular Medicine, Jamia Hamdard, New Delhi, India
| | - Javaid Ahmad Sheikh
- Department of Biotechnology, School of Chemical and Life Sciences, New Delhi, India
| | - Alok Kumar Singh
- Johns Hopkins School of Medicine, Center for Tuberculosis Research, Baltimore, MD, USA
| | - William R Bishai
- Johns Hopkins School of Medicine, Center for Tuberculosis Research, Baltimore, MD, USA
| | | | - Seyed E Hasnain
- JH-Institute of Molecular Medicine, Jamia Hamdard, New Delhi, India.,Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology, New Delhi, India
| |
Collapse
|
16
|
Comprehensive analysis of protein acetyltransferases of human pathogen Mycobacterium tuberculosis. Biosci Rep 2020; 39:221456. [PMID: 31820790 PMCID: PMC6923341 DOI: 10.1042/bsr20191661] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Revised: 11/20/2019] [Accepted: 11/26/2019] [Indexed: 12/12/2022] Open
Abstract
Tuberculosis (TB), a leading infectious disease caused by Mycobacterium tuberculosis strain, takes four human lives every minute globally. Paucity of knowledge on M. tuberculosis virulence and antibiotic resistance is the major challenge for tuberculosis control. We have identified 47 acetyltransferases in the M. tuberculosis, which use diverse substrates including antibiotic, amino acids, and other chemical molecules. Through comparative analysis of the protein file of the virulent M. tuberculosis H37Rv strain and the avirulent M. tuberculosis H37Ra strain, we identified one acetyltransferase that shows significant variations with N-terminal deletion, possibly influencing its physicochemical properties. We also found that one acetyltransferase has three types of post-translation modifications (lysine acetylation, succinylation, and glutarylation). The genome context analysis showed that many acetyltransferases with their neighboring genes belong to one operon. By data mining from published transcriptional profiles of M. tuberculosis exposed to diverse treatments, we revealed that several acetyltransferases may be functional during M. tuberculosis infection. Insights obtained from the present study can potentially provide clues for developing novel TB therapeutic interventions.
Collapse
|
17
|
Asaad M, Abo-kadoum M, NZUNGIZE L, UAE M, NZAOU SA, Xie J. Methylation in Mycobacterium-host interaction and implications for novel control measures. INFECTION GENETICS AND EVOLUTION 2020; 83:104350. [DOI: 10.1016/j.meegid.2020.104350] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Revised: 04/16/2020] [Accepted: 05/01/2020] [Indexed: 12/12/2022]
|
18
|
Sabeeha, Hasnain SE. Forensic Epigenetic Analysis: The Path Ahead. Med Princ Pract 2019; 28:301-308. [PMID: 30893697 DOI: 10.1159/000499496] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Accepted: 03/11/2019] [Indexed: 01/17/2023] Open
Abstract
Unlike DNA fingerprinting, which scores for differences in the genome that are phenotype neutral, epigenetic variations are gaining importance in forensic investigations. Methylation of DNA has a broad range of effects on the lifestyle, health status, and physical appearance of individuals. DNA methylation profiling of forensic samples is useful in determination of the cell or tissue type of the DNA source and also for estimation of age. The quality and quantity of the biosample available from the crime scene limits the possible number of DNA methylation tests and the selection of the technology that can be used. Several techniques have been used for DNA methylation analysis for epigenetic investigations of forensic biological samples. However, novel techniques are needed for multiplex analysis of epigenetic markers as the techniques that are currently available require a large amount of high-quality DNA and are also limited in their multiplexing capacities that are often insufficient to fully resolve a forensic query of interest.
Collapse
Affiliation(s)
- Sabeeha
- Molecular Infection and Functional Biology Lab, Kusuma School of Biological Sciences, Indian Institute of Technology Delhi, New Delhi, India
| | - Seyed E Hasnain
- Molecular Infection and Functional Biology Lab, Kusuma School of Biological Sciences, Indian Institute of Technology Delhi, New Delhi, India, .,Jamia Hamdard Institute of Molecular Medicine, Jamia Hamdard University, New Delhi, India, .,Dr. Reddy's Institute of Life Sciences, University of Hyderabad Campus, Hyderabad, India,
| |
Collapse
|
19
|
Biosynthesis of mycobacterial methylmannose polysaccharides requires a unique 1- O-methyltransferase specific for 3- O-methylated mannosides. Proc Natl Acad Sci U S A 2019; 116:835-844. [PMID: 30606802 DOI: 10.1073/pnas.1813450116] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Mycobacteria are a wide group of organisms that includes strict pathogens, such as Mycobacterium tuberculosis, as well as environmental species known as nontuberculous mycobacteria (NTM), some of which-namely Mycobacterium avium-are important opportunistic pathogens. In addition to a distinctive cell envelope mediating critical interactions with the host immune system and largely responsible for their formidable resistance to antimicrobials, mycobacteria synthesize rare intracellular polymethylated polysaccharides implicated in the modulation of fatty acid metabolism, thus critical players in cell envelope assembly. These are the 6-O-methylglucose lipopolysaccharides (MGLP) ubiquitously detected across the Mycobacterium genus, and the 3-O-methylmannose polysaccharides (MMP) identified only in NTM. The polymethylated nature of these polysaccharides renders the intervening methyltransferases essential for their optimal function. Although the knowledge of MGLP biogenesis is greater than that of MMP biosynthesis, the methyltransferases of both pathways remain uncharacterized. Here, we report the identification and characterization of a unique S-adenosyl-l-methionine-dependent sugar 1-O-methyltransferase (MeT1) from Mycobacterium hassiacum that specifically blocks the 1-OH position of 3,3'-di-O-methyl-4α-mannobiose, a probable early precursor of MMP, which we chemically synthesized. The high-resolution 3D structure of MeT1 in complex with its exhausted cofactor, S-adenosyl-l-homocysteine, together with mutagenesis studies and molecular docking simulations, unveiled the enzyme's reaction mechanism. The functional and structural properties of this unique sugar methyltransferase further our knowledge of MMP biosynthesis and provide important tools to dissect the role of MMP in NTM physiology and resilience.
Collapse
|
20
|
Kumar A, Alam A, Tripathi D, Rani M, Khatoon H, Pandey S, Ehtesham NZ, Hasnain SE. Protein adaptations in extremophiles: An insight into extremophilic connection of mycobacterial proteome. Semin Cell Dev Biol 2018; 84:147-157. [PMID: 29331642 DOI: 10.1016/j.semcdb.2018.01.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2017] [Revised: 09/01/2017] [Accepted: 01/09/2018] [Indexed: 02/02/2023]
Abstract
The biological paradox about how extremophiles persist at extreme ecological conditions throws a fascinating picture of the enormous potential of a single cell to adapt to homeostatic conditions in order to propagate. Unicellular organisms face challenges from both environmental factors and the ecological niche provided by the host tissue. Although the existence of extremophiles and their physiological properties were known for a long time, availability of whole genome sequence has catapulted the study on mechanisms of adaptation and the underlying principles that have enabled these unique organisms to withstand evolutionary and environmental pressures. Comparative genomics has shown that extremophiles possess the unique set of genes and proteins that empower them with biochemical machinery necessary to thrive in extreme environments. The presence of these proteins safeguards the cell against a wide array of extreme conditions such as temperature, pressure, radiations, chemicals, drugs etc. An insight into these adaptive mechanisms in extremophiles may help us to devise strategies to alter the genes and proteins that may have therapeutic potential and commercial value. Here we present an overview of the various adaptations in extremophiles. We also try to explain how mycobacterium channelizes its proteome to survive in stress conditions posed by host immune system.
Collapse
Affiliation(s)
- Ashutosh Kumar
- Molecular Infection and Functional Biology Lab, Kusuma School of Biological Sciences, Indian Institute of Technology-Delhi, New Delhi, India
| | - Anwar Alam
- Molecular Infection and Functional Biology Lab, Kusuma School of Biological Sciences, Indian Institute of Technology-Delhi, New Delhi, India
| | - Deeksha Tripathi
- Department of Microbiology, Central University of Rajasthan, Bandar Sindri, Ajmer, Rajasthan, India
| | - Mamta Rani
- Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology-Delhi, New Delhi, India
| | - Hafeeza Khatoon
- Molecular Infection and Functional Biology Lab, Kusuma School of Biological Sciences, Indian Institute of Technology-Delhi, New Delhi, India
| | - Saurabh Pandey
- National Institute of Pathology, Safdarjang Hospital Campus, New Delhi, India
| | - Nasreen Z Ehtesham
- National Institute of Pathology, Safdarjang Hospital Campus, New Delhi, India
| | - Seyed E Hasnain
- Molecular Infection and Functional Biology Lab, Kusuma School of Biological Sciences, Indian Institute of Technology-Delhi, New Delhi, India; JH-Institute of Molecular Medicine, Hamdard Nagar, New Delhi, India; Dr Reddy's Institute of Life Sciences, University of Hyderabad Campus, Hyderabad, India.
| |
Collapse
|