1
|
Malhotra M, Pardasani M, Pathan S, Srikanth P, Shaw K, Abraham NM, Jayakannan M. Star-polymer unimolecular micelle nanoparticles to deliver a payload across the blood-brain barrier. NANOSCALE 2024; 16:21582-21593. [PMID: 39494464 PMCID: PMC11533066 DOI: 10.1039/d4nr02636e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Accepted: 10/13/2024] [Indexed: 11/05/2024]
Abstract
Nanocarrier-mediated therapeutic delivery to brain tissue is impeded by tightly controlled transportation across the blood-brain barrier (BBB). Herein, we report a well-defined core-shell star-shaped unimolecular micelle (star-UMM; a single polymer entity) as an efficient BBB-breaching nanoparticle for brain-specific administration of the fluorescent anticancer drug doxorubicin and in vivo mapping of brain tissues by the near-infrared biomarker IR780 in mice. The star-UMM was engineered by precisely programming the polymer topology having hydrophobic and hydrophilic polycaprolactone blocks and in-built with lysosomal enzyme-biodegradation stimuli to deliver the payloads at intracellular compartments. In vivo imaging in mice revealed prolonged circulation of star-UMM in blood for >72 h, and whole-organ image-quantification substantiated its efficient ability to breach the BBB. Star UMM exhibited excellent stability in blood circulation and reduced cardiotoxicity, was non-hemolytic, had substantial uptake in the cortical neurons of the mouse brain, had lysosomal enzymatic-biodegradation, and exhibited negligible immunogenicity or necrosis. This newly designed star-UMM could have long-term applications in brain-specific drug delivery.
Collapse
Affiliation(s)
- Mehak Malhotra
- Department of Chemistry, Indian Institute of Science Education and Research (IISER Pune), Dr Homi Bhabha Road, Pune 411008, Maharashtra, India.
| | - Meenakshi Pardasani
- Laboratory of Neural Circuits and Behaviour (LNCB), Department of Biology, Indian Institute of Science Education and Research (IISER Pune), Dr Homi Bhabha Road, Pune 411008, Maharashtra, India.
| | - Shahidkhan Pathan
- Department of Chemistry, Indian Institute of Science Education and Research (IISER Pune), Dr Homi Bhabha Road, Pune 411008, Maharashtra, India.
| | - Priyadharshini Srikanth
- Laboratory of Neural Circuits and Behaviour (LNCB), Department of Biology, Indian Institute of Science Education and Research (IISER Pune), Dr Homi Bhabha Road, Pune 411008, Maharashtra, India.
| | - Karishma Shaw
- Laboratory of Neural Circuits and Behaviour (LNCB), Department of Biology, Indian Institute of Science Education and Research (IISER Pune), Dr Homi Bhabha Road, Pune 411008, Maharashtra, India.
| | - Nixon M Abraham
- Laboratory of Neural Circuits and Behaviour (LNCB), Department of Biology, Indian Institute of Science Education and Research (IISER Pune), Dr Homi Bhabha Road, Pune 411008, Maharashtra, India.
| | - Manickam Jayakannan
- Department of Chemistry, Indian Institute of Science Education and Research (IISER Pune), Dr Homi Bhabha Road, Pune 411008, Maharashtra, India.
| |
Collapse
|
2
|
Hao C, Chen P, Setrerrahmane S, Xu H. A peptide-salinomycin conjugate with a bystander effect reduces the stemness characteristics of ovarian cancer cells and enhances drug sensitivity. Eur J Med Chem 2024; 276:116701. [PMID: 39067438 DOI: 10.1016/j.ejmech.2024.116701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 07/07/2024] [Accepted: 07/18/2024] [Indexed: 07/30/2024]
Abstract
Salinomycin (Sal) has attracted considerable attention in the field of tumor treatment, especially for its inhibitory effect on cancer stem cells (CSCs) and drug-resistant tumor cells. However, its solubility and targeting specificity pose significant challenges to its pharmaceutical development. Sal-A6, a novel peptide-drug conjugate (PDC), was formed by linking the peptide A6 targeting the CSC marker CD44 with Sal using a specific linker. This conjugation markedly enhances the physicochemical properties of Sal and compared to Sal, Sal-A6 demonstrated a significantly increased activity against ovarian cancer. Furthermore, Sal-A6, employing a disulfide bond as a linker, exhibited bystander killing effect. Moreover, it induces substantial cytotoxic effect on both cancer stem cells and drug-resistant cells in addition to enhance chemosensitivity of resistant ovarian cancer cells. In summary, the results indicated that Sal-A6, a novel PDC derived from Sal, has potential therapeutic applications in the treatment of ovarian cancer and drug-resistant patients. Additionally, this discovery offers insights for developing PDC-type drugs using Sal as a foundation.
Collapse
Affiliation(s)
- Chaowei Hao
- The Engineering Research Center of Synthetic Polypeptide Drug Discovery and Evaluation, Jiangsu Province, China Pharmaceutical University, Nanjing 210009, P.R. China; State Key Laboratory of Natural Medicines, Ministry of Education, China Pharmaceutical University, Nanjing, 210009, China
| | - Peng Chen
- The Engineering Research Center of Synthetic Polypeptide Drug Discovery and Evaluation, Jiangsu Province, China Pharmaceutical University, Nanjing 210009, P.R. China; State Key Laboratory of Natural Medicines, Ministry of Education, China Pharmaceutical University, Nanjing, 210009, China
| | | | - Hanmei Xu
- The Engineering Research Center of Synthetic Polypeptide Drug Discovery and Evaluation, Jiangsu Province, China Pharmaceutical University, Nanjing 210009, P.R. China; State Key Laboratory of Natural Medicines, Ministry of Education, China Pharmaceutical University, Nanjing, 210009, China.
| |
Collapse
|
3
|
Yoon J, Kim BS. Coordinative Double Hydrophilic All-Polyether Micelles for pH-Responsive Delivery of Cisplatin. Biomacromolecules 2024; 25:1861-1870. [PMID: 38344950 DOI: 10.1021/acs.biomac.3c01301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/12/2024]
Abstract
Despite its widespread use in the treatment of numerous cancers, the use of cisplatin still raises concerns about its high toxicity and limited selectivity. Consequently, the necessity arises for the development of an effective drug delivery system. Here, we present an effective approach that introduces a double hydrophilic block copolyether for the controlled delivery of cisplatin. Specifically, poly(ethylene glycol)-block-poly(glycidoxy acetic acid) (mPEG-b-PGA) was synthesized via anionic ring-opening polymerization using the oxazoline-based epoxide monomer 4,4-dimethyl-2-oxazoline glycidyl ether, followed by subsequent acidic deprotection. The coordinative metal-ligand interaction between cisplatin and the carboxylate group within the PGA block facilitated the formation of micelles from the double hydrophilic mPEG-b-PGA copolyether. Cisplatin-loaded polymeric micelles had a high loading capacity, controlled pH-responsive release kinetics, and high cell viability. Furthermore, in vitro biological assays revealed cellular apoptosis induced by the cisplatin-loaded micelles. This study thus successfully demonstrates the potential use of double hydrophilic block copolyethers as a versatile platform for biomedical applications.
Collapse
Affiliation(s)
- Jiwoo Yoon
- Department of Chemistry, Yonsei University, Seoul 03722, Republic of Korea
| | - Byeong-Su Kim
- Department of Chemistry, Yonsei University, Seoul 03722, Republic of Korea
| |
Collapse
|
4
|
Barman R, Bej R, Dey P, Ghosh S. Cisplatin-Conjugated Polyurethane Capsule for Dual Drug Delivery to a Cancer Cell. ACS APPLIED MATERIALS & INTERFACES 2023; 15:25193-25200. [PMID: 36745598 DOI: 10.1021/acsami.2c22146] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
This paper describes the synthesis of a polymer-prodrug conjugate, its aqueous self-assembly, noncovalent encapsulation of a second drug, and stimuli-responsive intracellular dual drug delivery. Condensation polymerization between a functionalized diol and a commercially available diisocyanate in the presence of poly(ethylene glycol) hydroxide (PEG-OH) as the chain stopper produces an ABA-type amphiphilic block copolymer (PU-1) in one pot, with the middle hydrophobic block being a polyurethane containing a pendant tert-butyloxycarbonyl (Boc)-protected amine in every repeating unit. Deprotection of the Boc group, followed by covalent attachment of the Pt(IV) prodrug using the pendant amine groups, produces the polymer-prodrug conjugate PU-Pt-1, which aggregates to nanocapsule-like structures in water with a hydrophilic interior. In the presence of sodium ascorbate, the Pt(IV) prodrug can be detached from the polymer backbone, producing the active Pt(II) drug. Cell culture studies show appreciable cell viability by the parent polymer. However, the polymer-prodrug conjugate nanocapsules exhibit cellular uptake and intracellular release of the active drug under a reducing environment. The capsule-like aggregates of the polymer-prodrug conjugate were used for noncovalent encapsulation of a second drug, doxorubicin (Dox), and Dox-loaded PU-Pt-1 aggregate showed a significantly superior cell killing efficiency compared to either of the individual drugs, highlighting the promising application of such a dual-drug-delivery approach.
Collapse
Affiliation(s)
- Ranajit Barman
- School of Applied and Interdisciplinary Sciences, Indian Association for the Cultivation of Science, 2A and 2B Raja S. C. Mullick Road, Kolkata 700032, India
| | - Raju Bej
- School of Applied and Interdisciplinary Sciences, Indian Association for the Cultivation of Science, 2A and 2B Raja S. C. Mullick Road, Kolkata 700032, India
| | - Pradip Dey
- School of Applied and Interdisciplinary Sciences, Indian Association for the Cultivation of Science, 2A and 2B Raja S. C. Mullick Road, Kolkata 700032, India
| | - Suhrit Ghosh
- School of Applied and Interdisciplinary Sciences, Indian Association for the Cultivation of Science, 2A and 2B Raja S. C. Mullick Road, Kolkata 700032, India
| |
Collapse
|
5
|
Wang T, Wu C, Hu Y, Zhang Y, Ma J. Stimuli-responsive nanocarrier delivery systems for Pt-based antitumor complexes: a review. RSC Adv 2023; 13:16488-16511. [PMID: 37274408 PMCID: PMC10233443 DOI: 10.1039/d3ra00866e] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Accepted: 03/30/2023] [Indexed: 06/06/2023] Open
Abstract
Platinum-based anticancer drugs play a crucial role in the clinical treatment of various cancers. However, the application of platinum-based drugs is heavily restricted by their severe toxicity and drug resistance/cross resistance. Various drug delivery systems have been developed to overcome these limitations of platinum-based chemotherapy. Stimuli-responsive nanocarrier drug delivery systems as one of the most promising strategies attract more attention. And huge progress in stimuli-responsive nanocarrier delivery systems of platinum-based drugs has been made. In these systems, a variety of triggers including endogenous and extracorporeal stimuli have been employed. Endogenous stimuli mainly include pH-, thermo-, enzyme- and redox-responsive nanocarriers. Extracorporeal stimuli include light-, magnetic field- and ultrasound responsive nanocarriers. In this review, we present the recent advances in stimuli-responsive drug delivery systems with different nanocarriers for improving the efficacy and reducing the side effects of platinum-based anticancer drugs.
Collapse
Affiliation(s)
- Tianshuai Wang
- Hubei Key Lab of Wudang Local Chinese Medicine Research, Hubei University of Medicine Shiyan 442000 Hubei China
- College of Pharmaceutical Sciences, Hubei University of Medicine Shiyan 442000 Hubei China
| | - Chen Wu
- College of Pharmaceutical Sciences, Hubei University of Medicine Shiyan 442000 Hubei China
| | - Yanggen Hu
- Hubei Key Lab of Wudang Local Chinese Medicine Research, Hubei University of Medicine Shiyan 442000 Hubei China
- College of Pharmaceutical Sciences, Hubei University of Medicine Shiyan 442000 Hubei China
| | - Yan Zhang
- College of Pharmaceutical Sciences, Hubei University of Medicine Shiyan 442000 Hubei China
| | - Junkai Ma
- Hubei Key Lab of Wudang Local Chinese Medicine Research, Hubei University of Medicine Shiyan 442000 Hubei China
- College of Pharmaceutical Sciences, Hubei University of Medicine Shiyan 442000 Hubei China
| |
Collapse
|
6
|
Khuddus M, Jayakannan M. Melt Polycondensation Strategy for Amide-Functionalized l-Aspartic Acid Amphiphilic Polyester Nano-assemblies and Enzyme-Responsive Drug Delivery in Cancer Cells. Biomacromolecules 2023. [PMID: 37186892 DOI: 10.1021/acs.biomac.3c00127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Aliphatic polyesters are intrinsically enzymatic-biodegradable, and there is ever-increasing demand for safe and smart next-generation biomaterials including drug delivery nano-vectors in cancer research. Using bioresource-based biodegradable polyesters is one of the elegant strategies to meet this requirement; here, we report an l-amino acid-based amide-functionalized polyester platform and explore their lysosomal enzymatic biodegradation aspects to administrate anticancer drugs in cancer cells. l-Aspartic acid was chosen and different amide-side chain-functionalized di-ester monomers were tailor-made having aromatic, aliphatic, and bio-source pendant units. Under solvent-free melt polycondensation methodology; these monomers underwent polymerization to yield high molecular weight polyesters with tunable thermal properties. PEGylated l-aspartic monomer was designed to make thermo-responsive amphiphilic polyesters. This amphiphilic polyester was self-assembled into a 140 ± 10 nm-sized spherical nanoparticle in aqueous medium, which exhibited lower critical solution temperature at 40-42 °C. The polyester nano-assemblies showed excellent encapsulation capabilities for anticancer drug doxorubicin (DOX), anti-inflammatory drug curcumin, biomarkers such as rose bengal (RB), and 8-hydroxypyrene-1,3,6-trisulfonic acid trisodium salt. The amphiphilic polyester NP was found to be very stable under extracellular conditions and underwent degradation upon exposure to horse liver esterase enzyme in phosphate-buffered saline at 37 °C to release 90% of the loaded cargoes. Cytotoxicity studies in breast cancer MCF 7 and wild-type mouse embryonic fibroblasts cell lines revealed that the amphiphilic polyester was non-toxic to cell lines up to 100 μg/mL, while their drug-loaded polyester nanoparticles were able to inhibit the cancerous cell growth. Temperature-dependent cellular uptake studies further confirmed the energy-dependent endocytosis of polymer NPs across the cellular membranes. Confocal laser scanning microscopy assisted time-dependent cellular uptake analysis directly evident for the endocytosis of DOX loaded polymer NP and their internalization for biodegradation. In a nutshell, the present investigation opens up an avenue for the l-amino acid-based biodegradable polyesters from l-aspartic acids, and the proof of concept is demonstrated for drug delivery in the cancer cell line.
Collapse
Affiliation(s)
- Mohammed Khuddus
- Department of Chemistry, Indian Institute of Science Education and Research (IISER Pune), Dr. Homi Bhabha Road, Pune 411008, Maharashtra, India
| | - Manickam Jayakannan
- Department of Chemistry, Indian Institute of Science Education and Research (IISER Pune), Dr. Homi Bhabha Road, Pune 411008, Maharashtra, India
| |
Collapse
|
7
|
Pranav U, Malhotra M, Pathan S, Jayakannan M. Structural Engineering of Star Block Biodegradable Polymer Unimolecular Micelles for Drug Delivery in Cancer Cells. ACS Biomater Sci Eng 2023; 9:743-759. [PMID: 36579913 DOI: 10.1021/acsbiomaterials.2c01201] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The present investigation reports the structural engineering of biodegradable star block polycaprolactone (PCL) to tailor-make aggregated micelles and unimolecular micelles to study their effect on drug delivery aspects in cancer cell lines. Fully PCL-based star block copolymers were designed by varying the arm numbers from two to eight while keeping the arm length constant throughout. Multifunctional initiators were exploited for stepwise solvent-free melt ring-opening polymerization of ε-caprolactone and γ-substituted caprolactone to construct star block copolymers having a PCL hydrophobic core and a carboxylic PCL hydrophilic shell, respectively. A higher arm number and a higher degree of branching in star polymers facilitated the formation of unimolecular micelles as opposed to the formation of conventional multimicellar aggregates in lower arm analogues. The dense core of the unimolecular micelles enabled them to load high amounts of the anticancer drug doxorubicin (DOX, ∼12-15%) compared to the aggregated micelles (∼3-4%). The star unimolecular micelle completely degraded leading to 90% release of the loaded drug upon treatment with the lysosomal esterase enzyme in vitro. The anticancer efficacies of these DOX-loaded unimolecular micelles were tested in a breast cancer cell line (MCF-7), and their IC50 values were found to be much lower compared to those of aggregated micelles. Time-dependent cellular uptake studies by confocal microscopy revealed that unimolecular micelles were readily taken up by the cells, and enhancement of the drug concentration was observed at the intracellular level up to 36 h. The present work opens new synthetic strategies for building a next-generation biodegradable unimolecular micellar nanoplatform for drug delivery in cancer research.
Collapse
Affiliation(s)
- Upendiran Pranav
- Department of Chemistry, Indian Institute of Science Education and Research (IISER Pune), Dr. Homi Bhabha Road, Pune 411008 Maharashtra, India
| | - Mehak Malhotra
- Department of Chemistry, Indian Institute of Science Education and Research (IISER Pune), Dr. Homi Bhabha Road, Pune 411008 Maharashtra, India
| | - Shahidkhan Pathan
- Department of Chemistry, Indian Institute of Science Education and Research (IISER Pune), Dr. Homi Bhabha Road, Pune 411008 Maharashtra, India
| | - Manickam Jayakannan
- Department of Chemistry, Indian Institute of Science Education and Research (IISER Pune), Dr. Homi Bhabha Road, Pune 411008 Maharashtra, India
| |
Collapse
|
8
|
Sahkulubey Kahveci EL, Kahveci MU, Celebi A, Avsar T, Derman S. Glycopolymer and Poly(β-amino ester)-Based Amphiphilic Block Copolymer as a Drug Carrier. Biomacromolecules 2022; 23:4896-4908. [PMID: 36317475 PMCID: PMC9667500 DOI: 10.1021/acs.biomac.2c01076] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 10/20/2022] [Indexed: 11/16/2022]
Abstract
Glycopolymers are synthetic macromolecules having pendant sugar moieties and widely utilized to target cancer cells. They are usually considered as a hydrophilic segment of amphiphilic block copolymers to fabricate micelles as drug carriers. A novel amphiphilic block copolymer, namely, poly(2-deoxy-2-methacrylamido-d-glucose-co-2-hydroxyethyl methacrylate)-b-poly(β-amino ester) [P(MAG-co-HEMA)-b-PBAE], with active cancer cell targeting potential and pH responsivity was prepared. Tetrazine end functional P(MAG-co-HEMA) and norbornene end functional PBAE blocks were separately synthesized through reversible addition fragmentation chain transfer polymerization and Michael addition-based poly-condensation, respectively, and followed by end-group transformation. Then, inverse electron demand Diels Alder reaction between the tetrazine and the norbornene groups was performed by simply mixing to obtain the amphiphilic block copolymer. After characterization of the block copolymer in terms of chemical structure, pH responsivity, and drug loading/releasing, pH-responsive micelles were obtained with or without doxorubicin (DOX), a model anticancer drug. The micelles exhibited a sharp protonated/deprotonated transition on tertiary amine groups around pH 6.75 and the pH-specific release of DOX below this value. Eventually, the drug delivery potential was evaluated by cytotoxicity assays on both the noncancerous human umbilical vein endothelial cell (HUVEC) cell line and glioblastoma cell line, U87-MG. While the DOX-loaded polymeric micelles were not toxic in noncancerous HUVEC cells, being toxic only to the cancer cells indicates that it is a potential specific cell targeting strategy in the treatment of cancer.
Collapse
Affiliation(s)
- Elif L. Sahkulubey Kahveci
- Faculty
of Chemical and Metallurgical Engineering, Department of Bioengineering, Yildiz Technical University, Davutpasa Campus, Esenler, 34210Istanbul, Turkey
| | - Muhammet U. Kahveci
- Faculty
of Science and Letters, Department of Chemistry, Istanbul Technical University, Maslak, Sariyer, 34467Istanbul, Turkey
| | - Asuman Celebi
- Department
of Medical Biology, School of Medicine, Bahcesehir University, Goztepe, 34734Istanbul, Turkey
| | - Timucin Avsar
- Department
of Medical Biology, School of Medicine, Bahcesehir University, Goztepe, 34734Istanbul, Turkey
| | - Serap Derman
- Faculty
of Chemical and Metallurgical Engineering, Department of Bioengineering, Yildiz Technical University, Davutpasa Campus, Esenler, 34210Istanbul, Turkey
| |
Collapse
|
9
|
Shah AS, Surnar B, Kolishetti N, Dhar S. Intersection of Inorganic Chemistry and Nanotechnology for the Creation of New Cancer Therapies. ACCOUNTS OF MATERIALS RESEARCH 2022; 3:283-296. [PMID: 37091880 PMCID: PMC10117633 DOI: 10.1021/accountsmr.1c00178] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Since its discovery in 1965, the inorganic drug cisplatin has become a mainstay of cancer therapies and has inspired many platinum (Pt)-based compounds to solve various issues of toxicity and limitations associated with the original cisplatin. However, many of these drugs/prodrugs continue to be plagued by an array of side effects, limited circulation, and half-life and off-target effects. To solve this issue, we have constructed an array of platinum-based prodrugs on a Pt(IV) skeleton, which provides more favorable geometry and hydrophobicity, easier functionalization, and ultimately better targeting abilities. Each of these Pt(IV) prodrugs aims to either combine cisplatin with other agents for a combination therapeutic effect or improve the targeting of cisplatin itself, all for the more effective treatment of specific cancers. Our developed prodrugs include Platin-A, which combines cisplatin with the anti-inflammatory agent aspirin, Platin-M, which is functionalized with a mitochondria-targeting moiety, and Platin-B and Platin-Cbl, which combine cisplatin with components to combat cellular resistance to chemotherapy. At the same time, however, we recognize the crucial role of nanotechnology in improving the efficacy of cisplatin prodrugs and other inorganic compounds for the treatment of cancers. We describe several key benefits provided by nanomedicine that vastly improve the reach and utility of cisplatin prodrugs, including the ability of biodegradable polymeric nanoparticles (NPs) to deliver these agents with precision to the mitochondria, transport drugs across the blood-brain barrier, and target cisplatin prodrugs to specific cancers using various ligands. In addition, we highlight our progress in the engineering of innovative new polymers to improve the release patterns, pharmacokinetics, and dosages of cancer therapies. In this Account, we aim to describe the growing need for collaboration between the fields of inorganic chemistry and nanotechnology and how new advancements can not only improve on traditional chemotherapeutic agents but also expand their reach to entirely new subsets of cancers. In addition to detailing the design and principles behind our modifications of cisplatin and the efficacy of these new prodrugs against aggressive, cisplatin-resistant, or metastatic cancers, we also shed light on nanotechnology's essential role in protecting inorganic drugs and the human body from one another for more effective disease treatment without the off-target effects with which it is normally associated. We hope that this perspective into the important intersection between inorganic medicinal chemistry and nanotechnology will inspire future research on cisplatin prodrugs and other inorganic agents, innovative polymer and NP design, and the ways in which these two fields can greatly advance cancer treatment.
Collapse
Affiliation(s)
- Anuj S Shah
- Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, Miami, Florida 33136, United States
| | - Bapurao Surnar
- Department of Biochemistry and Molecular Biology and Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, Florida 33136, United States
| | - Nagesh Kolishetti
- Department of Immunology & Nano-Medicine, Herbert Wertheim College of Medicine, Florida International University, Miami, Florida 33199, United States
| | - Shanta Dhar
- Department of Biochemistry and Molecular Biology and Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, Florida 33136, United States
| |
Collapse
|
10
|
Stereoselective homo- and co-polymerization of lactides and ε-caprolactone catalysed by highly active racemic zinc(II) pyridyl complexes. TRANSIT METAL CHEM 2022. [DOI: 10.1007/s11243-022-00493-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
11
|
Engineering of combination drug delivery of pH/reduction response potential nanocarrier for the treatment of liver cancer. APPLIED NANOSCIENCE 2022. [DOI: 10.1007/s13204-021-02312-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
12
|
Jayakannan M, Kulkarni B, Malhotra M. Fluorescent ABC-Triblock Polymer Nanocarrier for Cisplatin Delivery to Cancer Cells. Chem Asian J 2022; 17:e202101337. [PMID: 35001550 DOI: 10.1002/asia.202101337] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 12/30/2021] [Indexed: 11/08/2022]
Abstract
Monitoring intracellular administration of non-luminescent anticancer drugs like cisplatin is a very challenging task in cancer research. Perylenebisimide (PBI) chromophore tagged fluorescent ABC-triblock polycaprolactone (PCL) nanoscaffold was engineered having carboxylic acid blocks for the chemical conjugation of cisplatin at the core and hydrophilic PEG blocks at the periphery. The amphiphilic ABC triblock Pt-prodrug was self-assembled into < 200 nm nanoparticles and exhibited excellent shielding against drug detoxification by the glutathione (GSH) species in the cytosol. In vitro drug release studies confirmed that the Pt-prodrug was stable at extracellular conditions and the PCL block exclusively underwent lysosomal-enzymatic biodegradation at the intracellular level to release the cisplatin drug in the active-form for accomplishing more than 90% cell growth inhibition. Confocal microscopic imaging of the red-fluorescence signals from the perylene chromophores established the simultaneous monitoring and delivery aspects of Pt-prodrug, and the proof-of-concept was successfully demonstrated in breast and cervical cancer cell lines.
Collapse
Affiliation(s)
- Manickam Jayakannan
- Indian Institute of Science Education and Research, Department of Chemistry, Dr. HomiBhabha Road, 411008, Pune, INDIA
| | - Bhagyashree Kulkarni
- Indian Institute of Science Education and Research Pune, Chemistry, 411008, Pune, INDIA
| | - Mehak Malhotra
- Indian Institute of Science Education and Research Pune, Chemistry, 411008, Pune, INDIA
| |
Collapse
|
13
|
Wu YN, Yang LX, Wang PW, Braet F, Shieh DB. From Microenvironment Remediation to Novel Anti-Cancer Strategy: The Emergence of Zero Valent Iron Nanoparticles. Pharmaceutics 2022; 14:pharmaceutics14010099. [PMID: 35056996 PMCID: PMC8781124 DOI: 10.3390/pharmaceutics14010099] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 12/27/2021] [Accepted: 12/28/2021] [Indexed: 02/05/2023] Open
Abstract
Accumulated studies indicate that zero-valent iron (ZVI) nanoparticles demonstrate endogenous cancer-selective cytotoxicity, without any external electric field, lights, or energy, while sparing healthy non-cancerous cells in vitro and in vivo. The anti-cancer activity of ZVI-based nanoparticles was anti-proportional to the oxidative status of the materials, which indicates that the elemental iron is crucial for the observed cancer selectivity. In this thematic article, distinctive endogenous anti-cancer mechanisms of ZVI-related nanomaterials at the cellular and molecular levels are reviewed, including the related gene modulating profile in vitro and in vivo. From a material science perspective, the underlying mechanisms are also analyzed. In summary, ZVI-based nanomaterials demonstrated prominent potential in precision medicine to modulate both programmed cell death of cancer cells, as well as the tumor microenvironment. We believe that this will inspire advanced anti-cancer therapy in the future.
Collapse
Affiliation(s)
- Ya-Na Wu
- School of Dentistry & Institute of Oral Medicine, National Cheng Kung University Hospital, National Cheng Kung University, Tainan 701401, Taiwan; (Y.-N.W.); (P.-W.W.)
- The i-MANI Center of the National Core Facility for Biopharmaceuticals, Ministry of Science and Technology, Taipei 10622, Taiwan
| | - Li-Xing Yang
- Department of Photonics, National Cheng Kung University, Tainan 70101, Taiwan;
| | - Pei-Wen Wang
- School of Dentistry & Institute of Oral Medicine, National Cheng Kung University Hospital, National Cheng Kung University, Tainan 701401, Taiwan; (Y.-N.W.); (P.-W.W.)
| | - Filip Braet
- Australian Centre for Microscopy & Microanalysis, The University of Sydney, Sydney, NSW 2006, Australia;
- Faculty of Medicine and Health, School of Medical Sciences (Discipline of Anatomy and Histology), The University of Sydney, Sydney, NSW 2006, Australia
- Charles Perkins Centre (Cellular Imaging Facility), The University of Sydney, Sydney, NSW 2006, Australia
| | - Dar-Bin Shieh
- School of Dentistry & Institute of Oral Medicine, National Cheng Kung University Hospital, National Cheng Kung University, Tainan 701401, Taiwan; (Y.-N.W.); (P.-W.W.)
- Center of Applied Nanomedicine, National Cheng Kung University, Tainan 701401, Taiwan
- Core Facility Center, National Cheng Kung University, Tainan 701401, Taiwan
- Department of Stomatology, National Cheng Kung University Hospital, Tainan 704302, Taiwan
- Correspondence: ; Tel.: +886-6-2353535 (ext. 5410)
| |
Collapse
|
14
|
Virmani M, Deshpande NU, Pathan S, Jayakannan M. Self-Reporting Polysaccharide Polymersome for Doxorubicin and Cisplatin Delivery to Live Cancer Cells. ACS POLYMERS AU 2021; 2:181-193. [PMID: 36855523 PMCID: PMC9954308 DOI: 10.1021/acspolymersau.1c00042] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
We report self-reporting fluorescent polysaccharide polymersome nanoassemblies for enzyme-responsive intracellular delivery of two clinical anticancer drugs doxorubicin (DOX) and cisplatin to study the real-time drug-releasing aspects by fluorescent resonance energy transfer (FRET) bioimaging in live cancer cells. Fluorescent polymersomes were tailor-made by tagging an aggregation-induced emission (AIE) optical chromophore, tetraphenylethylene (TPE), and a plant-based vesicular directing hydrophobic unit through enzyme-biodegradable aliphatic ester chemical linkages in the polysaccharide dextran. The blue-luminescent polymersome self-assembled in water and exhibited excellent encapsulation capability for the red-luminescent anticancer drug DOX. FRET between the AIE polymersome host and DOX guest molecules resulted in a completely turn-off probe. At the intracellular level, the lysosomal enzymatic disassembly of the polymersome restored the dual fluorescent signals from DOX and TPE at the nucleus and the lysosomes, respectively. Live-cell confocal microscopy coupled with selective photoexcitation was employed to study the real-time polymersome disassembly by monitoring the turn-on fluorescent signals in human breast cancer cell lines. Alternatively, carboxylic acid-functionalized AIE polymersomes were also tailor-made for cisplatin stitching to directly monitor Pt drug delivery. The polymersome nanoassemblies exhibited excellent structural tolerance for the chemical conjugation of the Pt drugs, and the fluorescence signals were unaltered. An in vitro drug release study confirmed that the cisplatin-stitched fluorescent polymersomes were very stable under physiological conditions and underwent lysosomal enzymatic degradation to inhibit the cancer cell growth. A lysosomal colocalization experiment using confocal microscopy substantiates the enzyme-responsive degradation of these polymersomes to release both the encapsulated and conjugated drugs at the intracellular level. The present design provides a unique opportunity to deliver more than one anticancer drug from a single polymersome platform in cancer research.
Collapse
|
15
|
Jin Q, Yan S, Hu H, Jin L, Pan Y, Zhang J, Huang J, Xiao H, Cao P. Enhanced Chemodynamic Therapy and Chemotherapy via Delivery of a Dual Threat ArtePt and Iodo-Click Reaction Mediated Glutathione Consumption. SMALL METHODS 2021; 5:e2101047. [PMID: 34928038 DOI: 10.1002/smtd.202101047] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 09/28/2021] [Indexed: 06/14/2023]
Abstract
Cisplatin has been used as standard regimen for hepatocellular carcinoma (HCC), but its therapeutic efficacy is greatly limited by the drug resistance. Cisplatin alone cannot achieve an ideal therapeutic outcome. Herein, a dual threat hybrid artemisinin platinum (ArtePt) is synthesized to combine chemodynamic therapy (CDT) with chemotherapy. On the one hand, artesunate can react with intracellular ferrous ion to generate reactive oxygen species (ROS) via Fenton reaction for CDT. On the other hand, cisplatin can target DNA for chemotherapy. However, GSH in cancer cells can effectively consume free radicals and detoxify cisplatin simultaneously, which compromised the efficacy of CDT and chemotherapy. Hence, an amphiphilic polymer with an iodine atom in the side chain is designed and encapsulated ArtePt to form NP(ArtePt). This iodine containing polymer NP(ArtePt) can effectively deplete intracellular GSH via an Iodo-Click reaction, thereby enhancing the effect of CDT as well as chemotherapy. Thereafter, a patient-derived xenograft model of hepatic carcinoma (PDXHCC ) is established to evaluate the therapeutic effect of NP(ArtePt), and a significant antitumor effect is achieved with NP(ArtePt). Overall, this study provides an effective strategy to combine CDT with chemotherapy to enhance the efficacy of cisplatin via Iodo-Click reaction, opening a new avenue for the cancer treatment.
Collapse
Affiliation(s)
- Qiao Jin
- Department of Oncology, Third Xiangya Hospital, Central South University, Changsha, Hunan, 410013, China
| | - Siqi Yan
- Department of Oncological Radiotherapy, Hunan Academy of Traditional Chinese Medicine Affiliated Hospital, Changsha, Hunan, 410006, China
| | - Hao Hu
- Department of Oncology, Third Xiangya Hospital, Central South University, Changsha, Hunan, 410013, China
| | - Long Jin
- Department of Oncology, Third Xiangya Hospital, Central South University, Changsha, Hunan, 410013, China
| | - Yuliang Pan
- Department of Oncology, Third Xiangya Hospital, Central South University, Changsha, Hunan, 410013, China
| | - Jun Zhang
- Department of Oncology, Third Xiangya Hospital, Central South University, Changsha, Hunan, 410013, China
| | - Jia Huang
- Department of General Surgery, China-Japan Friendship Hospital, Beijing, 100029, China
| | - Haihua Xiao
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory of Polymer Physics and Chemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Peiguo Cao
- Department of Oncology, Third Xiangya Hospital, Central South University, Changsha, Hunan, 410013, China
| |
Collapse
|
16
|
Kumar N, Fazal S, Miyako E, Matsumura K, Rajan R. Avengers against cancer: A new era of nano-biomaterial-based therapeutics. MATERIALS TODAY 2021; 51:317-349. [DOI: 10.1016/j.mattod.2021.09.020] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
17
|
Yang J, Guo H, Lei J, Zhang S, Zhang S, Bai J, Li S. Fabrication of polymer-based self-assembly nanocarriers loaded with a crizotinib and gemcitabine: potential therapeutics for the treatment of endometrial cancer. JOURNAL OF BIOMATERIALS SCIENCE-POLYMER EDITION 2021; 33:20-34. [PMID: 34602004 DOI: 10.1080/09205063.2021.1974149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Combination therapy in cancer therapy has been widely used for its positive attributes, such as minimizing the undesirable side effects of chemotherapies and enhancing the therapeutic effects on different cancers. Compared with free drugs crizotinib (CRZ) and gemcitabine (GEM), CRZ@GEM-NPs could remarkably improve the cytotoxicity for endometrial cancer (EC) cells (Ishikawa cells and KLE cells) after treatment with MTT assay. In this study, CRZ and GEM were conjugated to tri-block copolymer poly(ε-caprolactone)-poly(ethylene glycol)-poly(ε-caprolactone) (PCL-PEG-PCL, known as NPs). The fabricated nanoparticles were characterized by the high-resolution transmission electron microscopy (HR-TEM), and the particles size and zeta potential were investigated by the dynamic light scattering analysis. Further, the morphological features of the EC cell lines were examined by the biochemical staining assays. Morphological changes in endometrial cells morphology revealed by nuclear fragmentation and nuclear condensation (the hallmarks of apoptosis) were noted upon treatment with CRZ@GEM-NPs to the Ishikawa and KLE cancer cells. In addition, resulting in the highest ratio of apoptosis and mitochondrial membrane potential shows the cell death through the mitochondrial membrane potential. In vivo, systemic toxicity studies showed no histological changes and substantial blood biochemical with the near-normal appearance of the organs upon treatment with CRZ@GEM-NPs. Overall, the targeted combination suitable therapeutic framework may be a promising candidate for improved EC therapy.
Collapse
Affiliation(s)
- Jiaolin Yang
- Department of Gynecology, the First Hospital of Shanxi Medical University, Taiyuan, Shanxi Province, China
| | - Hongrui Guo
- Department of Gynecology, Yuncheng Hospital Affiliated to Shanxi Medical University, Taiyuan, Shanxi Province, China
| | - Jing Lei
- Department of Gynecology, the First Hospital of Shanxi Medical University, Taiyuan, Shanxi Province, China
| | - Sanyuan Zhang
- Department of Gynecology, the First Hospital of Shanxi Medical University, Taiyuan, Shanxi Province, China
| | - Shaoguo Zhang
- Department of Nursing Care, the First Hospital of Shanxi Medical University, Taiyuan, Shanxi Province, China
| | - Jirong Bai
- Department of Gynecology, the First Hospital of Shanxi Medical University, Taiyuan, Shanxi Province, China
| | - Sufen Li
- Department of Gynecology, the First Hospital of Shanxi Medical University, Taiyuan, Shanxi Province, China
| |
Collapse
|
18
|
Zhou Z, Chen X. Precise engineering of Cisplatin prodrug into supramolecular nanoparticles: Enhanced on in vitro antiproliferative activity and treatment and care of in vivo renal injury. Process Biochem 2021. [DOI: 10.1016/j.procbio.2021.05.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
19
|
Precise engineering of nanoassembled Corilagin small molecule into supramolecular nanoparticles for the treatment and care against cervical carcinoma. Process Biochem 2021. [DOI: 10.1016/j.procbio.2021.04.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
20
|
Zajda J, Wróblewska A, Ruzik L, Matczuk M. Methodology for characterization of platinum-based drug's targeted delivery nanosystems. J Control Release 2021; 335:178-190. [PMID: 34022322 DOI: 10.1016/j.jconrel.2021.05.022] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 05/13/2021] [Accepted: 05/18/2021] [Indexed: 12/18/2022]
Abstract
Conventional anticancer therapies exploiting platinum-based drugs rely principally on the intravascular injection of the therapeutic agent. The anticancer drug is distributed throughout the body by the systemic blood circulation undergoing cellular uptake, rapid clearance and excretion. Consequently, only a small portion of the platinum-based drug reaches the tumor site, which is associated with severe side effects. For this reason, targeted delivery systems are of great need since they offer enhanced and selective delivery of a drug to cancerous cells making the therapy safe and more effective. Up to date, a variety of the Pt-based drug targeted delivery systems (Pt-based DTDSs) utilizing nanomaterials have been developed and tested using a range of analytical techniques that provided essential information on their synthesis, stability, biodistribution and cytotoxicity. Here we summarize those experimental techniques indicating their applicability at different stages of the research, as well as pointing out their strengths, advantages, drawbacks and limitations. Also, the existing strategies and approaches are critically reviewed with the objective to reveal and give rise to the development of the analytical methodology suitable for reliable Pt-based DTDSs characterization which would eventually result in novel therapies and better patients' outcomes.
Collapse
Affiliation(s)
- J Zajda
- Chair of Analytical Chemistry, Faculty of Chemistry, Warsaw University of Technology, Noakowskiego St. 3, 00-664 Warsaw, Poland
| | - A Wróblewska
- Chair of Analytical Chemistry, Faculty of Chemistry, Warsaw University of Technology, Noakowskiego St. 3, 00-664 Warsaw, Poland
| | - L Ruzik
- Chair of Analytical Chemistry, Faculty of Chemistry, Warsaw University of Technology, Noakowskiego St. 3, 00-664 Warsaw, Poland
| | - M Matczuk
- Chair of Analytical Chemistry, Faculty of Chemistry, Warsaw University of Technology, Noakowskiego St. 3, 00-664 Warsaw, Poland.
| |
Collapse
|
21
|
Liu P, Xie X, Liu M, Hu S, Ding J, Zhou W. A smart MnO 2-doped graphene oxide nanosheet for enhanced chemo-photodynamic combinatorial therapy via simultaneous oxygenation and glutathione depletion. Acta Pharm Sin B 2021; 11:823-834. [PMID: 33777684 PMCID: PMC7982425 DOI: 10.1016/j.apsb.2020.07.021] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 07/19/2020] [Accepted: 07/21/2020] [Indexed: 02/08/2023] Open
Abstract
The combination of chemotherapy and photodynamic therapy provides a promising approach for enhanced tumor eradication by overcoming the limitations of each individual therapeutic modality. However, tumor is pathologically featured with extreme hypoxia together with the adaptable overexpression of anti-oxidants, such as glutathione (GSH), which greatly restricts the therapeutic efficiency. Here, a combinatorial strategy was designed to simultaneously relieve tumor hypoxia by self-oxygenation and reduce intracellular GSH level to sensitize chemo-photodynamic therapy. In our system, a novel multi-functional nanosystem based on MnO2-doped graphene oxide (GO) was developed to co-load cisplatin (CisPt) and a photosensitizer (Ce6). With MnO2 doping, the nanosystem was equipped with intelligent functionalities: (1) catalyzes the decomposition of H2O2 into oxygen to relieve the tumor hypoxia; (2) depletes GSH level in tumor cells, and (3) concomitantly generates Mn2+ to proceed Fenton-like reaction, all of which contribute to the enhanced anti-tumor efficacy. Meanwhile, the surface hyaluronic acid (HA) modification could facilitate the targeted delivery of the nanosystem into tumor cells, thereby resulting in amplified cellular toxicity, as well as tumor growth inhibition in nude mice model. This work sheds a new light on the development of intelligent nanosystems for synergistic combination therapy via regulating tumor microenvironment.
Collapse
|
22
|
Mabrouk M, Das DB, Salem ZA, Beherei HH. Nanomaterials for Biomedical Applications: Production, Characterisations, Recent Trends and Difficulties. Molecules 2021; 26:1077. [PMID: 33670668 PMCID: PMC7922738 DOI: 10.3390/molecules26041077] [Citation(s) in RCA: 72] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 02/14/2021] [Accepted: 02/15/2021] [Indexed: 12/18/2022] Open
Abstract
Designing of nanomaterials has now become a top-priority research goal with a view to developing specific applications in the biomedical fields. In fact, the recent trends in the literature show that there is a lack of in-depth reviews that specifically highlight the current knowledge based on the design and production of nanomaterials. Considerations of size, shape, surface charge and microstructures are important factors in this regard as they affect the performance of nanoparticles (NPs). These parameters are also found to be dependent on their synthesis methods. The characterisation techniques that have been used for the investigation of these nanomaterials are relatively different in their concepts, sample preparation methods and obtained results. Consequently, this review article aims to carry out an in-depth discussion on the recent trends on nanomaterials for biomedical engineering, with a particular emphasis on the choices of the nanomaterials, preparation methods/instruments and characterisations techniques used for designing of nanomaterials. Key applications of these nanomaterials, such as tissue regeneration, medication delivery and wound healing, are also discussed briefly. Covering this knowledge gap will result in a better understanding of the role of nanomaterial design and subsequent larger-scale applications in terms of both its potential and difficulties.
Collapse
Affiliation(s)
- Mostafa Mabrouk
- Refractories, Ceramics and Building Materials Department, National Research Centre, 33El Bohouth St (former EL Tahrir St), Dokki, Giza P.O. 12622, Egypt;
- Department of Chemical Engineering, Loughborough University, Loughborough LE113TU, Leicestershire, UK
| | - Diganta B. Das
- Department of Chemical Engineering, Loughborough University, Loughborough LE113TU, Leicestershire, UK
| | - Zeinab A. Salem
- Department of Oral Biology, Faculty of Dentistry, Cairo University, Giza P.O. 12613, Egypt;
- Faculty of Oral and Dental Medicine, Ahram Canadian University, 6 October City P.O. 12573, Egypt
| | - Hanan H. Beherei
- Refractories, Ceramics and Building Materials Department, National Research Centre, 33El Bohouth St (former EL Tahrir St), Dokki, Giza P.O. 12622, Egypt;
| |
Collapse
|
23
|
González-Urías A, Manzanares-Guevara LA, Licea-Claveríe Á, Ochoa-Terán A, Licea-Navarro AF, Bernaldez-Sarabia J, Zapata-González I. Stimuli responsive nanogels with intrinsic fluorescence: Promising nanovehicles for controlled drug delivery and cell internalization detection in diverse cancer cell lines. Eur Polym J 2021. [DOI: 10.1016/j.eurpolymj.2020.110200] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
24
|
Rehman M, Raza A, Khan JA, Zia MA. Laser Responsive Cisplatin-Gold Nano-Assembly Synergizes the Effect of Cisplatin With Compliance. J Pharm Sci 2021; 110:1749-1760. [PMID: 33460669 DOI: 10.1016/j.xphs.2021.01.012] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 12/07/2020] [Accepted: 01/06/2021] [Indexed: 11/17/2022]
Abstract
Cisplatin therapy faces low bioavailability and clastogenic potential limitations. Early payload leakage of nanocarriers may impair adequate therapeutic efficacy. We propose encapsulation of cisplatin in such nanocarrier that can be externally stimulated for high payload release and enhanced toxicity at site of action. Cisplatin conjugated gold nanorods (Pt-AuNRs) have been synthesized and characterized through UV visible spectroscopy, dynamic light scattering and transmission electron microscopy. Physico-chemical characterization through X-ray photon spectrometry confirms the covalent linkage between linker and aquated cisplatin with AuNRs. Laser exposure (850 nm, CW) enabled ~15-fold payload release from Pt-AuNRs nano-assembly, which is quite high (P < 0.0001) compared to non-stimulated conditions. The median growth inhibitory concentration (GI50) after laser exposure of Pt-AuNRs was ~11- and 13-fold low compared to corresponding Pt-AuNRs without laser exposure and cisplatin respectively, in sarcoma cells. Synergistic therapeutic difference is more significant (P < 0.01), at lower concentrations of Pt-AuNRs (0.5-10 μg/mL). Pt-AuNRs photothermal therapy indicates a convincible association of over-production of reactive oxygen species (P < 0.0001) and synergistic therapeutic efficacy. Clastogenic potential is found non-significant for Pt-AuNRs (10 μg/mL). Cisplatin nanoconjugate shows biocompatibility against blood cells. In conclusion, laser-stimulated Pt-AuNRs appear a promising drug delivery with synergistic toxic potential against cancer while attenuating cisplatin toxicity.
Collapse
Affiliation(s)
- Mehreen Rehman
- NILOP Nanomedicine Research Laboratories, National Institute of Lasers and Optronics College, PIEAS, Islamabad 44000, Pakistan; Department of Pharmacy, University of Peshawar, Peshawar 25000, Pakistan
| | - Abida Raza
- NILOP Nanomedicine Research Laboratories, National Institute of Lasers and Optronics College, PIEAS, Islamabad 44000, Pakistan.
| | - Jamshaid Ali Khan
- Department of Pharmacy, University of Peshawar, Peshawar 25000, Pakistan.
| | - M Aslam Zia
- NILOP Nanomedicine Research Laboratories, National Institute of Lasers and Optronics College, PIEAS, Islamabad 44000, Pakistan
| |
Collapse
|
25
|
Deka SR, Sharma AK, Kumar P. Synthesis and evaluation of Poly(N-isopropylacrylamide)-based stimuli-responsive biodegradable carrier with enhanced loading capacity and controlled release properties. Tetrahedron 2021. [DOI: 10.1016/j.tet.2020.131887] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
26
|
Bilanin C, Tiburcio E, Ferrando‐Soria J, Armentano D, Leyva‐Pérez A, Pardo E. Crystallographic Visualization of a Double Water Molecule Addition on a Pt
1
‐MOF during the Low‐temperature Water‐Gas Shift Reaction. ChemCatChem 2020. [DOI: 10.1002/cctc.202001492] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Cristina Bilanin
- Instituto de Tecnología Química Universidad Politècnica de València-Consejo Superior de Investigaciones Científicas. 46022 València Spain
| | - Estefanía Tiburcio
- Instituto de Ciencia Molecular (ICMol) Universidad de Valencia 46980 Paterna, València Spain
| | - Jesús Ferrando‐Soria
- Instituto de Ciencia Molecular (ICMol) Universidad de Valencia 46980 Paterna, València Spain
| | - Donatella Armentano
- Dipartimento di Chimica e Tecnologie Chimiche Università della Calabria 87030 Rende, Cosenza Italy
| | - Antonio Leyva‐Pérez
- Instituto de Tecnología Química Universidad Politècnica de València-Consejo Superior de Investigaciones Científicas. 46022 València Spain
| | - Emilio Pardo
- Instituto de Ciencia Molecular (ICMol) Universidad de Valencia 46980 Paterna, València Spain
| |
Collapse
|
27
|
Polyphenol-cisplatin complexation forming core-shell nanoparticles with improved tumor accumulation and dual-responsive drug release for enhanced cancer chemotherapy. J Control Release 2020; 330:992-1003. [PMID: 33166608 DOI: 10.1016/j.jconrel.2020.11.006] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 10/22/2020] [Accepted: 11/04/2020] [Indexed: 01/10/2023]
Abstract
Cisplatin (CDDP) is a potent first-line antitumor drug but suffers severe side effects and poor pharmacokinetics. Its complexation with polycarboxylic acids, such as polyglutamic acids, is generally used to fabricate nanoformulations for CDDP delivery; however, the multiple strong complexations makes intracellular drug release slow. Herein, we report a novel polyphenol-metal coordination method to fabricate CDDP-incorporated core-shell nanoparticles, which are stable in blood circulation but dissociate in the tumor. Methoxyl-PEG terminated with one or two gallic acids (PEG-GA or PEG-GA2) complexed CDDP and produced well-defined nanoparticles (PEG-GAx/Pt) with CDDP loading contents as high as 17.7% to 29.8%. The PEG-GAx/Pt nanoparticles were very stable in the physiological conditions and had slow blood clearance and efficient tumor accumulation, but dissociated quickly and released CDDP in response to the tumor acidity or elevated levels of reactive oxygen species (ROS). PEG-GAx/Pt nanoparticles exhibited improved antitumor efficiency against 4 T1 breast cancer and A549 lung carcinoma with much-reduced toxicity compared to free CDDP. The work demonstrates a new strategy of cisplatin-polyphenol coordination for developing platinum drugs' nanomedicines.
Collapse
|
28
|
Kumar R, Mondal K, Panda PK, Kaushik A, Abolhassani R, Ahuja R, Rubahn HG, Mishra YK. Core-shell nanostructures: perspectives towards drug delivery applications. J Mater Chem B 2020; 8:8992-9027. [PMID: 32902559 DOI: 10.1039/d0tb01559h] [Citation(s) in RCA: 79] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Nanosystems have shown encouraging outcomes and substantial progress in the areas of drug delivery and biomedical applications. However, the controlled and targeted delivery of drugs or genes can be limited due to their physicochemical and functional properties. In this regard, core-shell type nanoparticles are promising nanocarrier systems for controlled and targeted drug delivery applications. These functional nanoparticles are emerging as a particular class of nanosystems because of their unique advantages, including high surface area, and easy surface modification and functionalization. Such unique advantages can facilitate the use of core-shell nanoparticles for the selective mingling of two or more different functional properties in a single nanosystem to achieve the desired physicochemical properties that are essential for effective targeted drug delivery. Several types of core-shell nanoparticles, such as metallic, magnetic, silica-based, upconversion, and carbon-based core-shell nanoparticles, have been designed and developed for drug delivery applications. Keeping the scope, demand, and challenges in view, the present review explores state-of-the-art developments and advances in core-shell nanoparticle systems, the desired structure-property relationships, newly generated properties, the effects of parameter control, surface modification, and functionalization, and, last but not least, their promising applications in the fields of drug delivery, biomedical applications, and tissue engineering. This review also supports significant future research for developing multi-core and shell-based functional nanosystems to investigate nano-therapies that are needed for advanced, precise, and personalized healthcare systems.
Collapse
Affiliation(s)
- Raj Kumar
- Faculty of Engineering and Institute of Nanotechnology and Advanced Materials, Bar Ilan University, Ramat Gan-52900, Israel.
| | - Kunal Mondal
- Materials Science and Engineering Department, Idaho National Laboratory, Idaho Falls, ID 83415, USA.
| | - Pritam Kumar Panda
- Condensed Matter Theory Group, Materials Theory Division, Department of Physics and Astronomy, Uppsala University, Box 516, SE-75120, Uppsala, Sweden
| | - Ajeet Kaushik
- NanoBioTech Laboratory, Department of Natural Sciences, Division of Sciences, Art, & Mathematics, Florida Polytechnic University, Lakeland, FL-33805, USA
| | - Reza Abolhassani
- Mads Clausen Institute, NanoSYD, University of Southern Denmark, Alsion 2, DK-6400, Sønderborg, Denmark.
| | - Rajeev Ahuja
- Condensed Matter Theory Group, Materials Theory Division, Department of Physics and Astronomy, Uppsala University, Box 516, SE-75120, Uppsala, Sweden and Applied Materials Physics, Department of Materials Science and Engineering, Royal Institute of Technology (KTH), SE-10044 Stockholm, Sweden
| | - Horst-Günter Rubahn
- Mads Clausen Institute, NanoSYD, University of Southern Denmark, Alsion 2, DK-6400, Sønderborg, Denmark.
| | - Yogendra Kumar Mishra
- Mads Clausen Institute, NanoSYD, University of Southern Denmark, Alsion 2, DK-6400, Sønderborg, Denmark.
| |
Collapse
|
29
|
Wang R, Yang Y, Yang M, Yuan D, Huang J, Chen R, Wang H, Hu L, Di L, Li J. Synergistic inhibition of metastatic breast cancer by dual-chemotherapy with excipient-free rhein/DOX nanodispersions. J Nanobiotechnology 2020; 18:116. [PMID: 32847586 PMCID: PMC7449082 DOI: 10.1186/s12951-020-00679-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Accepted: 08/17/2020] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND The management of metastatic cancer remains a major challenge in cancer therapy worldwide. The targeted delivery of chemotherapeutic drugs through rationally designed formulations is one potential therapeutic option. Notably, excipient-free nanodispersions that are entirely composed of pharmaceutically active molecules have been evaluated as promising candidates for the next generation of drug formulations. Formulated from the self-assembly of drug molecules, these nanodispersions enable the safe and effective delivery of therapeutic drugs to local disease lesions. Here, we developed a novel and green approach for preparing nanoparticles via the self-assembly of rhein (RHE) and doxorubicin (DOX) molecules, named RHE/DOX nanoparticles (RD NPs); this assembly was associated with the interaction force and did not involve any organic solvents. RESULTS According to molecular dynamics (MD) simulations, DOX molecules tend to assemble around RHE molecules through intermolecular forces. This intermolecular retention of DOX was further improved by the nanosizing effect of RD NPs. Compared to free DOX, RD NPs exerted a slightly stronger inhibitory effect on 4T1 cells in the scratch healing assay. As a dual drug-loaded nanoformulation, the efficacy of RD NPs against tumor cells in vitro was synergistically enhanced. Compared to free DOX, the combination of DOX and RHE in nanoparticles exerted a synergistic effect with a combination index (CI) value of 0.51 and showed a stronger ability to induce cell apoptosis. Furthermore, the RD NP treatment not only effectively suppressed primary tumor growth but also significantly inhibited tumor metastasis both in vitro and in vivo, with a better safety profile. CONCLUSIONS The generation of pure nanodrugs via a self-assembly approach might hold promise for the development of more efficient and novel excipient-free nanodispersions, particularly for two small molecular antitumor drugs that potentially exert synergistic antiproliferative effects on metastatic breast cancer.
Collapse
Affiliation(s)
- Ruoning Wang
- School of Pharmacy, Nanjing University of Chinese Medicine, 138 Xianlin Avenue, Nanjing, 210023, China
- Jiangsu Engineering Research Center for Efficient Delivery System of TCM, Nanjing, China
| | - Yujie Yang
- School of Pharmacy, Nanjing University of Chinese Medicine, 138 Xianlin Avenue, Nanjing, 210023, China
- Jiangsu Engineering Research Center for Efficient Delivery System of TCM, Nanjing, China
| | - Mengmeng Yang
- School of Pharmacy, Nanjing University of Chinese Medicine, 138 Xianlin Avenue, Nanjing, 210023, China
- Jiangsu Engineering Research Center for Efficient Delivery System of TCM, Nanjing, China
| | - Dandan Yuan
- School of Pharmacy, Nanjing University of Chinese Medicine, 138 Xianlin Avenue, Nanjing, 210023, China
| | - Jinyu Huang
- School of Pharmacy, Nanjing University of Chinese Medicine, 138 Xianlin Avenue, Nanjing, 210023, China
- Jiangsu Engineering Research Center for Efficient Delivery System of TCM, Nanjing, China
| | - Rui Chen
- School of Pharmacy, Nanjing University of Chinese Medicine, 138 Xianlin Avenue, Nanjing, 210023, China
| | - Honglan Wang
- School of Pharmacy, Nanjing University of Chinese Medicine, 138 Xianlin Avenue, Nanjing, 210023, China
- Jiangsu Engineering Research Center for Efficient Delivery System of TCM, Nanjing, China
| | - Lihong Hu
- School of Pharmacy, Nanjing University of Chinese Medicine, 138 Xianlin Avenue, Nanjing, 210023, China
- Jiangsu Key Laboratory for Functional Substance of Chinese Medicine, Nanjing, China
| | - Liuqing Di
- School of Pharmacy, Nanjing University of Chinese Medicine, 138 Xianlin Avenue, Nanjing, 210023, China
- Jiangsu Engineering Research Center for Efficient Delivery System of TCM, Nanjing, China
| | - Junsong Li
- School of Pharmacy, Nanjing University of Chinese Medicine, 138 Xianlin Avenue, Nanjing, 210023, China.
- Jiangsu Engineering Research Center for Efficient Delivery System of TCM, Nanjing, China.
| |
Collapse
|
30
|
Shariati M, Lollo G, Matha K, Descamps B, Vanhove C, Van de Sande L, Willaert W, Balcaen L, Vanhaecke F, Benoit JP, Ceelen W, De Smedt SC, Remaut K. Synergy between Intraperitoneal Aerosolization (PIPAC) and Cancer Nanomedicine: Cisplatin-Loaded Polyarginine-Hyaluronic Acid Nanocarriers Efficiently Eradicate Peritoneal Metastasis of Advanced Human Ovarian Cancer. ACS APPLIED MATERIALS & INTERFACES 2020; 12:29024-29036. [PMID: 32506916 DOI: 10.1021/acsami.0c05554] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Intra-abdominal dissemination of peritoneal nodules, a condition known as peritoneal carcinomatosis (PC), is typically diagnosed in ovarian cancer patients at the advanced stages. The current treatment of PC consists of perioperative systemic chemotherapy and cytoreductive surgery, followed by intra-abdominal flushing with solutions of chemotherapeutics such as cisplatin and oxaliplatin. In this study, we developed cisplatin-loaded polyarginine-hyaluronic acid nanoscale particles (Cis-pARG-HA NPs) with high colloidal stability, marked drug loading efficiency, unimpaired biological activity, and tumor-targeting ability. Injected Cis-pARG-HA NPs showed enhanced antitumor activity in a rat model of PC, compared to injection of the free cisplatin drug. The activity of Cis-pARG-HA NPs could even be further improved when administered by an intra-abdominal aerosol therapy, referred to as pressurized intraperitoneal aerosol chemotherapy (PIPAC). PIPAC is hypothesized to ensure a more homogeneous drug distribution together with a deeper drug penetration into peritoneal tumor nodules within the abdominal cavity. Using fluorescent pARG-HA NPs, this enhanced nanoparticle deposit on tumors could indeed be observed in regions opposite the aerosolization nozzle. Therefore, this study demonstrates that nanoparticles carrying chemotherapeutics can be synergistically combined with the PIPAC technique for IP therapy of disseminated advanced ovarian tumors, while this synergistic effect was not observed for the administration of free cisplatin.
Collapse
Affiliation(s)
- Molood Shariati
- Laboratory of General Biochemistry and Physical Pharmacy, Faculty of Pharmaceutical Sciences, Ghent University, 9000 Ghent, Belgium
- Cancer Research Institute Ghent (CRIG), 9000 Ghent, Belgium
| | - Giovanna Lollo
- Laboratoire d'Automatique, de Génie des Procédés et de Génie Pharmaceutique (LAGEPP), Univ Lyon, Université Lyon 1, CNRS, UMR5007, 43 bd du 11 Novembre 1918, F-69622 Lyon, France
| | - Kevin Matha
- Micro et Nanomédecines Translationnelles, MINT, UNIV Angers, UMR INSERM 1066, UMR CNRS 6021, Angers, France
- Département Pharmacie, CHU Angers, 4 rue Larrey, 49933 Angers cedex 9, France
| | - Benedicte Descamps
- Department of Electronics and Information Systems, Faculty of Engineering and Architecture, Ghent University, 9000 Ghent, Belgium
| | - Christian Vanhove
- Cancer Research Institute Ghent (CRIG), 9000 Ghent, Belgium
- Department of Electronics and Information Systems, Faculty of Engineering and Architecture, Ghent University, 9000 Ghent, Belgium
| | - Leen Van de Sande
- Cancer Research Institute Ghent (CRIG), 9000 Ghent, Belgium
- Department of GI Surgery, Ghent University Hospital and Laboratory for Experimental Surgery, Ghent University, Corneel Heymanslaan 10, 9000 Ghent, Belgium
| | - Wouter Willaert
- Cancer Research Institute Ghent (CRIG), 9000 Ghent, Belgium
- Department of GI Surgery, Ghent University Hospital and Laboratory for Experimental Surgery, Ghent University, Corneel Heymanslaan 10, 9000 Ghent, Belgium
| | - Lieve Balcaen
- Department of Analytical Chemistry, Atomic & Mass Spectrometry-A&MS Research Unit, Campus Sterre, Ghent University, Krijgslaan 281-S12, 9000 Ghent, Belgium
| | - Frank Vanhaecke
- Department of Analytical Chemistry, Atomic & Mass Spectrometry-A&MS Research Unit, Campus Sterre, Ghent University, Krijgslaan 281-S12, 9000 Ghent, Belgium
| | - Jean-Pierre Benoit
- Micro et Nanomédecines Translationnelles, MINT, UNIV Angers, UMR INSERM 1066, UMR CNRS 6021, Angers, France
- Département Pharmacie, CHU Angers, 4 rue Larrey, 49933 Angers cedex 9, France
| | - Wim Ceelen
- Cancer Research Institute Ghent (CRIG), 9000 Ghent, Belgium
- Department of GI Surgery, Ghent University Hospital and Laboratory for Experimental Surgery, Ghent University, Corneel Heymanslaan 10, 9000 Ghent, Belgium
| | - Stefaan C De Smedt
- Laboratory of General Biochemistry and Physical Pharmacy, Faculty of Pharmaceutical Sciences, Ghent University, 9000 Ghent, Belgium
- Cancer Research Institute Ghent (CRIG), 9000 Ghent, Belgium
| | - Katrien Remaut
- Laboratory of General Biochemistry and Physical Pharmacy, Faculty of Pharmaceutical Sciences, Ghent University, 9000 Ghent, Belgium
- Cancer Research Institute Ghent (CRIG), 9000 Ghent, Belgium
| |
Collapse
|
31
|
Ghosh R, Malhotra M, Sathe RR, Jayakannan M. Biodegradable Polymer Theranostic Fluorescent Nanoprobe for Direct Visualization and Quantitative Determination of Antimicrobial Activity. Biomacromolecules 2020; 21:2896-2912. [PMID: 32539360 DOI: 10.1021/acs.biomac.0c00653] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
We report a biodegradable fluorescent theranostic nanoprobe design strategy for simultaneous visualization and quantitative determination of antibacterial activity for the treatment of bacterial infections. Cationic-charged polycaprolactone (PCL) was tailor-made through ring-opening polymerization methodology, and it was self-assembled into well-defined tiny 5.0 ± 0.1 nm aqueous nanoparticles (NPs) having a zeta potential of +45 mV. Excellent bactericidal activity at 10.0 ng/mL concentration was accomplished in Gram-negative bacterium Escherichia coli (E. coli) while maintaining their nonhemolytic nature in mice red blood cells (RBC) and their nontoxic trend in wild-type mouse embryonic fibroblast cells with a selectivity index of >104. Electron microscopic studies are evident of the E. coli membrane disruption mechanism by the cationic NP with respect to their high selectivity for antibacterial activity. Anionic biomarker 8-hydroxy-pyrene-1,3,6-trisulfonic acid (HPTS) was loaded in the cationic PCL NP via electrostatic interaction to yield a new fluorescent theranostic nanoprobe to accomplish both therapeutics and diagnostics together in a single nanosystem. The theranostic NP was readily degradable by a bacteria-secreted lipase enzyme as well as by lysosomal esterase enzymes at the intracellular compartments in <12 h and support their suitability for biomedical application. In the absence of bactericidal activity, the theranostic nanoprobe functions exclusively as a biomarker to exhibit strong green-fluorescent signals in live E. coli. Once it became active, the theranostic probe induces membrane disruption on E. coli, which enabled the costaining of nuclei by red fluorescent propidium iodide. As a result, live and dead bacteria could be visualized via green and orange signals (merging of red+green), respectively, during the course of the antibacterial activity by the theranostic probe. This has enabled the development of a new image-based fluorescence assay to directly visualize and quantitatively estimate the real-time antibacterial activity. Time-dependent bactericidal activity was coupled with selective photoexcitation in a confocal microscope to demonstrate the proof-of-concept of the working principle of a theranostic probe in E. coli. This new theranostic nanoprobe creates a new platform for the simultaneous probing and treating of bacterial infections in a single nanodesign, which is very useful for a long-term impact in healthcare applications.
Collapse
|
32
|
Core-shell lipid-polymer nanoparticles as a promising ocular drug delivery system to treat glaucoma. CHINESE CHEM LETT 2020. [DOI: 10.1016/j.cclet.2019.04.048] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
33
|
Wang Y, Han Q, Bai F, Luo Q, Wu M, Song G, Zhang H, Wang Y. The assembly and antitumor activity of lycium barbarum polysaccharide-platinum-based conjugates. J Inorg Biochem 2020; 205:111001. [PMID: 32007698 DOI: 10.1016/j.jinorgbio.2020.111001] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Revised: 12/20/2019] [Accepted: 01/21/2020] [Indexed: 11/24/2022]
Abstract
In this work, the new polysaccharide-platinum conjugates of 5-aminosalicylic acid modified lycium barbarum polysaccharide linking platinum compounds were designed in order to construct an anticancer metal drug delivery system. The multiple analysis methods were used to describe the chemical structure and physical properties of the polysaccharide-metal conjugates. The results showed that 5-aminosalicylic acid successfully acted as linker which was covalently bound between polysaccharide and platinum compound. The morphology and rheological properties of polysaccharide have been changed by the formation of conjugates, which exhibited certain inhibition specificity to A549 (human lung cancer cell line). The agarose gel electrophoresis and fluorescence microscopy results demonstrated that such conjugates promoted the unwinding of DNA and could significantly damage the nucleus of A549 cells. Cell cycle analyzing the Pt complex of conjugates could cause intracellular DNA damage and induced G2 phase arrest. So, polysaccharide-platinum conjugates might find a range of applications, for example in metal anticancer drug delivery.
Collapse
Affiliation(s)
- Ying Wang
- Institute of Environmental Toxicology and Environmental Ecology, Yancheng Teachers University, Yancheng City, Jiangsu Province 224051, People's Republic of China; Chemistry and Chemical Engineering, Nanjing University of Technology, Nanjing City, Jiangsu Province 210009, People's Republic of China
| | - Qianqian Han
- Institute of Environmental Toxicology and Environmental Ecology, Yancheng Teachers University, Yancheng City, Jiangsu Province 224051, People's Republic of China; Chemistry and Chemical Engineering, Nanjing University of Technology, Nanjing City, Jiangsu Province 210009, People's Republic of China
| | - Feng Bai
- Institute of Environmental Toxicology and Environmental Ecology, Yancheng Teachers University, Yancheng City, Jiangsu Province 224051, People's Republic of China; Chemistry and Chemical Engineering, Nanjing University of Technology, Nanjing City, Jiangsu Province 210009, People's Republic of China
| | - Qiang Luo
- Institute of Environmental Toxicology and Environmental Ecology, Yancheng Teachers University, Yancheng City, Jiangsu Province 224051, People's Republic of China; Chemistry and Chemical Engineering, Nanjing University of Technology, Nanjing City, Jiangsu Province 210009, People's Republic of China
| | - Mingliang Wu
- Institute of Environmental Toxicology and Environmental Ecology, Yancheng Teachers University, Yancheng City, Jiangsu Province 224051, People's Republic of China
| | - Gang Song
- Institute of Environmental Toxicology and Environmental Ecology, Yancheng Teachers University, Yancheng City, Jiangsu Province 224051, People's Republic of China
| | - Hongmei Zhang
- Institute of Environmental Toxicology and Environmental Ecology, Yancheng Teachers University, Yancheng City, Jiangsu Province 224051, People's Republic of China.
| | - Yanqing Wang
- Institute of Environmental Toxicology and Environmental Ecology, Yancheng Teachers University, Yancheng City, Jiangsu Province 224051, People's Republic of China.
| |
Collapse
|
34
|
Dong H, Pang L, Cong H, Shen Y, Yu B. Application and design of esterase-responsive nanoparticles for cancer therapy. Drug Deliv 2019; 26:416-432. [PMID: 30929527 PMCID: PMC6450553 DOI: 10.1080/10717544.2019.1588424] [Citation(s) in RCA: 113] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2018] [Revised: 02/22/2019] [Accepted: 02/25/2019] [Indexed: 12/11/2022] Open
Abstract
Nanoparticles have been developed for tumor treatment due to the enhanced permeability and retention effects. However, lack of specific cancer cells selectivity results in low delivery efficiency and undesired side effects. In that case, the stimuli-responsive nanoparticles system designed for the specific structure and physicochemical properties of tumors have attracted more and more attention of researchers. Esterase-responsive nanoparticle system is widely used due to the overexpressed esterase in tumor cells. For a rational designed esterase-responsive nanoparticle, ester bonds and nanoparticle structures are the key characters. In this review, we overviewed the design of esterase-responsive nanoparticles, including ester bonds design and nano-structure design, and analyzed the fitness of each design for different application. In the end, the outlook of esterase-responsive nanoparticle is looking forward.
Collapse
Affiliation(s)
- Haonan Dong
- Institute of Biomedical Materials and Engineering, College of Chemistry and Chemical Engineering, College of Materials Science and Engineering, Qingdao University, Qingdao, Shandong, P.R. China
| | - Long Pang
- Institute of Biomedical Materials and Engineering, College of Chemistry and Chemical Engineering, College of Materials Science and Engineering, Qingdao University, Qingdao, Shandong, P.R. China
| | - Hailin Cong
- Institute of Biomedical Materials and Engineering, College of Chemistry and Chemical Engineering, College of Materials Science and Engineering, Qingdao University, Qingdao, Shandong, P.R. China
- State Key Laboratory of Bio-Fibers and Eco-Textiles, Qingdao University, Qingdao, Shandong, P.R. China
| | - Youqing Shen
- Institute of Biomedical Materials and Engineering, College of Chemistry and Chemical Engineering, College of Materials Science and Engineering, Qingdao University, Qingdao, Shandong, P.R. China
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, Center for Bionanoengineering, and Department of Chemical and Biological Engineering, Zhejiang University, Hangzhou, Zhejiang, P.R. China
| | - Bing Yu
- Institute of Biomedical Materials and Engineering, College of Chemistry and Chemical Engineering, College of Materials Science and Engineering, Qingdao University, Qingdao, Shandong, P.R. China
- State Key Laboratory of Bio-Fibers and Eco-Textiles, Qingdao University, Qingdao, Shandong, P.R. China
| |
Collapse
|
35
|
García-López JP, Vilos C, Feijóo CG. Zebrafish, a model to develop nanotherapeutics that control neutrophils response during inflammation. J Control Release 2019; 313:14-23. [PMID: 31622693 DOI: 10.1016/j.jconrel.2019.10.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Revised: 10/02/2019] [Accepted: 10/07/2019] [Indexed: 01/26/2023]
Abstract
Neutrophils are crucial modulators of the inflammation process, and their uncontrolled response worsens several chronic pathologies. The p38 mitogen-activated protein kinases (MAPKs) activity is critical for normal immune and inflammatory response through the regulation of pro-inflammatory cytokines synthesis. In this work, we study the effect of hybrid lipid-polymer nanoparticles loaded with the p38 MAPK inhibitor SB203580 in an acute and chronic inflammatory model in zebrafish containing a transgenic neutrophil cell line that constitutively expresses a green fluorescent protein. We identify the existence of at least two neutrophils subpopulation involved in the response during the acute inflammation triggered; a first-responder p38α-independent subset and a second-responder p38α-dependent subset. In the case of chronic inflammation, neutrophils recruited in the intestine only during the inflammation process, migrate in a p38α-dependent manner. Likewise, we establish that SB203580-loaded in NPs exerts their action during at least a double period than the inhibitor administers directly in both types of inflammation. Our results demonstrate the exceptional potential of the zebrafish as an inflammatory model for studying novel nanotherapeutics that selectively inhibit the neutrophils response, and to identify functional neutrophils subpopulations involved in the inflammation process.
Collapse
Affiliation(s)
- Juan P García-López
- Fish Immunology Laboratory, Faculty of Life Sciences, Universidad Andres Bello, Santiago, Chile; Laboratory of Nanomedicine and Targeted Delivery, Center for Medical Research, School of Medicine, Universidad de Talca, 2 Norte 685, Talca 3460000, Chile
| | - Cristian Vilos
- Laboratory of Nanomedicine and Targeted Delivery, Center for Medical Research, School of Medicine, Universidad de Talca, 2 Norte 685, Talca 3460000, Chile; Center for the Development of Nanoscience and Nanotechnology (CEDENNA), Universidad de Santiago de Chile, 9170124, Santiago, Chile.
| | - Carmen G Feijóo
- Fish Immunology Laboratory, Faculty of Life Sciences, Universidad Andres Bello, Santiago, Chile.
| |
Collapse
|
36
|
Banihashem S, Nikpour Nezhati M, Panahi HA, Shakeri-Zadeh A. Synthesis of novel chitosan-g-PNVCL nanofibers coated with gold-gold sulfide nanoparticles for controlled release of cisplatin and treatment of MCF-7 breast cancer. INT J POLYM MATER PO 2019. [DOI: 10.1080/00914037.2019.1683557] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Affiliation(s)
- Solmaz Banihashem
- Department of Chemistry, Central Tehran Branch, Islamic Azad University, Tehran, Iran
| | | | - Homayon Ahmad Panahi
- Department of Chemistry, Central Tehran Branch, Islamic Azad University, Tehran, Iran
| | - Ali Shakeri-Zadeh
- Medical Physics Department, School of Medicine Iran, University of Medical Sciences (IUMS), Tehran, Iran
| |
Collapse
|
37
|
Praveen K, Das S, Dhaware V, Pandey B, Mondal B, Gupta SS. pH-Responsive “Supra-Amphiphilic” Nanoparticles Based on Homoarginine Polypeptides. ACS APPLIED BIO MATERIALS 2019; 2:4162-4172. [DOI: 10.1021/acsabm.9b00432] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Korra Praveen
- Polymer Science and Engineering Division, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune 411008, India
- Academy of Scientific and Innovative Research, CSIR-Human Resource Development Centre, Campus Postal Staff College Area, Ghaziabad, 201002 Uttar Pradesh, India
| | - Soumen Das
- Polymer Science and Engineering Division, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune 411008, India
- Academy of Scientific and Innovative Research, CSIR-Human Resource Development Centre, Campus Postal Staff College Area, Ghaziabad, 201002 Uttar Pradesh, India
| | - Vinita Dhaware
- Polymer Science and Engineering Division, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune 411008, India
- Academy of Scientific and Innovative Research, CSIR-Human Resource Development Centre, Campus Postal Staff College Area, Ghaziabad, 201002 Uttar Pradesh, India
| | - Bhawana Pandey
- Polymer Science and Engineering Division, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune 411008, India
- Academy of Scientific and Innovative Research, CSIR-Human Resource Development Centre, Campus Postal Staff College Area, Ghaziabad, 201002 Uttar Pradesh, India
| | - Basudeb Mondal
- Department of Chemical Sciences, Indian Institute of Science Education and Research, Mohanpur, Kolkata 741246, India
| | - Sayam Sen Gupta
- Department of Chemical Sciences, Indian Institute of Science Education and Research, Mohanpur, Kolkata 741246, India
| |
Collapse
|
38
|
Du M, Ouyang Y, Meng F, Ma Q, Liu H, Zhuang Y, Pang M, Cai T, Cai Y. Nanotargeted agents: an emerging therapeutic strategy for breast cancer. Nanomedicine (Lond) 2019; 14:1771-1786. [PMID: 31298065 DOI: 10.2217/nnm-2018-0481] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Breast cancer is the most common female cancer worldwide and represents 12% of all cancer cases. Improvements in survival rates are largely attributed to improved screening and diagnosis. Conventional chemotherapy remains an important treatment option but it is beset with poor cell selectivity, serious side effects and resistance. Nanoparticle drug delivery systems bring promising opportunities to breast cancer treatment. They may improve chemotherapy by targeting drugs to tumors, generating high drug concentrations at tumors providing slow release of the drug, increased drug stability and concomitant reductions in side effects. The nanotechnology-based drug delivery approaches and the current research and application status of nano-targeted agents for breast cancer are discussed in this review to provide a basis for further study on targeted drug delivery systems.
Collapse
Affiliation(s)
- Manling Du
- College of Pharmacy, Jinan University, Guangzhou 510632, PR China
| | - Yong Ouyang
- Guangzhou Hospital of Integrated Traditional Chinese & Western Medicine, Guangzhou 510800, PR China
| | - Fansu Meng
- Zhongshan Hospital of Traditional Chinese Medicine Affiliated to Guangzhou University of TCM, Zhongshan, Guangdong 528400, PR China
| | - Qianqian Ma
- College of Pharmacy, Jinan University, Guangzhou 510632, PR China
| | - Hui Liu
- College of Pharmacy, Jinan University, Guangzhou 510632, PR China
| | - Yong Zhuang
- College of Pharmacy, Jinan University, Guangzhou 510632, PR China
| | - Mujuan Pang
- College of Pharmacy, Jinan University, Guangzhou 510632, PR China
| | - Tiange Cai
- College of Life Sciences, Liaoning University, Shenyang 110036, PR China
| | - Yu Cai
- College of Pharmacy, Jinan University, Guangzhou 510632, PR China.,Cancer Research Institute of Jinan University, Guangzhou 510632, PR China
| |
Collapse
|
39
|
Macedo LB, Nogueira-Librelotto DR, de Vargas J, Scheeren LE, Vinardell MP, Rolim CMB. Poly (ɛ-Caprolactone) Nanoparticles with pH-Responsive Behavior Improved the In Vitro Antitumor Activity of Methotrexate. AAPS PharmSciTech 2019; 20:165. [PMID: 30993464 DOI: 10.1208/s12249-019-1372-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Accepted: 03/19/2019] [Indexed: 01/08/2023] Open
Abstract
A promising approach to achieve a more efficient antitumor therapy is the conjugation of the active molecule to a nanostructured delivery system. Therefore, the main objective of this research was to prepare nanoparticles (NPs), with the polymer poly (ε-caprolactone) (PCL), as a carrier for the antitumor drug methotrexate (MTX). A pH-responsive behavior was obtained through conjugation of the amino acid-based amphiphile, 77KL, to the NP matrix. The NPs showed mean hydrodynamic diameter and drug entrapment efficiency of 178.5 nm and 20.52%, respectively. Owing to its pH-sensitivity, the PCL-NPs showed membrane-lytic behavior upon reducing the pH value of surrounding media to 5.4, which is characteristic of the endosomal compartments. The in vitro antitumor assays demonstrated that MTX-loaded PCL-NPs have higher antiproliferative activity than free drug in MCF-7 cells and, to a lesser extent, in HepG2 cells. This same behavior was also achieved at mildly acidic conditions, characteristic of the tumor microenvironment. Altogether, the results evidenced the pH-responsive properties of the designed NPs, as well as the higher in vitro cytotoxicity compared to free MTX, representing thus a promising alternative for the antitumor therapy.
Collapse
|
40
|
Xiao C, Hu H, Yang H, Li S, Zhou H, Ruan J, Zhu Y, Yang X, Li Z. Colloidal hydroxyethyl starch for tumor-targeted platinum delivery. NANOSCALE ADVANCES 2019; 1:1002-1012. [PMID: 36133197 PMCID: PMC9473228 DOI: 10.1039/c8na00271a] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Accepted: 11/23/2018] [Indexed: 05/06/2023]
Abstract
Cis-platinum has been widely used as a first-line chemotherapy agent in clinics for more than 40 years. Although considerable efforts have been expended for developing platinum-based nano drug delivery systems (NDDS) to resolve the problems of low water solubility, short half-life, and severe side effects of cis-platinum, it remains challenging to apply these nanoplatforms to cancer treatments in clinics on account of the issues related to safety, complex fabrication procedures, and limited cellular uptake. Herein, we constructed a novel cis-platinum delivery system with hydroxyethyl starch (HES), which is a semisynthetic polysaccharide that has been used worldwide as colloidal plasma volume expanders (PVE) in clinics for several decades. By combining TEM, AFM, and DLS, we have found that HES particles are colloidal nanoparticles in solution, with diameters ranging from 15 to 40 nm as a function of molecular weight. We further revealed that HES adopted a hyperbranched colloidal structure with rather compact conformation. These results demonstrate that HES is a promising nanocarrier to deliver drug molecules. Taking advantage of the poly-hydroxyl sites of HES, we constructed a novel HES-based cis-platinum delivery nanoplatform. HES was directly conjugated with cis-platinum prodrug via an ester bond and decorated with an active targeting molecule, lactobionic acid (LA), contributing toward higher in vitro antitumor activity against hepatoma carcinoma cells as compared to cis-platinum. These results have significant implications for the clinically used plasma volume expander-HES and shed light on the clinical translation of HES-based nano drug delivery systems.
Collapse
Affiliation(s)
- Chen Xiao
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology Wuhan 430074 China +86 27 87792234 +86 27 87792234
- Department of Nanomedicine and Biopharmaceutics, College of Life Science and Technology, Huazhong University of Science and Technology Wuhan 430074 China
| | - Hang Hu
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology Wuhan 430074 China +86 27 87792234 +86 27 87792234
- Department of Nanomedicine and Biopharmaceutics, College of Life Science and Technology, Huazhong University of Science and Technology Wuhan 430074 China
| | - Hai Yang
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology Wuhan 430074 China +86 27 87792234 +86 27 87792234
- Department of Nanomedicine and Biopharmaceutics, College of Life Science and Technology, Huazhong University of Science and Technology Wuhan 430074 China
| | - Si Li
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology Wuhan 430074 China +86 27 87792234 +86 27 87792234
- Department of Nanomedicine and Biopharmaceutics, College of Life Science and Technology, Huazhong University of Science and Technology Wuhan 430074 China
| | - Hui Zhou
- Department of Nanomedicine and Biopharmaceutics, College of Life Science and Technology, Huazhong University of Science and Technology Wuhan 430074 China
| | - Jian Ruan
- Wuhan HUST Life Science & Technology Co., Ltd Wuhan 430223 China
| | - Yuting Zhu
- Wuhan HUST Life Science & Technology Co., Ltd Wuhan 430223 China
| | - Xiangliang Yang
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology Wuhan 430074 China +86 27 87792234 +86 27 87792234
- Department of Nanomedicine and Biopharmaceutics, College of Life Science and Technology, Huazhong University of Science and Technology Wuhan 430074 China
- Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medica, Huazhong University of Science and Technology Wuhan 430074 China
| | - Zifu Li
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology Wuhan 430074 China +86 27 87792234 +86 27 87792234
- Department of Nanomedicine and Biopharmaceutics, College of Life Science and Technology, Huazhong University of Science and Technology Wuhan 430074 China
- Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medica, Huazhong University of Science and Technology Wuhan 430074 China
- Wuhan Institute of Biotechnology High Tech Road 666, East Lake High Tech Zone Wuhan 430040 China
| |
Collapse
|
41
|
Espinoza SM, Patil HI, San Martin Martinez E, Casañas Pimentel R, Ige PP. Poly-ε-caprolactone (PCL), a promising polymer for pharmaceutical and biomedical applications: Focus on nanomedicine in cancer. INT J POLYM MATER PO 2019. [DOI: 10.1080/00914037.2018.1539990] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Sergio Miguel Espinoza
- Instituto Politécnico Nacional, Centro de Investigación en Ciencia Aplicada y Tecnología Avanzada, Legaria 694, Col. Irrigación, 11500 Ciudad de México
| | - Harshal Indrabhan Patil
- Department of Pharmaceutics, R. C. Patel Institute of Pharmaceutical Education and Research, Shirpur, Dhule, Maharashtra 425405, India
| | - Eduardo San Martin Martinez
- Instituto Politécnico Nacional, Centro de Investigación en Ciencia Aplicada y Tecnología Avanzada, Legaria 694, Col. Irrigación, 11500 Ciudad de México
| | - Rocio Casañas Pimentel
- CONACYT-Instituto Politécnico Nacional, Centro de Investigación en Ciencia Aplicada y Tecnología Avanzada, Legaria 694, Col. Irrigación, 11500 Ciudad de México
| | - Pradum Pundlikrao Ige
- Department of Pharmaceutics, R. C. Patel Institute of Pharmaceutical Education and Research, Shirpur, Dhule, Maharashtra 425405, India
| |
Collapse
|
42
|
Guo XL, Kang XX, Wang YQ, Zhang XJ, Li CJ, Liu Y, Du LB. Co-delivery of cisplatin and doxorubicin by covalently conjugating with polyamidoamine dendrimer for enhanced synergistic cancer therapy. Acta Biomater 2019; 84:367-377. [PMID: 30528609 DOI: 10.1016/j.actbio.2018.12.007] [Citation(s) in RCA: 75] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Revised: 11/27/2018] [Accepted: 12/04/2018] [Indexed: 12/15/2022]
Abstract
Because of the synergistic effects of drugs and minimal drug dose for cancer therapy, combination chemotherapy is frequently used in the clinic. In this study, hyaluronic acid-modified amine-terminated fourth-generation polyamidoamine dendrimer nanoparticles were synthesized for systemic co-delivery of cisplatin and doxorubicin (HA@PAMAM-Pt-Dox). In vitro data showed that HA@PAMAM-Pt-Dox can enter the cells through the lysosome mediated-pathway in a time-dependent manner. Cell viability studies indicated that HA@PAMAM-Pt-Dox exhibited a higher anticancer activity on MCF-7 and MDA-MB-231 breast cancer cells at a relative low concentration. HA@PAMAM-Pt-Dox not only efficiently inhibited tumor growth but also significantly reduced the toxicity of Dox. Moreover, intravenous administration of HA@PAMAM-Pt-Dox to MDA-MB-231 tumor-bearing BALB/c nude mice resulted in the accumulation of HA@PAMAM-Pt-Dox at the tumor site, thereby significantly inhibiting tumor growth without apparent toxicity. These results suggested that HA@PAMAM-Pt-Dox has great potential to improve the chemotherapeutic efficacy of cisplatin and doxorubicin in breast cancer. STATEMENT OF SIGNIFICANCE: One of the main problems in cancer treatment is the development of drug resistance. To date, it is believed that combination chemotherapy might be an effective strategy for the above problem. However, for two completely different drugs, combination chemotherapy faces huge difficulties including the antagonistic nature of drugs, variations in drugs in terms of solubility, and limited tumor targeting. Recent developments in nanoscience and nanotechnology provide an effective approach for such disadvantages. Considering the advantages of dendrimers such as control of size and molecular weight, bioavailability, and biosafety, we used fourth-generation dendrimers modified by HA as drug vectors by covalently conjugating them with anticancer drugs (cisplatin and doxorubicin) to form a nanodrug delivery system, named HA@PAMAM-Pt-Dox. We observed that the HA@PAMAM-Pt-Dox system can effectively kill breast cancer cells both in vitro and in vivo, which showed a favorable synergistic effect. This strategy can be extended to other drugs, thus providing a highly effective strategy for cancer treatment.
Collapse
|
43
|
Kang X, Yu Y, Chen Z, Wu Y, Wei D, Zhao Y, Wang F, Xiao H. A negatively charged Pt(iv) prodrug for electrostatic complexation with polymers to overcome cisplatin resistance. J Mater Chem B 2019. [DOI: 10.1039/c9tb00155g] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
A negatively charged Pt(iv) prodrug with lipid tails can self-assemble into nanoparticles via electrostatic complexation with a positively charged hydrophilic polymer, which exhibits great potential for clinical application.
Collapse
Affiliation(s)
- Xiaoxu Kang
- College of Life Science and Technology
- Beijing University of Chemical Technology
- Beijing 100029
- P. R. China
- Beijing National Laboratory for Molecular Sciences
| | - Yingjie Yu
- Institute of Translational Medicine
- The First Affiliated Hospital of Shenzhen University
- Shenzhen Second People's Hospital
- Shenzhen
- P. R. China
| | - Zhigang Chen
- College of Materials Science and Engineering
- Shenzhen University
- Shenzhen 518060
- P. R. China
| | - Yixin Wu
- College of Life Science and Technology
- Beijing University of Chemical Technology
- Beijing 100029
- P. R. China
- Beijing National Laboratory for Molecular Sciences
| | - Dengshuai Wei
- Beijing National Laboratory for Molecular Sciences
- State Key Laboratory of Polymer Physics and Chemistry
- Institute of Chemistry, Chinese Academy of Sciences
- Beijing 100190
- P. R. China
| | - Yao Zhao
- CAS Key Laboratory of Analytical Chemistry for Living Biosystems
- Institute of Chemistry
- Chinese Academy of Sciences
- Beijing 100190
- P. R. China
| | - Fuyi Wang
- CAS Key Laboratory of Analytical Chemistry for Living Biosystems
- Institute of Chemistry
- Chinese Academy of Sciences
- Beijing 100190
- P. R. China
| | - Haihua Xiao
- Beijing National Laboratory for Molecular Sciences
- State Key Laboratory of Polymer Physics and Chemistry
- Institute of Chemistry, Chinese Academy of Sciences
- Beijing 100190
- P. R. China
| |
Collapse
|
44
|
Song Y, Li Y, Zhang Y, Wang L, Xie Z. Self-quenching synthesis of coordination polymer pre-drug nanoparticles for selective photodynamic therapy. J Mater Chem B 2019; 7:7776-7782. [DOI: 10.1039/c9tb01937e] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
A novel “pre-photodynamic” nanoparticles (Fe-IBDP NPs) with a tumor microenvironment (TME)-activatable PDT and good biodegradability were synthesized by self-quenching strategy.
Collapse
Affiliation(s)
- Yucong Song
- State Key Laboratory of Polymer Physics and Chemistry
- Changchun Institute of Applied Chemistry
- Chinese Academy of Sciences
- Changchun 130022
- P. R. China
| | - Yite Li
- State Key Laboratory of Polymer Physics and Chemistry
- Changchun Institute of Applied Chemistry
- Chinese Academy of Sciences
- Changchun 130022
- P. R. China
| | - Yuandong Zhang
- Department of Chemistry
- Northeast Normal University
- Changchun
- P. R. China
| | - Lei Wang
- State Key Laboratory of Polymer Physics and Chemistry
- Changchun Institute of Applied Chemistry
- Chinese Academy of Sciences
- Changchun 130022
- P. R. China
| | - Zhigang Xie
- State Key Laboratory of Polymer Physics and Chemistry
- Changchun Institute of Applied Chemistry
- Chinese Academy of Sciences
- Changchun 130022
- P. R. China
| |
Collapse
|
45
|
Piorecka K, Kurjata J, Stanczyk M, Stanczyk WA. Synthetic routes to nanomaterials containing anthracyclines: noncovalent systems. Biomater Sci 2018; 6:2552-2565. [PMID: 30140825 DOI: 10.1039/c8bm00739j] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Chemotherapy still constitutes a basic treatment for various types of cancer. Anthracyclines are effective antineoplastic drugs that are widely used in clinical practice. Unfortunately, they are characterized by high systemic toxicity and lack of tumour selectivity. A promising way to enhance treatment effectiveness and reduce toxicity is the synthesis of systems containing anthracyclines either in the form of complexes for the encapsulation of active drugs or their covalent conjugates with inert carriers. In this respect nanotechnology offers an extensive spectrum of possible solutions. In this review, we discuss recent advances in the development of anthracycline prodrugs based on nanocarriers such as copolymers, lipids, DNA, and inorganic systems. The review focuses on the chemical architecture of the noncovalent nanocarrier-drug systems.
Collapse
Affiliation(s)
- Kinga Piorecka
- Department of Engineering of Polymer Materials, Centre of Molecular and Macromolecular Studies, Polish Academy of Sciences, Sienkiewicza 112, 90-363 Lodz, Poland.
| | | | | | | |
Collapse
|
46
|
Zhang K, Liu J, Ma X, Lei L, Li Y, Yang H, Lei Z. Temperature, pH, and reduction triple-stimuli-responsive inner-layer crosslinked micelles as nanocarriers for controlled release. J Appl Polym Sci 2018. [DOI: 10.1002/app.46714] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Kehu Zhang
- Key Laboratory of Applied Surface and Colloid Chemistry, School of Chemistry & Chemical Engineering; Shaanxi Normal University; Xi'an 710062 China
| | - Jiangtao Liu
- Key Laboratory of Applied Surface and Colloid Chemistry, School of Chemistry & Chemical Engineering; Shaanxi Normal University; Xi'an 710062 China
- College of Pharmacy; Shaanxi University of Chinese Medicine; Xianyang 712046 China
| | - Xiao Ma
- Key Laboratory of Applied Surface and Colloid Chemistry, School of Chemistry & Chemical Engineering; Shaanxi Normal University; Xi'an 710062 China
| | - Lei Lei
- Key Laboratory of Applied Surface and Colloid Chemistry, School of Chemistry & Chemical Engineering; Shaanxi Normal University; Xi'an 710062 China
| | - Yan Li
- Key Laboratory of Applied Surface and Colloid Chemistry, School of Chemistry & Chemical Engineering; Shaanxi Normal University; Xi'an 710062 China
| | - Hong Yang
- Basic Experimental Teaching Center; Shaanxi Normal University; Xi'an 710062 China
| | - Zhongli Lei
- Key Laboratory of Applied Surface and Colloid Chemistry, School of Chemistry & Chemical Engineering; Shaanxi Normal University; Xi'an 710062 China
| |
Collapse
|
47
|
Abstract
Inspired by cisplatin's deactivation by glutathione (GSH) in cancer, a GSH responsive nanogel loaded with doxorubicin (Dox) was prepared using hyaluronan as a matrix and cisplatin as a crosslinker. The elevated GSH depletes the cisplatin crosslinker in the nanogel, enhances Dox release and boosts cytotoxicity, thus providing a new GSH responsive platform to reverse cisplatin resistance.
Collapse
Affiliation(s)
- Weiqi Zhang
- Molecular Imaging Innovations Institute, Department of Radiology, Weill Cornell Medicine, Cornell University, 413 East 69th Street, Box 290, New York, NY 10021, USA.
| | | |
Collapse
|
48
|
Jeong YH, Shin HW, Kwon JY, Lee SM. Cisplatin-Encapsulated Polymeric Nanoparticles with Molecular Geometry-Regulated Colloidal Properties and Controlled Drug Release. ACS APPLIED MATERIALS & INTERFACES 2018; 10:23617-23629. [PMID: 29923700 DOI: 10.1021/acsami.8b06905] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Encapsulation of chemotherapeutic agents inside a nanoscale delivery platform can provide an attractive therapeutic strategy with many pharmaceutical benefits, such as increased plasma solubility, prolonged in vivo circulation, and reduced acute toxicity. Given that the biological activities of polymeric nanoparticles are highly dependent on their colloidal structures, the molecular geometry-regulated programming of self-assembled nanoscale architecture is of great interest for chemical design of an ideal delivery platform. In this report, we demonstrate that the molecular geometry of block-copolymer excipients can govern the level of drug-loading capacity and core hydrophobicity of polymeric nanoparticles, which can eventually control the pH-sensitive drug-release property. Atom-transfer radical polymerization was employed as a controlled synthetic method for the copolymer excipients, which contain the metal-chelating poly(acrylic acid) block linked to either a small mPEG-grafted poly(methacrylate) to generate a bulky brush-like chains or a simple linear mPEG segment. During the coordination of cis-diammineplatinum(II) as an active pharmacophore of cisplatin, aqueous-phase size-exclusion chromatography analyses exhibited highly different self-association kinetic regimes prompted by versatile molecular geometry of copolymer excipients, which further allows us to explore the molecular geometry-colloidal property relationship.
Collapse
Affiliation(s)
- Yun-Ho Jeong
- Department of Chemistry , The Catholic University of Korea , Bucheon , Gyeonggi-do 14662 , Korea
| | - Hyeon-Woo Shin
- Department of Chemistry , The Catholic University of Korea , Bucheon , Gyeonggi-do 14662 , Korea
| | - Ji-Yeong Kwon
- Department of Chemistry , The Catholic University of Korea , Bucheon , Gyeonggi-do 14662 , Korea
| | - Sang-Min Lee
- Department of Chemistry , The Catholic University of Korea , Bucheon , Gyeonggi-do 14662 , Korea
| |
Collapse
|
49
|
Desai P, Venkataramanan A, Schneider R, Jaiswal MK, Carrow JK, Purwada A, Singh A, Gaharwar AK. Self-assembled, ellipsoidal polymeric nanoparticles for intracellular delivery of therapeutics. J Biomed Mater Res A 2018; 106:2048-2058. [PMID: 29577576 PMCID: PMC6093774 DOI: 10.1002/jbm.a.36400] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2017] [Revised: 02/17/2018] [Accepted: 03/15/2018] [Indexed: 02/06/2023]
Abstract
Nanoparticle shape has emerged as a key regulator of nanoparticle transport across physiological barriers, intracellular uptake, and biodistribution. We report a facile approach to synthesize ellipsoidal nanoparticles through self-assembly of poly(glycerol sebacate)-co-poly(ethylene glycol) (PGS-co-PEG). The PGS-PEG nanoparticle system is highly tunable, and the semiaxis length of the nanoparticles can be modulated by changing PGS-PEG molar ratio and incorporating therapeutics. As both PGS and PEG are highly biocompatible, the PGS-co-PEG nanoparticles show high hemo-, immuno-, and cytocompatibility. Our data suggest that PGS-co-PEG nanoparticles have the potential for use in a wide range of biomedical applications including regenerative medicine, stem cell engineering, immune modulation, and cancer therapeutics. © 2018 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 106A: 2048-2058, 2018.
Collapse
Affiliation(s)
- Prachi Desai
- Department of Biomedical Engineering, Texas A&M University, College Station, TX 77843 (USA)
| | - Anjana Venkataramanan
- Department of Biomedical Engineering, Texas A&M University, College Station, TX 77843 (USA)
| | - Rebecca Schneider
- Sibley School of Mechanical and Aerospace Engineering, Cornell University, Ithaca, NY 14853 (USA)
- Robert Frederick Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, NY 14853
| | - Manish K. Jaiswal
- Department of Biomedical Engineering, Texas A&M University, College Station, TX 77843 (USA)
| | - James K. Carrow
- Department of Biomedical Engineering, Texas A&M University, College Station, TX 77843 (USA)
| | - Alberto Purwada
- Sibley School of Mechanical and Aerospace Engineering, Cornell University, Ithaca, NY 14853 (USA)
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY 14853 (USA)
| | - Ankur Singh
- Sibley School of Mechanical and Aerospace Engineering, Cornell University, Ithaca, NY 14853 (USA)
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY 14853 (USA)
| | - Akhilesh K. Gaharwar
- Department of Biomedical Engineering, Texas A&M University, College Station, TX 77843 (USA)
- Department of Materials Science and Engineering, Texas A&M University, College Station, TX 77843 (USA)
- Center for Remote Health Technologies and Systems, Texas A&M University, College Station, TX 77843 (USA)
| |
Collapse
|
50
|
Inchanalkar S, Deshpande NU, Kasherwal V, Jayakannan M, Balasubramanian N. Polymer Nanovesicle-Mediated Delivery of MLN8237 Preferentially Inhibits Aurora Kinase A To Target RalA and Anchorage-Independent Growth in Breast Cancer Cells. Mol Pharm 2018; 15:3046-3059. [PMID: 29863884 DOI: 10.1021/acs.molpharmaceut.8b00163] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The small GTPase RalA is a known mediator of anchorage-independent growth in cancers and is differentially regulated by adhesion and aurora kinase A (AURKA). Hence, inhibiting AURKA offers a means of specifically targeting RalA (over RalB) in cancer cells. MLN8237 (alisertib) is a known inhibitor of aurora kinases; its specificity for AURKA, however, is compromised by its poor solubility and transport across the cell membrane. A polymer nanovesicle platform is used for the first time to deliver and differentially inhibit AURKA in cancer cells. For this purpose, polysaccharide nanovesicles made from amphiphilic dextran were used as nanocarriers to successfully administer MLN8237 (VMLN) in cancer cells in 2D and 3D microenvironments. These nanovesicles (<200 nm) carry the drug in their intermembrane space with up to 85% of it released by the action of esterase enzyme(s). Lysotracker experiments reveal the polymer nanovesicles localize in the lysosomal compartment of the cell, where they are enzymatically targeted and MLN released in a controlled manner. Rhodamine B fluorophore trapped in the nanovesicles hydrophilic core (VMLN+RhB) allows us to visualize its uptake and localization in cells in a 2D and 3D microenvironment. In breast cancer, MCF-7 cells VMLN inhibits AURKA significantly better than the free drug at low concentrations (0.02-0.04 μM). This ensures that the drug in VMLN at these concentrations can specifically inhibit up to 94% of endogenous AURKA without affecting AURKB. This targeting of AURKA causes the downstream differential inhibition of active RalA (but not RalB). Free MLN8237 at similar concentrations and conditions failed to affect RalA activation. VMLN-mediated inhibition of RalA, in turn, disrupts the anchorage-independent growth of MCF-7 cells supporting a role for the AURKA-RalA crosstalk in mediating the same. These studies not only identify the polysaccharide nanovesicle to be an improved way to efficiently deliver low concentrations of MLN8237 to inhibit AURKA but, in doing so, also help reveal a role for AURKA and its crosstalk with RalA in anchorage-independent growth of MCF-7 cells.
Collapse
|