1
|
Tohamy HAS. Novel, Speedy, and Eco-Friendly Carboxymethyl Cellulose-Nitrogen Doped Carbon Dots Biosensors with DFT Calculations, Molecular Docking, and Experimental Validation. Gels 2024; 10:686. [PMID: 39590042 PMCID: PMC11593792 DOI: 10.3390/gels10110686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Revised: 10/19/2024] [Accepted: 10/22/2024] [Indexed: 11/28/2024] Open
Abstract
Carboxymethyl cellulose (CMC) was prepared from sugarcane bagasse (SB) in minutes using a novel microwave method. Additionally, nitrogen-doped carbon dots (N-CDs) were synthesized from SB using the same microwave technique. These materials were crosslinked with CaCl2 to prepare antibacterial/antifungal hydrogel sensors. In this regard, both CMC@Ca and CMC@Ca-N-CDs exhibited antibacterial activity against Escherichia coli (Gram negative), while only CMC@Ca-N-CDs demonstrated antibacterial activity against Staphylococcus aureus (Gram positive). Moreover, both materials showed antifungal activity against Candida albicans. The molecular docking study demonstrated that CMC@Ca-N-CDs showed good binding with proteins with short bond length 2.59, 2.80, and 1.97 A° for Escherichia coli, Staphylococcus aureus, and Candida albicans, respectively. These binding affinities were corroborated by the observed inhibition zone diameters. Furthermore, fluorescence microscope revealed distinct imaging patterns between Gram-positive and Gram-negative bacteria, as well as pathogenic yeast (fungi). CMC@Ca-N-CDs emitted blue light when exposed to Escherichia coli and Candida albicans (i.e., CMC@Ca-N-CDs/Escherichia coli and Candida albicans), whereas it emitted bright-red light when exposed to Staphylococcus aureus (i.e., CMC@Ca-N-CDs/Staphylococcus aureus). This disparity in the fluorescence-emitted colors is due to the difference in the cell wall of these microorganisms. Additionally, DFT calculations were conducted to substantiate the robust chemical interactions between CMC, Ca2+, and N-CDs.
Collapse
Affiliation(s)
- Hebat-Allah S Tohamy
- Cellulose & Paper Department, National Research Centre, 33 El-Bohouth St., Dokki, Giza P.O. Box 12622, Egypt
| |
Collapse
|
2
|
Ansari MA, Shoaib S, Chauhan W, Gahtani RM, Hani U, Alomary MN, Alasiri G, Ahmed N, Jahan R, Yusuf N, Islam N. Nanozymes and carbon-dots based nanoplatforms for cancer imaging, diagnosis and therapeutics: Current trends and challenges. ENVIRONMENTAL RESEARCH 2024; 241:117522. [PMID: 37967707 DOI: 10.1016/j.envres.2023.117522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 10/14/2023] [Accepted: 10/25/2023] [Indexed: 11/17/2023]
Abstract
Cancer patients face a significant clinical and socio-economic burden due to increased incidence, mortality, and poor survival. Factors like late diagnosis, recurrence, drug resistance, severe side effects, and poor bioavailability limit the scope of current therapies. There is a need for novel, cost-effective, and safe diagnostic methods, therapeutics to overcome recurrence and drug resistance, and drug delivery vehicles with enhanced bioavailability and less off-site toxicity. Advanced nanomaterial-based research is aiding cancer biologists by providing solutions for issues like hypoxia, tumor microenvironment, low stability, poor penetration, target non-specificity, and rapid drug clearance. Currently, nanozymes and carbon-dots are attractive due to their low cost, high catalytic activity, biocompatibility, and lower toxicity. Nanozymes and carbon-dots are increasingly used in imaging, biosensing, diagnosis, and targeted cancer therapy. Integrating these materials with advanced diagnostic tools like CT scans and MRIs can aid in clinical decision-making and enhance the effectiveness of chemotherapy, photothermal, photodynamic, and sonodynamic therapies, with minimal invasion and reduced collateral effects.
Collapse
Affiliation(s)
- Mohammad Azam Ansari
- Department of Epidemic Disease Research, Institute for Research and Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, Dammam 31441, Saudi Arabia.
| | - Shoaib Shoaib
- Department of Biochemistry, Faculty of Medicine, Aligarh Muslim University, Aligarh, India
| | - Waseem Chauhan
- Division of Hematology, Duke Comprehensive Sickle Cell Center, Department of Medicine, Duke University School of Medicine, Research Drive, Durham, NC 27710, USA
| | - Reem M Gahtani
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Khalid University, Abha 62529, Saudi Arabia
| | - Umme Hani
- Department of pharmaceutics, Collage of Pharmacy, King Khalid University, Abha 62529, Saudi Arabia
| | - Mohammad N Alomary
- Advanced Diagnostic and Therapeutic Institute, King Abdulaziz City for Science and Technology (KACST), Riyadh 11442, Saudi Arabia
| | - Glowi Alasiri
- Department of Biochemistry, College of Medicine, Al Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh, 13317, Saudi Arabia
| | - Nabeel Ahmed
- Department of Life Sciences, Shiv Nadar University, Greater Noida 201314, Uttar Pradesh, India
| | - Roshan Jahan
- Department of Botany, Faculty of Life Sciences, Aligarh Muslim University, Aligarh, India
| | - Nabiha Yusuf
- Department of Dermatology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Najmul Islam
- Department of Epidemic Disease Research, Institute for Research and Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, Dammam 31441, Saudi Arabia.
| |
Collapse
|
3
|
Liu G, Li B, Li J, Dong J, Baulin VE, Feng Y, Jia D, Petrov YV, Tsivadze AY, Zhou Y. Photothermal Carbon Dots Chelated Hydroxyapatite Filler: High Photothermal Conversion Efficiency and Enhancing Adhesion of Hydrogel. ACS APPLIED MATERIALS & INTERFACES 2023; 15:55335-55345. [PMID: 37994814 DOI: 10.1021/acsami.3c11957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2023]
Abstract
The synthesis of photothermal carbon/hydroxyapatite composites poses challenges due to the binding modes and relatively low photothermal conversion efficiency. To address these challenges, the calcium ions chelated by photothermal carbon dots (PTC-CDs) served as the calcium source for the synthesis of photothermal carbon dots chelated hydroxyapatite (PTC-HA) filler via the coprecipitation method. The coordination constant K and chelation sites of PTC-HA were 7.20 × 102 and 1.61, respectively. Compared to PTC-CDs, the coordination constant K and chelation sites of PTC-HA decreased by 88 and 35% due to chelating to hydroxyapatite, respectively. PTC-HA possesses fluorescence and photothermal performance with a 62.4% photothermal conversion efficiency. The incorporation of PTC-HA filler significantly enhances as high as 76% the adhesion performance of the adhesive hydrogel. PTC-HA with high photothermal conversion efficiency and enhancing adhesion performance holds promise for applications in high photothermal conversion efficiency, offering tissue adhesive properties and fluorescence capabilities to the hydrogel.
Collapse
Affiliation(s)
- Guanxiong Liu
- Institute for Advanced Ceramics, State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150001, PR China
| | - Baoqiang Li
- Institute for Advanced Ceramics, State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150001, PR China
- Laboratory of Dynamics and Extreme Characteristics of Promising Nanostructured Materials, Saint Petersburg State University, St. Petersburg 199034, Russia
- MIIT Key Laboratory of Advanced Structural-Functional Integration Materials & Green Manufacturing Technology, Harbin Institute of Technology, Harbin 150001, P.R. China
| | - Jie Li
- Institute for Advanced Ceramics, State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150001, PR China
| | - Jiaxin Dong
- Institute for Advanced Ceramics, State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150001, PR China
| | - Vladimir E Baulin
- Institute of Physiologically Active Compounds, Russian Academy of Sciences, Chernogolovka 142432, Russia
- Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences, Moscow 119071, Russia
| | - Yujie Feng
- Institute for Advanced Ceramics, State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150001, PR China
| | - Dechang Jia
- Institute for Advanced Ceramics, State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150001, PR China
- MIIT Key Laboratory of Advanced Structural-Functional Integration Materials & Green Manufacturing Technology, Harbin Institute of Technology, Harbin 150001, P.R. China
| | - Yuri V Petrov
- Laboratory of Dynamics and Extreme Characteristics of Promising Nanostructured Materials, Saint Petersburg State University, St. Petersburg 199034, Russia
| | - Aslan Yu Tsivadze
- Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences, Moscow 119071, Russia
| | - Yu Zhou
- Institute for Advanced Ceramics, State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150001, PR China
- MIIT Key Laboratory of Advanced Structural-Functional Integration Materials & Green Manufacturing Technology, Harbin Institute of Technology, Harbin 150001, P.R. China
| |
Collapse
|
4
|
Luo L, Zhang H, Zhang S, Luo C, Kan X, Lv J, Zhao P, Tian Z, Li C. Extracellular vesicle-derived silk fibroin nanoparticles loaded with MFGE8 accelerate skin ulcer healing by targeting the vascular endothelial cells. J Nanobiotechnology 2023; 21:455. [PMID: 38017428 PMCID: PMC10685683 DOI: 10.1186/s12951-023-02185-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 11/02/2023] [Indexed: 11/30/2023] Open
Abstract
BACKGROUND Reduced supplies of oxygen and nutrients caused by vascular injury lead to difficult-to-heal pressure ulcers (PU) in clinical practice. Rapid vascular repair in the skin wound is the key to the resolution of this challenge, but clinical measures are still limited. We described the beneficial effects of extracellular vesicle-derived silk fibroin nanoparticles (NPs) loaded with milk fat globule EGF factor 8 (MFGE8) on accelerating skin blood vessel and PU healing by targeting CD13 in the vascular endothelial cells (VECs). METHODS CD13, the specific targeting protein of NGR, and MFGE8, an inhibitor of ferroptosis, were detected in VECs and PU tissues. Then, NPs were synthesized via silk fibroin, and MFGE8-coated NPs (NPs@MFGE8) were assembled via loading purified protein MFGE8 produced by Chinese hamster ovary cells. Lentivirus was used to over-express MFGE8 in VECs and obtained MFGE8-engineered extracellular vesicles (EVs-MFGE8) secreted by these VECs. The inhibitory effect of EVs-MFGE8 or NPs@MFGE8 on ferroptosis was detected in vitro. The NGR peptide cross-linked with NPs@MFGE8 was assembled into NGR-NPs@MFGE8. Collagen and silk fibroin were used to synthesize the silk fibroin/collagen hydrogel. After being loaded with NGR-NPs@MFGE8, silk fibroin/collagen hydrogel sustained-release carrier was synthesized to investigate the repair effect on PU in vivo. RESULTS MFGE8 was decreased, and CD13 was increased in PU tissues. Similar to the effect of EVs-MFGE8 on inhibiting ferroptosis, NPs@MFGE8 could inhibit the mitochondrial autophagy-induced ferroptosis of VECs. Compared with the hydrogels loaded with NPs or NPs@MFGE8, the hydrogels loaded with NGR-NPs@MFGE8 consistently released NGR-NPs@MFGE8 targeting CD13 in VECs, thereby inhibiting mitochondrial autophagy and ferroptosis caused by hypoxia and accelerating wound healing effectively in rats. CONCLUSIONS The silk fibroin/collagen hydrogel sustained-release carrier loaded with NGR-NPs@MFGE8 was of great significance to use as a wound dressing to inhibit the ferroptosis of VECs by targeting CD13 in PU tissues, preventing PU formation and promoting wound healing.
Collapse
Affiliation(s)
- Liwen Luo
- Department of Orthopaedics, Xinqiao Hospital, Army Medical University (Third Military Medical University), 83, Xinqiao St, Shapingba District, Chongqing, 400037, China
| | - Hongyu Zhang
- Department of Emergency, Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Shiyu Zhang
- Department of Orthopaedics, Xinqiao Hospital, Army Medical University (Third Military Medical University), 83, Xinqiao St, Shapingba District, Chongqing, 400037, China
| | - Chengqin Luo
- Department of Emergency, Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Xuewei Kan
- Department of Dermatology, First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
| | - Jun Lv
- Department of Pharmacy, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, 400038, China
| | - Ping Zhao
- State Key Laboratory of Silkworm Genome Biology, Biological Science Research Center, Southwest University, 2, Tiansheng Road, Beibei District, Chongqing, 400715, China.
| | - Zhiqiang Tian
- Institute of Immunology, PLA, Army Medical University (Third Military Medical University), 30 Gaotanyan St, Shapingba District, Chongqing, 400038, China.
- State Key Laboratory of Silkworm Genome Biology, Biological Science Research Center, Southwest University, 2, Tiansheng Road, Beibei District, Chongqing, 400715, China.
| | - Changqing Li
- Department of Orthopaedics, Xinqiao Hospital, Army Medical University (Third Military Medical University), 83, Xinqiao St, Shapingba District, Chongqing, 400037, China.
| |
Collapse
|
5
|
Kumara BN, Kalimuthu P, Prasad KS. Synthesis, properties and potential applications of photoluminescent carbon nanoparticles: A review. Anal Chim Acta 2023; 1268:341430. [PMID: 37268342 DOI: 10.1016/j.aca.2023.341430] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 05/24/2023] [Accepted: 05/24/2023] [Indexed: 06/04/2023]
Abstract
Photoluminescent-carbon nanoparticles (PL-CNPs) are a new class of materials that received immense interest among researchers due to their distinct characteristics, including photoluminescence, high surface-to-volume ratio, low cost, ease of synthesis, high quantum yield, and biocompatibility. By exploiting these outstanding properties, many studies have been reported on its utility as sensors, photocatalysts, probes for bio-imaging, and optoelectronics applications. From clinical applications to point-of-care test devices, drug loading to tracking of drug delivery, and other research innovations demonstrated PL-CNPs as an emerging material that could substitute conventional approaches. However, some of the PL-CNPs have poor PL properties and selectivity due to the presence of impurities (e.g., molecular fluorophores) and unfavourable surface charges by the passivation molecules, which impede their applications in many fields. To address these issues, many researchers have been paying great attention to developing new PL-CNPs with different composite combinations to achieve high PL properties and selectivity. Herein, we thoroughly discussed the recent development of various synthetic strategies employed to prepare PL-CNPs, doping effects, photostability, biocompatibility, and applications in sensing, bioimaging, and drug delivery fields. Moreover, the review discussed the limitations, future direction, and perspectives of PL-CNPs in possible potential applications.
Collapse
Affiliation(s)
- B N Kumara
- Nanomaterial Research Laboratory (NMRL), Nano Division, Yenepoya Research Centre, Yenepoya (Deemed to Be University), Deralakatte, Mangalore, 575 018, India
| | - Palraj Kalimuthu
- School of Chemistry and Molecular Biosciences, University of Queensland, Brisbane, 4072, Australia.
| | - K S Prasad
- Centre for Nutrition Studies, Yenepoya (Deemed to Be University), Deralakatte, Mangalore, 575 018, India.
| |
Collapse
|
6
|
Lei M, Zheng J, Yang Y, Yan L, Liu X, Xu B. Carbon Dots-Based Delayed Fluorescent Materials: Mechanism, Structural Regulation and Application. iScience 2022; 25:104884. [PMID: 36039289 PMCID: PMC9418853 DOI: 10.1016/j.isci.2022.104884] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Delayed fluorescent (DF) materials have high internal quantum efficiency because of the triplet excitons involved in the radiation transition, and the spin-forbidden transition can effectively improve their luminescent lifetime. Compared with traditional afterglow materials including metal-containing inorganic coordination compounds and organic compounds, the DF materials based on carbon dots (CDs) have drawn extensive attention because of their advantages of low toxicity, environmental friendliness, stable luminescence, easy preparation and low cost. Most CDs-based DF materials can be realized by embedding CDs in matrix with covalent bonds, hydrogen bonds or/and other supramolecular interactions. Recently, matrix-free self-protective CDs-based DF materials are emerging. This review systematically summarizes the DF mechanism and structural regulation strategies of CDs-based DF materials, and the applications of CDs-based DF materials in anti-counterfeiting, information encryption, temperature sensing and other fields are introduced. Finally, the existing problems and future potentials of CDs-based DF materials are proposed and prospected.
Collapse
Affiliation(s)
- Mingxiu Lei
- Key Laboratory of Interface Science and Engineering in Advanced Materials, Ministry of Education, Taiyuan University of Technology, Taiyuan 030024, China
| | - Jingxia Zheng
- Key Laboratory of Interface Science and Engineering in Advanced Materials, Ministry of Education, Taiyuan University of Technology, Taiyuan 030024, China
| | - Yongzhen Yang
- Key Laboratory of Interface Science and Engineering in Advanced Materials, Ministry of Education, Taiyuan University of Technology, Taiyuan 030024, China
- Corresponding author
| | - Lingpeng Yan
- Key Laboratory of Interface Science and Engineering in Advanced Materials, Ministry of Education, Taiyuan University of Technology, Taiyuan 030024, China
- College of Materials Science and Engineering, Taiyuan University of Technology, Taiyuan 030024, China
- Corresponding author
| | - Xuguang Liu
- College of Materials Science and Engineering, Taiyuan University of Technology, Taiyuan 030024, China
| | - Bingshe Xu
- Key Laboratory of Interface Science and Engineering in Advanced Materials, Ministry of Education, Taiyuan University of Technology, Taiyuan 030024, China
- Shanxi-Zheda Institute of Advanced Materials and Chemical Engineering, Taiyuan 030032, China
| |
Collapse
|
7
|
Hydroxyapatite Nanoparticles for Improved Cancer Theranostics. J Funct Biomater 2022; 13:jfb13030100. [PMID: 35893468 PMCID: PMC9326646 DOI: 10.3390/jfb13030100] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 07/13/2022] [Accepted: 07/15/2022] [Indexed: 12/12/2022] Open
Abstract
Beyond their well-known applications in bone tissue engineering, hydroxyapatite nanoparticles (HAp NPs) have also been showing great promise for improved cancer therapy. The chemical structure of HAp NPs offers excellent possibilities for loading and delivering a broad range of anticancer drugs in a sustained, prolonged, and targeted manner and thus eliciting lower complications than conventional chemotherapeutic strategies. The incorporation of specific therapeutic elements into the basic composition of HAp NPs is another approach, alone or synergistically with drug release, to provide advanced anticancer effects such as the capability to inhibit the growth and metastasis of cancer cells through activating specific cell signaling pathways. HAp NPs can be easily converted to smart anticancer agents by applying different surface modification treatments to facilitate the targeting and killing of cancer cells without significant adverse effects on normal healthy cells. The applications in cancer diagnosis for magnetic and nuclear in vivo imaging are also promising as the detection of solid tumor cells is now achievable by utilizing superparamagnetic HAp NPs. The ongoing research emphasizes the use of HAp NPs in fabricating three-dimensional scaffolds for the treatment of cancerous tissues or organs, promoting the regeneration of healthy tissue after cancer detection and removal. This review provides a summary of HAp NP applications in cancer theranostics, highlighting the current limitations and the challenges ahead for this field to open new avenues for research.
Collapse
|
8
|
Kumar VB, Porat Z, Gedanken A. Synthesis of Doped/Hybrid Carbon Dots and Their Biomedical Application. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:898. [PMID: 35335711 PMCID: PMC8951121 DOI: 10.3390/nano12060898] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 03/04/2022] [Accepted: 03/05/2022] [Indexed: 02/07/2023]
Abstract
Carbon dots (CDs) are a novel type of carbon-based nanomaterial that has gained considerable attention for their unique optical properties, including tunable fluorescence, stability against photobleaching and photoblinking, and strong fluorescence, which is attributed to a large number of organic functional groups (amino groups, hydroxyl, ketonic, ester, and carboxyl groups, etc.). In addition, they also demonstrate high stability and electron mobility. This article reviews the topic of doped CDs with organic and inorganic atoms and molecules. Such doping leads to their functionalization to obtain desired physical and chemical properties for biomedical applications. We have mainly highlighted modification techniques, including doping, polymer capping, surface functionalization, nanocomposite and core-shell structures, which are aimed at their applications to the biomedical field, such as bioimaging, bio-sensor applications, neuron tissue engineering, drug delivery and cancer therapy. Finally, we discuss the key challenges to be addressed, the future directions of research, and the possibilities of a complete hybrid format of CD-based materials.
Collapse
Affiliation(s)
- Vijay Bhooshan Kumar
- Bar-Ilan Institute for Nanotechnology and Advanced Materials, Department of Chemistry, Bar-Ilan University, Ramat-Gan 5290002, Israel
- Faculty of Life Sciences, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Ze’ev Porat
- Division of Chemistry, Nuclear Research Center-Negev, Beer-Sheva 8419001, Israel
- Unit of Environmental Engineering, Ben-Gurion University of the Negev, Beer-Sheva 8410501, Israel
| | - Aharon Gedanken
- Bar-Ilan Institute for Nanotechnology and Advanced Materials, Department of Chemistry, Bar-Ilan University, Ramat-Gan 5290002, Israel
| |
Collapse
|
9
|
Liu Q, Zhang S, Wang Z, Han J, Song C, Xu P, Wang X, Fu S, Jian X. Investigation into the performance decay of proton-exchange membranes based on sulfonated heterocyclic poly(aryl ether ketone)s in Fenton's reagent. Phys Chem Chem Phys 2022; 24:1760-1769. [PMID: 34985063 DOI: 10.1039/d1cp04531h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Sulfonated N-heterocyclic poly(aryl ether) proton-exchange membranes have potential applications in the fuel-cell field due to their favorable proton conduction capacity and stability. This paper investigates the changes in mass and performance decay, such as proton conduction and mechanical strength, of sulfonated poly(ether ether ketone)s (SPEEKs) and three sulfonated N-heterocyclic poly(aryl ether ketone) (SPPEK, SPBPEK-P-8, and SPPEKK-P) membranes in Fenton's oxidative experiment. The SPEEK membrane exhibited the worst oxidative stability. The oxidative stability of the SPPEK membrane is enhanced due to the introduction of phthalazinone units in the chains. The SPPEKK-P and SPBPEK-P-8 membranes exhibit better radical tolerance than the SPPEK membrane, with proton conductivity retention rates of 66% and 73% for 1 h oxidative treatment, respectively. In addition, the molecular chains of SPPEKK-P and SPBPEK-P-8 exhibit relatively little disruption. The pendant benzenesulfonic groups enhance the steric effects for reducing radical attacks on the ether bonds and reduce the hydration of molecular chains. The introduction of phthalazinone units decreases the rupture points in the main chain. Therefore, the radical tolerance of the membranes is improved. These results provide a reference for the design of highly stable sulfonated heterocyclic poly(aryl ether) membranes.
Collapse
Affiliation(s)
- Qian Liu
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Liaoning High-Performance Polymer Engineering Research Center, Dalian Key Laboratory of Membrane Materials and Membrane Processes, Dalian, 116024, China.
| | - Shouhai Zhang
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Liaoning High-Performance Polymer Engineering Research Center, Dalian Key Laboratory of Membrane Materials and Membrane Processes, Dalian, 116024, China.
| | - Zhaoqi Wang
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Liaoning High-Performance Polymer Engineering Research Center, Dalian Key Laboratory of Membrane Materials and Membrane Processes, Dalian, 116024, China.
| | - Jianhua Han
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Liaoning High-Performance Polymer Engineering Research Center, Dalian Key Laboratory of Membrane Materials and Membrane Processes, Dalian, 116024, China.
| | - Ce Song
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Liaoning High-Performance Polymer Engineering Research Center, Dalian Key Laboratory of Membrane Materials and Membrane Processes, Dalian, 116024, China.
| | - Peiqi Xu
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Liaoning High-Performance Polymer Engineering Research Center, Dalian Key Laboratory of Membrane Materials and Membrane Processes, Dalian, 116024, China.
| | - Xu Wang
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Liaoning High-Performance Polymer Engineering Research Center, Dalian Key Laboratory of Membrane Materials and Membrane Processes, Dalian, 116024, China.
| | - Shaokui Fu
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Liaoning High-Performance Polymer Engineering Research Center, Dalian Key Laboratory of Membrane Materials and Membrane Processes, Dalian, 116024, China.
| | - Xigao Jian
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Liaoning High-Performance Polymer Engineering Research Center, Dalian Key Laboratory of Membrane Materials and Membrane Processes, Dalian, 116024, China.
| |
Collapse
|
10
|
Maruthapandi M, Saravanan A, Das P, Luong JHT, Gedanken A. Microbial inhibition and biosensing with multifunctional carbon dots: Progress and perspectives. Biotechnol Adv 2021; 53:107843. [PMID: 34624454 DOI: 10.1016/j.biotechadv.2021.107843] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2021] [Revised: 09/29/2021] [Accepted: 10/03/2021] [Indexed: 12/25/2022]
Abstract
Carbon dots (CDs) and their doped counterparts including nitrogen-doped CDs (N@CDs) have been synthesized by bottom-up or top-down approaches from different precursors. The attractiveness of such emerging 2D‑carbon-based nanosized materials is attributed to their excellent biocompatibility, preparation, aqueous dispersibility, and functionality. The antimicrobial, optical, and electrochemical properties of CDs have been advocated for two important biotechnological applications: bacterial eradication and sensing/biosensing. CDs as well as N@CDs act as antimicrobial agents as their surfaces encompass functional hydroxyl, carboxyl, and amino groups that generate free radicals. As a new class of photoluminescent nanomaterials, CDs can be employed in diversified analytics. CDs with surface carboxyl or amino groups form nanocomposites with nanomaterials or be conjugated with biorecognition molecules toward the development of sensors/biosensors. The deployment of conductive CDs in electrochemical sensing has also increased significantly because of their quantum size, excellent biocompatibility, enzyme-mimicking activity, and high surface area. The review also addresses the ongoing challenges and promises of CDs in pathogenesis and analytics. Perspectives on the future possibilities include the use of CDs in microbial viability assay, wound healing, antiviral therapy, and medical devices.
Collapse
Affiliation(s)
- Moorthy Maruthapandi
- Department of Chemistry, Bar-Ilan Institute for Nanotechnology and Advanced Materials, Bar-Ilan University, Ramat-Gan 52900, Israel
| | - Arumugam Saravanan
- Department of Chemistry, Bar-Ilan Institute for Nanotechnology and Advanced Materials, Bar-Ilan University, Ramat-Gan 52900, Israel
| | - Poushali Das
- Department of Chemistry, Bar-Ilan Institute for Nanotechnology and Advanced Materials, Bar-Ilan University, Ramat-Gan 52900, Israel
| | - John H T Luong
- School of Chemistry, University College Cork, Cork T12 YN60, Ireland
| | - Aharon Gedanken
- Department of Chemistry, Bar-Ilan Institute for Nanotechnology and Advanced Materials, Bar-Ilan University, Ramat-Gan 52900, Israel.
| |
Collapse
|
11
|
Dual Responsive Hybrid Nanoparticle for Tumor Chemotherapy Combined with Photothermal Therapy. J Pharm Sci 2021; 110:3851-3861. [PMID: 34480929 DOI: 10.1016/j.xphs.2021.08.034] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 08/30/2021] [Accepted: 08/30/2021] [Indexed: 12/22/2022]
Abstract
With the deepening of tumor targeting research, the application of intelligent responsive drug carriers in the field of controlled drug release has become more and more extensive, and multiple responsive nano drug carriers have attracted greater attention. In this paper, nanoparticles with gold nanorods (GNR) as the core, mesoporous silica (mSiO2) doped with hydroxyapatite (HAP) as the inorganic hybrid shell and physically loaded with doxorubicin hydrochloride (DOX·HCl) are prepared (DOX/GNR/mSiO2/HAP, DNPs). DNPs nanoparticles have a typical core-shell structure. The gold nanorods as the core have extremely high light-to-heat conversion efficiency. Under the irradiation of near-infrared light, light can be converted into heat. The inorganic hybrid shell is a drug reservoir. The excellent photothermal response of gold nanorods combined with the excellent pH response of hydroxyapatite can obtain slow and sustained release of chemotherapeutic drugs. In vivo and in vitro anti-tumor cell activity study show that the DNPs in the laser showed stronger cytotoxicity than the other groups. Compared to chemotherapy and phototherapy alone, DNPs selectively accumulate in the tumor through the enhanced penetration and retention (EPR) effects. and have the unified function of hyperthermia and chemotherapy, and have significant inhibitory effect on tumor growth. Therefore, this study provides a new idea for the study of the combination of multiple therapeutic methods in the treatment of cancer.
Collapse
|
12
|
Zhang W, Zhou R, Yang Y, Peng S, Xiao D, Kong T, Cai X, Zhu B. Aptamer-mediated synthesis of multifunctional nano-hydroxyapatite for active tumour bioimaging and treatment. Cell Prolif 2021; 54:e13105. [PMID: 34382270 PMCID: PMC8450118 DOI: 10.1111/cpr.13105] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2021] [Revised: 07/15/2021] [Accepted: 07/18/2021] [Indexed: 02/05/2023] Open
Abstract
OBJECTIVES The nano-hydroxyapatite (nHAp) is widely used to develop imaging probes and drug carriers due to its excellent bioactivity and biocompatibility. However, traditional methods usually need cumbersome and stringent conditions such as high temperature and post-modification to prepare the functionalized nHAp, which do not benefit the particles to enter cells due to the increased particle size. Herein, a biomimetic synthesis strategy was explored to achieve the AS1411-targeted tumour dual-model bioimaging using DNA aptamer AS1411 as a template. Then, the imaging properties and the biocompatibility of the synthesized AS-nFAp:Gd/Tb were further investigated. MATERIALS AND METHODS The AS-nFAp:Gd/Tb was prepared under mild conditions through a one-pot procedure with AS1411 as a template. Besides, the anticancer drug DOX was loaded to AS-nFAp:Gd/Tb so as to achieve the establishment of a multifunctional nano-probe that integrated the tumour diagnosis and treatment. The AS-nFAp:Gd/Tb was characterized by transmission electron microscopy (TEM), energy disperse X-ray Spectroscopy (EDS) mapping, X-ray photoelectron spectroscopy (XPS) spectrum, X-ray diffraction (XRD), fourier-transformed infrared (FTIR) spectroscopy, capillary electrophoresis analyses, zeta potential and particle sizes. The in vitro magnetic resonance imaging (MRI) and fluorescence imaging were performed on an MRI system and a confocal laser scanning microscope, respectively. The potential of the prepared multifunctional nHAp for a targeted tumour therapy was investigated by a CCK-8 kit. And the animal experiments were conducted on the basis of the guidelines approved by the Animal Care and Use Committee of Sichuan University, China. RESULTS In the presence of AS1411, the as-prepared AS-nFAp:Gd/Tb presented a needle-like morphology with good monodispersity and improved imaging performance. Furthermore, due to the specific binding between AS1411 and nucleolin up-expressed in cancer cells, the AS-nFAp:Gd/Tb possessed excellent AS1411-targeted fluorescence and MRI imaging properties. Moreover, after loading chemotherapy drug DOX, in vitro and in vivo studies showed that DOX@AS-nFAp:Gd/Tb could effectively deliver DOX to tumour tissues and exert a highly effective tumour inhibition without systemic toxicity compared with pure DOX. CONCLUSIONS The results indicated that the prepared multifunctional nHAp synthesized by a novel biomimetic strategy had outstanding capabilities of recognition and treatment for the tumour and had good biocompatibility; hence, it might have a potential clinical application in the future.
Collapse
Affiliation(s)
- Wenqing Zhang
- Key laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, China.,Clinical Research Center of Shaanxi Province for Dental and Maxillofacial Diseases, College of Stomatology, Xi'an Jiaotong University, Xi'an, China.,State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Ronghui Zhou
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Yuting Yang
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Shuanglin Peng
- Department of Oral and Maxillofacial Surgery, Hospital of Stomatology, Southwest Medical University, Luzhou, China
| | - Dexuan Xiao
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Tingting Kong
- Department of Stomatology, Central Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Xiaoxiao Cai
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Bofeng Zhu
- Key laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, China.,Clinical Research Center of Shaanxi Province for Dental and Maxillofacial Diseases, College of Stomatology, Xi'an Jiaotong University, Xi'an, China.,Department of Forensic Genetics, Multi-Omics Innovative Research Center of Forensic Identification, School of Forensic Medicine, Southern Medical University, Guangzhou, China
| |
Collapse
|
13
|
Pandit S, Mondal S, De M. Surface engineered amphiphilic carbon dots: solvatochromic behavior and applicability as a molecular probe. J Mater Chem B 2021; 9:1432-1440. [PMID: 33465228 DOI: 10.1039/d0tb02007a] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Carbon dots (C-dots) have attracted great attention in the fields of nanotechnology and bioengineering owing to their unique and tunable optical properties with excellent photoluminescence characteristics. Herein, we have engineered amphiphilic C-dots (AC-dots) using positional isomers of diamino benzene with citric acid under mild microwave irradiation to minimize any background reactions. The optical properties changed from excitation-dependent to excitation-independent depending on the isomer used. This unique optical property of the AC-dots was studied in the presence of various solvents and we extensively inspected the AC-dot-solvent interactions. The intensity of the emission wavelength varied with solvent polarity and showed a linear relationship. Furthermore, we extended this property to investigate the molecular environment in biomolecular systems such as proteins. Interestingly, we found that, in the presence of various proteins, the emission intensity was enhanced, quenched or remained unchanged depending on the nature of the protein surface. The mode of interaction between AC-dots and protein was determined using temperature-dependent fluorescence spectroscopy. This study could provide vital information about the surfaces of proteins and the potential application of C-Dots as a fluorescent probe to detect biological molecules and environments.
Collapse
Affiliation(s)
- Subrata Pandit
- Indian Institute of Science, CV Raman road, Bengaluru, Karnataka-560012, India.
| | - Sudipta Mondal
- Indian Institute of Science, CV Raman road, Bengaluru, Karnataka-560012, India.
| | - Mrinmoy De
- Indian Institute of Science, CV Raman road, Bengaluru, Karnataka-560012, India.
| |
Collapse
|
14
|
Sousa HBA, Martins CSM, Prior JAV. You Don't Learn That in School: An Updated Practical Guide to Carbon Quantum Dots. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:611. [PMID: 33804394 PMCID: PMC7998311 DOI: 10.3390/nano11030611] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 02/15/2021] [Accepted: 02/22/2021] [Indexed: 12/25/2022]
Abstract
Carbon quantum dots (CQDs) have started to emerge as candidates for application in cell imaging, biosensing, and targeted drug delivery, amongst other research fields, due to their unique properties. Those applications are possible as the CQDs exhibit tunable fluorescence, biocompatibility, and a versatile surface. This review aims to summarize the recent development in the field of CQDs research, namely the latest synthesis progress concerning materials/methods, surface modifications, characterization methods, and purification techniques. Furthermore, this work will systematically explore the several applications CQDs have been subjected to, such as bioimaging, fluorescence sensing, and cancer/gene therapy. Finally, we will briefly discuss in the concluding section the present and future challenges, as well as future perspectives and views regarding the emerging paradigm that is the CQDs research field.
Collapse
Affiliation(s)
| | | | - João A. V. Prior
- LAQV, REQUIMTE, Laboratory of Applied Chemistry, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira n. 228, 4050-313 Porto, Portugal; (H.B.A.S.); (C.S.M.M.)
| |
Collapse
|
15
|
Sharma M, Tiwari V, Shukla S, Panda JJ. Fluorescent Dopamine-Tryptophan Nanocomposites as Dual-Imaging and Antiaggregation Agents: New Generation of Amyloid Theranostics with Trimeric Effects. ACS APPLIED MATERIALS & INTERFACES 2020; 12:44180-44194. [PMID: 32870652 DOI: 10.1021/acsami.0c13223] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The aggregation of neurotoxic amyloid-β (Aβ) polypeptides into aberrant extracellular senile plaques is the major neuropathological hallmark of Alzheimer's disease (AD). Inhibiting aggregation of these peptides to control the progression of this deadly disease can serve as a viable therapeutic option. In the current work, inherently fluorescent theranostic dopamine-tryptophan nanocomposites (DTNPs) were developed and investigated for their amyloid inhibition propensity along with their ability to act as a cellular bioimaging agent in neuronal cells. The antiaggregation potency of the nanocomposites was further investigated against an in vitro established reductionist amyloid aggregation model consisting of a mere dipeptide, phenylalanine-phenylalanine (FF). As opposed to large peptide/protein-derived robust and high-molecular-weight amyloid aggregation models of Alzheimer's disease, our dipeptide-based amyloid model provides an edge over others in terms of the ease of handling, synthesis, and cost-effectiveness. Results demonstrated positive antiaggregation behavior of the DTNPs toward both FF-derived amyloid fibrils and preformed Aβ-peptide fibers by means of electron microscopic and circular dichroism-based studies. Our results further pointed toward the neuroprotective effects of the DTNPs in neuroblastoma cells against FF amyloid fibril-induced toxicity and also that they significantly suppressed the accumulation of Aβ42 oligomers in both cortex and hippocampus regions and improved cognitive impairment in an intracerebroventricular streptozotocin (ICV-STZ)-induced animal model of dementia. Besides, DTNPs also exhibited excellent fluorescent properties and light up the cytoplasm of neuroblastoma cells when being coincubated with cells, confirming their ability to serve as an intracellular bioimaging agent. Overall, these results signify the potency of the DTNPs as promising multifunctional theranostic agents for treating AD.
Collapse
Affiliation(s)
- Manju Sharma
- Institute of Nano Science and Technology, Mohali, Punjab 160062, India
| | - Virendra Tiwari
- CSIR-Central Drug Research Institute, Sector 10, Jankipuram Extension, Sitapur Road, Lucknow 226031, India
| | - Shubha Shukla
- CSIR-Central Drug Research Institute, Sector 10, Jankipuram Extension, Sitapur Road, Lucknow 226031, India
| | - Jiban Jyoti Panda
- Institute of Nano Science and Technology, Mohali, Punjab 160062, India
| |
Collapse
|
16
|
Abstract
Early diagnosis of diseases is of great importance because it increases the chance of a cure and significantly reduces treatment costs. Thus, development of rapid, sensitive, and reliable biosensing techniques is essential for the benefits of human life and health. As such, various nanomaterials have been explored to improve performance of biosensors, among which, carbon dots (CDs) have received enormous attention due to their excellent performance. In this Review, the recent advancements of CD-based biosensors have been carefully summarized. First, biosensors are classified according to their sensing strategies, and the role of CDs in these sensors is elaborated in detail. Next, several typical CD-based biosensors (including CD-only, enzymatic, antigen-antibody, and nucleic acid biosensors) and their applications are fully discussed. Last, advantages, challenges, and perspectives on the future trends of CD-based biosensors are highlighted.
Collapse
Affiliation(s)
- Chunyu Ji
- National Center for International Research on Photoelectric and Energy Materials, School of Materials and Energy, Yunnan University, Kunming, Yunnan 650091, People’s Republic of China
| | - Yiqun Zhou
- Department of Chemistry, University of Miami, 1301 Memorial Drive, Coral Gables, Florida 33146, United States
| | - Roger M. Leblanc
- Department of Chemistry, University of Miami, 1301 Memorial Drive, Coral Gables, Florida 33146, United States
| | - Zhili Peng
- National Center for International Research on Photoelectric and Energy Materials, School of Materials and Energy, Yunnan University, Kunming, Yunnan 650091, People’s Republic of China
| |
Collapse
|
17
|
Ferrag C, Abdinejad M, Kerman K. Synthesis of a polyacrylamide hydrogel using CO2 at room temperature. CAN J CHEM 2020. [DOI: 10.1139/cjc-2019-0337] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Carbon dioxide (CO2) is an environmentally harmful “greenhouse gas” that is present in abundant quantities in the earth’s atmosphere. Thus, the sequestration and conversion of CO2 to value-added organic chemicals is of environmental and economical importance. In this proof-of-concept study, amine groups of acrylamide compounds were found to react with CO2 under ambient conditions to form a polyacrylamide hydrogel. This composite was characterized using scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS), transmission electron microscopy (TEM), Fourier-transform infrared spectroscopy (FTIR) and electrospray ionization mass spectrometry (ESI–MS), which confirmed successful synthesis and demonstrated all characteristics representative of a typical hydrogel material. Rheology analyses further proved the formation of the hydrogel, as well as its self-healing nature. The novel approach proposed in this work can potentially be used in the construction of versatile amine-based gel materials for efficient CO2 utilization applications.
Collapse
Affiliation(s)
- Celia Ferrag
- Department of Chemistry, University of Toronto, Toronto, ON M5S 3H6, Canada
| | - Maryam Abdinejad
- Department of Physical and Environmental Sciences, University of Toronto Scarborough, Toronto, ON M1C 1A4, Canada
| | - Kagan Kerman
- Department of Chemistry, University of Toronto, Toronto, ON M5S 3H6, Canada
- Department of Physical and Environmental Sciences, University of Toronto Scarborough, Toronto, ON M1C 1A4, Canada
| |
Collapse
|
18
|
Zhou R, Li Y, Xiao D, Li T, Zhang T, Fu W, Lin Y. Hyaluronan-directed fabrication of co-doped hydroxyapatite as a dual-modal probe for tumor-specific bioimaging. J Mater Chem B 2020; 8:2107-2114. [PMID: 32068216 DOI: 10.1039/c9tb02787d] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Hyaluronan-directed fabrication of Eu/Ba co-doped hydroxyapatite nanocrystals with recognition capability for dual-modal bioimaging.
Collapse
Affiliation(s)
- Ronghui Zhou
- State Key Laboratory of Oral Diseases
- National Clinical Research Center for Oral Diseases
- West China Hospital of Stomatology
- Sichuan University
- Chengdu 610041
| | - Yanjing Li
- State Key Laboratory of Oral Diseases
- National Clinical Research Center for Oral Diseases
- West China Hospital of Stomatology
- Sichuan University
- Chengdu 610041
| | - Dexuan Xiao
- State Key Laboratory of Oral Diseases
- National Clinical Research Center for Oral Diseases
- West China Hospital of Stomatology
- Sichuan University
- Chengdu 610041
| | - Ting Li
- State Key Laboratory of Oral Diseases
- National Clinical Research Center for Oral Diseases
- West China Hospital of Stomatology
- Sichuan University
- Chengdu 610041
| | - Tao Zhang
- State Key Laboratory of Oral Diseases
- National Clinical Research Center for Oral Diseases
- West China Hospital of Stomatology
- Sichuan University
- Chengdu 610041
| | - Wei Fu
- Department of Neurosurgery
- West China Hospital of Sichuan University
- Chengdu 610000
- P. R. China
| | - Yunfeng Lin
- State Key Laboratory of Oral Diseases
- National Clinical Research Center for Oral Diseases
- West China Hospital of Stomatology
- Sichuan University
- Chengdu 610041
| |
Collapse
|
19
|
Pandit S, Behera P, Sahoo J, De M. In Situ Synthesis of Amino Acid Functionalized Carbon Dots with Tunable Properties and Their Biological Applications. ACS APPLIED BIO MATERIALS 2019; 2:3393-3403. [DOI: 10.1021/acsabm.9b00374] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Subrata Pandit
- Department of Organic Chemistry, Indian Institute of Science, Bangalore 560012, India
| | - Pradipta Behera
- Department of Organic Chemistry, Indian Institute of Science, Bangalore 560012, India
| | - Jagabandhu Sahoo
- Department of Organic Chemistry, Indian Institute of Science, Bangalore 560012, India
| | - Mrinmoy De
- Department of Organic Chemistry, Indian Institute of Science, Bangalore 560012, India
| |
Collapse
|
20
|
Current advances of carbon dots based biosensors for tumor marker detection, cancer cells analysis and bioimaging. Trends Analyt Chem 2019. [DOI: 10.1016/j.trac.2019.04.003] [Citation(s) in RCA: 78] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
21
|
Ammonium-Induced Synthesis of Highly Fluorescent Hydroxyapatite Nanoparticles with Excellent Aqueous Colloidal Stability for Secure Information Storage. COATINGS 2019. [DOI: 10.3390/coatings9050289] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
In this paper, uniform hydroxyapatite (HA) nanoparticles, with excellent aqueous colloidal stability and high fluorescence, have been successfully synthesized via a citrate-assisted hydrothermal method. The effect of the molar ratio of ammonium phosphate in phosphate (RAMP) and hydrothermal time on the resultant products was characterized in terms of crystalline structure, morphology, colloidal stability, and fluorescence behavior. When the RAMP is 50% and the hydrothermal time is 4 h, the product consists of a pure hexagonal HA phase and a uniform rod-like morphology, with 120- to 150-nm length and approximately 20-nm diameter. The corresponding dispersion is colloidally stable, and transparent for at least one week, and has an intense bright blue emission (centered at 440 nm, 11.6-ns lifetime, and 73.80% quantum efficiency) when excited by 340-nm UV light. Although prolonging the hydrothermal time and increasing the RAMP had no appreciable effect on the aqueous colloidal stability of HA nanoparticles, the fluorescence intensity was enhanced. The cause of HA fluorescence are more biased towards carbon dots (which are mainly polymer clusters and/or molecular fluorophores constituents) trapped in the hydroxyapatite crystal structure. Owing to these properties, a highly fluorescent HA colloidal dispersion could find applications in secure information storage.
Collapse
|
22
|
Yao Z, Lai Z, Chen C, Xiao S, Yang P. Full-color emissive carbon-dots targeting cell walls of onion for in situ imaging of heavy metal pollution. Analyst 2019; 144:3685-3690. [DOI: 10.1039/c9an00418a] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Full-colour emissive carbon-dots were prepared and applied in targeting onion CWs for in situ imaging of heavy metal pollution.
Collapse
Affiliation(s)
- Zheng Yao
- College of Chemistry and Materials Science
- Jinan University
- Guangzhou 510632
- People's Republic of China
| | - Zhiqiang Lai
- College of Chemistry and Materials Science
- Jinan University
- Guangzhou 510632
- People's Republic of China
| | - Chengchi Chen
- College of Chemistry and Materials Science
- Jinan University
- Guangzhou 510632
- People's Republic of China
| | - Suting Xiao
- College of Chemistry and Materials Science
- Jinan University
- Guangzhou 510632
- People's Republic of China
| | - Peihui Yang
- College of Chemistry and Materials Science
- Jinan University
- Guangzhou 510632
- People's Republic of China
| |
Collapse
|
23
|
Yang RL, Zhu YJ, Chen FF, Qin DD, Xiong ZC. Bioinspired Macroscopic Ribbon Fibers with a Nacre-Mimetic Architecture Based on Highly Ordered Alignment of Ultralong Hydroxyapatite Nanowires. ACS NANO 2018; 12:12284-12295. [PMID: 30475582 DOI: 10.1021/acsnano.8b06096] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
A variety of biological materials in natural organisms supply a rich source of structural design guidelines and inspirations for the construction of advanced structural materials with excellent mechanical properties. In this work, inspired by the natural nacre and human bone, a kind of flexible macroscopic ribbon fiber made from highly ordered alignment of ultralong hydroxyapatite (HAP) nanowires and sodium polyacrylate (PAAS) with a "brick-and-mortar" layered structure has been developed by a scalable and convenient wet-spinning method. The quasi-long-range orderly liquid crystal of one-dimensional ultralong hydroxyapatite nanowires is employed and spun into the continuous flexible macroscopic ribbon fiber. In this work, highly ordered ultralong HAP nanowires act as the hard "brick" and PAAS acts as the soft "mortar", and the nacre-mimetic layered architecture is obtained. The as-prepared flexible macroscopic HAP/PAAS ribbon fiber exhibits superior mechanical properties, and the maximum tensile strength and Young's modulus are as high as 203.58 ± 45.38 MPa and 24.56 ± 5.35 GPa, respectively. In addition, benefiting from the excellent flexibility and good knittability, the as-prepared macroscopic HAP/PAAS ribbon fiber can be woven into various flexible macroscopic architectures. Additionally, the as-prepared flexible macroscopic HAP/PAAS ribbon fiber can be further functionalized by incorporation of various functional components, such as magnetic and photoluminescent constituents. The as-prepared flexible macroscopic HAP/PAAS ribbon fiber has potential applications in various fields such as smart wearable devices, optical devices, magnetic devices, and biomedical engineering.
Collapse
Affiliation(s)
- Ri-Long Yang
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics , Chinese Academy of Sciences , Shanghai 200050 , P.R. China
- Center of Materials Science and Optoelectronics Engineering , University of Chinese Academy of Sciences , Beijing 100049 , P.R. China
| | - Ying-Jie Zhu
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics , Chinese Academy of Sciences , Shanghai 200050 , P.R. China
- Center of Materials Science and Optoelectronics Engineering , University of Chinese Academy of Sciences , Beijing 100049 , P.R. China
| | - Fei-Fei Chen
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics , Chinese Academy of Sciences , Shanghai 200050 , P.R. China
- Center of Materials Science and Optoelectronics Engineering , University of Chinese Academy of Sciences , Beijing 100049 , P.R. China
| | - Dong-Dong Qin
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics , Chinese Academy of Sciences , Shanghai 200050 , P.R. China
- Center of Materials Science and Optoelectronics Engineering , University of Chinese Academy of Sciences , Beijing 100049 , P.R. China
| | - Zhi-Chao Xiong
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics , Chinese Academy of Sciences , Shanghai 200050 , P.R. China
| |
Collapse
|
24
|
Surface modification and chemical functionalization of carbon dots: a review. Mikrochim Acta 2018; 185:424. [DOI: 10.1007/s00604-018-2953-9] [Citation(s) in RCA: 116] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Accepted: 08/03/2018] [Indexed: 10/28/2022]
|
25
|
Shao N, Guo J, Guan Y, Zhang H, Li X, Chen X, Zhou D, Huang Y. Development of Organic/Inorganic Compatible and Sustainably Bioactive Composites for Effective Bone Regeneration. Biomacromolecules 2018; 19:3637-3648. [DOI: 10.1021/acs.biomac.8b00707] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Nannan Shao
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China
- University of Science and Technology of China, Hefei 230026, P. R. China
| | - Jinshan Guo
- Department of Biomedical Engineering, Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Yuyao Guan
- Department of Radiology, China Japan Union Hospital, Jilin University, Changchun 130022, P. R. China
| | - HuanHuan Zhang
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China
| | - Xiaoyuan Li
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China
| | - Xuesi Chen
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China
| | - Dongfang Zhou
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China
| | - Yubin Huang
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China
| |
Collapse
|
26
|
Khajuria DK, Kumar VB, Gigi D, Gedanken A, Karasik D. Accelerated Bone Regeneration by Nitrogen-Doped Carbon Dots Functionalized with Hydroxyapatite Nanoparticles. ACS APPLIED MATERIALS & INTERFACES 2018; 10:19373-19385. [PMID: 29782148 DOI: 10.1021/acsami.8b02792] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
We investigated the osteogenic potential of nitrogen-doped carbon dots (NCDs) conjugated with hydroxyapatite (HA) nanoparticles on the MC3T3-E1 osteoblast cell functions and in a zebrafish (ZF) jawbone regeneration (JBR) model. The NCDs-HA nanoparticles were fabricated by a hydrothermal cum co-precipitation technique. The surface structures of NCDs-HA nanoparticles were characterized by X-ray diffraction; Fourier transform infrared (FTIR), UV-vis, and laser fluorescence spectroscopies; and scanning electron microscopy, transmission electron microscopy (TEM), energy-dispersive spectrometry (EDS), and NMR analyses. The TEM data confirmed that the NCDs are well conjugated on the HA nanoparticle surfaces. The fluorescent spectroscopy results indicated that the NCDs-HA exhibited promising luminescent emission in vitro. Finally, we validated the chemical structure of NCDs-HA nanoparticles on the basis of FTIR, EDS, and 31P NMR analysis and observed that NCDs are bound with HA by electrostatic interaction and H-bonding. Cell proliferation assay, alkaline phosphatase, and Alizarin red staining were used to confirm the effect of NCDs-HA nanoparticles on MC3T3-E1 osteoblast proliferation, differentiation, and mineralization, respectively. Reverse transcriptase polymerase chain reaction was used to measure the expression of the osteogenic genes like runt-related transcription factor 2, alkaline phosphatase, and osteocalcin. ZF-JBR model was used to confirm the effect of NCDs-HA nanoparticles on bone regeneration. NCDs-HA nanoparticles demonstrated cell imaging ability, enhanced alkaline phosphatase activity, mineralization, and expression of the osteogenic genes in osteoblast cells, indicating possible theranostic function. Further, NCDs-HA nanoparticles significantly enhanced ZF bone regeneration and mineral density compared to HA nanoparticles, indicating a therapeutic potential of NCDs-HA nanoparticles in bone regeneration and fracture healing.
Collapse
Affiliation(s)
- Deepak Kumar Khajuria
- The Musculoskeletal Genetics Laboratory, The Azrieli Faculty of Medicine , Bar-Ilan University , Safed 1311502 , Israel
| | - Vijay Bhooshan Kumar
- Bar-Ilan Institute for Nanotechnology and Advanced Materials, Department of Chemistry , Bar-Ilan University , Ramat Gan 5290002 , Israel
| | - Dana Gigi
- The Musculoskeletal Genetics Laboratory, The Azrieli Faculty of Medicine , Bar-Ilan University , Safed 1311502 , Israel
| | - Aharon Gedanken
- Bar-Ilan Institute for Nanotechnology and Advanced Materials, Department of Chemistry , Bar-Ilan University , Ramat Gan 5290002 , Israel
| | - David Karasik
- The Musculoskeletal Genetics Laboratory, The Azrieli Faculty of Medicine , Bar-Ilan University , Safed 1311502 , Israel
- Hebrew Senior Life, and Harvard Medical School , Institute for Aging Research , Boston , Massachusetts 02131 , United States
| |
Collapse
|
27
|
Sun L, Wei R, Feng J, Zhang H. Tailored lanthanide-doped upconversion nanoparticles and their promising bioapplication prospects. Coord Chem Rev 2018. [DOI: 10.1016/j.ccr.2018.03.007] [Citation(s) in RCA: 126] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
28
|
Qi C, Lin J, Fu LH, Huang P. Calcium-based biomaterials for diagnosis, treatment, and theranostics. Chem Soc Rev 2018; 47:357-403. [PMID: 29261194 DOI: 10.1039/c6cs00746e] [Citation(s) in RCA: 158] [Impact Index Per Article: 22.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
Abstract
Calcium-based (CaXs) biomaterials including calcium phosphates, calcium carbonates, calcium silicate and calcium fluoride have been widely utilized in the biomedical field owing to their excellent biocompatibility and biodegradability. In recent years, CaXs biomaterials have been strategically integrated with imaging contrast agents and therapeutic agents for various molecular imaging modalities including fluorescence imaging, magnetic resonance imaging, ultrasound imaging or multimodal imaging, as well as for various therapeutic approaches including chemotherapy, gene therapy, hyperthermia therapy, photodynamic therapy, radiation therapy, or combination therapy, even imaging-guided therapy. Compared with other inorganic biomaterials such as silica-, carbon-, and gold-based biomaterials, CaXs biomaterials can dissolve into nontoxic ions and participate in the normal metabolism of organisms. Thus, they offer safer clinical solutions for disease theranostics. This review focuses on the state-of-the-art progress in CaXs biomaterials, which covers from their categories, characteristics and preparation methods to their bioapplications including diagnosis, treatment, and theranostics. Moreover, the current trends and key problems as well as the future prospects and challenges of CaXs biomaterials are also discussed at the end.
Collapse
Affiliation(s)
- Chao Qi
- Guangdong Key Laboratory for Biomedical, Measurements and Ultrasound Imaging, Laboratory of Evolutionary Theranostics, School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen 518060, China.
| | | | | | | |
Collapse
|
29
|
Sarkar C, Chowdhuri AR, Kumar A, Laha D, Garai S, Chakraborty J, Sahu SK. One pot synthesis of carbon dots decorated carboxymethyl cellulose- hydroxyapatite nanocomposite for drug delivery, tissue engineering and Fe 3+ ion sensing. Carbohydr Polym 2017; 181:710-718. [PMID: 29254027 DOI: 10.1016/j.carbpol.2017.11.091] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2017] [Revised: 10/23/2017] [Accepted: 11/26/2017] [Indexed: 11/28/2022]
Abstract
In this work, carbon dots conjugated carboxymethyl cellulose-hydroxyapatite nanocomposite has been synthesized by one-pot synthesis method and used for multiple applications like metal ion sensing, osteogenic activity, bio-imaging and drug carrier. The structure and morphology of the nanocomposite were systematically characterized by FTIR, XRD, TGA, FESEM, TEM and DLS. Results clearly demonstrated the formation of fluorescent enabled carbon dots conjugated nanocomposite from carboxymethyl cellulose-hydroxyapatite nanocomposite by a simple thermal treatment. The synthesized nanocomposite is smaller than 100 nm and exhibits fluorescence emission band around 440 nm upon excitation with 340 nm wavelength. In the meantime, the nanocomposite was loaded with a chemotherapeutic drug, doxorubicin to evaluate the drug loading potential of synthesized nanocomposite. Moreover, the as-synthesized nanocomposite showed good osteogenic properties for bone tissue engineering and also exhibited excellent selectivity and sensitivity towards Fe3+ ions.
Collapse
Affiliation(s)
- Chandrani Sarkar
- Department of Applied Chemistry, Indian institute of Technology (ISM), Dhanbad, 826004, Jharkhand, India; Advance Material and Processing Division, CSIR-National Metallurgical Laboratory, Jamshedpur, 831007, India
| | - Angshuman Ray Chowdhuri
- Department of Applied Chemistry, Indian institute of Technology (ISM), Dhanbad, 826004, Jharkhand, India
| | - Amit Kumar
- Department of Applied Chemistry, Indian institute of Technology (ISM), Dhanbad, 826004, Jharkhand, India
| | - Dipranjan Laha
- Department of Life Science and Biotechnology, Jadavpur University, 188, Raja S C Mallick Road, Kolkata, 700032, India
| | - Subhadra Garai
- Advance Material and Processing Division, CSIR-National Metallurgical Laboratory, Jamshedpur, 831007, India
| | - Jui Chakraborty
- CSIR-Central Glass & Ceramic Research Institute, 196, Raja S.C. Mullick Road, Jadavpur, Kolkata, 700 032, India
| | - Sumanta Kumar Sahu
- Department of Applied Chemistry, Indian institute of Technology (ISM), Dhanbad, 826004, Jharkhand, India.
| |
Collapse
|
30
|
Wei R, Xi W, Wang H, Liu J, Mayr T, Shi L, Sun L. In situ crystal growth of gold nanocrystals on upconversion nanoparticles for synergistic chemo-photothermal therapy. NANOSCALE 2017; 9:12885-12896. [PMID: 28650053 DOI: 10.1039/c7nr02280h] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
A multifunctional cancer therapy nanocomposite was proposed and synthesized by linking the pH-responsive SH-PEG-DOX prodrug onto gold nanocrystals that were grown in situ on the surface of upconversion nanoparticles (UCNPs). In the structure of the SH-PEG-DOX prodrug, a hydrazone bond was utilized for subsequent pH-responsive drug release in the intracellular acidic microenvironment of cancer cells. This innovative assembly method is facile and mild, and can be used to obtain nanocomposites of UCNPs and gold, which show excellent photostability and biocompatibility. The final UCNPs@Au-DOX nanocomposites offer efficient treatment effects in vitro under irradiation with an 808 nm laser due to the synergistic effect of chemotherapy and photothermal therapy. In addition, the UCNPs@Au-DOX nanocomposites show excellent intracellular locating ability via upconversion luminescence (UCL) imaging with Er3+ ions and magnetic resonance imaging (MRI) with Gd3+ ions, indicating that they have potential as a visual tracking agent in cancer treatment. Therefore, the presented bioimaging-guided multifunctional synergistic therapy nanocomposites are promising tools for imaging-guided cancer therapy.
Collapse
Affiliation(s)
- Ruoyan Wei
- Research Center of Nano Science and Technology, and School of Material Science and Engineering, Shanghai University, Shanghai 200444, China.
| | | | | | | | | | | | | |
Collapse
|
31
|
Zeng S, Zhou R, Zheng X, Wu L, Hou X. Mono-dispersed Ba 2+ -doped Nano-hydroxyapatite conjugated with near-infrared Cu-doped CdS quantum dots for CT/fluorescence bimodal targeting cell imaging. Microchem J 2017. [DOI: 10.1016/j.microc.2017.05.003] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|
32
|
Zhao Y, Mu L, Su Y, Shi L, Feng X. Pt-Ni nanoframes functionalized with carbon dots: an emerging class of bio-nanoplatforms. J Mater Chem B 2017; 5:6233-6236. [PMID: 32264438 DOI: 10.1039/c7tb01678f] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We designed a unique and novel bio-nanoplatform based on Pt-Ni nanoframes (PNnf) functionalized with carbon dots via the EDC/NHS coupling chemistry. The PNnf with open three-dimensional surfaces exhibited excellent water solubility after polyethylenimine modification. Due to low cytotoxicity and excellent biocompatibility, the bio-nanoplatforms were firstly used for MCF-7 cell imaging in vitro. More importantly, the design strategy can be readily generalized to facilitate other multi-functional bio-nanoplatforms for biological and biomedical applications.
Collapse
Affiliation(s)
- Yafei Zhao
- Research Center of Nano Science and Technology, Shanghai University, Shanghai 200444, P. R. China.
| | | | | | | | | |
Collapse
|
33
|
Xiong ZC, Yang ZY, Zhu YJ, Chen FF, Zhang YG, Yang RL. Ultralong Hydroxyapatite Nanowires-Based Paper Co-Loaded with Silver Nanoparticles and Antibiotic for Long-Term Antibacterial Benefit. ACS APPLIED MATERIALS & INTERFACES 2017; 9:22212-22222. [PMID: 28654270 DOI: 10.1021/acsami.7b05208] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Hydroxyapatite is a kind of biocompatible, environmentally friendly, and versatile inorganic biomaterial. Herein, the preparation of ultralong hydroxyapatite nanowires (HAPNWs)-based antibacterial paper co-loaded with silver nanoparticles (AgNPs) and antibiotic is reported. HAPNWs are used to prepare AgNPs in situ using an aqueous solution containing AgNO3 under the sunlight without added reducing agent at room temperature. Subsequently, ciprofloxacin (CIP) as an antibiotic is loaded on the HAPNWs@AgNPs. The resultant HAPNWs@AgNPs-CIP paper possesses several unique properties, including high flexibility, high Brunauer-Emmett-Teller (BET) specific surface area (47.9 m2 g-1), high drug loading capacity (447.4 mg g-1), good biocompatibility, sustained and pH-responsive drug release behavior (5.40-6.75% of Ag+ ions and 37.7-76.4% of CIP molecules at pH values of 7.4-4.5 at day 8, respectively), and reusable recycling. In the antibacterial tests against Escherichia coli and Staphylococcus aureus, the HAPNWs@AgNPs-CIP paper exhibits large diameters of inhibition zones and low minimum inhibitory concentrations (30 and 40 μg mL-1), revealing the high antibacterial activity. Besides, the consecutive agar diffusion tests (8 cycles), long-term stability tests (over 56 days), and continuous contamination tests (5 cycles) demonstrate the excellent recycling performance and long-term antibacterial activity of the HAPNWs@AgNPs-CIP paper. These results indicate a promising potential of the HAPNWs@AgNPs-CIP bactericidal paper for tackling public health issues related to bacterial infections.
Collapse
Affiliation(s)
- Zhi-Chao Xiong
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences , Shanghai 200050, PR China
| | - Zi-Yue Yang
- Sino-German College of Technology, East China University of Science and Technology , Shanghai 200237, PR China
| | - Ying-Jie Zhu
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences , Shanghai 200050, PR China
| | - Fei-Fei Chen
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences , Shanghai 200050, PR China
| | - Yong-Gang Zhang
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences , Shanghai 200050, PR China
| | - Ri-Long Yang
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences , Shanghai 200050, PR China
| |
Collapse
|
34
|
Use of carbon dots to enhance UV-blocking of transparent nanocellulose films. Carbohydr Polym 2017; 161:253-260. [DOI: 10.1016/j.carbpol.2017.01.030] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2016] [Revised: 01/06/2017] [Accepted: 01/06/2017] [Indexed: 01/21/2023]
|
35
|
Ma B, Zhang S, Liu R, Qiu J, Zhao L, Wang S, Li J, Sang Y, Jiang H, Liu H. Prolonged fluorescence lifetime of carbon quantum dots by combining with hydroxyapatite nanorods for bio-applications. NANOSCALE 2017; 9:2162-2171. [PMID: 27849086 DOI: 10.1039/c6nr05983j] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Carbon quantum dots (CQDs) are a new type of fluorescent nanoparticle for cell imaging and tracking. However, they would easily diffuse and quench, followed by the loss of their fluorescence ability. By connecting their functional groups with other nanoparticles, the CQDs will be protected from destruction and exhibit long-time fluorescence. Here, carbon quantum dot-hydroxyapatite (CQD-HAp) hybrid nanorods were prepared by the self-assembly of CQDs on the surface of HAp nanorods through a facile one-pot process. The morphology and size of the CQD-HAp hybrid nanorods can be well controlled by using oleic acid, which meanwhile is the source of CQDs. The hydrophilic CQD-HAp hybrid nanorods have prolonged fluorescence life due to the connection between CQDs and HAp nanorods, and exhibit a higher fluorescence quantum yield than pure CQDs. In addition, when hybrid nanorods load doxorubicin (Dox) to form Dox-CQD-HAp hybrid nanorods, they can more efficiently kill human cervical cancer (HeLa) cells, rather than human prostatic cancer (PC-3) cells. Long time fluorescence for cell imaging and high efficiency in killing cancer cells as a drug-delivery medium make CQD-HAp hybrid nanorods have great potential applications in the bio-field.
Collapse
Affiliation(s)
- Baojin Ma
- State Key Laboratory of Crystal Materials, Shandong University, Jinan, 250100, China.
| | - Shan Zhang
- State Key Laboratory of Crystal Materials, Shandong University, Jinan, 250100, China.
| | - Ruoyu Liu
- Department of Physics, Reed College, USA
| | - Jichuan Qiu
- State Key Laboratory of Crystal Materials, Shandong University, Jinan, 250100, China.
| | - Lili Zhao
- State Key Laboratory of Crystal Materials, Shandong University, Jinan, 250100, China.
| | - Shicai Wang
- State Key Laboratory of Crystal Materials, Shandong University, Jinan, 250100, China.
| | - Jianhua Li
- State Key Laboratory of Crystal Materials, Shandong University, Jinan, 250100, China.
| | - Yuanhua Sang
- State Key Laboratory of Crystal Materials, Shandong University, Jinan, 250100, China.
| | - Huaidong Jiang
- State Key Laboratory of Crystal Materials, Shandong University, Jinan, 250100, China.
| | - Hong Liu
- State Key Laboratory of Crystal Materials, Shandong University, Jinan, 250100, China.
| |
Collapse
|
36
|
Li QF, Liu Z, Jin L, Yang P, Wang Z. A water-soluble fluorescent hybrid material based on aminoclay and its bioimaging application. RSC Adv 2017. [DOI: 10.1039/c7ra08581h] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
A water soluble fluorescent hybrid material by functionalization of aminoclay as an efficient biological stain for bio-imaging.
Collapse
Affiliation(s)
- Qing-Feng Li
- The Key Laboratory of Rare Earth Functional Materials and Applications
- Zhoukou Normal University
- Zhoukou 466001
- P. R. China
- International Joint Research Laboratory for Biomedical Nanomaterials of Henan
| | - Zengchen Liu
- The Key Laboratory of Rare Earth Functional Materials and Applications
- Zhoukou Normal University
- Zhoukou 466001
- P. R. China
- International Joint Research Laboratory for Biomedical Nanomaterials of Henan
| | - Lin Jin
- The Key Laboratory of Rare Earth Functional Materials and Applications
- Zhoukou Normal University
- Zhoukou 466001
- P. R. China
- International Joint Research Laboratory for Biomedical Nanomaterials of Henan
| | - Piaoping Yang
- Key Laboratory of Superlight Materials and Surface Technology
- Ministry of Education
- College of Material Science and Chemical Engineering
- Harbin Engineering University
- Harbin 150001
| | - Zhenling Wang
- The Key Laboratory of Rare Earth Functional Materials and Applications
- Zhoukou Normal University
- Zhoukou 466001
- P. R. China
- International Joint Research Laboratory for Biomedical Nanomaterials of Henan
| |
Collapse
|
37
|
Jiang D, Zhao H, Yang Y, Zhu Y, Chen X, Sun J, Yu K, Fan H, Zhang X. Investigation of luminescent mechanism: N-rich carbon dots as luminescence centers in fluorescent hydroxyapatite prepared using a typical hydrothermal process. J Mater Chem B 2017; 5:3749-3757. [DOI: 10.1039/c6tb03184f] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
N-Rich carbon dots (CDs) generated in the hydrothermal synthesis of HAp were trapped by growing HAp crystals to form fluorescent HAp materials.
Collapse
Affiliation(s)
- Dongli Jiang
- National Engineering Research Center for Biomaterials
- Sichuan University
- Chengdu
- China
- Pharmacy College
| | - Huan Zhao
- National Engineering Research Center for Biomaterials
- Sichuan University
- Chengdu
- China
| | - You Yang
- National Engineering Research Center for Biomaterials
- Sichuan University
- Chengdu
- China
| | - Yuda Zhu
- National Engineering Research Center for Biomaterials
- Sichuan University
- Chengdu
- China
| | - Xiaoqin Chen
- National Engineering Research Center for Biomaterials
- Sichuan University
- Chengdu
- China
| | - Jing Sun
- National Engineering Research Center for Biomaterials
- Sichuan University
- Chengdu
- China
| | - Kui Yu
- National Engineering Research Center for Biomaterials
- Sichuan University
- Chengdu
- China
| | - Hongsong Fan
- National Engineering Research Center for Biomaterials
- Sichuan University
- Chengdu
- China
| | - Xingdong Zhang
- National Engineering Research Center for Biomaterials
- Sichuan University
- Chengdu
- China
| |
Collapse
|
38
|
Zhao Y, Wei R, Feng X, Sun L, Liu P, Su Y, Shi L. Dual-Mode Luminescent Nanopaper Based on Ultrathin g-C3N4 Nanosheets Grafted with Rare-Earth Upconversion Nanoparticles. ACS APPLIED MATERIALS & INTERFACES 2016; 8:21555-21562. [PMID: 27494116 DOI: 10.1021/acsami.6b06254] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Ultrathin graphite-like carbon nitride (g-C3N4) nanosheets have attracted considerable attention due to the enhanced intrinsic photoabsorption and photoresponse with respect to bulk g-C3N4. For the first time, a dual-mode of down- and upconversion luminescent g-C3N4 nanopaper with high optical transparency and mechanical robustness was successfully fabricated through a simple thermal evaporation process using chitosan as a green cross-linking agent. The dual-mode of down- and upconversion fluorescence emission originated from the amino terminated ultrathin g-C3N4 nanosheets functionalized with carboxylic acid modified multicolored rare-earth upconversion nanoparticles (cit-UCNPs) via EDC/NHS coupling chemistry. The homogeneously distributed cit-UCNPs@g-C3N4 nanoconjugates with excellent hydrophilicity displayed good film-forming ability and structural integrity; thus, the photoluminescence of each ingredient was substantially maintained. Results indicated that the freestanding chitosan cross-linked cit-UCNPs@g-C3N4 luminescent nanopaper possessed high transmittance, excellent mechanical properties, and remarkable dual-mode emission. The smart design of high performance luminescent nanopaper based on ultrathin g-C3N4 nanosheets grafted with multicolored UCNPs offers a potential strategy to immobilize other multifunctional luminescent materials for easily recognizable and hardly replicable anticounterfeiting fields.
Collapse
Affiliation(s)
- Yafei Zhao
- Research Center of Nano Science and Technology, Shanghai University , Shanghai 200444, P.R. China
| | - Ruoyan Wei
- Research Center of Nano Science and Technology, Shanghai University , Shanghai 200444, P.R. China
| | - Xin Feng
- Research Center of Nano Science and Technology, Shanghai University , Shanghai 200444, P.R. China
| | - Lining Sun
- Research Center of Nano Science and Technology, Shanghai University , Shanghai 200444, P.R. China
| | - Panpan Liu
- Department of Chemistry, College of Science, Shanghai University , Shanghai 200444, P.R. China
| | - Yongxiang Su
- Department of Chemistry, College of Science, Shanghai University , Shanghai 200444, P.R. China
| | - Liyi Shi
- Research Center of Nano Science and Technology, Shanghai University , Shanghai 200444, P.R. China
| |
Collapse
|
39
|
Liu W, Li C, Ren Y, Sun X, Pan W, Li Y, Wang J, Wang W. Carbon dots: surface engineering and applications. J Mater Chem B 2016; 4:5772-5788. [PMID: 32263748 DOI: 10.1039/c6tb00976j] [Citation(s) in RCA: 176] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Carbon dots have attracted a great deal of attention because of their high performance, cheap and facile preparation, and potential applications in a wide area. In order to broaden their applications, especially to meet specific requirements, surface engineering, including tailoring surface functional group coating and subsequent chemical modification as required, is an effective strategy for further functionalization of carbon dots. In this article, representative approaches to coating the surface with various functional groups, and strategies for conjugating specific materials onto the surface of carbon dots for functional modification via covalent bonds, electrostatic interactions and hydrogen bonds are highlighted, as well as the results from explorations of their various applications in target modulated sensing, accurate drug delivery and bioimaging at high resolution.
Collapse
Affiliation(s)
- Weijian Liu
- College of Chemical and Pharmaceutical Sciences, Qingdao Agricultural University, Qingdao 266109, P. R. China.
| | | | | | | | | | | | | | | |
Collapse
|
40
|
Sharma V, Saini AK, Mobin SM. Multicolour fluorescent carbon nanoparticle probes for live cell imaging and dual palladium and mercury sensors. J Mater Chem B 2016; 4:2466-2476. [PMID: 32263196 DOI: 10.1039/c6tb00238b] [Citation(s) in RCA: 64] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Carbon based nanomaterials are emerging as a desirable alternative to semiconducting quantum dots due to their unique optical properties and biocompatibility. The present study demonstrates the design and synthesis of highly fluorescent carbon nanoparticles (CNPs). The CNPs are investigated for their biocompatibility and henceforth successfully employed as promising multicolor bioimaging probes in A375 and DU145 cell lines. Furthermore, a "turn off" mode has been established for the detection of noble metal palladium (Pd2+) and heavy metal mercury (Hg2+) by quenching the fluorescence of CNPs. The CNP sensor responded to the detection of Pd2+ (5-100 μM) and Hg2+ (1-18 μM) in a wide range with the limit of detection (LOD) of 58 nM for Pd2+ and 100 nM for Hg2+. The CNP sensor was employed for the detection of Pd2+ and Hg2+ in real water samples and detection of leftover palladium catalysts in a model reaction system. Also, the CNPs were successfully employed as intracellular mercury and palladium sensors using confocal microscopy.
Collapse
Affiliation(s)
- Vinay Sharma
- Centre for Biosciences and Bio-Medical Engineering, Indian Institute of Technology Indore, Simrol, Indore-452020, India.
| | | | | |
Collapse
|
41
|
Wang M, Wang L, Shi C, Sun T, Zeng Y, Zhu Y. The crystal structure and chemical state of aluminum-doped hydroxyapatite by experimental and first principles calculation studies. Phys Chem Chem Phys 2016; 18:21789-96. [DOI: 10.1039/c6cp03230c] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The crystal structure and chemical state of Al-doped hydroxyapatite have been explored using first principles calculation to provide the possible crystallographic mechanism for Al-induced bone metabolic diseases.
Collapse
Affiliation(s)
- Ming Wang
- Key Lab of Inorganic Coating Materials CAS
- Shanghai Institute of Ceramics
- Chinese Academy of Sciences
- Shanghai 200050
- China
| | - Liping Wang
- Key Lab of Inorganic Coating Materials CAS
- Shanghai Institute of Ceramics
- Chinese Academy of Sciences
- Shanghai 200050
- China
| | - Chao Shi
- Key Lab of Inorganic Coating Materials CAS
- Shanghai Institute of Ceramics
- Chinese Academy of Sciences
- Shanghai 200050
- China
| | - Tian Sun
- Key Lab of Inorganic Coating Materials CAS
- Shanghai Institute of Ceramics
- Chinese Academy of Sciences
- Shanghai 200050
- China
| | - Yi Zeng
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure
- Shanghai Institute of Ceramics
- Chinese Academy of Sciences
- Shanghai 200050
- China
| | - Yingchun Zhu
- Key Lab of Inorganic Coating Materials CAS
- Shanghai Institute of Ceramics
- Chinese Academy of Sciences
- Shanghai 200050
- China
| |
Collapse
|
42
|
Zhang YG, Zhu YJ, Chen F, Sun TW, Jiang YY. Highly porous ceramics based on ultralong hydroxyapatite nanowires. RSC Adv 2016. [DOI: 10.1039/c6ra20984j] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Highly porous ceramics with high biocompatibility are prepared using ultralong hydroxyapatite nanowires and palmitic acid spheres.
Collapse
Affiliation(s)
- Yong-Gang Zhang
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure
- Shanghai Institute of Ceramics
- Chinese Academy of Sciences
- Shanghai 200050
- P. R. China
| | - Ying-Jie Zhu
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure
- Shanghai Institute of Ceramics
- Chinese Academy of Sciences
- Shanghai 200050
- P. R. China
| | - Feng Chen
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure
- Shanghai Institute of Ceramics
- Chinese Academy of Sciences
- Shanghai 200050
- P. R. China
| | - Tuan-Wei Sun
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure
- Shanghai Institute of Ceramics
- Chinese Academy of Sciences
- Shanghai 200050
- P. R. China
| | - Ying-Ying Jiang
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure
- Shanghai Institute of Ceramics
- Chinese Academy of Sciences
- Shanghai 200050
- P. R. China
| |
Collapse
|