1
|
Feng YH, Guo WX, Li ZL, Hu LF, Liu Y, Jing LY, Wang J, Shahbazi MA, Chen BZ, Guo XD. Assessing the structural stability and drug encapsulation efficiency of poly(ethylene glycol)-poly(L-lactic acid) nanoparticles loaded with atorvastatin calcium: Based on dissipative particle dynamics. Int J Biol Macromol 2024; 267:131436. [PMID: 38593897 DOI: 10.1016/j.ijbiomac.2024.131436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 03/09/2024] [Accepted: 04/04/2024] [Indexed: 04/11/2024]
Abstract
Block polymer micelles have been proven highly biocompatible and effective in improving drug utilization for delivering atorvastatin calcium. Therefore, it is of great significance to measure the stability of drug-loading nano micelles from the perspective of block polymer molecular sequence design, which would provide theoretical guidance for subsequent clinical applications. This study aims to investigate the structural stability of drug-loading micelles formed by two diblock/triblock polymers with various block sequences through coarse-grained dissipative particle dynamics (DPD) simulations. From the perspectives of the binding strength of poly(L-lactic acid) (PLLA) and polyethylene glycol (PEG) in nanoparticles, hydrophilic bead surface coverage, and the morphological alteration of nanoparticles induced by shear force, the ratio of hydrophilic/hydrophobic sequence length has been observed to affect the stability of nanoparticles. We have found that for diblock polymers, PEG3kda-PLLA2kda has the best stability (corresponding hydrophilic coverage ratio is 0.832), while PEG4kda-PLLA5kda has the worst (coverage ratio 0.578). For triblock polymers, PEG4kda-PLLA2kda-PEG4kda has the best stability (0.838), while PEG4kda-PLLA5kda-PEG4kda possesses the worst performance (0.731), and the average performance on stability is better than nanoparticles composed of diblock polymers.
Collapse
Affiliation(s)
- Yun Hao Feng
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, China; Beijing Laboratory of Biomedical Materials, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Wei Xin Guo
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, China; Beijing Laboratory of Biomedical Materials, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Zhuo Lin Li
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, China; Beijing Laboratory of Biomedical Materials, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Liu Fu Hu
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, China; Beijing Laboratory of Biomedical Materials, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Yue Liu
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, China; Beijing Laboratory of Biomedical Materials, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Li Yue Jing
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, China; Beijing Laboratory of Biomedical Materials, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Jianhao Wang
- School of Pharmacy, Changzhou University, Changzhou, Jiangsu 213164, China.
| | - Mohammad-Ali Shahbazi
- Department of Biomedical Engineering, University Medical Center Groningen, University of Groningen, Antonius Deusinglaan 1, 9713 AV Groningen, the Netherlands; Department of Pharmaceutical Biomaterials, School of Pharmacy, Zanjan University of Medical Sciences, 45139-56184 Zanjan, Iran; W.J. Kolff Institute for Biomedical Engineering and Materials Science, University of Groningen, Antonius Deusinglaan 1, 9713 AV Groningen, the Netherlands.
| | - Bo Zhi Chen
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, China; Beijing Laboratory of Biomedical Materials, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China.
| | - Xin Dong Guo
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, China; Beijing Laboratory of Biomedical Materials, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China.
| |
Collapse
|
2
|
Kumar R, Chen J, Mishra A, Dongare AM. Interface microstructure effects on dynamic failure behavior of layered Cu/Ta microstructures. Sci Rep 2023; 13:11365. [PMID: 37443120 PMCID: PMC10344864 DOI: 10.1038/s41598-023-37831-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Accepted: 06/28/2023] [Indexed: 07/15/2023] Open
Abstract
Structural metallic materials with interfaces of immiscible materials provide opportunities to design and tailor the microstructures for desired mechanical behavior. Metallic microstructures with plasticity contributors of the FCC and BCC phases show significant promise for damage-tolerant applications due to their enhanced strengths and thermal stability. A fundamental understanding of the dynamic failure behavior is needed to design and tailor these microstructures with desired mechanical responses under extreme environments. This study uses molecular dynamics (MD) simulations to characterize plasticity contributors for various interface microstructures and the damage evolution behavior of FCC/BCC laminate microstructures. This study uses six model Cu/Ta interface systems with different orientation relationships that are as- created, and pre-deformed to understand the modifications in the plasticity contributions and the void nucleation/evolution behavior. The results suggest that pre-existing misfit dislocations and loading orientations (perpendicular to and parallel to the interface) affect the activation of primary and secondary slip systems. The dynamic strengths are observed to correlate with the energy of the interfaces, with the strengths being highest for low-energy interfaces and lowest for high-energy interfaces. However, the presence of pre-deformation of these interface microstructures affects not only the dynamic strength of the microstructures but also the correlation with interface energy.
Collapse
Affiliation(s)
- Rajesh Kumar
- Department of Materials Science and Engineering, Institute of Materials Science, University of Connecticut, 97 North Eagleville Road, Unit 3136, Storrs, CT, 06269-3136, USA
- Department of Mechanical Engineering, National Institute of Technology Hamirpur, Hamirpur, India
| | - Jie Chen
- Department of Materials Science and Engineering, Institute of Materials Science, University of Connecticut, 97 North Eagleville Road, Unit 3136, Storrs, CT, 06269-3136, USA
| | - Avanish Mishra
- Department of Materials Science and Engineering, Institute of Materials Science, University of Connecticut, 97 North Eagleville Road, Unit 3136, Storrs, CT, 06269-3136, USA
- Theoretical Division (T-1), Los Alamos National Laboratory, Los Alamos, NM, USA
| | - Avinash M Dongare
- Department of Materials Science and Engineering, Institute of Materials Science, University of Connecticut, 97 North Eagleville Road, Unit 3136, Storrs, CT, 06269-3136, USA.
| |
Collapse
|
3
|
Kumar R, Parashar A. Atomistic simulations of pristine and nanoparticle reinforced hydrogels: A review. WIRES COMPUTATIONAL MOLECULAR SCIENCE 2023. [DOI: 10.1002/wcms.1655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Affiliation(s)
- Raju Kumar
- Department of Mechanical and Industrial Engineering Indian Institute of Technology Roorkee Uttarakhand India
| | - Avinash Parashar
- Department of Mechanical and Industrial Engineering Indian Institute of Technology Roorkee Uttarakhand India
| |
Collapse
|
4
|
Srivastava AK, Pathak VK, Kumar M, Kumar R, Prakash S. Mechanical properties of boron nitride nano-sheet reinforced aluminium nanocomposite: a molecular dynamics study. MOLECULAR SIMULATION 2022. [DOI: 10.1080/08927022.2022.2060966] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
| | - Vimal Kumar Pathak
- Mechanical Engineering Department, Manipal University Jaipur, Jaipur, India
| | - Manoj Kumar
- Department of Computing & Information Technology, Manipal University Jaipur, Jaipur, India
| | - Rajesh Kumar
- Chitkara College of Applied Engineering, Chitkara University, Punjab, India
| | - Surya Prakash
- School of Engineering and Technology, BML Munjal University, Gurugram, India
| |
Collapse
|
5
|
Strain effects on the interfacial thermal conductance of graphene/h-BN heterostructure. NANO MATERIALS SCIENCE 2021. [DOI: 10.1016/j.nanoms.2021.05.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
6
|
Sakharova NA, Antunes JM, Pereira AFG, Chaparro BM, Fernandes JV. On the Determination of Elastic Properties of Single-Walled Boron Nitride Nanotubes by Numerical Simulation. MATERIALS 2021; 14:ma14123183. [PMID: 34207737 PMCID: PMC8228917 DOI: 10.3390/ma14123183] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 05/28/2021] [Accepted: 05/31/2021] [Indexed: 01/24/2023]
Abstract
The elastic properties of chiral and non-chiral single-walled boron nitride nanotubes in a wide range of their chiral indices and diameters were studied. With this aim, a three-dimensional finite element model was used to assess their rigidities and, subsequently, elastic moduli and Poisson’s ratio. An extensive study was performed to understand the impact of the input parameters on the results obtained by numerical simulation. For comparison, the elastic properties of single-walled boron nitride nanotubes are shown together with those obtained for single-walled carbon nanotubes.
Collapse
Affiliation(s)
- Nataliya A. Sakharova
- Centre for Mechanical Engineering, Materials and Processes (CEMMPRE), Department of Mechanical Engineering, University of Coimbra, Rua Luís Reis Santos, Pinhal de Marrocos, 3030-788 Coimbra, Portugal; (J.M.A.); (A.F.G.P.); (B.M.C.); (J.V.F.)
- Correspondence: ; Tel.: +35-12-3979-0700
| | - Jorge M. Antunes
- Centre for Mechanical Engineering, Materials and Processes (CEMMPRE), Department of Mechanical Engineering, University of Coimbra, Rua Luís Reis Santos, Pinhal de Marrocos, 3030-788 Coimbra, Portugal; (J.M.A.); (A.F.G.P.); (B.M.C.); (J.V.F.)
- Polytechnic Institute of Tomar, Quinta do Contador, Estrada da Serra, 2300-313 Tomar, Portugal
| | - André F. G. Pereira
- Centre for Mechanical Engineering, Materials and Processes (CEMMPRE), Department of Mechanical Engineering, University of Coimbra, Rua Luís Reis Santos, Pinhal de Marrocos, 3030-788 Coimbra, Portugal; (J.M.A.); (A.F.G.P.); (B.M.C.); (J.V.F.)
| | - Bruno M. Chaparro
- Centre for Mechanical Engineering, Materials and Processes (CEMMPRE), Department of Mechanical Engineering, University of Coimbra, Rua Luís Reis Santos, Pinhal de Marrocos, 3030-788 Coimbra, Portugal; (J.M.A.); (A.F.G.P.); (B.M.C.); (J.V.F.)
- Polytechnic Institute of Tomar, Quinta do Contador, Estrada da Serra, 2300-313 Tomar, Portugal
| | - José V. Fernandes
- Centre for Mechanical Engineering, Materials and Processes (CEMMPRE), Department of Mechanical Engineering, University of Coimbra, Rua Luís Reis Santos, Pinhal de Marrocos, 3030-788 Coimbra, Portugal; (J.M.A.); (A.F.G.P.); (B.M.C.); (J.V.F.)
| |
Collapse
|
7
|
Yang J, Chen J, Fang H. Dipole orientation variation of hydration shell around alkali metal cation on hexagonal boron nitride sheet. Mol Phys 2021. [DOI: 10.1080/00268976.2021.1919773] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Affiliation(s)
- Junwei Yang
- School of Arts and Sciences, Shanghai Dianji University, Shanghai, People’s Republic of China
- Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai, People’s Republic of China
| | - Jige Chen
- Shanghai Synchrotron Radiation Facility, Zhangjiang Laboratory, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, People’s Republic of China
- Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai, People’s Republic of China
| | - Haiping Fang
- Department of Physics, East China University of Science and Technology, Shanghai, People’s Republic of China
| |
Collapse
|
8
|
Vriza A, Canaj AB, Vismara R, Kershaw Cook LJ, Manning TD, Gaultois MW, Wood PA, Kurlin V, Berry N, Dyer MS, Rosseinsky MJ. One class classification as a practical approach for accelerating π-π co-crystal discovery. Chem Sci 2020; 12:1702-1719. [PMID: 34163930 PMCID: PMC8179233 DOI: 10.1039/d0sc04263c] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Accepted: 12/03/2020] [Indexed: 11/21/2022] Open
Abstract
The implementation of machine learning models has brought major changes in the decision-making process for materials design. One matter of concern for the data-driven approaches is the lack of negative data from unsuccessful synthetic attempts, which might generate inherently imbalanced datasets. We propose the application of the one-class classification methodology as an effective tool for tackling these limitations on the materials design problems. This is a concept of learning based only on a well-defined class without counter examples. An extensive study on the different one-class classification algorithms is performed until the most appropriate workflow is identified for guiding the discovery of emerging materials belonging to a relatively small class, that being the weakly bound polyaromatic hydrocarbon co-crystals. The two-step approach presented in this study first trains the model using all the known molecular combinations that form this class of co-crystals extracted from the Cambridge Structural Database (1722 molecular combinations), followed by scoring possible yet unknown pairs from the ZINC15 database (21 736 possible molecular combinations). Focusing on the highest-ranking pairs predicted to have higher probability of forming co-crystals, materials discovery can be accelerated by reducing the vast molecular space and directing the synthetic efforts of chemists. Further on, using interpretability techniques a more detailed understanding of the molecular properties causing co-crystallization is sought after. The applicability of the current methodology is demonstrated with the discovery of two novel co-crystals, namely pyrene-6H-benzo[c]chromen-6-one (1) and pyrene-9,10-dicyanoanthracene (2).
Collapse
Affiliation(s)
- Aikaterini Vriza
- Department of Chemistry and Materials Innovation Factory, University of Liverpool 51 Oxford Street Liverpool L7 3NY UK
- Leverhulme Research Centre for Functional Materials Design, University of Liverpool Oxford Street Liverpool L7 3NY UK
| | - Angelos B Canaj
- Department of Chemistry and Materials Innovation Factory, University of Liverpool 51 Oxford Street Liverpool L7 3NY UK
| | - Rebecca Vismara
- Department of Chemistry and Materials Innovation Factory, University of Liverpool 51 Oxford Street Liverpool L7 3NY UK
| | - Laurence J Kershaw Cook
- Department of Chemistry and Materials Innovation Factory, University of Liverpool 51 Oxford Street Liverpool L7 3NY UK
| | - Troy D Manning
- Department of Chemistry and Materials Innovation Factory, University of Liverpool 51 Oxford Street Liverpool L7 3NY UK
| | - Michael W Gaultois
- Department of Chemistry and Materials Innovation Factory, University of Liverpool 51 Oxford Street Liverpool L7 3NY UK
- Leverhulme Research Centre for Functional Materials Design, University of Liverpool Oxford Street Liverpool L7 3NY UK
| | - Peter A Wood
- Cambridge Crystallographic Data Centre 12 Union Road Cambridge CB2 1EZ UK
| | - Vitaliy Kurlin
- Materials Innovation Factory, Computer Science Department, University of Liverpool Liverpool L69 3BX UK
| | - Neil Berry
- Department of Chemistry and Materials Innovation Factory, University of Liverpool 51 Oxford Street Liverpool L7 3NY UK
| | - Matthew S Dyer
- Department of Chemistry and Materials Innovation Factory, University of Liverpool 51 Oxford Street Liverpool L7 3NY UK
- Leverhulme Research Centre for Functional Materials Design, University of Liverpool Oxford Street Liverpool L7 3NY UK
| | - Matthew J Rosseinsky
- Department of Chemistry and Materials Innovation Factory, University of Liverpool 51 Oxford Street Liverpool L7 3NY UK
- Leverhulme Research Centre for Functional Materials Design, University of Liverpool Oxford Street Liverpool L7 3NY UK
| |
Collapse
|
9
|
Sharma BB, Parashar A. Mechanical strength of a nanoporous bicrystalline h-BN nanomembrane in a water submerged state. Phys Chem Chem Phys 2020; 22:20453-20465. [PMID: 32926026 DOI: 10.1039/d0cp03235b] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Due to superior water permeability, structural stability, and adsorption capability, h-BN nanosheets are emerging as an efficient membrane for water desalination. In order to cater to the demand for potable water, large size membranes are required to maintain a high desalination rate from water purification systems. These large size membranes usually contain polycrystals with an offset in their mechanical properties from pristine h-BN nanosheets. In this article, molecular dynamics based simulations were performed in conjunction with a hybrid interatomic potential (reactive force field, TIP3P, and Lennard Jones) to simulate the mechanical strength of nanoporous single and bicrystalline h-BN nanosheets under water submerged conditions. The interaction between the atomic configuration of grain boundary atoms and nanopores in the presence of water molecules helps in investigating the viability of defective h-BN nanomembranes for underwater applications. Higher dislocation density enhances the mechanical strength of nanoporous bicrystalline h-BN nanosheets containing twin nanopores, which makes them a better substitute for water submerged applications as compared to the pristine nanosheets. The mechanical strength of nanoporous single crystalline h-BN nanosheets deteriorates with an increase in the number of nanopores, whereas a contrasting trend was observed with bicrystalline h-BN nanosheets.
Collapse
Affiliation(s)
- Bharat Bhushan Sharma
- Department of Mechanical and Industrial Engineering, Indian Institute of Technology, Roorkee, India.
| | - Avinash Parashar
- Department of Mechanical and Industrial Engineering, Indian Institute of Technology, Roorkee, India.
| |
Collapse
|
10
|
Zhang J, Zhou Y, Ying P, Sun H, Zhou J, Wang T, Jie W, Kuball M. Effects of interlayer interactions on the nanoindentation response of freely suspended multilayer gallium telluride. NANOTECHNOLOGY 2020; 31:165706. [PMID: 31891923 DOI: 10.1088/1361-6528/ab668b] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Freestanding indentation is a widely used method to characterise the elastic properties of two-dimensional (2D) materials. However, many controversies and confusion remain in this field due to the lack of appropriate theoretical models in describing the indentation responses of 2D materials. Taking the multilayer gallium telluride (GaTe) as an example, in this paper we conduct a series of experiments and simulations to achieve a comprehensive understanding of its freestanding indentation behaviours. Specifically, the freestanding indentation experiments show that the elastic properties of the present multilayer GaTe with a relatively large thickness can only be extracted from the bending stage in the indentation process rather than the stretching stage widely utilised in the previous studies on thin 2D materials, since the stretching stage of thick 2D materials is inevitably accompanied with severe plastic deformations. In combination with existing continuum mechanical models and finite element simulations, an extremely small Young's modulus of multilayer GaTe is obtained from the nanoindentation experiments, which is two orders of magnitude smaller than the value obtained from first principles calculations. Our molecular dynamics (MD) simulations reveal that this small Young's modulus can be attributed to the significant elastic softening in the multilayer GaTe with increasing thickness and decreasing length. It is further revealed in MD simulations that this size-induced elastic softening originates from the synergistic effects of interlayer compression and interlayer shearing in the multilayer GaTe, both of which, however, are ignored in the existing indentation models. To consider these effects of interlayer interactions in the theoretical modelling of the freestanding indentation of multilayer GaTe, we propose here novel multiple-beam and multiple-plate models, which are found to agree well with MD results without any additional parameters fitting and thus can be treated as more precise theoretical models in characterising the freestanding indentation behaviours of 2D materials.
Collapse
Affiliation(s)
- Jin Zhang
- School of Science, Harbin Institute of Technology, Shenzhen 518055, People's Republic of China
| | | | | | | | | | | | | | | |
Collapse
|
11
|
Xiong M, Gao Z, Luo K, Ling F, Gao Y, Chen C, Yu D, Zhao Z, Wei S. Three metallic BN polymorphs: 1D multi-threaded conduction in a 3D network. Phys Chem Chem Phys 2020; 22:489-496. [PMID: 31822871 DOI: 10.1039/c9cp05860e] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In this paper, three novel metallic sp2/sp3-hybridized boron nitride (BN) polymorphs are proposed by first-principles calculations. One of them, denoted as tP-BN, is predicted based on the evolutionary particle swarm structural search. tP-BN is composed of two interlocked rings forming a tube-like 3D network. The stability and band structure calculations show that tP-BN is metastable and metallic at zero pressure. Calculations for the density of states and electron orbitals confirm that the metallicity originates from the sp2-hybridized B and N atoms, forming 1D linear conductive channels in the 3D network. According to the relationship between the atomic structure and electronic properties, another two 3D metastable metallic sp2/sp3-hybridized BN structures are constructed manually. Electronic property calculations show that both of these structures have 1D conductive channels along different axes. The polymorphs predicted in this study enrich the structures and provide a different picture of the conductive mechanism of BN compounds.
Collapse
Affiliation(s)
- Mei Xiong
- National Joint Engineering Research Center for Abrasion Control and Molding of Metal Materials, Henan University of Science and Technology, Luoyang 471003, China.
| | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Sharma BB, Parashar A. Atomistic simulations to study the effect of grain boundaries and hydrogen functionalization on the fracture toughness of bi-crystalline h-BN nanosheets. Phys Chem Chem Phys 2019; 21:13116-13125. [PMID: 31169285 DOI: 10.1039/c9cp01661a] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The aim of this research article was to investigate the effect of grain boundaries (GBs), and hydrogen functionalisation on the fracture toughness of bi-crystalline hexagonal boron nitride (h-BN) nanosheets. Molecular dynamics based simulations were performed in conjunction with the reactive force field to study the crack tip behaviour in single and bi-crystalline h-BN nanosheets. Atomistic simulations help in predicting a positive effect of the GB plane in the near vicinity of the crack tip. The density of 5|7 dislocation pairs significantly affects the fracture behaviour of bi-crystalline h-BN nanosheets. Additionally, the distance of the GB plane from the crack tip, and limited hydrogen functionalisation of GB atoms, further help in improving the fracture toughness of bi-crystalline h-BN nanosheets. Hydrogen functionalisation helps in inducing out of plane displacement at the GB plane, which helps in arresting or retarding the crack propagation. It can be concluded from the results that instead of deteriorating, geometrical defects such as GBs can also be used to tailor the fracture toughness of h-BN nanosheets. This study on the fracture toughness of bi-crystalline h-BN nanosheets helps in complementing the research on using porous h-BN nanosheets as nanomembranes for water desalination and ion separation.
Collapse
Affiliation(s)
- Bharat Bhushan Sharma
- Department of Mechanical and Industrial Engineering, Indian Institute of Technology, Roorkee, India.
| | | |
Collapse
|
13
|
Hosseini E, Zakertabrizi M, Habibnejad Korayem A, Chang Z. Mechanical and electromechanical properties of functionalized hexagonal boron nitride nanosheet: A density functional theory study. J Chem Phys 2018; 149:114701. [PMID: 30243282 DOI: 10.1063/1.5043252] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Hydroxylation as a technique is mainly used to alter the chemical characteristics of hexagonal boron nitride (h-BN), affecting physical features as well as mechanical and electromechanical properties in the process, the extent of which remains unknown. In this study, effects of functionalization on the physical, mechanical, and electromechanical properties of h-BN, including the interlayer distance, Young's modulus, intrinsic strength, and bandgaps were investigated based on density functional theory. It was found that functionalized layers of h-BN have an average distance of about 5.48 Å. Analyzing mechanical properties of h-BN revealed great dependence on the degree of functionalization. For the amorphous hydroxylated hexagonal boron nitride nanosheets (OH-BNNS), the Young's modulus moves from 436 to 284 GPa as the coverage of -OH increases. The corresponding variations in the Young's modulus of the ordered OH-BNNS with analogous coverage are bigger at 460-290 GPa. The observed intrinsic strength suggested that mechanical properties are promising even after functionalization. Moreover, the resulted bandgap reduction drastically enhanced the electrical conductivity of this structure under imposed strains. The results from this work pave the way for future endeavors in h-BN nanocomposites research.
Collapse
Affiliation(s)
- Ehsan Hosseini
- Department of Civil Engineering, Iran University of Science and Technology, Tehran, Iran
| | - Mohammad Zakertabrizi
- Department of Civil Engineering, Iran University of Science and Technology, Tehran, Iran
| | | | - Zhenyue Chang
- Department of Civil Engineering, Monash University, Melbourne, VIC 3800, Australia
| |
Collapse
|
14
|
Hou X, Wang M, Fu L, Chen Y, Jiang N, Lin CT, Wang Z, Yu J. Boron nitride nanosheet nanofluids for enhanced thermal conductivity. NANOSCALE 2018; 10:13004-13010. [PMID: 29682657 DOI: 10.1039/c8nr00651b] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
It is difficult for traditional cooling liquids to meet equipment requirements due to the high power and high integration they demand. Nanofluids are nanoparticle dispersions with high thermal conductivities, thus they have been proposed for heat transfer applications. Boron nitride nanosheets (BNNSs) possess high thermal conductivities and excellent insulation properties. Here, we fabricated BNNS nanofluids and investigated their effects on thermal conductivity enhancements. We find that BNNSs can effectively enhance the thermal conductivity of water. The thermal conductivity of the BNNS nanofluids reached 2.39 W mK-1 at 24 vol% loading. The surface temperature changes of the nanofluids and water were observed during the heating process using an infrared camera. The results show that the nanofluids transfer heat much faster than water, indicating that the fabricated BNNS nanofluids have excellent thermal transfer properties.
Collapse
Affiliation(s)
- Xiao Hou
- Shandong University of Science and Technology, College of Materials Science and Engineering, Qingdao, 266590, China.
| | | | | | | | | | | | | | | |
Collapse
|
15
|
Effect of geometrical defects and functionalization on the interfacial strength of h-BN/polyethylene based nanocomposite. POLYMER 2018. [DOI: 10.1016/j.polymer.2018.05.041] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
16
|
Mahyari M, Nasrollah Gavgani J. Cobalt porphyrin supported on N and P co-doped graphene quantum dots/graphene as an efficient photocatalyst for aerobic oxidation of alcohols under visible-light irradiation. RESEARCH ON CHEMICAL INTERMEDIATES 2018. [DOI: 10.1007/s11164-018-3330-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
17
|
Verma A, Parashar A, Packirisamy M. Atomistic modeling of graphene/hexagonal boron nitride polymer nanocomposites: a review. WIRES COMPUTATIONAL MOLECULAR SCIENCE 2017. [DOI: 10.1002/wcms.1346] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Akarsh Verma
- Department of Mechanical and Industrial Engineering Indian Institute of Technology Roorkee India
| | - Avinash Parashar
- Department of Mechanical and Industrial Engineering Indian Institute of Technology Roorkee India
| | - M. Packirisamy
- Department of Mechanical and Industrial Engineering Concordia University Montreal Canada
| |
Collapse
|
18
|
Microstructure and mechanical properties of boron nitride nanosheets-reinforced fused silica composites. Ann Ital Chir 2017. [DOI: 10.1016/j.jeurceramsoc.2017.03.029] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
19
|
Abstract
One of the low-dimensional Boron Nitride (BN) forms, namely, cubic-BN (c-BN) nanodots (NDs), offers a variety of novel opportunities in battery, biology, deep ultraviolet light emitting diodes, sensors, filters, and other optoelectronic applications. To date, the attempts towards producing c-BN NDs were mainly performed under extreme high-temperature/high-pressure conditions and resulted in c-BN NDs with micrometer sizes, mixture of different BN phases, and containing process-related impurities/contaminants. To enhance device performance for those applications by taking advantage of size effect, pure, sub-100 nm c-BN NDs are necessary. In this paper, we report self-assembled growth of c-BN NDs on cobalt and nickel substrates by plasma-assisted molecular beam epitaxy. It is found that the nucleation, formation, and morphological properties of c-BN NDs can be closely correlated with the nature of substrate including catalysis effect, lattice-mismatch-induced strain, and roughness, and growth conditions, in particular, growth time and growth temperature. The mean lateral size of c-BN NDs on cobalt scales from 175 nm to 77 nm with the growth time. The growth mechanism of c-BN NDs on metal substrates is concluded to be Volmer-Weber (VW) mode. A simplified two-dimensional numerical modeling shows that the elastic strain energy plays a key role in determining the total formation energy of c-BN NDs on metals.
Collapse
Affiliation(s)
- Alireza Khanaki
- Quantum Structures Laboratory, Department of Electrical and Computer Engineering, University of California, Riverside, CA, 92521, USA
| | - Zhongguang Xu
- Quantum Structures Laboratory, Department of Electrical and Computer Engineering, University of California, Riverside, CA, 92521, USA
| | - Hao Tian
- Quantum Structures Laboratory, Department of Electrical and Computer Engineering, University of California, Riverside, CA, 92521, USA
| | - Renjing Zheng
- Quantum Structures Laboratory, Department of Electrical and Computer Engineering, University of California, Riverside, CA, 92521, USA
| | - Zheng Zuo
- Quantum Structures Laboratory, Department of Electrical and Computer Engineering, University of California, Riverside, CA, 92521, USA
| | - Jian-Guo Zheng
- Irvine Materials Research Institute University of California, Irvine, CA, 92697-2800, USA
| | - Jianlin Liu
- Quantum Structures Laboratory, Department of Electrical and Computer Engineering, University of California, Riverside, CA, 92521, USA.
| |
Collapse
|
20
|
Wang X, Wu P. Preparation of Highly Thermally Conductive Polymer Composite at Low Filler Content via a Self-Assembly Process between Polystyrene Microspheres and Boron Nitride Nanosheets. ACS APPLIED MATERIALS & INTERFACES 2017; 9:19934-19944. [PMID: 28535028 DOI: 10.1021/acsami.7b04768] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
Rational distribution and orientation of boron nitride nanosheets (BNNSs) are very significant for a polymer/BNNS composite to obtain a high thermal conductivity at low filler content. In this paper, a high-performance thermal interface material based on exfoliated BNNSs and polystyrene (PS) microspheres was fabricated by latex blending and subsequent compression molding. In this case, BNNSs and PS microspheres first self-assembled to form the complex microspheres via strong electrostatic interactions between them. The as-prepared complex microspheres were further hot-pressed around the glass transition temperature, which brought the selective distribution of BNNSs at the interface of the deformed PS microspheres. As a consequence, a polymer composite with homogeneous dispersion and high in-plane orientation of BNNSs in PS matrix was obtained. Benefitted from this unique structure, the resultant composite exhibits a significant thermal conductivity enhancement of 8.0 W m-1 K-1 at a low filler content of 13.4 vol %. This facile method provides a new strategy to design and fabricate highly thermally conductive composites.
Collapse
Affiliation(s)
- Xiongwei Wang
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University , Shanghai 200433, P. R. China
| | - Peiyi Wu
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University , Shanghai 200433, P. R. China
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Chemistry, Chemical Engineering and Biotechnology, Center for Advanced Low-Dimension Materials, Donghua University , Shanghai 201620, China
| |
Collapse
|
21
|
Li M, Huang H, Tu L, Wang W, Li P, Lu Y. Abnormal nonlocal scale effect on static bending of single-layer MoS 2. NANOTECHNOLOGY 2017; 28:215706. [PMID: 28333686 DOI: 10.1088/1361-6528/aa68da] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
The nonlocal scale parameter of nonlocal Euler-Bernoulli beam theory is evaluated for the static bending of single-layer molybdenum disulfide (SLMoS2) without predetermined bending rigidity. The evaluation is performed by matching the fitted curve between the maximum deflection and the beam length obtained from molecular mechanics simulations. It was observed that the fitted curves have an abnormal sign in the second-order term of the maximum deflection for SLMoS2, opposite to that for graphene and regardless of the interatomic interaction potentials used. Based on the nature of 'nonlocal' and the phenomenological point of view, a modified nonlocal constitutive relation with a positive sign in front of the higher-order term is suggested for SLMoS2. The nonlocal parameter and the bending rigidity of SLMoS2 are finally extracted, and the effect of the nonlocal scale parameter on the bending response for SLMoS2 is found to be significant for beam length less than a critical length, depending on both the interatomic interaction potentials and the boundary conditions. Our new perspective should be useful for researchers who are interested in the engineering application of graphene-like quasi-two-dimensional nanostructures using nonlocal beam theories.
Collapse
Affiliation(s)
- Minglin Li
- School of Mechanical Engineering and Automation, Fuzhou University, Fuzhou, 350108, People's Republic of China
| | | | | | | | | | | |
Collapse
|
22
|
Kumar R, Parashar A. Fracture toughness enhancement of h-BN monolayers via hydrogen passivation of a crack edge. NANOTECHNOLOGY 2017; 28:165702. [PMID: 28319038 DOI: 10.1088/1361-6528/aa6294] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Molecular dynamics-based simulations were performed in conjunction with reactive force-field potential parameters to investigate the effect of crack-edge passivation via hydrogenation on the fracture properties of h-BN nanosheets. In semi-hydrogenated (H is attached to either B or N) and fully hydrogenated (H is attached to both B and N) crack-edge atoms, three hybridisation states-sp2, sp3 and sp2 + sp3-were considered in the simulations. Significant improvement in the fracture toughness of h-BN nanosheets was predicted with semi- and fully hydrogenated crack-edge atoms. An overall improvement in fracture toughness of h-BN in the range of 16%-23% was estimated with the sp3 or sp2 + sp3 hybridisation state of crack-edge atoms. This significant shift in the fracture toughness of h-BN nanosheets was attributed to lowered crack-edge energy, a stress-relieving mechanism and blunting of the crack tip. Semi-hydrogenated crack-edge atoms with hydrogen attached only to N atoms have shown a negative response in terms of fracture toughness.
Collapse
Affiliation(s)
- Rajesh Kumar
- Department of Mechanical and Industrial Engineering, Indian Institute of Technology, Roorkee-247667, India
| | | |
Collapse
|
23
|
Kumar R, Parashar A. Dislocation assisted crack healing in h-BN nanosheets. Phys Chem Chem Phys 2017; 19:21739-21747. [DOI: 10.1039/c7cp04455k] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Interaction between dislocations and crack tip stress-fields drives the fracture toughness enhancement mechanisms in h-BN.
Collapse
Affiliation(s)
- Rajesh Kumar
- Department of Mechanical and Industrial Engineering
- Indian Institute of Technology
- Roorkee – 247667
- India
| | - Avinash Parashar
- Department of Mechanical and Industrial Engineering
- Indian Institute of Technology
- Roorkee – 247667
- India
| |
Collapse
|
24
|
Kumar R, Rajasekaran G, Parashar A. Optimised cut-off function for Tersoff-like potentials for a BN nanosheet: a molecular dynamics study. NANOTECHNOLOGY 2016; 27:085706. [PMID: 26820110 DOI: 10.1088/0957-4484/27/8/085706] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
In this article, molecular dynamics based simulations were carried out to study the tensile behaviour of boron nitride nanosheets (BNNSs). Four different sets of Tersoff potential parameters were used in the simulations for estimating the interatomic interactions between boron and nitrogen atoms. Modifications were incorporated in the Tersoff cut-off function to improve the accuracy of results with respect to fracture stress, fracture strain and Young's modulus. In this study, the original cut-off function was optimised in such a way that small and large cut-off distances were made equal, and hence a single cut-off distance was used with all sets of Tersoff potential parameters. The single value of cut-off distance for the Tersoff potential was chosen after analysing the potential energy and bond forces experienced by boron and nitrogen atoms subjected to bond stretching. The simulations performed with the optimised cut-off function help in identifying the Tersoff potential parameters that reproduce the experimentally evaluated mechanical behaviour of BNNSs.
Collapse
Affiliation(s)
- Rajesh Kumar
- Department of Mechanical and Industrial Engineering, Indian Institute of Technology, Roorkee-247667, India
| | | | | |
Collapse
|
25
|
Jung JH, Kotal M, Jang MH, Lee J, Cho YH, Kim WJ, Oh IK. Defect engineering route to boron nitride quantum dots and edge-hydroxylated functionalization for bio-imaging. RSC Adv 2016. [DOI: 10.1039/c6ra12455k] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
A defect engineering method was developed using physical energy sources to synthesize boron nitride quantum dots (BNQDs) for bioimaging applications.
Collapse
Affiliation(s)
- Jung-Hwan Jung
- Creative Research Initiative Center for Functionally Antagonistic Nano-Engineering
- Department of Mechanical Engineering
- Korea Advanced Institute of Science and Technology (KAIST)
- Daejeon 34141
- Republic of Korea
| | - Moumita Kotal
- Creative Research Initiative Center for Functionally Antagonistic Nano-Engineering
- Department of Mechanical Engineering
- Korea Advanced Institute of Science and Technology (KAIST)
- Daejeon 34141
- Republic of Korea
| | - Min-Ho Jang
- Department of Physics
- Korea Advanced Institute of Science and Technology (KAIST)
- Daejeon 305-701
- Republic of Korea
| | - Junseok Lee
- Center for Self-assembled Complexity
- Institute of Basic Science (IBS)
- Department of Chemistry
- Pohang University of Science and Technology (POSTECH)
- Pohang 37673
| | - Yong-Hoon Cho
- Department of Physics
- Korea Advanced Institute of Science and Technology (KAIST)
- Daejeon 305-701
- Republic of Korea
| | - Won-Jong Kim
- Center for Self-assembled Complexity
- Institute of Basic Science (IBS)
- Department of Chemistry
- Pohang University of Science and Technology (POSTECH)
- Pohang 37673
| | - Il-Kwon Oh
- Creative Research Initiative Center for Functionally Antagonistic Nano-Engineering
- Department of Mechanical Engineering
- Korea Advanced Institute of Science and Technology (KAIST)
- Daejeon 34141
- Republic of Korea
| |
Collapse
|
26
|
Rajasekaran G, Parashar A. Molecular dynamics study on the mechanical response and failure behaviour of graphene: performance enhancement via 5–7–7–5 defects. RSC Adv 2016. [DOI: 10.1039/c6ra01762b] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
A one atom-thick sheet of carbon exhibits outstanding elastic moduli and tensile strength in its pristine form but structural defects which are inevitable in graphene due to its production techniques can alter its structural properties.
Collapse
Affiliation(s)
- G. Rajasekaran
- Department of Mechanical and Industrial Engineering
- Indian Institute of Technology
- Roorkee – 247667
- India
| | - Avinash Parashar
- Department of Mechanical and Industrial Engineering
- Indian Institute of Technology
- Roorkee – 247667
- India
| |
Collapse
|