1
|
Sun S, Li K, Li X, Shi S. Dual-Redox Responsive Interfaces Based on Donor-Acceptor Interactions. ACS APPLIED MATERIALS & INTERFACES 2024; 16:65592-65599. [PMID: 39531015 DOI: 10.1021/acsami.4c14952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
Nanoparticle surfactant (NPS) is a highly competitive means for stabilizing liquid-liquid interfaces, endowing interfacial assemblies with functionalities, and enabling the construction of all-liquid devices. Integrating different types of supramolecular interactions into NPSs would open possibilities to generate interfaces that are responsive to multiple stimuli. Here, by using donor-acceptor interactions between polydopamine nanoparticles (PDA NPs) and methyl viologen (MV2+) terminated polystyrene, the formation, assembly, and jamming of a supramolecular NPS at the water-toluene interface is demonstrated. Harnessing the redox properties of both catechol and MV2+, the dual-redox responsiveness can be achieved, allowing the reconfiguration of NPS-based structured liquids. Using NPS as an emulsifier, oil-in-water (O/W), water-in-oil (W/O), and oil-in-water-in-oil (O/W/O) Pickering emulsions can be obtained in one step, which exhibit smart responsiveness to redox reagents. Taking advantage of the adsorption capacity of PDA NPs, the purification of dye-polluted water can be achieved through O/W Pickering emulsions. We envision that this unique dual-redox responsive biphasic system would hold great potential for developing sophisticated controlled-release systems as well as other intelligent, functional materials.
Collapse
Affiliation(s)
- Shuyi Sun
- State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Kaijuan Li
- State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Xin Li
- State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Shaowei Shi
- State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| |
Collapse
|
2
|
Kotammagari TK, Al-Waeel M, Lukkari J, Lönnberg T. Organomercury oligonucleotide-polydopamine nanoparticle assemblies discriminate between target sequences by Hg(ii)-mediated base pairing. RSC Adv 2024; 14:38279-38284. [PMID: 39628462 PMCID: PMC11612767 DOI: 10.1039/d4ra07922a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Accepted: 11/27/2024] [Indexed: 12/06/2024] Open
Abstract
A fluorescently tagged oligonucleotide hybridization probe incorporating a single 5-mercuricytosine residue was synthesized and found to adsorb on polydopamine nanoparticles much more strongly than its unmetallated counterpart. Hybridization with target sequences led to release of the probe from the nanoparticle to varying degrees depending on the nucleobase opposite to 5-mercuricytosine.
Collapse
Affiliation(s)
| | - Majid Al-Waeel
- Department of Chemistry, University of Turku Henrikinkatu 2 20500 Turku Finland
| | - Jukka Lukkari
- Department of Chemistry, University of Turku Henrikinkatu 2 20500 Turku Finland
| | - Tuomas Lönnberg
- Department of Chemistry, University of Turku Henrikinkatu 2 20500 Turku Finland
| |
Collapse
|
3
|
Zheng C, Chen F, Yang F, Li Z, Yi W, Chen G, Li T, Yu X, Chen X. Myocardial cell mitochondria-targeted mesoporous polydopamine nanoparticles eliminate inflammatory damage in cardiovascular disease. Int J Biol Macromol 2024; 282:137141. [PMID: 39510474 DOI: 10.1016/j.ijbiomac.2024.137141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 10/23/2024] [Accepted: 10/30/2024] [Indexed: 11/15/2024]
Abstract
Excess reactive oxide species (ROS) is a direct factor in myocardial injury death, thus anti-oxidant therapy is a necessary measure to prevent rapid death of cardiomyocyte cell. Cysteine (Cys) is a potent antioxidant but easily become instability because of the hyperactivity. Therefore, in order to protect the the stability of Cys, we according to the mitochondria are the main sites of ROS production, utilized the loading and ROS scavenging capacity of mesoporous polydopamine (mPDA) constructed a nanosystem targeting mitochondria with effectively ROS elimination capability by loading cysteine (Cys-mPDA@TPP). The mesoporous structure of mPDA effectively inhibited the advance reaction and hyperactivity of Cys, thus effectively improving its stability that reached the double-collaborative treatment excess ROS. In particular, Cys-mPDA@TPP achieved directly reacting with ROS in mitochondria under the targeting of triphenylphosphine (TPP), not only enhancing the elimination efficiency of ROS, but also preventing mitochondrial dysfunction of monocyte-macrophage. Furthermore, with double-collaborative ROS elimination, Cys-mPDA@TPP effectively prevent the damage of cardiomyocyte cell through inhibiting macrophage inflammatory response. Therefore, this study provides a new therapeutic strategy for myocardial inflammatory injury.
Collapse
Affiliation(s)
- Chuping Zheng
- Guangdong Key Laboratory of Molecular Target & Clinical Pharmacology and the State Key Laboratory of Respiratory Disease Pharmacology Group, Guangzhou Medical University, Guangzhou 511436, PR China
| | - Fajiang Chen
- Guangdong Key Laboratory of Molecular Target & Clinical Pharmacology and the State Key Laboratory of Respiratory Disease Pharmacology Group, Guangzhou Medical University, Guangzhou 511436, PR China
| | - Fangwen Yang
- Guangdong Key Laboratory of Molecular Target & Clinical Pharmacology and the State Key Laboratory of Respiratory Disease Pharmacology Group, Guangzhou Medical University, Guangzhou 511436, PR China
| | - Zhan Li
- Guangdong Key Laboratory of Molecular Target & Clinical Pharmacology and the State Key Laboratory of Respiratory Disease Pharmacology Group, Guangzhou Medical University, Guangzhou 511436, PR China
| | - Wei Yi
- Guangdong Key Laboratory of Molecular Target & Clinical Pharmacology and the State Key Laboratory of Respiratory Disease Pharmacology Group, Guangzhou Medical University, Guangzhou 511436, PR China
| | - Gengjia Chen
- Department of Radiology, Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510655, PR China.
| | - Tianwang Li
- Department of Rheumatology and Immunology, Guangdong Second Provincial General Hospital, Guangzhou 510317, PR China; Department of Rheumatology and Immunology, Zhaoqing Central People's Hospital, Zhaoqing 526000, PR China.
| | - Xiyong Yu
- Guangdong Key Laboratory of Molecular Target & Clinical Pharmacology and the State Key Laboratory of Respiratory Disease Pharmacology Group, Guangzhou Medical University, Guangzhou 511436, PR China.
| | - Xu Chen
- Department of Rheumatology and Immunology, Guangdong Second Provincial General Hospital, Guangzhou 510317, PR China.
| |
Collapse
|
4
|
Demian P, Nagaya D, Refaei R, Iwai K, Hasegawa D, Baba M, Messersmith PB, Lamrani M. Enhancing Performance of Silicone Hydrogel Contact Lenses with Hydrophilic Polyphenolic Coatings. J Funct Biomater 2024; 15:321. [PMID: 39590525 PMCID: PMC11595945 DOI: 10.3390/jfb15110321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 10/24/2024] [Accepted: 10/25/2024] [Indexed: 11/28/2024] Open
Abstract
This study explores the application of a dopamine-assisted co-deposition strategy to modify the surface of daily disposable silicone hydrogel contact lenses. Aiming to enhance the hydrophilicity of these typically hydrophobic lenses, we developed an industry-friendly process using simple dip coating in aqueous solutions. By co-depositing tannic acid, dopamine and chitosan derivative and employing periodate oxidation, we achieved a rapid and efficient coating process. High-molecular-weight branched polyethylene imine was introduced to promote surface reactions. The resulting lenses exhibited extreme hydrophilicity and lipid repellency without compromising their intrinsic properties or causing cytotoxicity. While the coating demonstrated partial antimicrobial activity against Gram-positive Staphylococcus aureus, it offers a foundation for the further development of broad-spectrum antimicrobial coatings. This versatile and efficient process, capable of transforming hydrophobic contact lenses into hydrophilic ones in just 15 min, shows significant potential for improving comfort and performance in daily disposable contact lenses.
Collapse
Affiliation(s)
- Paul Demian
- Menicon R&D Innovation Centre, Menicon Co., Ltd., Nagoya (Japan), Geneva Branch, 1205 Geneva, Switzerland;
| | - Daichi Nagaya
- Menicon Co., Ltd., 21-19, Aoi 3, Naka-ku, Nagoya 460-0006, Japan
| | - Roeya Refaei
- Laboratory of LAMSE, Faculty of Sciences and Techniques of Tangier, Abdelmalek Essaâdi University, B.P. 416, Tangier 90000, Morocco
| | - Kaoru Iwai
- Menicon Co., Ltd., 21-19, Aoi 3, Naka-ku, Nagoya 460-0006, Japan
| | - Daiki Hasegawa
- Menicon Co., Ltd., 21-19, Aoi 3, Naka-ku, Nagoya 460-0006, Japan
| | - Masaki Baba
- Menicon Co., Ltd., 21-19, Aoi 3, Naka-ku, Nagoya 460-0006, Japan
| | - Phillip B. Messersmith
- Bioengineering and Materials Science and Engineering Departments, University of California, Berkeley, CA 94720, USA;
| | - Mouad Lamrani
- Menicon R&D Innovation Centre, Menicon Co., Ltd., Nagoya (Japan), Geneva Branch, 1205 Geneva, Switzerland;
- Menicon Co., Ltd., 21-19, Aoi 3, Naka-ku, Nagoya 460-0006, Japan
| |
Collapse
|
5
|
Dai Q, Liu H, Gao C, Sun W, Lu C, Zhang Y, Cai W, Qiao H, Jin A, Wang Y, Liu Y. Advances in Mussel Adhesion Proteins and Mussel-Inspired Material Electrospun Nanofibers for Their Application in Wound Repair. ACS Biomater Sci Eng 2024; 10:6097-6119. [PMID: 39255244 DOI: 10.1021/acsbiomaterials.4c01378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/12/2024]
Abstract
Mussel refers to a marine organism with strong adhesive properties, and it secretes mussel adhesion protein (MAP). The most vital feature of MAP is the abundance of the 3,4-dihydroxyphenylalanine (DOPA) group and lysine, which have antimicrobial, anti-inflammatory, antioxidant, and cell adhesion-promoting properties and can accelerate wound healing. Polydopamine (PDA) is currently the most widely used mussel-inspired material characterized by good adhesion, biocompatibility, and biodegradability. It can mediate various interactions to form functional coatings on cell-material surfaces. Nanofibers based on MAP and mussel-inspired materials have been exerting a vital role in wound repair, while there is no comprehensive review presenting them. This Review introduces the structure of MAPs and their adhesion mechanisms and mussel-inspired materials. Second, it introduces the functionalized modification of MAPs and their inspired materials in electrospun nanofibers and application in wound repair. Finally, the future development direction and coping strategies of MAP and mussel-inspired materials are discussed. Moreover, this Review can offer novel strategies for the application of nanofibers in wound repair and bring about new breakthroughs and innovations in tissue engineering and regenerative medicine.
Collapse
Affiliation(s)
- Qiqi Dai
- School of Medicine, Shanghai University, Shanghai 200444, China
| | - Huazhen Liu
- School of Medicine, Shanghai University, Shanghai 200444, China
| | - Chuang Gao
- School of Mechatronic Engineering and Automation, Shanghai University, Shanghai 200444, China
| | - Wenbin Sun
- School of Mechatronic Engineering and Automation, Shanghai University, Shanghai 200444, China
| | - Chunxiang Lu
- School of Mechatronic Engineering and Automation, Shanghai University, Shanghai 200444, China
| | - Yi Zhang
- School of Mechatronic Engineering and Automation, Shanghai University, Shanghai 200444, China
| | - Weihuang Cai
- School of Mechatronic Engineering and Automation, Shanghai University, Shanghai 200444, China
| | - Hao Qiao
- School of Mechatronic Engineering and Automation, Shanghai University, Shanghai 200444, China
| | - Aoxiang Jin
- School of Mechatronic Engineering and Automation, Shanghai University, Shanghai 200444, China
| | - Yeping Wang
- School of Medicine, Shanghai University, Shanghai 200444, China
- Department of Obstetrics and Gynecology, The Third Clinical Institute Affiliated to Wenzhou Medical University, Wenzhou People's Hospital, The Third Affiliated Hospital of Shanghai University, Wenzhou, Zhejiang 325000, China
| | - Yuanyuan Liu
- School of Medicine, Shanghai University, Shanghai 200444, China
- School of Mechatronic Engineering and Automation, Shanghai University, Shanghai 200444, China
| |
Collapse
|
6
|
Kim SB, Kim CH, Lee SY, Park SJ. Carbon materials and their metal composites for biomedical applications: A short review. NANOSCALE 2024; 16:16313-16328. [PMID: 39110002 DOI: 10.1039/d4nr02059f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/13/2024]
Abstract
Carbon materials and their hybrid metal composites have garnered significant attention in biomedical applications due to their exceptional biocompatibility. This biocompatibility arises from their inherent chemical stability and low toxicity within biological systems. This review offers a comprehensive overview of carbon nanomaterials and their metal composites, emphasizing their biocompatibility-focused applications, including drug delivery, bioimaging, biosensing, and tissue engineering. The paper outlines advancements in surface modifications, coatings, and functionalization techniques designed to enhance the biocompatibility of carbon materials, ensuring minimal adverse effects in biological systems. A comprehensive investigation into hybrid composites integrating carbon nanomaterials is conducted, categorizing them as fullerenes, carbon quantum dots, carbon nanotubes, carbon nanofibers, graphene, and diamond-like carbon. The concluding section addresses regulatory considerations and challenges associated with integrating carbon materials into medical devices. This review culminates by providing insights into current achievements, challenges, and future directions, underscoring the pivotal role of carbon nanomaterials and their metal composites in advancing biocompatible applications.
Collapse
Affiliation(s)
- Su-Bin Kim
- Department of Chemistry, Inha University, Incheon 22212, Republic of Korea.
| | - Choong-Hee Kim
- Department of Chemistry, Inha University, Incheon 22212, Republic of Korea.
| | - Seul-Yi Lee
- Department of Chemistry, Inha University, Incheon 22212, Republic of Korea.
| | - Soo-Jin Park
- Department of Chemistry, Inha University, Incheon 22212, Republic of Korea.
| |
Collapse
|
7
|
Wu H, Sun Q, Guo C, Wei X, Wei J, Wu X, Zhong Z, Wang H. Tailoring Surface Engineering with Expanded Precursor Libraries via Rapid Mussel-Inspired Chemistry. Chempluschem 2024; 89:e202400101. [PMID: 38822555 DOI: 10.1002/cplu.202400101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 05/31/2024] [Accepted: 05/31/2024] [Indexed: 06/03/2024]
Abstract
Mussel-inspired coating is a substrate-independent surface modification technology. However, its application is limited by time-consuming, tailoring specific functions require tedious secondary reaction. To overcome those drawbacks, a strategy for the rapid fabrication of diverse coatings by expanding the library of precursors using oxidation coupled with polyamine was proposed. Based on DFT simulations of the reaction pathways, a method was developed to achieve rapid deposition of coatings by coupling oxidation and polyamines, which simultaneously accelerated the oxidation of precursors and polymer chain growth. The feasibility and generalizability of the strategy was validated by the rapid coating of 10 catechol derivatives and polyamines on various substrates. The surface properties of the substrates such as functional group densities, Zeta potential and contact angles can be easily tuned. The tailored surface engineering application of the strategy was demonstrated by the heavy metal adsorbents and superwetting materials prepared through the delicate combination of different building blocks. Our strategy was flexible in terms of diverse surface engineering design which greatly enriched the connotation of mussel-inspired technique.
Collapse
Affiliation(s)
- Hailiang Wu
- State Key Laboratory of Separation Membranes and Membrane Processes, Tiangong University, No.399, Binshui West Road, Xiqing District, Tianjin, 300387, P.R. China
- School of Textile Science and Engineering, Tiangong University, No.399, Binshui West Road, Xiqing District, Tianjin, 300387, P.R. China
| | - Qiang Sun
- State Key Laboratory of Separation Membranes and Membrane Processes, Tiangong University, No.399, Binshui West Road, Xiqing District, Tianjin, 300387, P.R. China
- School of Chemical Engineering and Technology, Tiangong University, No.399, Binshui West Road, Xiqing District, Tianjin, 300387, P.R. China
| | - Caihong Guo
- School of Chemistry and Material Science, Shanxi Normal University, No. 339, Taiyu Road, Xiaodian District, Taiyuan, Shanxi Province, 041000, P.R. China
| | - Xin Wei
- State Key Laboratory of Separation Membranes and Membrane Processes, Tiangong University, No.399, Binshui West Road, Xiqing District, Tianjin, 300387, P.R. China
- School of Textile Science and Engineering, Tiangong University, No.399, Binshui West Road, Xiqing District, Tianjin, 300387, P.R. China
| | - Junfu Wei
- Cangzhou Institute of Tiangong University, No. 13, Fengtai Industrial Park, High-tech Zone, Cangzhou, 061729, P.R. China
| | - Xiaoqing Wu
- State Key Laboratory of Separation Membranes and Membrane Processes, Tiangong University, No.399, Binshui West Road, Xiqing District, Tianjin, 300387, P.R. China
- School of Textile Science and Engineering, Tiangong University, No.399, Binshui West Road, Xiqing District, Tianjin, 300387, P.R. China
| | - Zhili Zhong
- State Key Laboratory of Separation Membranes and Membrane Processes, Tiangong University, No.399, Binshui West Road, Xiqing District, Tianjin, 300387, P.R. China
- School of Textile Science and Engineering, Tiangong University, No.399, Binshui West Road, Xiqing District, Tianjin, 300387, P.R. China
| | - Huicai Wang
- State Key Laboratory of Separation Membranes and Membrane Processes, Tiangong University, No.399, Binshui West Road, Xiqing District, Tianjin, 300387, P.R. China
- School of Chemical Engineering and Technology, Tiangong University, No.399, Binshui West Road, Xiqing District, Tianjin, 300387, P.R. China
- Cangzhou Institute of Tiangong University, No. 13, Fengtai Industrial Park, High-tech Zone, Cangzhou, 061729, P.R. China
| |
Collapse
|
8
|
Doronin IV, Zyablovsky AA, Andrianov ES, Kalmykov AS, Gritchenko AS, Khlebtsov BN, Wang SP, Kang B, Balykin VI, Melentiev PN. Quantum engineering of the radiative properties of a nanoscale mesoscopic system. NANOSCALE 2024; 16:14899-14910. [PMID: 39040019 DOI: 10.1039/d4nr01233j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/24/2024]
Abstract
Despite the recent advances in quantum technology, the problem of controlling the light emission properties of quantum emitters used in numerous applications remains: a large spectral width, low intensity, blinking, photodegradation, biocompatibility, etc. In this work, we present the theoretical and experimental investigation of quantum light sources - mesoscopic systems consisting of fluorescent molecules in a thin polydopamine layer coupled with metallic or dielectric nanoparticles. Polydopamines possess many attractive adhesive and optical properties that promise their use as host media for dye molecules. However, numerous attempts to incorporate fluorescent molecules into polydopamines have failed, as polydopamine has been shown to be a very efficient fluorescence quencher through Förster resonance energy transfer and/or photoinduced electron transfer. Using the system as an example, we demonstrate new insights into the interactions between molecules and electromagnetic fields by carefully shaping its energy levels through strong matter-wave coupling of molecules to metallic nanoparticles. We show that the strong coupling effectively suppresses the quenching of fluorescent molecules in polydopamine, opening new possibilities for imaging.
Collapse
Affiliation(s)
- I V Doronin
- Moscow Institute of Physics and Technology, Moscow, Russia
| | - A A Zyablovsky
- Moscow Institute of Physics and Technology, Moscow, Russia
- Institute for Theoretical and Applied Electromagnetics, Kotelnikov Institute of Radioengineering and Electronics of Russian Academy of Sciences, Moscow, Russia
| | - E S Andrianov
- Moscow Institute of Physics and Technology, Moscow, Russia
- Institute for Theoretical and Applied Electromagnetics, Moscow, Russia
| | - A S Kalmykov
- Institute of Spectroscopy RAS, Moscow, Troitsk 108840, Russia
| | - A S Gritchenko
- Institute of Spectroscopy RAS, Moscow, Troitsk 108840, Russia
| | - B N Khlebtsov
- Institute of Biochemistry and Physiology of Plants and Microorganisms, Saratov Scientific Centre of the Russian Academy of Sciences, Saratov, Russia
| | - S-P Wang
- State Key Laboratory of Analytical Chemistry for Life Science and Collaborative Innovation Center of Chemistry for Life Sciences, School of Chemistry and Chemical Engineering, Nanjing University, 163 Xianlin Road, Nanjing 210023, P. R. China
| | - Bin Kang
- State Key Laboratory of Analytical Chemistry for Life Science and Collaborative Innovation Center of Chemistry for Life Sciences, School of Chemistry and Chemical Engineering, Nanjing University, 163 Xianlin Road, Nanjing 210023, P. R. China
| | | | - Pavel N Melentiev
- Institute of Spectroscopy RAS, Moscow, Troitsk 108840, Russia
- National Research University, Moscow, Russia.
| |
Collapse
|
9
|
Omidian H, Wilson RL. Polydopamine Applications in Biomedicine and Environmental Science. MATERIALS (BASEL, SWITZERLAND) 2024; 17:3916. [PMID: 39203091 PMCID: PMC11355457 DOI: 10.3390/ma17163916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 07/15/2024] [Accepted: 08/05/2024] [Indexed: 09/03/2024]
Abstract
This manuscript explores the multifaceted applications of polydopamine (PDA) across various scientific and industrial domains. It covers the chemical aspects of PDA and its potential in bone tissue engineering, implant enhancements, cancer treatment, and nanotechnology. The manuscript investigates PDA's roles in tissue engineering, cell culture technologies, surface modifications, drug delivery systems, and sensing techniques. Additionally, it highlights PDA's contributions to microfabrication, nanoengineering, and environmental applications. Through detailed testing and assessment, the study identifies limitations in PDA-related research, such as synthesis complexity, incomplete mechanistic understanding, and biocompatibility variability. It also proposes future research directions aimed at improving synthesis techniques, expanding biomedical applications, and enhancing sensing technologies to optimize PDA's efficacy and scalability.
Collapse
Affiliation(s)
- Hossein Omidian
- Barry and Judy Silverman College of Pharmacy, Nova Southeastern University, Fort Lauderdale, FL 33328, USA;
| | | |
Collapse
|
10
|
Liu L, Zhao X. Preparation of environmentally responsive PDA&DOX@LAC live drug carrier for synergistic tumor therapy. Sci Rep 2024; 14:15927. [PMID: 38987493 PMCID: PMC11236969 DOI: 10.1038/s41598-024-66966-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Accepted: 07/05/2024] [Indexed: 07/12/2024] Open
Abstract
The development of intelligent, environmentally responsive and biocompatible photothermal system holds significant importance for the photothermal combined therapy of tumors. In this study, inspired by Lactobacillus (LAC), we prepared a biomimetic nanoplatform PDA&DOX@LAC for tumor photothermal-chemotherapy by integrating the chemotherapeutic drug doxorubicin (DOX) with dopamine through oxidative polymerization to form polydopamine (PDA) on the surface of LAC. The PDA&DOX@LAC nanoplatform not only achieves precise and controlled release of DOX based on the slightly acidic microenvironment of tumor tissues, but also exhibits enzyme-like properties to alleviate tumor hypoxia. Under near-infrared light irradiation, it effectively induces photothermal ablation of tumor cells, enhances cellular uptake of DOX with increasing temperature, and thus efficiently inhibits tumor cell growth. Moreover, it is further confirmed in vivo experiments that photothermal therapy combined with PDA&DOX@LAC induces tumor cells apoptosis, releases tumor-associated antigens, which is engulfed by dendritic cells to activate cytotoxic T lymphocytes, thereby effectively suppressing tumor growth and prolonging the survival period of 4T1 tumor-bearing mice. Therefore, the PDA&DOX@LAC nanoplatform holds immense potential in precise tumor targeting as well as photothermal combined therapy and provides valuable insights and theoretical foundations for the development of novel tumor treatment strategies based on endogenous substances within the body.
Collapse
Affiliation(s)
- Lu Liu
- The Affiliated Huai'an Hospital of Xuzhou Medical University and The Second People's Hospital of Huai'an, No. 62, Huaihai Road (S.), Huai'an, 223002, People's Republic of China
| | - Xuefen Zhao
- Northern Jiangsu People's Hospital, Yangzhou, 225001, People's Republic of China.
| |
Collapse
|
11
|
Wang C, Lu R, Cao X, Mu Y, Chen S. Multifunctional and bioinspired titanium surface with multilayer nanofilms for novel dental implant applications. Front Chem 2024; 12:1426865. [PMID: 39036659 PMCID: PMC11259965 DOI: 10.3389/fchem.2024.1426865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Accepted: 06/17/2024] [Indexed: 07/23/2024] Open
Abstract
Introduction: Smart multifunctional surfaces targeting intricate biological events or versatile therapeutic strategies are imminent to achieve long-term transmucosal implant success. Methods: This study used dopamine (DA), graphene oxide (GO), and type IV collagen (COL-IV) to construct multilayer nanofilms (DGCn) based on their universal adhesive and biomimetic properties to design a versatile and bioactive titanium implant. The characterization of DGCn on different titanium surfaces was performed, and its loading capacity, release profile, in situ gene delivery, and in vitro biological properties were preliminarily evaluated. Results: Our results demonstrate that hydrogenated TiO2 nanotubes (H) provide a better platform for the DGCn coating than machined Ti and air-TiO2 nanotubes. The H-DGC10 displayed the most stable surface with excellent loading capacity, sustained-release profile, and in situ gene transfection efficiency; this could be due to the high specific surface area of H and GO, as well as the functional groups in H, DA, and GO. Moreover, the H-DGC10 exhibited good biocompatibility for human oral epithelial cells and promoted the expression of integrin β4 and laminin 332, both being hemidesmosome-related proteins. Discussion: Our findings suggest that H-DGCn can be designed as a smart multifunctional interface for titanium implants to achieve long-term transmucosal implant success and aid in versatile therapeutic strategies.
Collapse
Affiliation(s)
| | | | | | | | - Su Chen
- Laboratory of Biomaterials and Biomechanics, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, Beijing Stomatological Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
12
|
Huang T, Huang S, Liu D, Zhu W, Wu Q, Chen L, Zhang X, Liu M, Wei Y. Recent advances and progress on the design, fabrication and biomedical applications of Gallium liquid metals-based functional materials. Colloids Surf B Biointerfaces 2024; 238:113888. [PMID: 38599077 DOI: 10.1016/j.colsurfb.2024.113888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Revised: 03/20/2024] [Accepted: 03/30/2024] [Indexed: 04/12/2024]
Abstract
Gallium (Ga) is a well-known liquid metals (LMs) that possesses the features, such as fluidity, low viscosity, high electrical and thermal conductivity, and relative low toxicity. Owing to the weak interactions between Ga atoms, Ga LMs can be adopted for fabrication of various Ga LMs-based functional materials via ultrasonic treatment and mechanical grinding. Moreover, many organic compounds/polymers can be coated on the surface of LMs-based materials through coordination between oxidized outlayers of Ga LMs and functional groups of organic components. Over the past decades, different strategies have been reported for synthesizing Ga LMs-based functional materials and their biomedical applications have been intensively investigated. Although some review articles have published over the past few years, a concise review is still needed to advance the latest developments in biomedical fields. The main context can be majorly divided into two parts. In the first section, various strategies for fabrication of Ga LMs-based functional materials via top-down strategies were introduced and discussed. Following that, biomedical applications of Ga LMs-based functional materials were summarized and design Ga LMs-based functional materials with enhanced performance for cancer photothermal therapy (PTT) and PTT combined therapy were highlighted. We trust this review article will be beneficial for scientists to comprehend this promising field and greatly advance future development for fabrication of other Ga LMs-based functional materials with better performance for biomedical applications.
Collapse
Affiliation(s)
- Tongsheng Huang
- Key Laboratory of Modern Preparation of TCM, Ministry of Education, Jiangxi University of Traditional Chinese Medicine, Nanchang 330004, China
| | - Shiyu Huang
- Key Laboratory of Modern Preparation of TCM, Ministry of Education, Jiangxi University of Traditional Chinese Medicine, Nanchang 330004, China
| | - Dong Liu
- Key Laboratory of Modern Preparation of TCM, Ministry of Education, Jiangxi University of Traditional Chinese Medicine, Nanchang 330004, China
| | - Weifeng Zhu
- Key Laboratory of Modern Preparation of TCM, Ministry of Education, Jiangxi University of Traditional Chinese Medicine, Nanchang 330004, China
| | - Qinghua Wu
- Key Laboratory of Modern Preparation of TCM, Ministry of Education, Jiangxi University of Traditional Chinese Medicine, Nanchang 330004, China
| | - Lihua Chen
- Key Laboratory of Modern Preparation of TCM, Ministry of Education, Jiangxi University of Traditional Chinese Medicine, Nanchang 330004, China.
| | - Xiaoyong Zhang
- Department of Chemistry, Nanchang University, 999 Xuefu Avenue, Nanchang 330031, China.
| | - Meiying Liu
- Key Laboratory of Modern Preparation of TCM, Ministry of Education, Jiangxi University of Traditional Chinese Medicine, Nanchang 330004, China.
| | - Yen Wei
- Department of Chemistry and the Tsinghua Center for Frontier Polymer Research, Tsinghua University, Beijing 100084, China
| |
Collapse
|
13
|
Yang Z, Liu H, Zhao J, Wang C, Li H, Wang X, Yang Y, Wu H, Gu Z, Li Y. UV absorption enhanced polydopamine coating. MATERIALS HORIZONS 2024; 11:2438-2448. [PMID: 38441227 DOI: 10.1039/d4mh00109e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2024]
Abstract
Mussel-inspired polydopamine (PDA) coatings have gained significant attention in various fields, including biomedicine, energy, detection, and UV protection, owing to their versatile and promising properties. Among these properties, UV shielding stands out as a key feature of PDA coatings. Nevertheless, the current methods for tuning the UV-shielding properties of PDA coatings are quite limited, and only rely on thickness adjustment, which might involve additional issues like color and visible light transmittance to the coating layer. In this study, we propose a facile and modular approach to enhance the UV absorption of PDA coatings by incorporating thiol-heterocycle (TH) derivatives. Both pre- and post-modification strategies can effectively impede the formation of conjugated structures within PDA, leading to enhanced UV absorption within the PDA layers. More importantly, these strategies can improve the UV absorption of PDA coatings while reducing the visible light absorption. Furthermore, this method enabled efficient regulation of the UV absorption of PDA coatings by altering the ring type (benzene ring or pyridine ring) and substituent on the ring (methoxyl group or hydrogen atom). These PDA coatings with enhanced UV absorption demonstrate great promise for applications in UV protection, antibacterial activity, wound healing and dye degradation.
Collapse
Affiliation(s)
- Zhen Yang
- Department of Radiology, Huaxi MR Research Center, Functional and Molecular Imaging Key Laboratory of Sichuan Province, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu 610041, China.
| | - Huijie Liu
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian 361005, China
| | - Junyi Zhao
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China.
| | - Chao Wang
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China.
| | - Haotian Li
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China.
| | - Xianheng Wang
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China.
| | - Ye Yang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian 361005, China
| | - Haoxing Wu
- Department of Radiology, Huaxi MR Research Center, Functional and Molecular Imaging Key Laboratory of Sichuan Province, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu 610041, China.
| | - Zhipeng Gu
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China.
| | - Yiwen Li
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China.
| |
Collapse
|
14
|
Guo Q, Li P, Zhang Y, Yan H, Yan Q, Su R, Su W. Polydopamine-curcumin coating of titanium for remarkable antibacterial activity via synergistic photodynamic and photothermal properties. Photochem Photobiol 2024; 100:699-711. [PMID: 37882412 DOI: 10.1111/php.13870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 10/08/2023] [Accepted: 10/10/2023] [Indexed: 10/27/2023]
Abstract
Combined photothermal therapy (PTT) and photodynamic therapy (PDT) has emerged as a novel and effective antibacterial strategy. In order to endow titanium (Ti) with antibacterial properties, the Ti-PDA-Cur composite was prepared using the excellent adhesion properties of polydopamine (PDA) to load curcumin (Cur) on the surface of Ti. The Ti-PDA-Cur coating can produce singlet oxygen (1O2) and heat under 405 + 808 nm light irradiation, which can effectively kill Staphylococcus aureus and Escherichia coli. Moreover, the cytotoxicity and hemolysis rate of Ti-PDA-Cur were low, indicating its good biocompatibility. Therefore, this study provided a new strategy for the development of new Ti implants.
Collapse
Affiliation(s)
- Qing Guo
- College of Pharmacy, Guangxi University of Chinese Medicine, Nanning, China
| | - Peiyuan Li
- College of Pharmacy, Guangxi University of Chinese Medicine, Nanning, China
| | - Ying Zhang
- College of Pharmacy, Guangxi University of Chinese Medicine, Nanning, China
| | - Hongjun Yan
- College of Pharmacy, Guangxi University of Chinese Medicine, Nanning, China
| | - Qiuyan Yan
- College of Pharmacy, Guangxi University of Chinese Medicine, Nanning, China
| | - Rixiang Su
- College of Pharmacy, Guangxi University of Chinese Medicine, Nanning, China
| | - Wei Su
- Guangxi Key Laboratory of Natural Polymer Chemistry and Physics, Nanning Normal University, Nanning, China
| |
Collapse
|
15
|
Cheng Y, Li X, Gu P, Mao R, Zou Y, Tong L, Li Z, Fan Y, Zhang X, Liang J, Sun Y. Hierarchical Scaffold with Directional Microchannels Promotes Cell Ingrowth for Bone Regeneration. Adv Healthc Mater 2024; 13:e2303600. [PMID: 38303119 DOI: 10.1002/adhm.202303600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 01/06/2024] [Indexed: 02/03/2024]
Abstract
Bone regenerative scaffolds with a bionic natural bone hierarchical porous structure provide a suitable microenvironment for cell migration and proliferation. Here, a bionic scaffold (DP-PLGA/HAp) with directional microchannels is prepared by combining 3D printing and directional freezing technology. The 3D printed framework provides structural support for new bone tissue growth, while the directional pore embedded in the scaffolds provides an express lane for cell migration and nutrition transport, facilitating cell growth and differentiation. The hierarchical porous scaffolds achieve rapid infiltration and adhesion of bone marrow mesenchymal stem cells (BMSCs) and improve the expression of osteogenesis-related genes. The rabbit cranial defect experiment presents significant new bone formation, demonstrating that DP-PLGA/HAp offers an effective means to guide cranial bone regeneration. The combination of 3D printing and directional freezing technology might be a promising strategy for developing bone regenerative biomaterials.
Collapse
Affiliation(s)
- Yaling Cheng
- National Engineering Research Center for Biomaterials, Sichuan University, 29# Wangjiang Road, Chengdu, 610064, China
| | - Xing Li
- National Engineering Research Center for Biomaterials, Sichuan University, 29# Wangjiang Road, Chengdu, 610064, China
| | - Peiyang Gu
- National Engineering Research Center for Biomaterials, Sichuan University, 29# Wangjiang Road, Chengdu, 610064, China
| | - Ruiqi Mao
- College of Materials Science and Engineering, Sichuan University, 29# Wangjiang Road, Chengdu, 610064, China
| | - Yaping Zou
- National Engineering Research Center for Biomaterials, Sichuan University, 29# Wangjiang Road, Chengdu, 610064, China
| | - Lei Tong
- National Engineering Research Center for Biomaterials, Sichuan University, 29# Wangjiang Road, Chengdu, 610064, China
| | - Zhulian Li
- National Engineering Research Center for Biomaterials, Sichuan University, 29# Wangjiang Road, Chengdu, 610064, China
| | - Yujiang Fan
- National Engineering Research Center for Biomaterials, Sichuan University, 29# Wangjiang Road, Chengdu, 610064, China
| | - Xingdong Zhang
- National Engineering Research Center for Biomaterials, Sichuan University, 29# Wangjiang Road, Chengdu, 610064, China
| | - Jie Liang
- National Engineering Research Center for Biomaterials, Sichuan University, 29# Wangjiang Road, Chengdu, 610064, China
- Sichuan Testing Center for Biomaterials and Medical Devices, Sichuan University, 29# Wangjiang Road, Chengdu, 610064, China
| | - Yong Sun
- National Engineering Research Center for Biomaterials, Sichuan University, 29# Wangjiang Road, Chengdu, 610064, China
| |
Collapse
|
16
|
Zhu Y, Sun Y, Shi Y, Ding Y, Liu C, Yang F, Chen F, Cao Y, Qin J. Construction of "Coral" SERS sensor for ultrasensitive and rapid detection of harmful component macrophage migration inhibitory factor in Platelet-rich Plasma. Biosens Bioelectron 2023; 242:115718. [PMID: 37801837 DOI: 10.1016/j.bios.2023.115718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 09/28/2023] [Indexed: 10/08/2023]
Abstract
Macrophage migration inhibitory factor (MIF) is a pro-inflammatory factor produced by residual red blood cell lysis, which can significantly influence the curative effect of Platelet-rich plasma (PRP) therapy used for osteoarthritis (OA) treatment. In this study, we proposed a novel approach for detecting the concentration of MIF in PRP using a dopamine-coated antibody-Au (core)-Ag (shell)-SERS sensor, which enables ultrasensitive and rapid detection of MIF. The best experimental conditions have a detection limit of only 90.05 pg/mL and a good linear relationship between 1-5000 ng/mL. In 40 PRP samples collected from actual clinical patients, we detected MIF concentrations ranging from 2.0-3.6 ng/mL. This indicated that the Coral SERS sensor not only allows for results highly consistent with the traditional ELISA method, but also costs less ($0.40-$0.70), needs shorter testing time (integration time is only 10s), and consumes less PRP that can greatly improve the sample quality and maximize the curative effect in clinical applications for OA treatment with PRP.
Collapse
Affiliation(s)
- Yiran Zhu
- Department of Orthopedics, Sir Run Run Hospital, Nanjing Medical University, Nanjing, PR China
| | - Yang Sun
- Department of Forensic Medicine, Nanjing Medical University, Nanjing, PR China
| | - Yang Shi
- School of Pharmacy, Nanjing Medical University, Nanjing, PR China
| | - Yan Ding
- Department of Forensic Medicine, Nanjing Medical University, Nanjing, PR China
| | - Cheng Liu
- Department of Forensic Medicine, Nanjing Medical University, Nanjing, PR China
| | - Fei Yang
- Department of Orthopedics, Sir Run Run Hospital, Nanjing Medical University, Nanjing, PR China
| | - Feng Chen
- Department of Forensic Medicine, Nanjing Medical University, Nanjing, PR China.
| | - Yue Cao
- Department of Forensic Medicine, Nanjing Medical University, Nanjing, PR China.
| | - Jian Qin
- Department of Orthopedics, Sir Run Run Hospital, Nanjing Medical University, Nanjing, PR China.
| |
Collapse
|
17
|
Tan L, Ye Z, Zhuang W, Mao B, Li H, Li X, Wu J, Sang H. 3D printed PLGA/MgO/PDA composite scaffold by low-temperature deposition manufacturing for bone tissue engineering applications. Regen Ther 2023; 24:617-629. [PMID: 38034857 PMCID: PMC10681881 DOI: 10.1016/j.reth.2023.09.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 09/06/2023] [Accepted: 09/28/2023] [Indexed: 12/02/2023] Open
Abstract
Introduction Bones are easily damaged. Biomimetic scaffolds are involved in tissue engineering. This study explored polydopamine (PDA)-coated poly lactic-co-glycolic acid (PLGA)-magnesium oxide (MgO) scaffold properties and its effects on bone marrow mesenchymal stem cells (BMSCs) osteogenic differentiation. Methods PLGA/MgO scaffolds were prepared by low-temperature 3D printing technology and PDA coatings were prepared by immersion method. Scaffold structure was observed by scanning electron microscopy with an energy dispersive spectrometer (SEM-EDS), fourier transform infrared spectrometer (FTIR). Scaffold hydrophilicity, compressive/elastic modulus, and degradation rates were analyzed by water contact angle measurement, mechanical tests, and simulated-body fluid immersion. Rat BMSCs were cultured in scaffold extract. Cell activity on days 1, 3, and 7 was detected by MTT. Cells were induced by osteogenic differentiation, followed by evaluation of alkaline phosphatase (ALP) activity on days 3, 7, and 14 of induction and Osteocalcin, Osteocalcin, and Collagen I expressions. Results The prepared PLGA/MgO scaffolds had dense microparticles. With the increase of MgO contents, the hydrophilicity was enhanced, scaffold degradation rate was accelerated, magnesium ion release rate and scaffold extract pH value were increased, and cytotoxicity was less when magnesium mass ratio was less than 10%. Compared with other scaffolds, compressive and elastic modulus of PLGA/MgO (10%) scaffolds were increased; BMSCs incubated with PLGA/MgO (10%) scaffold extract had higher ALP activity and Osteocalcin, Osteopontin, and Collagen I expressions. PDA coating was prepared in PLGA/MgO (10%) scaffolds and the mechanical properties were not affected. PLGA/MgO (10%)/PDA scaffolds had better hydrophilicity and biocompatibility and promoted BMSC osteogenic differentiation. Conclusion Low-temperature 3D printing PLGA/MgO (10%)/PDA scaffolds had good hydrophilicity and biocompatibility, and were conducive to BMSC osteogenic differentiation.
Collapse
Affiliation(s)
- Liang Tan
- Department of Orthopedics, Shenzhen Hospital, Southern Medical University, 1333 Xinhu Road, Shenzhen, Guangdong, 518000, PR China
- The Third School of Clinical Medicine, Southern Medical University, Guangzhou, China
| | - Zhuofeng Ye
- Department of Orthopedics, Jiangmen Central Hospital, Jiangmen, China
| | - Weida Zhuang
- Department of Orthopedics, Shenzhen Hospital, Southern Medical University, 1333 Xinhu Road, Shenzhen, Guangdong, 518000, PR China
- The Third School of Clinical Medicine, Southern Medical University, Guangzhou, China
| | - Beini Mao
- Department of Orthopedics, Shenzhen Hospital, Southern Medical University, 1333 Xinhu Road, Shenzhen, Guangdong, 518000, PR China
| | - Hetong Li
- Department of Orthopedics, Shenzhen Hospital, Southern Medical University, 1333 Xinhu Road, Shenzhen, Guangdong, 518000, PR China
| | - Xiuwang Li
- Department of Orthopedics, Shenzhen Hospital, Southern Medical University, 1333 Xinhu Road, Shenzhen, Guangdong, 518000, PR China
- The Third School of Clinical Medicine, Southern Medical University, Guangzhou, China
| | - Jiachang Wu
- Department of Orthopedics, Shenzhen Hospital, Southern Medical University, 1333 Xinhu Road, Shenzhen, Guangdong, 518000, PR China
- The Third School of Clinical Medicine, Southern Medical University, Guangzhou, China
| | - Hongxun Sang
- Department of Orthopedics, Shenzhen Hospital, Southern Medical University, 1333 Xinhu Road, Shenzhen, Guangdong, 518000, PR China
- The Third School of Clinical Medicine, Southern Medical University, Guangzhou, China
| |
Collapse
|
18
|
Wang M, Huang Q, Liu M, Zhao T, Song X, Chen Q, Yang Y, Nan Y, Liu Z, Zhang Y, Wu W, Ai K. Precisely Inhibiting Excessive Intestinal Epithelial Cell Apoptosis to Efficiently Treat Inflammatory Bowel Disease with Oral Pifithrin-α Embedded Nanomedicine (OPEN). ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2309370. [PMID: 37747308 DOI: 10.1002/adma.202309370] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 09/22/2023] [Indexed: 09/26/2023]
Abstract
The increased incidence of inflammatory bowel disease (IBD) has seriously affected the life quality of patients. IBD develops due to excessive intestinal epithelial cell (IEC) apoptosis, disrupting the gut barrier, colonizing harmful bacteria, and initiating persistent inflammation. The current therapeutic approaches that reduce inflammation are limited. Although IBD can be treated significantly by directly preventing IEC apoptosis, achieving this therapeutic approach remains challenging. Accordingly, the authors are the first to develop an oral pifithrin-α (PFTα, a highly specific p53 inhibitor) embedded nanomedicine (OPEN) to effectively treat IBD by inhibiting excessive IEC apoptosis. As a major hub for various stressors, p53 is a central determinant of cell fate, and its inhibition can effectively reduce excessive IEC apoptosis. The tailored OPEN can precisely inhibit the off-target and inactivation resulting from PFTα entry into the bloodstream. Subsequently, it persistently targets IBD lesions with high specificity to inhibit the pathological events caused by excessive IEC apoptosis. Eventually, OPEN exerts a significant curative effect compared with the clinical first-line drugs 5-aminosalicylic acid (5-ASA) and dexamethasone (DEX). Consequently, the OPEN therapeutic strategy provides new insights into comprehensive IBD therapy.
Collapse
Affiliation(s)
- Mingyuan Wang
- Department of Geriatric Surgery, Xiangya Hospital, Central South University, Changsha, 410078, China
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410078, China
- Department of General Surgery, Xiangya Hospital, Central South University, Changsha, 410078, China
| | - Qiong Huang
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410078, China
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, 410078, China
| | - Min Liu
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410008, China
- Hunan Provincial Key Laboratory of Cardiovascular Research, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410008, China
| | - Tianjiao Zhao
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410008, China
- Hunan Provincial Key Laboratory of Cardiovascular Research, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410008, China
| | - Xiangping Song
- Department of Geriatric Surgery, Xiangya Hospital, Central South University, Changsha, 410078, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410078, China
- Department of General Surgery, Xiangya Hospital, Central South University, Changsha, 410078, China
| | - Qiaohui Chen
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410008, China
- Hunan Provincial Key Laboratory of Cardiovascular Research, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410008, China
| | - Yongqi Yang
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410008, China
- Hunan Provincial Key Laboratory of Cardiovascular Research, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410008, China
| | - Yayun Nan
- Geriatric Medical Center, People's Hospital of Ningxia Hui Autonomous Region, Yinchuan, Ningxia, 750002, China
| | - Zerun Liu
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410078, China
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, 410078, China
| | - Yuntao Zhang
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410078, China
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, 410078, China
| | - Wei Wu
- Department of Geriatric Surgery, Xiangya Hospital, Central South University, Changsha, 410078, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410078, China
- Department of General Surgery, Xiangya Hospital, Central South University, Changsha, 410078, China
| | - Kelong Ai
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410008, China
- Hunan Provincial Key Laboratory of Cardiovascular Research, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410008, China
- Key Laboratory of Aging-related Bone and Joint Diseases Prevention and Treatment, Ministry of Education, Xiangya Hospital, Central South University, Changsha, 410008, China
| |
Collapse
|
19
|
Tavasolyzadeh Z, Tang P, Hahn MB, Hweidi G, Nordholt N, Haag R, Sturm H, Topolniak I. 2D and 3D Micropatterning of Mussel-Inspired Functional Materials by Direct Laser Writing. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023:e2309394. [PMID: 37968829 DOI: 10.1002/smll.202309394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Indexed: 11/17/2023]
Abstract
This work addresses the critical need for multifunctional materials and substrate-independent high-precision surface modification techniques that are essential for advancing microdevices and sensing elements. To overcome existing limitations, the versatility of mussel-inspired materials (MIMs) is combined with state-of-the-art multiphoton direct laser writing (DLW) microfabrication. In this way, 2D and 3D MIM microstructures of complex designs are demonstrated with sub-micron to micron resolution and extensive post-functionalization capabilities. This study includes polydopamine (PDA), mussel-inspired linear, and dendritic polyglycerols (MI-lPG and MI-dPG), allowing their direct microstructure on the substrate of choice with the option to tailor the patterned topography and morphology in a controllable manner. The functionality potential of MIMs is demonstrated by successfully immobilizing and detecting single-stranded DNA on MIM micropattern and nanoarray surfaces. In addition, easy modification of MIM microstructure with silver nanoparticles without the need of any reducing agent is shown. The methodology developed here enables the integration of MIMs in advanced applications where precise surface functionalization is essential.
Collapse
Affiliation(s)
- Zeynab Tavasolyzadeh
- BAM Bundesanstalt für Materialforschung und -prüfung, Unter den Eichen 87, 12205, Berlin, Germany
| | - Peng Tang
- Institut für Chemie und Biochemie, Freie Universität Berlin, Takustrasse 3, 14195, Berlin, Germany
| | - Marc Benjamin Hahn
- BAM Bundesanstalt für Materialforschung und -prüfung, Unter den Eichen 87, 12205, Berlin, Germany
| | - Gada Hweidi
- BAM Bundesanstalt für Materialforschung und -prüfung, Unter den Eichen 87, 12205, Berlin, Germany
| | - Niclas Nordholt
- BAM Bundesanstalt für Materialforschung und -prüfung, Unter den Eichen 87, 12205, Berlin, Germany
| | - Rainer Haag
- Institut für Chemie und Biochemie, Freie Universität Berlin, Takustrasse 3, 14195, Berlin, Germany
| | - Heinz Sturm
- BAM Bundesanstalt für Materialforschung und -prüfung, Unter den Eichen 87, 12205, Berlin, Germany
- TU Berlin, IWF, Pascalstr. 8-9, 10587, Berlin, Germany
| | - Ievgeniia Topolniak
- BAM Bundesanstalt für Materialforschung und -prüfung, Unter den Eichen 87, 12205, Berlin, Germany
| |
Collapse
|
20
|
Bi S, Lin H, Zhu K, Zhu Z, Zhang W, Yang X, Chen S, Zhao J, Liu M, Pan P, Liang G. Chitosan-salvianolic acid B coating on the surface of nickel-titanium alloy inhibits proliferation of smooth muscle cells and promote endothelialization. Front Bioeng Biotechnol 2023; 11:1300336. [PMID: 38026871 PMCID: PMC10679528 DOI: 10.3389/fbioe.2023.1300336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Accepted: 11/01/2023] [Indexed: 12/01/2023] Open
Abstract
Introduction: Intracranial stents are of paramount importance in managing cerebrovascular disorders. Nevertheless, the currently employed drug-eluting stents, although effective in decreasing in-stent restenosis, might impede the re-endothelialization process within blood vessels, potentially leading to prolonged thrombosis development and restenosis over time. Methods: This study aims to construct a multifunctional bioactive coating to enhance the biocompatibility of the stents. Salvianolic acid B (SALB), a bioactive compound extracted from Salvia miltiorrhiza, exhibits potential for improving cardiovascular health. We utilized dopamine as the base and adhered chitosan-coated SALB microspheres onto nickel-titanium alloy flat plates, resulting in a multifunctional drug coating. Results: By encapsulating SALB within chitosan, the release period of SALB was effectively prolonged, as evidenced by the in vitro drug release curve showing sustained release over 28 days. The interaction between the drug coating and blood was examined through experiments on water contact angle, clotting time, and protein adsorption. Cellular experiments showed that the drug coating stimulates the proliferation, adhesion, and migration of human umbilical vein endothelial cells. Discussion: These findings indicate its potential to promote re-endothelialization. In addition, the bioactive coating effectively suppressed smooth muscle cells proliferation, adhesion, and migration, potentially reducing the occurrence of neointimal hyperplasia and restenosis. These findings emphasize the exceptional biocompatibility of the newly developed bioactive coating and demonstrate its potential clinical application as an innovative strategy to improve stent therapy efficacy. Thus, this coating holds great promise for the treatment of cerebrovascular disease.
Collapse
Affiliation(s)
- Shijun Bi
- Department of Neurosurgery, General Hospital of Northern Theater Command, Shenyang, China
- Graduate School, Dalian Medical University, Dalian, China
| | - Hao Lin
- Institute of Metal Research, Chinese Academy of Sciences, Shenyang, China
| | - Kunyuan Zhu
- Department of Neurosurgery, General Hospital of Northern Theater Command, Shenyang, China
- Graduate School, China Medical University, Shenyang, China
| | - Zechao Zhu
- Department of Neurosurgery, General Hospital of Northern Theater Command, Shenyang, China
| | - Wenxu Zhang
- Department of Neurosurgery, General Hospital of Northern Theater Command, Shenyang, China
| | - Xinyu Yang
- Department of Neurosurgery, General Hospital of Northern Theater Command, Shenyang, China
| | - Shanshan Chen
- Institute of Metal Research, Chinese Academy of Sciences, Shenyang, China
| | - Jing Zhao
- Institute of Metal Research, Chinese Academy of Sciences, Shenyang, China
| | - Meixia Liu
- Institute of Metal Research, Chinese Academy of Sciences, Shenyang, China
| | - Pengyu Pan
- Department of Neurosurgery, General Hospital of Northern Theater Command, Shenyang, China
| | - Guobiao Liang
- Department of Neurosurgery, General Hospital of Northern Theater Command, Shenyang, China
| |
Collapse
|
21
|
Zhang J, Neupane N, Dahal PR, Rahimi S, Cao Z, Pandit S, Mijakovic I. Antibiotic-Loaded Boron Nitride Nanoconjugate with Strong Performance against Planktonic Bacteria and Biofilms. ACS APPLIED BIO MATERIALS 2023; 6:3131-3142. [PMID: 37473743 PMCID: PMC10445265 DOI: 10.1021/acsabm.3c00247] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 07/10/2023] [Indexed: 07/22/2023]
Abstract
Protecting surfaces from biofilm formation presents a significant challenge in the biomedical field. The utilization of antimicrobial component-conjugated nanoparticles is becoming an attractive strategy against infectious biofilms. Boron nitride (BN) nanomaterials have a unique biomedical application value due to their excellent biocompatibility. Here, we developed antibiotic-loaded BN nanoconjugates to combat bacterial biofilms. Antibiofilm testing included two types of pathogens, Staphylococcus aureus and Escherichia coli. Gentamicin was loaded on polydopamine-modified BN nanoparticles (GPBN) to construct a nanoconjugate, which was very effective in killing E. coli and S. aureus planktonic cells. GPBN exhibited equally strong capacity for biofilm destruction, tested on preformed biofilms. A 24 h treatment with the nanoconjugate reduced cell viability by more than 90%. Our results suggest that GPBN adheres to the surface of the biofilm, penetrates inside the biofilm matrix, and finally deactivates the cells. Interestingly, the GPBN coatings also strongly inhibited the formation of bacterial biofilms. Based on these results, we suggest that GPBN could serve as an effective means for treating biofilm-associated infections and as coatings for biofilm prevention.
Collapse
Affiliation(s)
- Jian Zhang
- Systems
and Synthetic Biology Division, Department of Life Sciences, Chalmers University of Technology, SE-412 96 Gothenburg, Sweden
| | - Nisha Neupane
- Systems
and Synthetic Biology Division, Department of Life Sciences, Chalmers University of Technology, SE-412 96 Gothenburg, Sweden
- Department
of Microbiology, Tri-Chandra Multiple College, Tribhuvan University, 44600 Kathmandu, Nepal
| | - Puspa Raj Dahal
- Department
of Microbiology, Tri-Chandra Multiple College, Tribhuvan University, 44600 Kathmandu, Nepal
| | - Shadi Rahimi
- Systems
and Synthetic Biology Division, Department of Life Sciences, Chalmers University of Technology, SE-412 96 Gothenburg, Sweden
| | - Zhejian Cao
- Systems
and Synthetic Biology Division, Department of Life Sciences, Chalmers University of Technology, SE-412 96 Gothenburg, Sweden
| | - Santosh Pandit
- Systems
and Synthetic Biology Division, Department of Life Sciences, Chalmers University of Technology, SE-412 96 Gothenburg, Sweden
| | - Ivan Mijakovic
- Systems
and Synthetic Biology Division, Department of Life Sciences, Chalmers University of Technology, SE-412 96 Gothenburg, Sweden
- The
Novo Nordisk Foundation, Center for Biosustainability, Technical University of Denmark, DK-2800 Kogens Lyngby, Denmark
| |
Collapse
|
22
|
Zhang Z, Shao J, Gao Y, Li Y, Liu T, Yang M. Research progress and future prospects of antimicrobial modified polyetheretherketone (PEEK) for the treatment of bone infections. Front Bioeng Biotechnol 2023; 11:1244184. [PMID: 37600311 PMCID: PMC10436002 DOI: 10.3389/fbioe.2023.1244184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Accepted: 07/17/2023] [Indexed: 08/22/2023] Open
Abstract
Infection of the bone is a difficult problem in orthopedic diseases. The key and basis of the treatment of bone infection is the effective control of local infection, as well as the elimination of infection focus and dead cavities. The most commonly used approach utilized for the prevention and management of bone infection is the application of antibiotic bone cement. However, the incorporation of antibiotics into the cement matrix has been found to considerably compromise the mechanical characteristics of bone cement. Moreover, some investigations have indicated that the antibiotic release rate of antibiotic bone cement is relatively low. Polyetheretherketone (PEEK) and its composites have been considered to perfectly address the challenges above, according to its favorable biomechanical characteristics and diverse surface functionalizations. This article provides a comprehensive overview of the recent advancements in the antimicrobial modification of PEEK composites in the field of antibacterial therapy of bone infection. Furthermore, the potential application of PEEK-modified materials in clinical treatment was discussed and predicted.
Collapse
Affiliation(s)
- Ziyi Zhang
- Department of Orthopedics, China-Japan Union Hospital of Jilin University, Changchun, Jilin, China
| | - Junxing Shao
- Department of Orthopedics, China-Japan Union Hospital of Jilin University, Changchun, Jilin, China
| | - Yu Gao
- Department of Orthopedics, China-Japan Union Hospital of Jilin University, Changchun, Jilin, China
| | - Yuhuan Li
- Department of Orthopedics, China-Japan Union Hospital of Jilin University, Changchun, Jilin, China
| | - Te Liu
- Scientific Research Center, China-Japan Union Hospital of Jilin University, Changchun, Jilin, China
| | - Modi Yang
- Department of Orthopedics, China-Japan Union Hospital of Jilin University, Changchun, Jilin, China
| |
Collapse
|
23
|
Lu H, Niu L, Yu L, Jin K, Zhang J, Liu J, Zhu X, Wu Y, Zhang Y. Cancer phototherapy with nano-bacteria biohybrids. J Control Release 2023; 360:133-148. [PMID: 37315693 DOI: 10.1016/j.jconrel.2023.06.009] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 05/24/2023] [Accepted: 06/03/2023] [Indexed: 06/16/2023]
Abstract
The utilization of light for therapeutic interventions, also known as phototherapy, has been extensively employed in the treatment of a wide range of illnesses, including cancer. Despite the benefits of its non-invasive nature, phototherapy still faces challenges pertaining to the delivery of phototherapeutic agents, phototoxicity, and light delivery. The incorporation of nanomaterials and bacteria in phototherapy has emerged as a promising approach that leverages the unique properties of each component. The resulting nano-bacteria biohybrids exhibit enhanced therapeutic efficacy when compared to either component individually. In this review, we summarize and discuss the various strategies for assembling nano-bacteria biohybrids and their applications in phototherapy. We provide a comprehensive overview of the properties and functionalities of nanomaterials and cells in the biohybrids. Notably, we highlight the roles of bacteria beyond their function as drug vehicles, particularly their capacity to produce bioactive molecules. Despite being in its early stage, the integration of photoelectric nanomaterials and genetically engineered bacteria holds promise as an effective biosystem for antitumor phototherapy. The utilization of nano-bacteria biohybrids in phototherapy is a promising avenue for future investigation, with the potential to enhance treatment outcomes for cancer patients.
Collapse
Affiliation(s)
- Hongfei Lu
- Department of Chemical and Environmental Engineering, Shanghai University, Shanghai 200433, China
| | - Luqi Niu
- Department of Chemical and Environmental Engineering, Shanghai University, Shanghai 200433, China
| | - Lin Yu
- School of Medicine, Shanghai University, Shanghai 200433, China
| | - Kai Jin
- Department of Chemical and Environmental Engineering, Shanghai University, Shanghai 200433, China
| | - Jing Zhang
- Department of Chemical and Environmental Engineering, Shanghai University, Shanghai 200433, China
| | - Jinliang Liu
- Department of Chemical and Environmental Engineering, Shanghai University, Shanghai 200433, China
| | - Xiaohui Zhu
- Department of Chemical and Environmental Engineering, Shanghai University, Shanghai 200433, China
| | - Yihan Wu
- Department of Chemical and Environmental Engineering, Shanghai University, Shanghai 200433, China.
| | - Yong Zhang
- Department of Biomedical Engineering, National University of Singapore, 119077, Singapore; National University of Singapore Research Institute, Suzhou 215123, Jiangsu, China.
| |
Collapse
|
24
|
Rocha JF, Hasimoto LH, Santhiago M. Recent progress and future perspectives of polydopamine nanofilms toward functional electrochemical sensors. Anal Bioanal Chem 2023; 415:3799-3816. [PMID: 36645457 PMCID: PMC9841946 DOI: 10.1007/s00216-023-04522-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 12/23/2022] [Accepted: 01/04/2023] [Indexed: 01/17/2023]
Abstract
Since its discovery in 2007, polydopamine nanofilms have been widely used in many areas for surface functionalization. The simple and low-cost preparation method of the nanofilms with tunable thickness can incorporate amine and oxygen-rich chemical groups in virtually any interface. The remarkable advantages of this route have been successfully used in the field of electrochemical sensors. The self-adhesive properties of polydopamine are used to attach nanomaterials onto the electrode's surface and add chemical groups that can be explored to immobilize recognizing species for the development of biosensors. Thus, the combination of 2D materials, nanoparticles, and other materials with polydopamine has been successfully demonstrated to improve the selectivity and sensitivity of electrochemical sensors. In this review, we highlight some interesting properties of polydopamine and some applications where polydopamine plays an important role in the field of electrochemical sensors.
Collapse
Affiliation(s)
- Jaqueline F Rocha
- Brazilian Nanotechnology National Laboratory, Brazilian Center for Research in Energy and Materials, Campinas, São Paulo, 13083-970, Brazil
- Federal University of ABC, Santo André, São Paulo, 09210-580, Brazil
| | - Leonardo H Hasimoto
- Brazilian Nanotechnology National Laboratory, Brazilian Center for Research in Energy and Materials, Campinas, São Paulo, 13083-970, Brazil
- Federal University of ABC, Santo André, São Paulo, 09210-580, Brazil
| | - Murilo Santhiago
- Brazilian Nanotechnology National Laboratory, Brazilian Center for Research in Energy and Materials, Campinas, São Paulo, 13083-970, Brazil.
- Federal University of ABC, Santo André, São Paulo, 09210-580, Brazil.
| |
Collapse
|
25
|
Buhazi IM, Grosu IG, Filip X, Petran A, Tripon SC, Floare CG, Suciu M. Polydopamine conjugated SiO 2 nanoparticles as potential drug carriers for melanoma treatment. Ther Deliv 2023; 14:157-173. [PMID: 37158273 DOI: 10.4155/tde-2023-0010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/10/2023] Open
Abstract
Silica nanoparticles (SiO2) are increasingly investigated for biomedical applications. Aim: This study aimed to analyze the potential use of a SiO2 nanoparticles coated with biocompatible polydopamine (SiO2@PDA) as a potential chemotherapeutic drug carrier. Materials & methods: SiO2 morphology and PDA adhesion was analyzed by dynamic light scattering, electron microscopy and nuclear magnetic resonance. Cytotoxicity studies and morphology analyses (immunofluorescence, scanning and transmission electron microscopy) were used to assess the cellular reaction to the SiO2@PDA nanoparticles and to identify a biocompatible (safe use) window. Results & conclusion: Concentrations above 10 μg/ml and up to 100 μg/ml SiO2@PDA showed the best biocompatibility on human melanoma cells at 24 h and represent a potential drug carrier template for targeted melanoma cancer treatment.
Collapse
Affiliation(s)
- Ioana Mădălina Buhazi
- Electron Microscopy Center "C. Crăciun", Biology & Geology Faculty, Babeș-Bolyai University, Cluj-Napoca, 5-7 Clinicilor str., 400006, Romania
| | - Ioana-Georgeta Grosu
- Molecular & Biomolecular Physics Department, National Institute for R&D for Isotopic & Molecular Technologies (INCDTIM), Cluj-Napoca, 67-103 Donath str., 400293, Romania
| | - Xenia Filip
- Molecular & Biomolecular Physics Department, National Institute for R&D for Isotopic & Molecular Technologies (INCDTIM), Cluj-Napoca, 67-103 Donath str., 400293, Romania
| | - Anca Petran
- Physics of Nanostructured Systems, National Institute for R&D for Isotopic & Molecular Technologies (INCDTIM), Cluj-Napoca, 67-103 Donath str., 400293, Romania
| | - Septimiu Cassian Tripon
- Electron Microscopy Center "C. Crăciun", Biology & Geology Faculty, Babeș-Bolyai University, Cluj-Napoca, 5-7 Clinicilor str., 400006, Romania
- LIME-CETATEA, National Institute for R&D for Isotopic & Molecular Technologies (INCDTIM), Cluj-Napoca, 67-103 Donath str., 400293, Romania
| | - Călin Gabriel Floare
- Molecular & Biomolecular Physics Department, National Institute for R&D for Isotopic & Molecular Technologies (INCDTIM), Cluj-Napoca, 67-103 Donath str., 400293, Romania
| | - Maria Suciu
- Electron Microscopy Center "C. Crăciun", Biology & Geology Faculty, Babeș-Bolyai University, Cluj-Napoca, 5-7 Clinicilor str., 400006, Romania
- LIME-CETATEA, National Institute for R&D for Isotopic & Molecular Technologies (INCDTIM), Cluj-Napoca, 67-103 Donath str., 400293, Romania
| |
Collapse
|
26
|
Liu F, Lin J, Luo Y, Xie D, Bian J, Liu X, Yue J. Sialic acid-targeting multi-functionalized silicon quantum dots for synergistic photodynamic and photothermal cancer therapy. Biomater Sci 2023; 11:4009-4021. [PMID: 37129163 DOI: 10.1039/d3bm00339f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
To explore the potential of silicon quantum dots (SiQDs) in combined photodynamic therapy (PDT) and photothermal therapy (PTT), we engineered the surface of SiQDs with the photosensitizer Ce6 and the tumor-cell-targeting ligand phenylboronic acid (PBA) via polydopamine-mediated chemistry. Upon irradiation with light of specific wavelengths, SiQDs@Ce6/PBA could generate high levels of reactive oxygen species (ROS) and trigger effective photo-to-thermal conversion. PBA-conjugation could not only increase the cellular uptake and transcellular transport capability of nanoparticles, but also enhance their tumor accumulation. In the presence of a 635 nm laser, SiQDs@Ce6/PBA was able to trigger intracellular ROS production, which further altered the mitochondrial membrane potential and promoted apoptosis of tumor cells. Finally, combined PDT/PTT treatments led to synergistically enhanced cancer cell killing and tumor-growth inhibition effects. This study demonstrates the surface engineering of silicon quantum dots for synergistic PDT/PTT cancer therapy.
Collapse
Affiliation(s)
- Fei Liu
- School of Biomedical Engineering, Shenzhen Campus of Sun Yat-sen University, Shenzhen, Guangdong 518107, P. R. China.
| | - Jiayi Lin
- School of Biomedical Engineering, Shenzhen Campus of Sun Yat-sen University, Shenzhen, Guangdong 518107, P. R. China.
| | - Yao Luo
- School of Biomedical Engineering, Shenzhen Campus of Sun Yat-sen University, Shenzhen, Guangdong 518107, P. R. China.
| | - Donglin Xie
- School of Biomedical Engineering, Shenzhen Campus of Sun Yat-sen University, Shenzhen, Guangdong 518107, P. R. China.
| | - Jiang Bian
- School of Biomedical Engineering, Shenzhen Campus of Sun Yat-sen University, Shenzhen, Guangdong 518107, P. R. China.
| | - Xiaobo Liu
- School of Biomedical Engineering, Shenzhen Campus of Sun Yat-sen University, Shenzhen, Guangdong 518107, P. R. China.
| | - Jun Yue
- School of Biomedical Engineering, Shenzhen Campus of Sun Yat-sen University, Shenzhen, Guangdong 518107, P. R. China.
| |
Collapse
|
27
|
Lei N, Peng X, Hu M, Wan C, Yu X. Research on essential performance of oxidized chitosan-crosslinked acellular porcine aorta modified with bioactive SCPP/DOPA for esophageal scaffold with enhanced mechanical strength, biocompatibility and anti-inflammatory. Int J Biol Macromol 2023; 241:124522. [PMID: 37100332 DOI: 10.1016/j.ijbiomac.2023.124522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 04/06/2023] [Accepted: 04/15/2023] [Indexed: 04/28/2023]
Abstract
Acellular porcine aorta (APA) is an excellent candidate for an implanted scaffold but needs to be modified with appropriate cross-linking agent to increase its mechanical property and storage time in vitro as well as to give itself some bioactivities and eliminate its antigenicity for acting as a novel esophageal prosthesis. In this paper, a polysaccharide crosslinker (oxidized chitosan, OCS) was prepared by oxidizing chitosan using NaIO4 and further used to fix APA to prepare a novel esophageal prosthesis (scaffold). And then the surface modification with dopamine (DOPA) and strontium-doped calcium polyphosphate (SCPP) were performed one after another to prepare DOPA/OCS-APA and SCPP-DOPA/OCS-APA to improve the biocompatibility and inhibit inflammation of the scaffolds. The results showed that the OCS with a feeding ratio of 1.5:1.0 and a reaction time of 24 h had a suitable molecular weight and oxidation degree, almost no cytotoxicity and good cross-linking effect. Compared with glutaraldehyde (GA) and genipin (GP), OCS-fixed APA could provide a more suitable microenvironment for cell proliferation. The vital cross-linking characteristics and cytocompatibility of SCPP-DOPA/OCS-APA were evaluated. Results suggested that SCPP-DOPA/OCS-APA exhibited suitable mechanical properties, excellent resistance to enzymatic degradation/acid degradation, suitable hydrophilicity, and the ability to promote the proliferation of Human normal esophageal epithelial cells (HEECs) and inhibit inflammation in vitro. In vivo tests also confirmed that SCPP-DOPA/OCS-APA could diminish the immunological response to samples and had a positive impact on bioactivity and anti-inflammatory. In conclusion, SCPP-DOPA/OCS-APA could act as an effective, bioactive artificial esophageal scaffold and be expected to be used for clinical in the future.
Collapse
Affiliation(s)
- Ningning Lei
- College of Polymer Science and Engineering, Sichuan University, Chengdu 610065, PR China
| | - Xu Peng
- Experimental and Research Animal Institute, Sichuan University, Chengdu 610065, PR China
| | - Mengyue Hu
- College of Polymer Science and Engineering, Sichuan University, Chengdu 610065, PR China
| | - Chang Wan
- College of Polymer Science and Engineering, Sichuan University, Chengdu 610065, PR China
| | - Xixun Yu
- College of Polymer Science and Engineering, Sichuan University, Chengdu 610065, PR China.
| |
Collapse
|
28
|
Petran A, Filip C, Bogdan D, Zimmerer C, Beck S, Radu T, Liebscher J. Oxidative Polymerization of 3,4-Dihydroxybenzylamine─The Lower Homolog of Dopamine. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:5610-5620. [PMID: 37022985 DOI: 10.1021/acs.langmuir.3c00604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Polydopamine (PDA) formed by oxidative polymerization of dopamine has attracted wide interest because of its unique properties, in particular its strong adhesion to almost all types of surfaces. 3,4-Dihydroxybenzylamine (DHBA) as the lower homolog of PDA also contains a catechol unit and an amino group and thus can be expected to exhibit a similar adhesion and reaction behavior. In fact, autoxidation of DHBA with air in 2-amino-2-hydroxymethyl-propane-1,3-diol (Tris) buffer gives rise to deeply colored oligomer/polymer products (poly(3,4-dihydroxybenzylamine) (PDHBA)) that strongly adhere to several surfaces. Here, the material is characterized by solid-state NMR spectroscopy, Fourier transform infrared (FTIR) spectroscopy, X-ray photoelectron spectroscopy (XPS), electron spin resonance (ESR) spectroscopy, mass spectrometry, and atomic force microscopy (AFM). Reaction pathways were rationalized taking into consideration the analytical results that show similarity to PDA chemistry, but also considering differences, leading to a more complex reaction behavior and thus to new structures not found in PDA.
Collapse
Affiliation(s)
- Anca Petran
- National Institute for Research and Development of Isotopic and Molecular Technologies, 67-103 Donat Street, 400293 Cluj-Napoca, Romania
| | - Claudiu Filip
- National Institute for Research and Development of Isotopic and Molecular Technologies, 67-103 Donat Street, 400293 Cluj-Napoca, Romania
| | - Diana Bogdan
- National Institute for Research and Development of Isotopic and Molecular Technologies, 67-103 Donat Street, 400293 Cluj-Napoca, Romania
| | - Cordelia Zimmerer
- Leibniz-Institut für Polymerforschung Dresden e.V., Hohe Str. 6, 01056 Dresden, Germany
| | - Sebastian Beck
- Department of Chemistry, Humboldt-Universität zu Berlin, Brook-Taylor-Str. 2, 12489 Berlin, Germany
| | - Teodora Radu
- National Institute for Research and Development of Isotopic and Molecular Technologies, 67-103 Donat Street, 400293 Cluj-Napoca, Romania
| | - Jürgen Liebscher
- National Institute for Research and Development of Isotopic and Molecular Technologies, 67-103 Donat Street, 400293 Cluj-Napoca, Romania
- Department of Chemistry, Humboldt-Universität zu Berlin, Brook-Taylor-Str. 2, 12489 Berlin, Germany
| |
Collapse
|
29
|
Merlo A, González-Martínez E, Saad K, Gomez M, Grewal M, Deering J, DiCecco LA, Hosseinidoust Z, Sask KN, Moran-Mirabal JM, Grandfield K. Functionalization of 3D Printed Scaffolds Using Polydopamine and Silver Nanoparticles for Bone-Interfacing Applications. ACS APPLIED BIO MATERIALS 2023; 6:1161-1172. [PMID: 36881860 DOI: 10.1021/acsabm.2c00988] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/09/2023]
Abstract
The prevention of bacterial colonization and the stimulation of osseointegration are two major requirements for bone-interfacing materials to reduce the incidence of complications and promote the restoration of the patient's health. The present investigation developed an effective, two-step functionalization of 3D printed scaffolds intended for bone-interfacing applications using a simple polydopamine (PDA) dip-coating method followed by the formation of silver nanoparticles (AgNPs) after a second coating step in silver nitrate. 3D printed polymeric substrates coated with a ∼20 nm PDA layer and 70 nm diameter AgNPs proved effective in hindering Staphylococcus aureus biofilm formation, with a 3000-8000-fold reduction in the number of bacterial colonies formed. The implementation of porous geometries significantly accelerated osteoblast-like cell growth. Microscopy characterization further elucidated homogeneity, features, and penetration of the coating inside the scaffold. A proof-of-concept coating on titanium substrates attests to the transferability of the method to other materials, broadening the range of applications both in and outside the medical sector. The antibacterial efficiency of the coating is likely to lead to a decrease in the number of bacterial infections developed after surgery in the presence of these coatings on prosthetics, thus translating to a reduction in revision surgeries and improved health outcomes.
Collapse
Affiliation(s)
- Alessandra Merlo
- Department of Materials Science and Engineering, McMaster University, Hamilton, Ontario L8S 4L8, Canada
| | - Eduardo González-Martínez
- Department of Chemistry and Chemical Biology, McMaster University, Hamilton, Ontario L8S 4L8, Canada
| | - Kamal Saad
- School of Interdisciplinary Science, McMaster University, Hamilton, Ontario L8S 4L8, Canada
| | - Mellissa Gomez
- Department of Chemical Engineering, McMaster University, Hamilton, Ontario, L8S 4L8, Canada
| | - Manjot Grewal
- Department of Chemistry and Chemical Biology, McMaster University, Hamilton, Ontario L8S 4L8, Canada
| | - Joseph Deering
- Department of Materials Science and Engineering, McMaster University, Hamilton, Ontario L8S 4L8, Canada
| | - Liza-Anastasia DiCecco
- Department of Materials Science and Engineering, McMaster University, Hamilton, Ontario L8S 4L8, Canada
| | - Zeinab Hosseinidoust
- School of Biomedical Engineering, McMaster University, Hamilton, Ontario L8S 4L8, Canada
- Brockhouse Institute for Materials Research, McMaster University, Hamilton, Ontario L8S 4L8, Canada
- Department of Chemical Engineering, McMaster University, Hamilton, Ontario, L8S 4L8, Canada
| | - Kyla N Sask
- Department of Materials Science and Engineering, McMaster University, Hamilton, Ontario L8S 4L8, Canada
- School of Biomedical Engineering, McMaster University, Hamilton, Ontario L8S 4L8, Canada
- Brockhouse Institute for Materials Research, McMaster University, Hamilton, Ontario L8S 4L8, Canada
| | - Jose M Moran-Mirabal
- Department of Chemistry and Chemical Biology, McMaster University, Hamilton, Ontario L8S 4L8, Canada
- School of Biomedical Engineering, McMaster University, Hamilton, Ontario L8S 4L8, Canada
- Brockhouse Institute for Materials Research, McMaster University, Hamilton, Ontario L8S 4L8, Canada
- Centre for Advanced Light Microscopy, McMaster University, Hamilton, Ontario L8S 4L8, Canada
| | - Kathryn Grandfield
- Department of Materials Science and Engineering, McMaster University, Hamilton, Ontario L8S 4L8, Canada
- School of Biomedical Engineering, McMaster University, Hamilton, Ontario L8S 4L8, Canada
- Brockhouse Institute for Materials Research, McMaster University, Hamilton, Ontario L8S 4L8, Canada
| |
Collapse
|
30
|
Guo Y, Zeng X, Li J, Yuan H, Lan J, Yu Y, Yang X. A high performance composite separator with robust environmental stability for dendrite-free lithium metal batteries. J Colloid Interface Sci 2023; 642:321-329. [PMID: 37011450 DOI: 10.1016/j.jcis.2023.03.149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 03/22/2023] [Accepted: 03/23/2023] [Indexed: 03/31/2023]
Abstract
The garnet ceramic Li6.4La3Zr1.4Ta0.6O12 (LLZTO) modified separators have been proposed to overcome the poor thermal stability and wettability of commercial polyolefin separators. However, the side reaction of LLZTO in the air leads to deterioration of environmental stability of composite separators (PP-LLZTO), which will limit the electrochemical performance of batteries. Herein, the LLZTO with the polydopamine (PDA) coating (LLZTO@PDA) was prepared by solution oxidation, and then applied it to a commercial polyolefin separator to achieve a composite separator (PP-LLZTO@PDA). LLZTO@PDA is stable in the air, and no Li2CO3 can be observed on the surface even after 90 days in the air. Besides, LLZTO@PDA coating endows the PP-LLZTO@PDA separator with the tensile strength (up to 103 MPa), good wettability (contact angle 0°) and high ionic conductivity (0.93 mS cm-1). Consequently, the Li/PP-LLZTO@PDA/Li symmetric cell cycles stably for 600 h without significant dendrites generation, and the assembled Li//LFP cells with PP-LLZTO@PDA-D30 separators deliver a high capacity retention of 91.8% after 200 cycles at 0.1C. This research provides a practical strategy for constructing composite separators with excellent environmental stability and high electrochemical properties.
Collapse
|
31
|
Zhang R, Mo Y, Gao Y, Zhou Z, Hou X, Ren X, Wang J, Chu X, Lu Y. Constructing a Hierarchical Hydrophilic Crosslink Network on the Surface of a Polyvinylidene Fluoride Membrane for Efficient Oil/Water Emulsion Separation. MEMBRANES 2023; 13:255. [PMID: 36984642 PMCID: PMC10053406 DOI: 10.3390/membranes13030255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 02/02/2023] [Accepted: 02/15/2023] [Indexed: 06/18/2023]
Abstract
Oil/water mixtures from industrial and domestic wastewater adversely affect the environment and human beings. In this context, the development of a facile and improved separation method is crucial. Herein, dopamine was used as a bioadhesive to bind tea polyphenol (TP) onto the surface of a polyvinylidene fluoride (PVDF) membrane to form the first hydrophilic polymer network. Sodium periodate (NaIO4) is considered an oxidising agent for triggering self-polymerisation and can be used to introduce hydrophilic groups via surface manipulation to form the second hydrophilic network. In contrast to the individual polydopamine (PDA) and TP/NaIO4 composite coatings for a hydrophobic PVDF microfiltration membrane, a combination of PDA, TP, and NaIO4 has achieved the most facile treatment process for transforming the hydrophobic membrane into the hydrophilic state. The hierarchical superhydrophilic network structure with a simultaneous underwater superoleophobic membrane exhibited excellent performance in separating various oil-in-water emulsions, with a high water flux (1530 L.m-2 h-1.bar) and improved rejection (98%). The water contact angle of the modified membrane was 0° in 1 s. Moreover, the steady polyphenol coating was applied onto the surface, which endowed the membrane with an adequate antifouling and recovery capability and a robust durability against immersion in an acid, alkali, or salt solution. This facile scale-up method depends on in situ plant-inspired chemistry and has remarkable potential for practical applications.
Collapse
Affiliation(s)
- Ruixian Zhang
- Guangxi Key Laboratory for Polysaccharide Materials and Modification, Guangxi Higher Education Institutes Key Laboratory for New Chemical and Biological Transformation Process Technology, School of Chemistry and Chemical Engineering, Guangxi Minzu University, Nanning 530006, China
| | - Yuanbin Mo
- Institute of Artificial Intelligence, Guangxi Minzu University, Nanning 530006, China
| | - Yanfei Gao
- Guangxi Key Laboratory for Polysaccharide Materials and Modification, Guangxi Higher Education Institutes Key Laboratory for New Chemical and Biological Transformation Process Technology, School of Chemistry and Chemical Engineering, Guangxi Minzu University, Nanning 530006, China
| | - Zeguang Zhou
- Guangxi Key Laboratory for Polysaccharide Materials and Modification, Guangxi Higher Education Institutes Key Laboratory for New Chemical and Biological Transformation Process Technology, School of Chemistry and Chemical Engineering, Guangxi Minzu University, Nanning 530006, China
| | - Xueyi Hou
- Guangxi Key Laboratory for Polysaccharide Materials and Modification, Guangxi Higher Education Institutes Key Laboratory for New Chemical and Biological Transformation Process Technology, School of Chemistry and Chemical Engineering, Guangxi Minzu University, Nanning 530006, China
| | - Xiuxiu Ren
- Guangxi Key Laboratory for Polysaccharide Materials and Modification, Guangxi Higher Education Institutes Key Laboratory for New Chemical and Biological Transformation Process Technology, School of Chemistry and Chemical Engineering, Guangxi Minzu University, Nanning 530006, China
| | - Junzhong Wang
- Guangxi Key Laboratory for Polysaccharide Materials and Modification, Guangxi Higher Education Institutes Key Laboratory for New Chemical and Biological Transformation Process Technology, School of Chemistry and Chemical Engineering, Guangxi Minzu University, Nanning 530006, China
| | - Xiaokun Chu
- Guangxi Key Laboratory for Polysaccharide Materials and Modification, Guangxi Higher Education Institutes Key Laboratory for New Chemical and Biological Transformation Process Technology, School of Chemistry and Chemical Engineering, Guangxi Minzu University, Nanning 530006, China
| | - Yanyue Lu
- Guangxi Key Laboratory for Polysaccharide Materials and Modification, Guangxi Higher Education Institutes Key Laboratory for New Chemical and Biological Transformation Process Technology, School of Chemistry and Chemical Engineering, Guangxi Minzu University, Nanning 530006, China
| |
Collapse
|
32
|
Recent Advances in Bio-Inspired Versatile Polydopamine Platforms for “Smart” Cancer Photothermal Therapy. CHINESE JOURNAL OF POLYMER SCIENCE 2023. [DOI: 10.1007/s10118-023-2926-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/15/2023]
|
33
|
Chiral Polymer Coatings on Substrates via Surface-Initiated RAFT Polymerization Under Ambient Conditions. Eur Polym J 2023. [DOI: 10.1016/j.eurpolymj.2023.111948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/27/2023]
|
34
|
Alborzi S, Abrahamyan D, Hashmi SM. Mixing particle softness in a two-dimensional hopper: Particle rigidity and friction enable variable arch geometry to cause clogging. Phys Rev E 2023; 107:024901. [PMID: 36932539 DOI: 10.1103/physreve.107.024901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Accepted: 01/11/2023] [Indexed: 06/18/2023]
Abstract
Understanding the clogging of mixtures of soft and rigid particles flowing through hoppers becomes important as soft particle usage increases in consumer products. We investigate this clogging under varying particle size and rigid fraction by quantifying various properties of arches formed in the neck of a quasi-two-dimensional hopper. As more soft particles are added to the mixture, the arch tends to become both narrower and more curved. This effect arises from the fact that soft particles have less ability to sustain a clog than rigid particles. The clogging probability is seen to have a linear correlation with the span (width) of the arch. The angles between the arch particles are shown to have higher values as rigid fraction increases. The arch occasionally shows a partially convex shape at high rigid fractions when rigid particles are sitting next to each other, while soft particles can form angles of less than 180^{∘} only. The relation between the span and aspect ratio (width to height) of the arch is theoretically formulated for three-particle arches and extended to arches of more than three particles, using an asymptotic parameter that represents the width of a flat arch. Finally, it is concluded that clogging probability closely correlates with both the arch span and the variation of other geometric arch properties.
Collapse
Affiliation(s)
- Saeed Alborzi
- Department of Mechanical and Industrial Engineering, Northeastern University, Boston, Massachusetts 02115, USA
| | - David Abrahamyan
- Department of Physics, Northeastern University, Boston, Massachusetts 02115, USA
| | - Sara M Hashmi
- Department of Mechanical and Industrial Engineering, Northeastern University, Boston, Massachusetts 02115, USA
- Department of Chemical Engineering, Northeastern University, Boston, Massachusetts 02115, USA
- Department of Chemistry and Chemical Biology, Northeastern University, Boston, Massachusetts 02115, USA
| |
Collapse
|
35
|
Ren X, Gao X, Cheng Y, Xie L, Tong L, Li W, Chu PK, Wang H. Maintenance of multipotency of bone marrow mesenchymal stem cells on poly(ε-caprolactone) nanoneedle arrays through the enhancement of cell-cell interaction. Front Bioeng Biotechnol 2023; 10:1076345. [PMID: 36698633 PMCID: PMC9870049 DOI: 10.3389/fbioe.2022.1076345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Accepted: 12/23/2022] [Indexed: 01/11/2023] Open
Abstract
Mesenchymal stem cells (MSCs), with high self-renewal ability and multipotency, are commonly used as the seed cells for tissue engineering. However, the reduction and loss of multipotential ability after necessary expansion in vitro set up a heavy obstacle to the clinical application of MSCs. Here in this study, we exploit the autologous crystallization ability of biocompatible poly (ε-caprolactone) (PCL) to obtain uniformly distributed nanoneedle arrays. By controlling the molecular weight of PCL, nanoneedle with a width of 2 μm and height of 50 nm, 80 nm, and 100 nm can be successfully fabricated. After surface chemical modification with polydopamine (PDA), the water contact angle of the fabricated PCL nanoneedle arrays are reduced from 84° to almost 60° with no significant change of the nanostructure. All the fabricated substrates are cultured with bone marrow MSCs (BMMSCs), and the adhesion, spreading, proliferation ability and multipotency of cells on different substrates are investigated. Compared with the BMMSCs cultured on pure PCL nanoneedle arrays, the decoration of PDA can improve the adhesion and spreading of cells and further change them from aggregated distribution to laminar distribution. Nevertheless, the laminar distribution of cultured cells leads to a weak cell-cell interaction, and hence the multipotency of BMMSCs cultured on the PCL-PDA substrates is decimated. On the contrary, the pure PCL nanoneedle arrays can be used to maintain the multipotency of BMMSCs via clustered growth, and the PCL1 nanoneedle array with a height of 50 nm is more promising than the other 2 with regard to the highest proliferation rate and best multipotential differentiation ability of cultured cells. Interestingly, there is a positive correlation between the strength of cell-cell interaction and the multipotency of stem cells in vitro. In conclusion, we have successfully maintained the multipotency of BMMSCs by using the PCL nanoneedle arrays, especially the PCL1 nanoneedle array with a height of 50 nm, as the substrates for in vitro extension, and further revealed the importance of cell-cell interaction on the multipotency of MSCs. The study provides a theoretical basis for the behavioral regulation of MSCs, and is instructive to the design of tissue engineering scaffolds.
Collapse
Affiliation(s)
- Xiaoxue Ren
- Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Xiaoting Gao
- Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China,University of Chinese Academy of Sciences, Beijing, China
| | - Yicheng Cheng
- Department of Stomatology, Jinling Hospital, School of Medicine, Nanjing University, Nanjing, China,*Correspondence: Yicheng Cheng, ; Wei Li, ; Huaiyu Wang,
| | - Lingxia Xie
- Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Liping Tong
- Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Wei Li
- Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China,*Correspondence: Yicheng Cheng, ; Wei Li, ; Huaiyu Wang,
| | - Paul K. Chu
- Department of Physics, Department of Materials Science and Engineering, Department of Biomedical Engineering, City University of Hong Kong, Kowloon, Hong Kong SAR, China
| | - Huaiyu Wang
- Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China,*Correspondence: Yicheng Cheng, ; Wei Li, ; Huaiyu Wang,
| |
Collapse
|
36
|
Egghe T, Morent R, Hoogenboom R, De Geyter N. Substrate-independent and widely applicable deposition of antibacterial coatings. Trends Biotechnol 2023; 41:63-76. [PMID: 35863949 DOI: 10.1016/j.tibtech.2022.06.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Revised: 05/25/2022] [Accepted: 06/09/2022] [Indexed: 12/27/2022]
Abstract
Antibacterial coatings are regarded as a necessary tool to prevent implant-related infections. Substrate-independent and widely applicable coating techniques are gaining significant interest to synthesize different types of antibacterial films, which can be relevant from a fundamental and application-oriented perspective. Plasma polymer- and polydopamine-based antibacterial coatings represent the most widely studied and versatile approaches among these coating techniques. Both single- and dual-functional antibacterial coatings can be fabricated with these approaches and a variety of dual-functional antibacterial coating strategies can still be explored in future work. These coatings can potentially be used for a wide range of different implants (material, shape, and size). However, for most implants, significantly more fundamental knowledge needs to be gained before these coatings can find real-life use.
Collapse
Affiliation(s)
- Tim Egghe
- Research Unit Plasma Technology (RUPT), Department of Applied Physics, Faculty of Engineering and Architecture, Ghent University, Sint-Pietersnieuwstraat 41 B4, 9000 Ghent, Belgium; Supramolecular Chemistry Group, Centre of Macromolecular Chemistry (CMaC), Department of Organic and Macromolecular Chemistry, Faculty of Sciences, Ghent University, Krijgslaan 281 S4, 9000 Ghent, Belgium.
| | - Rino Morent
- Research Unit Plasma Technology (RUPT), Department of Applied Physics, Faculty of Engineering and Architecture, Ghent University, Sint-Pietersnieuwstraat 41 B4, 9000 Ghent, Belgium
| | - Richard Hoogenboom
- Supramolecular Chemistry Group, Centre of Macromolecular Chemistry (CMaC), Department of Organic and Macromolecular Chemistry, Faculty of Sciences, Ghent University, Krijgslaan 281 S4, 9000 Ghent, Belgium
| | - Nathalie De Geyter
- Research Unit Plasma Technology (RUPT), Department of Applied Physics, Faculty of Engineering and Architecture, Ghent University, Sint-Pietersnieuwstraat 41 B4, 9000 Ghent, Belgium
| |
Collapse
|
37
|
Hou H, Huang B, Yu X, Lan J, Chen F. Sulfonate betaine modified
PVDF
/
SiO
2
composite electrolyte for solid state lithium ion battery. J Appl Polym Sci 2022. [DOI: 10.1002/app.53573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Hongying Hou
- Faculty of Material Science and Engineering Kunming University of Science and Technology Kunming China
| | - Baoxiang Huang
- Faculty of Material Science and Engineering Kunming University of Science and Technology Kunming China
| | - Xiaohua Yu
- Faculty of Material Science and Engineering Kunming University of Science and Technology Kunming China
| | - Jian Lan
- Faculty of Material Science and Engineering Kunming University of Science and Technology Kunming China
| | - Fangshu Chen
- Law School Kunming University of Science and Technology Kunming China
| |
Collapse
|
38
|
Wu L, Li Q, Ma C, Li M, Yu Y. A novel conductive carbon-based forward osmosis membrane for dye wastewater treatment. CHEMOSPHERE 2022; 308:136367. [PMID: 36088972 DOI: 10.1016/j.chemosphere.2022.136367] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 08/30/2022] [Accepted: 09/04/2022] [Indexed: 06/15/2023]
Abstract
Forward osmosis (FO) membrane fouling is one of the main reasons that hinder the further application of FO technology in the treatment of dye wastewater. To alleviate membrane fouling, a conductive coal carbon-based substrate and polydopamine nanoparticles (PDA NPs) interlayer composite FO membrane (CPFO) was prepared by interfacial polymerization (IP). CPFO-10 membrane prepared by depositing 10 mL of PDA NPs solution exhibited an optimum performance with water flux of 7.56 L/(m2h) for FO mode and 10.75 L/(m2h) for pressure retarded osmosis (PRO) mode, respectively. For rhodamine B and chrome black T dye wastewater treatment, the water flux losses were reduced by 21.6%, and 14.5% under the voltages of +1.5 V, and -1.5 V, respectively, compared with no voltage applied after the device was operated for 8 h. The applied voltage had little effect on the fouling mitigation performance of the CPFO membrane for neutral charged cresol red. After the device was operated for 4 cycles, the rejection rates of dyes wastewater treated by the CPFO membranes with applied voltage were close to 100%. The flux decline rate and flux recovery rate of CPFO membrane for rhodamine B and chrome black T wastewater treatment under application of +1.5 V and -1.5 V voltage after 4 cycles were 11.6%, 99.2%, and 16.7%, 98.9%, respectively. Therefore, the voltage-applied CPFO membrane still maintained good rejection and antifouling performance in long-term operation. This study provides a new insight into the preparation of conductive FO membranes for dye wastewater treatment and membrane fouling control.
Collapse
Affiliation(s)
- Lei Wu
- Key Laboratory of Songliao Aquatic Environment, Ministry of Education, Jilin Jianzhu University, Changchun, 130000, China
| | - Qianqian Li
- State Key Laboratory of Separation Membranes and Membrane Processes, School of Environmental Science and Engineering, Tiangong University, Tianjin, 300387, China
| | - Cong Ma
- State Key Laboratory of Separation Membranes and Membrane Processes, School of Environmental Science and Engineering, Tiangong University, Tianjin, 300387, China; Tianjin Haiyuanhui Technology Co., Ltd., Tianjin, 300457, China.
| | - Ming Li
- Key Laboratory of Songliao Aquatic Environment, Ministry of Education, Jilin Jianzhu University, Changchun, 130000, China
| | - Yujuan Yu
- Center of Environmental Emergency and Accident Investigation of Changchun, Changchun, 130000, China
| |
Collapse
|
39
|
Hu X, Zhao J, Cheng X, Wang X, Zhang X, Chen Y. Polydopamine-mediated quantity-based magnetic relaxation sensing for the rapid and sensitive detection of chloramphenicol in fish samples. Food Res Int 2022; 162:111919. [DOI: 10.1016/j.foodres.2022.111919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2022] [Revised: 07/29/2022] [Accepted: 09/07/2022] [Indexed: 11/28/2022]
|
40
|
Tian L, Li X, Ji H, Yu Q, Yang M, Guo L, Huang L, Gao W. Melanin-like nanoparticles: advances in surface modification and tumour photothermal therapy. J Nanobiotechnology 2022; 20:485. [PMCID: PMC9675272 DOI: 10.1186/s12951-022-01698-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 11/03/2022] [Indexed: 11/21/2022] Open
Abstract
Currently, tumor treatments are characterized by intelligence, diversity and personalization, but the therapeutic reagents used are often limited in clinical efficacy due to problems with water solubility, targeting, stability and multidrug resistance. To remedy these shortcomings, the application of multifunctional nanotechnology in the biomedical field has been widely studied. Synthetic melanin nanoparticles (MNPs) surfaces which contain highly reactive chemical groups such as carboxyl, hydroxyl and amine groups, can be used as a reaction platform on which to graft different functional components. In addition, MNPs easily adhere to substrate surface, and serve as a secondary reaction platform to modify it. The multifunctionality and intrinsic biocompatibility make melanin-like nanoparticles promising as a multifunctional and powerful nanoplatform for oncological applications. This paper first reviews the preparation methods, polymerization mechanisms and physicochemical properties of melanin including natural melanin and chemically synthesized melanin to guide scholars in MNP-based design. Then, recent advances in MNPs especially synthetic polydopamine (PDA) melanin for various medical oncological applications are systematically and thoroughly described, mainly focusing on bioimaging, photothermal therapy (PTT), and drug delivery for tumor therapy. Finally, based on the investigated literature, the current challenges and future directions for clinical translation are reasonably discussed, focusing on the innovative design of MNPs and further elucidation of pharmacokinetics. This paper is a timely and comprehensive and detailed study of the progress of MNPs in tumor therapy, especially PTT, and provides ideas for the design of personalized and customizable oncology nanomedicines to address the heterogeneity of the tumor microenvironment.
Collapse
Affiliation(s)
- Luyao Tian
- grid.33763.320000 0004 1761 2484Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, 300193 China
| | - Xia Li
- grid.33763.320000 0004 1761 2484Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, 300193 China
| | - Haixia Ji
- grid.33763.320000 0004 1761 2484Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, 300193 China
| | - Qing Yu
- grid.33763.320000 0004 1761 2484Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, 300193 China
| | - Mingjuan Yang
- grid.33763.320000 0004 1761 2484Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, 300193 China
| | - Lanping Guo
- grid.410318.f0000 0004 0632 3409National Resource Center for Chinese Materia Medica, Academy of Chinese Medical Sciences, Beijing, 100700 China
| | - Luqi Huang
- grid.410318.f0000 0004 0632 3409National Resource Center for Chinese Materia Medica, Academy of Chinese Medical Sciences, Beijing, 100700 China
| | - Wenyuan Gao
- grid.33763.320000 0004 1761 2484Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, 300193 China
| |
Collapse
|
41
|
Duan W, Liu X, Zhao J, Zheng Y, Wu J. Porous Silicon Carrier Endowed with Photothermal and Therapeutic Effects for Synergistic Wound Disinfection. ACS APPLIED MATERIALS & INTERFACES 2022; 14:48368-48383. [PMID: 36278256 DOI: 10.1021/acsami.2c12012] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Drug carriers endowed with photothermal effects will allow the drug delivery system to release drugs in a thermal-stimuli manner. In addition, the photothermal therapy (PTT) will also interplay with therapeutic drugs loaded in the carrier to exhibit synergistic bioactivity for various disease treatment. However, endowing the drug carrier with photothermal and synergistic therapeutic effects still has challenge. Herein, we demonstrate that surface modification of porous silicon (PSi) with polydopamine (PDA) could endow the classical drug carrier with a significant photothermal effect for advanced antibacterial therapy and wound disinfection. Specifically, the PSi surface interacts with a Cu2+/PDA complex via a simple and fast surface reduction-induced deposition method, forming the unique CuPDA coated PSi microcarrier (CuPPSi) without blocking the mesoporous structure. The CuPPSi carrier generates a higher near-infrared (NIR) photothermal efficiency and improved drug loading capacity owing to the abundant functional groups of PDA. Stimuli-responsive release of antibacterial Cu2+ and loaded curcumin (Cur) from CuPPSi can be realized under multiple stimuli including pH, reactive oxygen species and NIR laser irradition. Benefited from the carrier's intrinsic multimodal therapy, the CuPPSi-Cur platform exhibits amplified, broad-spectrum, and synergistic antibacterial effect, killing more than 98% for both Staphylococcus aureus and Escherichia coli at a mild PTT temperature (∼45 °C). Notably, the combined therapy promotes migration of fibroblasts with no significant cytotoxicity as revealed through cell experiments in vitro. In bacteria-infected mice model, efficient bacterial ablation and wound healing are further demonstrated with negligible side effects in vivo. Overall, the rational design of a drug carrier with photothermal and therapeutic effects provides a novel intervention for amplifing wound disinfection clinically.
Collapse
Affiliation(s)
- Wei Duan
- Lab of Nanomedicine and Omic-based Diagnostics, Institute of Analytical Chemistry, Department of Chemistry, Zhejiang University, Hangzhou310058, China
| | - Xingyue Liu
- Lab of Nanomedicine and Omic-based Diagnostics, Institute of Analytical Chemistry, Department of Chemistry, Zhejiang University, Hangzhou310058, China
| | - Jingwen Zhao
- Lab of Nanomedicine and Omic-based Diagnostics, Institute of Analytical Chemistry, Department of Chemistry, Zhejiang University, Hangzhou310058, China
| | - Yongke Zheng
- Department of Intensive Care Unit, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou310006, China
| | - Jianmin Wu
- Lab of Nanomedicine and Omic-based Diagnostics, Institute of Analytical Chemistry, Department of Chemistry, Zhejiang University, Hangzhou310058, China
| |
Collapse
|
42
|
Zhou Y, Wu W, Wang L, Goksen G, Shao P. Multifunctional pectin films based on mussel-inspired modified 2D Ag nanosheets for long-lasting antibacterial and enhanced barrier properties. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2022.108331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
43
|
Wang Y, Yuan X, Yao B, Zhu S, Zhu P, Huang S. Tailoring bioinks of extrusion-based bioprinting for cutaneous wound healing. Bioact Mater 2022; 17:178-194. [PMID: 35386443 PMCID: PMC8965032 DOI: 10.1016/j.bioactmat.2022.01.024] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 01/15/2022] [Accepted: 01/16/2022] [Indexed: 12/11/2022] Open
Abstract
Extrusion-based bioprinting (EBB) holds potential for regenerative medicine. However, the widely-used bioinks of EBB exhibit some limitations for skin regeneration, such as unsatisfactory bio-physical (i.e., mechanical, structural, biodegradable) properties and compromised cellular compatibilities, and the EBB-based bioinks with therapeutic effects targeting cutaneous wounds still remain largely undiscussed. In this review, the printability considerations for skin bioprinting were discussed. Then, current strategies for improving the physical properties of bioinks and for reinforcing bioinks in EBB approaches were introduced, respectively. Notably, we highlighted the applications and effects of current EBB-based bioinks on wound healing, wound scar formation, vascularization and the regeneration of skin appendages (i.e., sweat glands and hair follicles) and discussed the challenges and future perspectives. This review aims to provide an overall view of the applications, challenges and promising solutions about the EBB-based bioinks for cutaneous wound healing and skin regeneration.
Collapse
Affiliation(s)
- Yuzhen Wang
- Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, 106 Zhongshan Er Road, Guangzhou, Guangdong, 510080, PR China
- Research Center for Tissue Repair and Regeneration Affiliated to the Medical Innovation Research Department, Chinese PLA General Hospital, 28 Fu Xing Road, Beijing, 100853, PR China
- PLA Key Laboratory of Tissue Repair and Regenerative Medicine and Beijing Key Research Laboratory of Skin Injury, Repair and Regeneration, Chinese PLA General Hospital and PLA Medical College, 51 Fu Cheng Road, Beijing, 100048, PR China
- Department of Burn and Plastic Surgery, Air Force Hospital of Chinese PLA Central Theater Command, 589 Yunzhong Road, Pingcheng District, Datong, Shanxi, 037006, PR China
| | - Xingyu Yuan
- Research Center for Tissue Repair and Regeneration Affiliated to the Medical Innovation Research Department, Chinese PLA General Hospital, 28 Fu Xing Road, Beijing, 100853, PR China
- PLA Key Laboratory of Tissue Repair and Regenerative Medicine and Beijing Key Research Laboratory of Skin Injury, Repair and Regeneration, Chinese PLA General Hospital and PLA Medical College, 51 Fu Cheng Road, Beijing, 100048, PR China
- School of Medicine, Nankai University, 94 Wei Jing Road, Tianjin, 300071, PR China
| | - Bin Yao
- Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, 106 Zhongshan Er Road, Guangzhou, Guangdong, 510080, PR China
- Research Center for Tissue Repair and Regeneration Affiliated to the Medical Innovation Research Department, Chinese PLA General Hospital, 28 Fu Xing Road, Beijing, 100853, PR China
- PLA Key Laboratory of Tissue Repair and Regenerative Medicine and Beijing Key Research Laboratory of Skin Injury, Repair and Regeneration, Chinese PLA General Hospital and PLA Medical College, 51 Fu Cheng Road, Beijing, 100048, PR China
- Academy of Medical Engineering and Translational Medicine, Tianjin University, 300072, PR China
| | - Shuoji Zhu
- Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, 106 Zhongshan Er Road, Guangzhou, Guangdong, 510080, PR China
| | - Ping Zhu
- Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, 106 Zhongshan Er Road, Guangzhou, Guangdong, 510080, PR China
| | - Sha Huang
- Research Center for Tissue Repair and Regeneration Affiliated to the Medical Innovation Research Department, Chinese PLA General Hospital, 28 Fu Xing Road, Beijing, 100853, PR China
| |
Collapse
|
44
|
Kopeć K, Ryżko A, Major R, Plutecka H, Wiȩcek J, Pikus G, Trzciński JW, Kalinowska A, Ciach T. Polymerization of l-Tyrosine, l-Phenylalanine, and 2-Phenylethylamine as a Versatile Method of Surface Modification for Implantable Medical Devices. ACS OMEGA 2022; 7:39234-39249. [PMID: 36340063 PMCID: PMC9631876 DOI: 10.1021/acsomega.2c05289] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Accepted: 10/07/2022] [Indexed: 06/04/2023]
Abstract
Surface properties are crucial for medical device and implant research and applications. We present novel polycatecholamine coatings obtained by oxidative polymerization of l-tyrosine, l-phenylalanine, and 2-phenylethylamine based on mussel glue-inspired chemistry. We optimized the reaction parameters and examined the properties of coatings compared to the ones obtained from polydopamine. We produced polycatecholamine coatings on various materials used to manufacture implantable medical devices, such as polyurethane, but also hard-to-coat polydimethylsiloxane, polytetrafluoroethylene, and stainless steel. The coating process results in significant hydrophilization of the material's surface, reducing the water contact angle by about 50 to 80% for polytetrafluoroethylene and polyurethane, respectively. We showed that the thickness, roughness, and stability of the polycatecholamine coatings depend on the chemical structure of the oxidized phenylamine. In vitro experiments showed prominent hemocompatibility of our coatings and significant improvement of the adhesion and proliferation of human umbilical vein endothelial cells. The full confluence on the surface of coated polytetrafluoroethylene was achieved after 5 days of cell culture for all tested polycatecholamines, and it was maintained after 14 days. Hence, the use of polycatecholamine coatings can be a simple and versatile method of surface modification of medical devices intended for contact with blood or used in tissue engineering.
Collapse
Affiliation(s)
- Kamil Kopeć
- Faculty
of Chemical and Process Engineering, Biomedical Engineering Laboratory, Warsaw University of Technology, Waryńskiego 1, Warsaw 00-645, Poland
| | - Agata Ryżko
- Faculty
of Chemical and Process Engineering, Biomedical Engineering Laboratory, Warsaw University of Technology, Waryńskiego 1, Warsaw 00-645, Poland
- Department
of Cytology, Faculty of Biology, University
of Warsaw, Miecznikowa 1, Warsaw 02-089, Poland
| | - Roman Major
- Institute
of Metallurgy and Materials Science, Polish
Academy of Sciences, Reymonta 25, Cracow 30-059, Poland
| | - Hanna Plutecka
- Department
of Medicine, Jagiellonian University Medical
College, Skawińska 8, Cracow 31-066, Poland
| | - Justyna Wiȩcek
- Institute
of Metallurgy and Materials Science, Polish
Academy of Sciences, Reymonta 25, Cracow 30-059, Poland
| | - Grzegorz Pikus
- School of Chemistry, University of Bristol, Cantock’s Cl, Bristol BS8 1TS, United Kingdom
| | - Jakub W. Trzciński
- Faculty
of Chemical and Process Engineering, Biomedical Engineering Laboratory, Warsaw University of Technology, Waryńskiego 1, Warsaw 00-645, Poland
- Centre
for Advanced Materials and Technologies CEZAMAT, Warsaw University of Technology, Poleczki 19, Warsaw 02-822, Poland
| | - Adrianna Kalinowska
- Faculty
of Chemical and Process Engineering, Biomedical Engineering Laboratory, Warsaw University of Technology, Waryńskiego 1, Warsaw 00-645, Poland
| | - Tomasz Ciach
- Faculty
of Chemical and Process Engineering, Biomedical Engineering Laboratory, Warsaw University of Technology, Waryńskiego 1, Warsaw 00-645, Poland
| |
Collapse
|
45
|
Yang S, Zhang Y, Bai J, He Y, Zhao X, Zhang J. Integrating Dual-Interfacial Liquid Metal Based Nanodroplet Architectures and Micro-Nanostructured Engineering for High Efficiency Solar Energy Harvesting. ACS NANO 2022; 16:15086-15099. [PMID: 36069385 DOI: 10.1021/acsnano.2c06245] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Broadband strong absorption of solar light over a wide range of angles, low heat loss, and excellent structural reliability are of significance for enhancing solar harvesting of photothermal materials; however, it remains a challenge to achieve these attributes simultaneously. Herein, a tailored photothermal composite nanodroplet (LMP-rGO) featured with dual-interface, which comprises liquid metal (LM) core with polydopamine (PDA) photothermal middle layer of tunable thickness and reduced graphene oxide (rGO) shell, is particularly prepared. Thermal-insulating PDA coating and light-absorbing carbonaceous shell allow it to synergistically suppress heat loss and reinforce photon absorptivity. To maximize photothermal conversion and photon harvesting yield on solar light, inspired by light trapping architecture, a three-dimensional (3D) stepped micropyramid grating array framework is tactfully designed to ameliorate light coupling. Utilizing the scalability and cost-effectiveness of the poly(vinyl alcohol) (PVA), the flexible 3D-structured PVA/LMP-rGO absorbers are successfully constructed via a controllable casting molding strategy. As a proof-of-concept, the developed micrograting absorber exhibits a desirable combination of strong broadband selective light absorption (94.9% for parallel to the grating direction and 97.3% for perpendicular to the grating direction), superior photothermal conversion effect (89.4%), high heat flux density, and fascinating mechanical properties. Also, an efficient and steady solar-driven thermoelectric generator (STEG) system for real-time solar-heat-electric conversion, with its high peak power density of 245.9 μW cm-2 under one sun irradiation, is further displayed, making an important step to rationally design LM-based nanocomposite droplets for solar energy harvesting.
Collapse
Affiliation(s)
- Shengdu Yang
- State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute of Sichuan University, Chengdu 610065, China
| | - Yang Zhang
- State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute of Sichuan University, Chengdu 610065, China
| | - Junwei Bai
- China Bluestar Chengrand Chemical Co. Ltd, Chengdu 610041, China
| | - Yushun He
- State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute of Sichuan University, Chengdu 610065, China
| | - Xiaohai Zhao
- State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute of Sichuan University, Chengdu 610065, China
| | - Junhua Zhang
- State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute of Sichuan University, Chengdu 610065, China
| |
Collapse
|
46
|
Sarkari S, Khajehmohammadi M, Davari N, Li D, Yu B. The effects of process parameters on polydopamine coatings employed in tissue engineering applications. Front Bioeng Biotechnol 2022; 10:1005413. [PMID: 36172013 PMCID: PMC9512135 DOI: 10.3389/fbioe.2022.1005413] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Accepted: 08/17/2022] [Indexed: 12/12/2022] Open
Abstract
The biomaterials’ success within the tissue engineering field is hinged on the capability to regulate tissue and cell responses, comprising cellular adhesion, as well as repair and immune processes’ induction. In an attempt to enhance and fulfill these biomaterials’ functions, scholars have been inspired by nature; in this regard, surface modification via coating the biomaterials with polydopamine is one of the most successful inspirations endowing the biomaterials with surface adhesive properties. By employing this approach, favorable results have been achieved in various tissue engineering-related experiments, a significant one of which is the more rapid cellular growth observed on the polydopamine-coated substrates compared to the untreated ones; nonetheless, some considerations regarding polydopamine-coated surfaces should be taken into account to control the ultimate outcomes. In this mini-review, the importance of coatings in the tissue engineering field, the different types of surfaces requiring coatings, the significance of polydopamine coatings, critical factors affecting the result of the coating procedure, and recent investigations concerning applications of polydopamine-coated biomaterials in tissue engineering are thoroughly discussed.
Collapse
Affiliation(s)
- Soulmaz Sarkari
- Department of Biomedical Engineering, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Mehran Khajehmohammadi
- Department of Mechanical Engineering, Faculty of Engineering, Yazd University, Yazd, Iran
- Medical Nanotechnology and Tissue Engineering Research Center, Yazd Reproductive Sciences Institute, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Niyousha Davari
- Department of Life Science Engineering, Faculty of New Sciences and Technologies, University of Tehran, Tehran, Iran
| | - Dejian Li
- Department of Orthopedics, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai, China
- *Correspondence: Dejian Li, ; Baoqing Yu,
| | - Baoqing Yu
- Department of Orthopedics, Shanghai Pudong New Area People’s Hospital, Shanghai, China
- *Correspondence: Dejian Li, ; Baoqing Yu,
| |
Collapse
|
47
|
Wang L, Zhang T, Xing Y, Wang Z, Xie X, Zhang J, Cai K. Interfacially responsive electron transfer and matter conversion by polydopamine-mediated nanoplatforms for advancing disease theranostics. WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2022; 14:e1805. [PMID: 35474610 DOI: 10.1002/wnan.1805] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2022] [Revised: 03/29/2022] [Accepted: 03/31/2022] [Indexed: 06/14/2023]
Abstract
Polydopamine (PDA) is an artificial melanin polymer that has been spotlighted due to its extraordinary optoelectronic characteristics and advance theranosctic applications in biomaterial fields. Moreover, interactions on the nano-bio interface interplay whereby substances exchange in response to endogenous or exogenous stimuli, and electron transfer driven by light, energy-level transitions, or electric field greatly affect the functional performance of PDA-modified nanoparticles. The full utilization of potential in PDA's interfacial activities, optoelectrical properties and related responsiveness is therefore an attractive means to construct advanced nanostructures for regulating biological processes and metabolic pathways. Herein, we strive to summarize recent advances in the construction of functional PDA-based nanomaterials with state-of-the-art architectures prepared for modulation of photoelectric sensing and redox reversibility, as well as manipulation of photo-activated therapeutics. Meanwhile, contributions of interfacial electron transfer and matter conversion are highlighted by discussing the structure-property-function relationships and the biological effects in their featured applications including disease theranostics, antibacterial activities, tissue repair, and combined therapy. Finally, the current challenges and future perspectives in this emerging research field will also be outlined. Recent advances on polydopamine-based nanotherapeutics with an emphasis on their interfacial activities, optoelectrical properties and related responsiveness are reviewed for providing insightful guidance to the rational design of integrated theranostic nanoplatforms with high performance in the biomedical fields. This article is categorized under: Diagnostic Tools > Diagnostic Nanodevices Therapeutic Approaches and Drug Discovery > Nanomedicine for Oncologic Disease Nanotechnology Approaches to Biology > Nanoscale Systems in Biology.
Collapse
Affiliation(s)
- Lu Wang
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, China
| | - Tingting Zhang
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, China
| | - Yuxin Xing
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, China
| | - Zhenqiang Wang
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, China
| | - Xiyue Xie
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, China
| | - Jixi Zhang
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, China
| | - Kaiyong Cai
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, China
| |
Collapse
|
48
|
Tang Y, Wang J, Cao Q, Chen F, Wang M, Wu Y, Chen X, Zhu X, Zhang X. Dopamine/DOPAC-assisted immobilization of bone morphogenetic protein-2 loaded Heparin/PEI nanogels onto three-dimentional printed calcium phosphate ceramics for enhanced osteoinductivity and osteogenicity. BIOMATERIALS ADVANCES 2022; 140:213030. [PMID: 36027668 DOI: 10.1016/j.bioadv.2022.213030] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 07/05/2022] [Accepted: 07/11/2022] [Indexed: 06/15/2023]
Abstract
Nowadays, the three-dimensional (3D) printed calcium phosphate (CaP) ceramics have well-designed geometric structure, but suffer from relative weak osteoinductivity. Surface modification by incorporating bone morphogenetic protein-2 (BMP2) onto scaffolds is considered as an efficient approach to improve their bioactivity. However, high dose and uncontrolled burst release of BMP2 may cause undesired side effect. In the present study, porous BCP ceramics with inverse face-centred cube structure prepared by digital light processing (DLP)-based 3D printing technique were used as the substrates. BMP2 proteins were loaded in the self-assembled Heparin/PEI nanogels (NP/BMP2), and then immobilized onto BCP substrates through the intermediate mussel-derived bioactive dopamine and dihydroxyphenylacetic acid (DA/DOPAC) coating layers to construct functional BCP/layer/NP/BMP2 scaffolds. Our results showed that Heparin/PEI nanogel was a potent delivery system for BMP2, and BCP/layer/NP/BMP2 scaffolds exhibited the high loading capacity, controlled release rate, and sustained local delivery of BMP2. In vitro cell experiments with bone marrow stromal cells (BMSCs) found that BCP/layer/NP/BMP2 could promote cell proliferation, facilitate cell spreading, accelerate cell migration, up-regulate expression of osteogenic genes, and improve synthesis of osteoblast-related proteins. Moreover, the murine intramuscular implantation model suggested that BCP/layer/NP/BMP2 had a superior osteoinductive capacity, and the rat femoral condyle defect repair model showed that BCP/layer/NP/BMP2 could enhance in situ bone repair and regeneration. These findings demonstrate that the incorporation of BMP2 loaded Heparin/PEI nanogels to 3D printed scaffolds holds great promise in fabricating bone graft with a superior biological performance for orthopedic application.
Collapse
Affiliation(s)
- Yitao Tang
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu 610064, China
| | - Jing Wang
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu 610064, China
| | - Quanle Cao
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu 610064, China
| | - Fuying Chen
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu 610064, China
| | - Menglu Wang
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu 610064, China
| | - Yonghao Wu
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu 610064, China
| | - Xuening Chen
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu 610064, China.
| | - Xiangdong Zhu
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu 610064, China.
| | - Xingdong Zhang
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu 610064, China
| |
Collapse
|
49
|
Ma S, Wei C, Jiang H, Chen Z, Xu Z, Huang X. A catalytic membrane based on dopamine directional deposition biomimetically induced by immobilized enzyme for dye degradation. Chem Eng Res Des 2022. [DOI: 10.1016/j.cherd.2022.09.052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
50
|
Yao Q, Zhang J, Pan G, Chen B. Mussel-Inspired Clickable Antibacterial Peptide Coating on Ureteral Stents for Encrustation Prevention. ACS APPLIED MATERIALS & INTERFACES 2022; 14:36473-36486. [PMID: 35917447 DOI: 10.1021/acsami.2c09448] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Long-term indwelling catheters or stents often cause complications like infection, encrustation, hematuria, pain, and so on. The source of these problems is bacteria, which can form biofilms on the stents to reduce antibiotic sensitivity and produce urease to form encrustation by increasing the urine pH. Urinary tract infection (UTI) can aggravate the body damage and even seriously endanger lives, and the encrustation will block the stents, which can cause hydronephrosis and renal function damage. Therefore, the prevention of UTI and encrustation represents a great challenge in clinical ureteral stent uses. In this work, a clickable mussel-inspired peptide and antimicrobial peptide (AMP) were used to functionalize the commercial stents' surfaces to inhibit long-term infection and encrustation caused by bacteria. Copper (Cu) ions were used to coordinate the mussel-inspired peptide to improve the stability. The AMP with an azido group was clicked to the mussel-inspired Cu-coordinated peptide coating through click chemistry. The bio-inspired antibacterial coating was constructed with excellent stability, bactericidal properties, and improved biological compatibility. In in vitro and in vivo experiments, it was further found that the coating showed bactericidal and encrustation reduction abilities. This study thus developed an effective, safe, and stable AMP coating on urinary stents/catheters capable of long-term antibacterial and encrustation inhibition.
Collapse
Affiliation(s)
- Qin Yao
- Department of Urology, Affiliated Hospital of Jiangsu University, 438 Jiefang Road, Zhenjiang, Jiangsu 212001, P. R. China
| | - Jinyi Zhang
- Institute for Advanced Materials, School of Materials Science and Engineering, Jiangsu University, 304 Xuefu Road, Zhenjiang, Jiangsu 212013, P. R. China
| | - Guoqing Pan
- Institute for Advanced Materials, School of Materials Science and Engineering, Jiangsu University, 304 Xuefu Road, Zhenjiang, Jiangsu 212013, P. R. China
| | - Binghai Chen
- Department of Urology, Affiliated Hospital of Jiangsu University, 438 Jiefang Road, Zhenjiang, Jiangsu 212001, P. R. China
| |
Collapse
|