1
|
Casagualda C, López-Moral A, Alfonso-Triguero P, Lorenzo J, Alibés R, Busqué F, Ruiz-Molina D. Mussel-Inspired Multifunctional Polyethylene Glycol Nanoparticle Interfaces. Biomimetics (Basel) 2024; 9:531. [PMID: 39329553 PMCID: PMC11429798 DOI: 10.3390/biomimetics9090531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 08/30/2024] [Accepted: 08/31/2024] [Indexed: 09/28/2024] Open
Abstract
Nanoparticles (NPs) are receiving increasing interest in biomedical applications. However, due to their large surface area, in physiological environments, they tend to interact with plasma proteins, inducing their agglomeration and ultimately resulting in a substantial efficiency decrease in diagnostic and therapeutic applications. To overcome such problems, NPs are typically coated with a layer of hydrophilic and biocompatible polymers, such as PEG chains. However, few examples exist in which this property could be systematically fine-tuned and combined with added properties, such as emission. Herein, we report a novel mussel-inspired catechol-based strategy to obtain biocompatible and multifunctional coatings, using a previously developed polymerization methodology based on the formation of disulfide bridges under mild oxidative conditions. Two families of NPs were selected as the proof of concept: mesoporous silica NPs (MSNPs), due to their stability and known applications, and magnetite NPs (Fe3O4 NPs), due to their small size (<10 nm) and magnetic properties. The PEG coating confers biocompatibility on the NPs and can be further functionalized with bioactive molecules, such as glucose units, through the end carboxylic acid moieties. Once we demonstrated the feasibility of our approach to obtaining PEG-based coatings on different families of NPs, we also obtained multifunctional coatings by incorporating fluorescein functionalities. The resulting coatings not only confer biocompatibility and excellent cell internalization, but also allow for the imaging and tracking of NPs within cells.
Collapse
Affiliation(s)
- Carolina Casagualda
- Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC, and The Barcelona Institute of Science and Technology (BIST), Campus UAB, Bellaterra, 08193 Barcelona, Spain
- Departament de Química, Universitat Autònoma de Barcelona, Bellaterra, 08193 Barcelona, Spain
| | - Alba López-Moral
- Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC, and The Barcelona Institute of Science and Technology (BIST), Campus UAB, Bellaterra, 08193 Barcelona, Spain
- Departament de Química, Universitat Autònoma de Barcelona, Bellaterra, 08193 Barcelona, Spain
| | - Paula Alfonso-Triguero
- Institut de Biotecnologia i de Biomedicina and Departament de Bioquímica i Biologia Molecular, Universitat Autónoma de Barcelona, Bellaterra, 08193 Barcelona, Spain
| | - Julia Lorenzo
- Institut de Biotecnologia i de Biomedicina and Departament de Bioquímica i Biologia Molecular, Universitat Autónoma de Barcelona, Bellaterra, 08193 Barcelona, Spain
- Centro de Investigación Biomédica en Red (CIBER), Bioingeniería, Biomateriales y Nanomedicina, 08193 Cerdanyola del Vallès, Spain
| | - Ramon Alibés
- Departament de Química, Universitat Autònoma de Barcelona, Bellaterra, 08193 Barcelona, Spain
| | - Félix Busqué
- Departament de Química, Universitat Autònoma de Barcelona, Bellaterra, 08193 Barcelona, Spain
| | - Daniel Ruiz-Molina
- Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC, and The Barcelona Institute of Science and Technology (BIST), Campus UAB, Bellaterra, 08193 Barcelona, Spain
| |
Collapse
|
2
|
Kim I, Kang SM. Formation of Amphiphilic Zwitterionic Thin Poly(SBMA- co-TFEMA) Brushes on Solid Surfaces for Marine Antifouling Applications. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024. [PMID: 38314692 DOI: 10.1021/acs.langmuir.3c03687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2024]
Abstract
Water molecules can bind to zwitterionic polymers, such as carboxybetaine and sulfobetaine, forming strong hydration layers along the polymer chains. Such hydration layers act as a barrier to impede the attachment of marine fouling organisms; therefore, zwitterionic polymer coatings have been of considerable interest as marine antifouling coatings. However, recent studies have shown that severe adsorption of marine sediments occurs on zwitterionic-polymer-coated surfaces, resulting in the degradation of their marine antifouling performance. Therefore, a novel approach for forming amphiphilic zwitterionic polymers using zwitterionic and hydrophobic monomers is being investigated to simultaneously inhibit both sediment adsorption and marine fouling. In this study, amphiphilic zwitterionic thin polymer brushes composed of sulfobetaine methacrylate (SBMA) and trifluoroethyl methacrylate (TFEMA) were synthesized on Si/SiO2 surfaces via surface-initiated atom transfer radical polymerization. For this, a facile metal-ion-mediated method was developed for immobilizing polymerization initiators on solid substrates to subsequently form poly(SBMA-co-TFEMA) brushes on the initiator-coated substrate surface. Poly(SBMA-co-TFEMA) brushes with various SBMA/TFEMA ratios were prepared to determine the composition at which both marine diatom adhesion and sediment adsorption can be prevented effectively. The results indicate that poly(SBMA-co-TFEMA) brushes prepared with an SBMA/TFEMA ratio of 3:7 effectively inhibit both sediment adsorption and marine diatom adhesion, thereby exhibiting balanced marine antifouling properties. Thus, the findings of this study provide important insights into the design of amphiphilic marine antifouling materials.
Collapse
Affiliation(s)
- Inho Kim
- Department of Chemistry, Chungbuk National University, Cheongju 28644, Chungbuk, Republic of Korea
| | - Sung Min Kang
- Department of Chemistry, Chungbuk National University, Cheongju 28644, Chungbuk, Republic of Korea
| |
Collapse
|
3
|
Hassani M, Kamankesh M, Rad-Malekshahi M, Rostamizadeh K, Rezaee F, Haririan I, Daghighi SM. Biomaterials coated with zwitterionic polymer brush demonstrated significant resistance to bacterial adhesion and biofilm formation in comparison to brush coatings incorporated with antibiotics. Colloids Surf B Biointerfaces 2024; 234:113671. [PMID: 38039822 DOI: 10.1016/j.colsurfb.2023.113671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Revised: 11/16/2023] [Accepted: 11/22/2023] [Indexed: 12/03/2023]
Abstract
A critical problem with the use of biomaterial implants is associated with bacterial adhesion on the surface of implants and in turn the biofilm formation. Among different strategies that have been reported to resolve this dilemma, surface design combined with both antiadhesive and antimicrobial properties has proven to be highly effective. Physiochemical properties of polymer brush coatings possess non-adhesive capability against bacterial adhesion and create a niche for further functionalization. The current study aims to evaluate the effect of antibiotics incorporated into the polymer brush on bacterial adhesion and biofilm formation. Brushes made of zwitterionic polymers were synthesized, functionalized with vancomycin via both physical and chemical conjugation, and grafted onto the silicon rubber surfaces. Antibacterial and antiadhesive measurements of designed coated biomaterials were mediated through the use of a parallel plate flow chamber against biofilm growth developed by Staphylococcus aureus and Escherichia coli over a period of 24 h. The analysis of biofilm growth on designed coated biomaterials showed that the pristine coated zwitterionic brushes are significantly resistant to bacterial adhesion and biofilm formation but not in the polymer brush coating incorporated with antibiotics.
Collapse
Affiliation(s)
- Maryam Hassani
- Department of Pharmaceutical Biomaterials, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Mojtaba Kamankesh
- Department of Polymer Chemistry, School of Chemistry, College of Science, University of Tehran, Tehran, Iran
| | - Mazda Rad-Malekshahi
- Department of Pharmaceutical Biomaterials, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Kobra Rostamizadeh
- Department of Pharmaceutical Biomaterials, School of Pharmacy, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Farhad Rezaee
- Department of Gastroenterology and Hepatology, Erasmus University Medical Center Rotterdam, Rotterdam, the Netherlands
| | - Ismaeil Haririan
- Department of Pharmaceutical Biomaterials, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran.
| | - Seyed Mojtaba Daghighi
- Pharmaceutical Sciences Research Center, The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
4
|
Baby M, Bhaskaran SP, Chandran Maniyeri S. Catechol-Amine-Decorated Epoxy Resin as an Underwater Adhesive: A Coacervate Concept Using a Liquid Marble Strategy. ACS OMEGA 2023; 8:7289-7301. [PMID: 36873002 PMCID: PMC9979230 DOI: 10.1021/acsomega.2c04163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Accepted: 12/02/2022] [Indexed: 06/18/2023]
Abstract
The attachment phenomena of various hierarchical architectures found in nature, especially underwater adhesion, have drawn extensive attention to the development of similar biomimicking adhesives. Marine organisms show spectacular adhesion characteristics because of their foot protein chemistry and the formation of an immiscible phase (coacervate) in water. Herein, we report a synthetic coacervate derived using a liquid marble route composed of catechol amine-modified diglycidyl ether of bisphenol A (EP) polymers wrapped by silica/PTFE powders. The adhesion promotion efficiency of catechol moieties is established by functionalizing EP with monofunctional amines (MFA) of 2-phenyl ethylamine and 3,4-dihydroxy phenylethylamine (DA). The curing activation of MFA-incorporated resin pointed toward a lower activation energy (50.1-52.1 kJ mol-1) compared with the neat system (56.7-58 kJ mol-1). The viscosity build-up and gelation are faster for the catechol-incorporated system, making it ideal for underwater bonding performance. The PTFE-based adhesive marble of the catechol-incorporated resin was stable and exhibited an adhesive strength of 7.5 MPa under underwater bonding conditions.
Collapse
Affiliation(s)
- Monisha Baby
- Cochin
University of Science and Technology, Ernakulam 682022, Kerala, India
- Analytical and Spectroscopic Division and Polymers and Special Chemical Division, Vikram Sarabhai Space Centre, Thiruvananthapuram 695022, Kerala, India
| | - Soumyamol Panthaplackal Bhaskaran
- Analytical and Spectroscopic Division and Polymers and Special Chemical Division, Vikram Sarabhai Space Centre, Thiruvananthapuram 695022, Kerala, India
| | - Satheesh Chandran Maniyeri
- Analytical and Spectroscopic Division and Polymers and Special Chemical Division, Vikram Sarabhai Space Centre, Thiruvananthapuram 695022, Kerala, India
| |
Collapse
|
5
|
Lancelot A, Putnam-Neeb AA, Huntington SL, Garcia-Rodriguez JM, Naren N, Atencio-Martinez CL, Wilker JJ. Increasing the Scale and Decreasing the Cost of Making a Catechol-Containing Adhesive Polymer. Macromolecules 2023. [DOI: 10.1021/acs.macromol.2c02499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Alexandre Lancelot
- Department of Chemistry, Purdue University, 560 Oval Drive, West Lafayette, Indiana47907-2084, United States
| | - Amelia A. Putnam-Neeb
- Department of Chemistry, Purdue University, 560 Oval Drive, West Lafayette, Indiana47907-2084, United States
| | - S. Lee Huntington
- Department of Chemistry, Purdue University, 560 Oval Drive, West Lafayette, Indiana47907-2084, United States
| | | | - Nevin Naren
- Department of Chemistry, Purdue University, 560 Oval Drive, West Lafayette, Indiana47907-2084, United States
| | - Cindy L. Atencio-Martinez
- Department of Chemistry, Purdue University, 560 Oval Drive, West Lafayette, Indiana47907-2084, United States
| | - Jonathan J. Wilker
- Department of Chemistry, Purdue University, 560 Oval Drive, West Lafayette, Indiana47907-2084, United States
- School of Materials Engineering, Purdue University, 701 W. Stadium Avenue, West Lafayette, Indiana47907-2045, United States
| |
Collapse
|
6
|
Liu D, Xi Y, Yu S, Yang K, Zhang F, Yang Y, Wang T, He S, Zhu Y, Fan Z, Du J. A polypeptide coating for preventing biofilm on implants by inhibiting antibiotic resistance genes. Biomaterials 2023; 293:121957. [PMID: 36549042 DOI: 10.1016/j.biomaterials.2022.121957] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 11/12/2022] [Accepted: 12/11/2022] [Indexed: 12/14/2022]
Abstract
Aging population has been boosting the need for orthopedic implants. However, biofilm has been a major obstacle for orthopedic implants due to its insensitivity to antibiotics and tendency to drive antimicrobial resistance. Herein, an antibacterial polypeptide coating with excellent in vivo adhesive capacity was prepared to prevent implants from forming biofilms and inducing acquired antibiotic resistance. A peptide-based copolymer, poly[phenylalanine10-stat-lysine12]-block-3,4-dihydroxy-l-phenylalanine [Poly(Phe10-stat-Lys12)-DOPA] was modularly designed, where poly(Phe10-stat-Lys12) is antibacterial polypeptide with high antibacterial activity, and DOPA provides strong adhesion in both wet and dry microenvironments. Meanwhile, compared to traditional "graft-onto" methods, this antibacterial coating can be facilely achieved by immersing Titanium substrates into antibacterial polypeptide solution for 5 min at room temperature. The poly(Phe10-stat-Lys12)-DOPA polymer showed good antibacterial activity with minimum inhibitory concentrations against S. aureus and E. coli of 32 and 400 μg/mL, respectively. Compared to obvious antimicrobial resistance of S. aureus after continuous treatment with vancomycin, this antibacterial coating doesn't drive antimicrobial resistance upon long-term utilization. Transcriptome sequencing and qPCR tests further confirmed that the antibacterial coating was able to inhibit the expression of multiple peptide resistance factor (mprF) and lipoteichoic acid modification D-alanylation genes (dltB and dltC) that can increase the net positive charge of bacterial cell wall to induce the resistance to cationic antimicrobial peptides. In vivo experiments confirmed that this poly(Phe10-stat-Lys12)-DOPA coating can both effectively prevent biofilm formation through surface contact sterilization and avoid local and systemic infections. Overall, we proposed a facile method for preparing antibacterial orthopedic implants with longer indwelling time and without inducing antimicrobial resistance by coating a polypeptide-based polymer on the implants.
Collapse
Affiliation(s)
- Danqing Liu
- Department of Orthopedics, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, 200072, China; Department of Polymeric Materials, School of Materials Science and Engineering, Tongji University, 4800 Caoan Road, Shanghai, 201804, China
| | - Yuejing Xi
- Department of Polymeric Materials, School of Materials Science and Engineering, Tongji University, 4800 Caoan Road, Shanghai, 201804, China
| | - Shunzhi Yu
- Department of Orthopedics, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, 200072, China
| | - Kexin Yang
- Department of Polymeric Materials, School of Materials Science and Engineering, Tongji University, 4800 Caoan Road, Shanghai, 201804, China
| | - Fan Zhang
- Department of Oral Implantology, Stomatological Hospital and Dental School of Tongji University, Shanghai Research Center of Tooth Restoration and Regeneration, Shanghai, 200072, China
| | - Yuying Yang
- Department of Polymeric Materials, School of Materials Science and Engineering, Tongji University, 4800 Caoan Road, Shanghai, 201804, China
| | - Tianlong Wang
- Department of Orthopedics, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, 200072, China
| | - Shisheng He
- Department of Orthopedics, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, 200072, China
| | - Yunqing Zhu
- Department of Orthopedics, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, 200072, China; Department of Polymeric Materials, School of Materials Science and Engineering, Tongji University, 4800 Caoan Road, Shanghai, 201804, China.
| | - Zhen Fan
- Department of Orthopedics, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, 200072, China; Department of Polymeric Materials, School of Materials Science and Engineering, Tongji University, 4800 Caoan Road, Shanghai, 201804, China.
| | - Jianzhong Du
- Department of Orthopedics, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, 200072, China; Department of Polymeric Materials, School of Materials Science and Engineering, Tongji University, 4800 Caoan Road, Shanghai, 201804, China.
| |
Collapse
|
7
|
Pemmada R, Shrivastava A, Dash M, Cui K, Kumar P, Ramakrishna S, Zhou Y, Thomas V, Nanda HS. Science-based strategies of antibacterial coatings with bactericidal properties for biomedical and healthcare settings. CURRENT OPINION IN BIOMEDICAL ENGINEERING 2022. [DOI: 10.1016/j.cobme.2022.100442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
8
|
Abstract
Pathogenic microorganisms are considered to a major threat to human health, impinging on multiple sectors including hospitals, dentistry, food storage and packaging, and water contamination. Due to the increasing levels of antimicrobial resistance shown by pathogens, often caused by long-term abuse or overuse of traditional antimicrobial drugs, new approaches and solutions are necessary. In this area, antimicrobial polymers are a viable solution to combat a variety of pathogens in a number of contexts. Indeed, polymers with intrinsic antimicrobial activities have long been an intriguing research area, in part, due to their widespread natural abundance in materials such as chitin, chitosan, carrageen, pectin, and the fact that they can be tethered to surfaces without losing their antimicrobial activities. In addition, since the discovery of the strong antimicrobial activity of some synthetic polymers, much work has focused on revealing the most effective structural elements that give rise to optimal antimicrobial properties. This has often been synthesis targeted, with the generation of either new polymers or the modification of natural antimicrobial polymers with the addition of antimicrobial enhancing modalities such as quaternary ammonium or guanidinium groups. In this review, the growing number of polymers showing intrinsic antimicrobial properties from the past decade are highlighted in terms of synthesis; often based on post-synthesis modification and their utilization. This includes as surface coatings, for example on medical devices, such as intravascular catheters, orthopaedic implants and contact lenses, or directly as antibacterial agents (specifically as eye drops). Surface functionalisation with inherently antimicrobial polymers is highlighted and has been achieved via various techniques, including surface-bound initiators allowing RAFT or ATRP surface-based polymerization, or via physical immobilization such as by layer-by-layer techniques. This article also covers the mechanistic modes of action of intrinsic antimicrobial polymers against bacteria, viruses, or fungi.
Collapse
Affiliation(s)
- Meltem Haktaniyan
- EaStCHEM School of Chemistry, University of Edinburgh, David Brewster Road, EH9 3FJ, Edinburgh, UK.
| | - Mark Bradley
- EaStCHEM School of Chemistry, University of Edinburgh, David Brewster Road, EH9 3FJ, Edinburgh, UK.
| |
Collapse
|
9
|
Hahn C, Wagner M, Müller AHE, Frey H. MyrDOL, a Protected Dihydroxyfunctional Diene Monomer Derived from β-Myrcene: Functional Polydienes from Renewable Resources via Anionic Polymerization. Macromolecules 2022. [DOI: 10.1021/acs.macromol.2c00367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Christoph Hahn
- Department of Chemistry, Johannes Gutenberg-University, Duesbergweg 10-14, 55128 Mainz, Germany
- Max Planck Graduate Center Mainz, Staudingerweg 9, 55128 Mainz, Germany
| | - Manfred Wagner
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| | - Axel H. E. Müller
- Department of Chemistry, Johannes Gutenberg-University, Duesbergweg 10-14, 55128 Mainz, Germany
| | - Holger Frey
- Department of Chemistry, Johannes Gutenberg-University, Duesbergweg 10-14, 55128 Mainz, Germany
| |
Collapse
|
10
|
Li L, Wang Y, Huang T, He X, Zhang K, Kang ET, Xu L. Cationic porphyrin-based nanoparticles for photodynamic inactivation and identification of bacteria strains. Biomater Sci 2022; 10:3006-3016. [PMID: 35522076 DOI: 10.1039/d2bm00265e] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The emergence of antibiotic drug resistance has undermined the efficacy of antibiotics, and is becoming a severe threat to public health. To combat antibiotic drug resistance and to replace traditional antibiotic treatment, an alternative strategy based on antibacterial photodynamic therapy (APDT), which has broad applicability, high efficiency and less potential of developing antibiotic drug resistance, has been developed. In this work, the cationic porphyrin-based nanoparticles (NPs) were prepared by epoxy-amine chain extension polymerization of diepoxy-terminated poly(ethylene glycol) (PEG) and tetraamino-containing porphyrin, followed by quaternization with methyl iodine and butyl bromide. The as-obtained cationic porphyrin NPs preserved the photophysical properties of porphyrin derivatives, and can efficiently generate singlet oxygen (1O2) under 635 nm laser irradiation. The cationic porphyrin-based NPs displayed intrinsic antibacterial properties, and exhibited strong APDT effect on Gram-positive bacteria by destroying the bacterial cell membranes. Upon incubation with different bacterial strains, it was found that they could be utilized to identify Gram-positive bacteria by observing the sedimentation behavior of their mixtures, and visualizing their co-cultured and centrifugal bacteria cakes. In addition, the cationic porphyrin-based NPs had good hemocompatibility and low dark cytotoxicity.
Collapse
Affiliation(s)
- Lin Li
- Chongqing Key Laboratory for Advanced Materials and Technologies of Clean Energies, School of Materials and Energy, Southwest University, Chongqing, P.R. China 400715.
| | - Yan Wang
- Chongqing Key Laboratory for Advanced Materials and Technologies of Clean Energies, School of Materials and Energy, Southwest University, Chongqing, P.R. China 400715.
| | - Tao Huang
- Chongqing Key Laboratory for Advanced Materials and Technologies of Clean Energies, School of Materials and Energy, Southwest University, Chongqing, P.R. China 400715.
| | - Xiaodong He
- Chongqing Key Laboratory for Advanced Materials and Technologies of Clean Energies, School of Materials and Energy, Southwest University, Chongqing, P.R. China 400715.
| | - Kai Zhang
- Chongqing Key Laboratory for Advanced Materials and Technologies of Clean Energies, School of Materials and Energy, Southwest University, Chongqing, P.R. China 400715.
| | - En-Tang Kang
- Chongqing Key Laboratory for Advanced Materials and Technologies of Clean Energies, School of Materials and Energy, Southwest University, Chongqing, P.R. China 400715. .,Department of Chemical and Biomolecular Engineering, National University of Singapore, Kent Ridge, Singapore 117576
| | - Liqun Xu
- Chongqing Key Laboratory for Advanced Materials and Technologies of Clean Energies, School of Materials and Energy, Southwest University, Chongqing, P.R. China 400715. .,Key Laboratory of Laser Technology and Optoelectronic Functional Materials of Hainan Province, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou, P.R. China 571158
| |
Collapse
|
11
|
Verma M, Rana A, Vidyasagar KEC, Kalyansundaram D, Saha S. Protein Patterning on Microtextured Polymeric Nano-brush Templates Obtained By Nanosecond Fibre Laser. Macromol Biosci 2022; 22:e2100454. [PMID: 35102705 DOI: 10.1002/mabi.202100454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 01/28/2022] [Indexed: 11/11/2022]
Abstract
Micropatterned polymer brushes have attracted attention in several biomedical areas, i.e., tissue engineering, protein microarray, biosensors etc., for precise arrangement of biomolecules. Herein, we report a facile and scalable approach to create microtextured polymer brushes with the ability to generate different type of protein patterns. Nanosecond fibre laser was exploited to generate micropatterns on polyPEGMA (poly(ethylene glycol) methacrylate) brush modified Ti alloy substrate. Surface initiated atom transfer radical polymerisation was employed to grow PolyPEGMA brush (11-87 nm thick) on Ti alloy surface immobilized with initiator having an initiator density (σ*) of 1.5 initiators/nm2 . Polymer brushes were then selectively laser ablated and their presence on non-textured area was confirmed by atomic force microscopy, fluorescence microscopy and X-ray photoelectron spectroscopy. Spatial orientation of biomolecules was first achieved by non-specific protein adsorption on areas ablated by the laser, via physisorption. Further, patterned brushes of polyPEGMA were modified to activated ester that gave rise to protein conjugation specifically on non-laser ablated brush areas. Moreover, the laser ablated brush modified patterned template was also successfully utilized for generating alternate patterns of bacteria. This promising technique can be further extended to create interesting patterns of several biomolecules which are of great interest to biomedical research community. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Meenakshi Verma
- Department of Materials Science and Engineering, Indian Institute of Technology Delhi, Delhi, India
| | - Abhishek Rana
- Department of Mechanical Engineering, Indian Institute of Technology Delhi, Delhi, India
| | - K E Ch Vidyasagar
- Centre for Biomedical Engineering, Indian Institute of Technology Delhi, Delhi, India
| | - Dinesh Kalyansundaram
- Centre for Biomedical Engineering, Indian Institute of Technology Delhi, Delhi, India
| | - Sampa Saha
- Department of Materials Science and Engineering, Indian Institute of Technology Delhi, Delhi, India
| |
Collapse
|
12
|
Bryaskova R, Philipova N, Georgiev N, Lalov I, Bojinov V, Detrembleur C. Photoactive mussels inspired polymer coatings: Preparation and antibacterial activity. J Appl Polym Sci 2021. [DOI: 10.1002/app.50769] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Affiliation(s)
- Rayna Bryaskova
- Department of Polymer Engineering University of Chemical Technology and Metallurgy Sofia Bulgaria
| | - Nikoleta Philipova
- Department of Polymer Engineering University of Chemical Technology and Metallurgy Sofia Bulgaria
| | - Nikolay Georgiev
- Department of Organic Synthesis University of Chemical Technology and Metallurgy Sofia Bulgaria
| | - Ivo Lalov
- Department of Biotechnology University of Chemical Technology and Metallurgy Sofia Bulgaria
| | - Vladimir Bojinov
- Department of Organic Synthesis University of Chemical Technology and Metallurgy Sofia Bulgaria
| | - Christophe Detrembleur
- Center for Education and Research on Macromolecules (CERM), CESAM Research Unit, Chemistry Department University of Liege Liège Belgium
| |
Collapse
|
13
|
Roeven E, Scheres L, Smulders MM, Zuilhof H. Zwitterionic dendrimer – Polymer hybrid copolymers for self-assembling antifouling coatings. Eur Polym J 2021. [DOI: 10.1016/j.eurpolymj.2021.110578] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
14
|
Roeven E, Kuzmyn AR, Scheres L, Baggerman J, Smulders MMJ, Zuilhof H. PLL-Poly(HPMA) Bottlebrush-Based Antifouling Coatings: Three Grafting Routes. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2020; 36:10187-10199. [PMID: 32820926 PMCID: PMC7498161 DOI: 10.1021/acs.langmuir.0c01675] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/06/2020] [Revised: 07/30/2020] [Indexed: 06/11/2023]
Abstract
In this work, we compare three routes to prepare antifouling coatings that consist of poly(l-lysine)-poly(N-(2-hydroxypropyl)methacrylamide) bottlebrushes. The poly(l-lysine) (PLL) backbone is self-assembled onto the surface by charged-based interactions between the lysine groups and the negatively charged silicon oxide surface, whereas the poly(N-(2-hydroxypropyl)methacrylamide) [poly(HPMA)] side chains, grown by reversible addition-fragmentation chain-transfer (RAFT) polymerization, provide antifouling properties to the surface. First, the PLL-poly(HPMA) coatings are synthesized in a bottom-up fashion through a grafting-from approach. In this route, the PLL is self-assembled onto a surface, after which a polymerization agent is immobilized, and finally HPMA is polymerized from the surface. In the second explored route, the PLL is modified in solution by a RAFT agent to create a macroinitiator. After self-assembly of this macroinitiator onto the surface, poly(HPMA) is polymerized from the surface by RAFT. In the third and last route, the whole PLL-poly(HPMA) bottlebrush is initially synthesized in solution. To this end, HPMA is polymerized from the macroinitiator in solution and the PLL-poly(HPMA) bottlebrush is then self-assembled onto the surface in just one step (grafting-to approach). Additionally, in this third route, we also design and synthesize a bottlebrush polymer with a PLL backbone and poly(HPMA) side chains, with the latter containing 5% carboxybetaine (CB) monomers that eventually allow for additional (bio)functionalization in solution or after surface immobilization. These three routes are evaluated in terms of ease of synthesis, scalability, ease of characterization, and a preliminary investigation of their antifouling performance. All three coating procedures result in coatings that show antifouling properties in single-protein antifouling tests. This method thus presents a new, simple, versatile, and highly scalable approach for the manufacturing of PLL-based bottlebrush coatings that can be synthesized partly or completely on the surface or in solution, depending on the desired production process and/or application.
Collapse
Affiliation(s)
- Esther Roeven
- Laboratory
of Organic Chemistry, Wageningen University, Stippeneng 4, 6708 WE Wageningen, The Netherlands
- Surfix
BV, Bronland 12 B-1, 6708 WH Wageningen, The Netherlands
| | - Andriy R. Kuzmyn
- Laboratory
of Organic Chemistry, Wageningen University, Stippeneng 4, 6708 WE Wageningen, The Netherlands
- Aquamarijn
Micro Filtration BV, IJsselkade 7, 7201 HB Zutphen, The Netherlands
| | - Luc Scheres
- Surfix
BV, Bronland 12 B-1, 6708 WH Wageningen, The Netherlands
| | - Jacob Baggerman
- Aquamarijn
Micro Filtration BV, IJsselkade 7, 7201 HB Zutphen, The Netherlands
| | - Maarten M. J. Smulders
- Laboratory
of Organic Chemistry, Wageningen University, Stippeneng 4, 6708 WE Wageningen, The Netherlands
| | - Han Zuilhof
- Laboratory
of Organic Chemistry, Wageningen University, Stippeneng 4, 6708 WE Wageningen, The Netherlands
- School
of Pharmaceutical Sciences and Technology, Tianjin University, 92 Weijin Road, 300072 Tianjin, People’s Republic of China
- Department
of Chemical and Materials Engineering, King
Abdulaziz University, 21589 Jeddah, Saudi Arabia
| |
Collapse
|
15
|
Seidi F, Zhao WF, Xiao HN, Jin YC, Saeb MR, Zhao CS. Advanced Surfaces by Anchoring Thin Hydrogel Layers of Functional Polymers. CHINESE JOURNAL OF POLYMER SCIENCE 2020. [DOI: 10.1007/s10118-020-2474-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
16
|
Wang J, Qiu M, He C. A zwitterionic polymer/PES membrane for enhanced antifouling performance and promoting hemocompatibility. J Memb Sci 2020. [DOI: 10.1016/j.memsci.2020.118119] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
17
|
Oh J, Hong J, Khan A. Ethylene glycol-rich thermosensitive poly(ß-hydroxyl amine)s. JOURNAL OF MACROMOLECULAR SCIENCE PART A-PURE AND APPLIED CHEMISTRY 2020. [DOI: 10.1080/10601325.2020.1761259] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Affiliation(s)
- Junki Oh
- Department of Chemical and Biological Engineering, Korea University, Seoul, Korea
| | - Jeonghui Hong
- Department of Chemical and Biological Engineering, Korea University, Seoul, Korea
| | - Anzar Khan
- Department of Chemical and Biological Engineering, Korea University, Seoul, Korea
| |
Collapse
|
18
|
Liu G, Li K, Wang H, Ma L, Yu L, Nie Y. Stable Fabrication of Zwitterionic Coating Based on Copper-Phenolic Networks on Contact Lens with Improved Surface Wettability and Broad-Spectrum Antimicrobial Activity. ACS APPLIED MATERIALS & INTERFACES 2020; 12:16125-16136. [PMID: 32202402 DOI: 10.1021/acsami.0c02143] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Ocular dryness and contact lens(CL)-related microbial keratitis (MK) are two major risks of wearing CLs. The development of multifunctional surface coating for CLs with excellent hydrating and antimicrobial properties is a practical strategy to improve the comfort of CL wearers and to prevent corneal infection. Here, we develop zwitterionic and antimicrobial metal-phenolic networks (MPNs) based on the coordination of copper ions (CuII) and the poly(carboxylbetaine-co-dopamine methacrylamide) copolymer (PCBDA), which can be easily one-step prepared onto CLs due to the near-universal adherent properties of catechol groups. The zwitterionic and antifouling carboxybetaine (CB) groups of the CuII-PCBDA coating can significantly increase the wettability of CLs and reduce their protein adsorptions, resulting in a lens surface that is more water retentive and with lower protein binding to prevent tear film evaporation and eye dryness. In addition, since the immobilized copper ions in the MPNs impart them with ion-mediated antimicrobial activity, the CuII-PCBDA coating exhibits a strong and broad-spectrum antimicrobial activity against MK related pathogenic microbes, including bacteria, such as Escherichia coli, Pseudomonas aeruginosa, and Staphylococcus aureus, and fungi, such as Candida albicans. Compared with a pristine CL, the CuII-PCBDA-coated CL effectively inhibited biofilm formation even after daily exposure to the above microbial environment for 14 days. Notably, the CuII-PCBDA coating developed in this study is not only biocompatible with 100% cell viability following direct contact with human corneal epithelial cells (HCECs) for 48 h but also maintains the optical clarity of the native CLs. Thus, the CuII-PCBDA coating has a great application potential for the development of a multifunctional surface coating for CLs for increased CL comfort and prevention of MK.
Collapse
Affiliation(s)
- Gongyan Liu
- The Key Laboratory of Leather Chemistry and Engineering of Ministry of Education, College of Biomass Science and Engineering, Sichuan University, Chengdu 610065, China
| | - Kaijun Li
- The Key Laboratory of Leather Chemistry and Engineering of Ministry of Education, College of Biomass Science and Engineering, Sichuan University, Chengdu 610065, China
| | - Haibo Wang
- Textile Institute, College of Biomass Science and Engineering, Sichuan University, Chengdu 610065, China
| | - Li Ma
- The Key Laboratory of Leather Chemistry and Engineering of Ministry of Education, College of Biomass Science and Engineering, Sichuan University, Chengdu 610065, China
| | - Ling Yu
- Department of Ophthalmology, The Affiliated Hospital of Southwest Medical University, Luzhou 646000, China
| | - Yu Nie
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, China
| |
Collapse
|
19
|
Hong J, Oh J, Khan A. Deconstructing poloxamer and poloxamine block copolymers to access poly(ethylene glycol) and poly(propylene oxide)-based thermoresponsive polymers. JOURNAL OF MACROMOLECULAR SCIENCE PART A-PURE AND APPLIED CHEMISTRY 2020. [DOI: 10.1080/10601325.2020.1724055] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Affiliation(s)
- Jeonghui Hong
- Department of Chemical and Biological Engineering, Korea University, Seoul, Korea
| | - Junki Oh
- Department of Chemical and Biological Engineering, Korea University, Seoul, Korea
| | - Anzar Khan
- Department of Chemical and Biological Engineering, Korea University, Seoul, Korea
| |
Collapse
|
20
|
Cheng B, Ishihara K, Ejima H. Bio-inspired immobilization of low-fouling phospholipid polymers via a simple dipping process: a comparative study of phenol, catechol and gallol as tethering groups. Polym Chem 2020. [DOI: 10.1039/c9py00625g] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Low-fouling phospholipid polymer was conjugated with bio-inspired tethering groups. Immobilization efficiencies of these polymers onto various surfaces were investigated.
Collapse
Affiliation(s)
- Bohan Cheng
- Department of Materials Engineering
- School of Engineering
- The University of Tokyo
- Bunkyo-ku 113-8656
- Japan
| | - Kazuhiko Ishihara
- Department of Materials Engineering
- School of Engineering
- The University of Tokyo
- Bunkyo-ku 113-8656
- Japan
| | - Hirotaka Ejima
- Department of Materials Engineering
- School of Engineering
- The University of Tokyo
- Bunkyo-ku 113-8656
- Japan
| |
Collapse
|
21
|
Angayarkanni SA, Kampf N, Klein J. Surface Interactions between Boundary Layers of Poly(ethylene oxide)-Liposome Complexes: Lubrication, Bridging, and Selective Ligation †. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:15469-15480. [PMID: 31348857 DOI: 10.1021/acs.langmuir.9b01708] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Poly(ethylene oxide), PEO, is widely exploited in biomedical applications, while phosphatidylcholine (PC) lipids (in the form of bilayers or liposomes) have been identified as very efficient boundary lubricants in aqueous media. Here we examine, using a surface force balance (SFB), the interactions between surface-adsorbed layers of PEO complexed with small unilamellar vesicles (SUVs, i.e. liposomes) or with bilayers of PC lipids, both well below and a little above their main gel-to-liquid phase-transition temperatures TM. The morphology of PEO layers (adsorbed onto mica), to which liposomes were added, was examined using atomic force microscopy (AFM) and cryo-scanning electron microscopy (cryo-SEM). Our results reveal that the PC lipids could attach to the PEO either as vesicles or as bilayers, depending on whether they were above or below TM. Under water (no added salt), excellent lubrication, with friction coefficients down to 10-3-10-4, up to contact stresses of 6.5 MPa (comparable to those in the major joints) was observed between two surfaces bearing such PEO-PC complexes. At 0.1 M KNO3 salt concentration (comparable to physiological salt levels), the friction between such surfaces was considerably higher, attributed to bridging by the polymer chains. Remarkably, such bridging could be suppressed and the friction could be restored to its previous low value if the KNO3 was replaced with NaNO3, as a result of the different PEO-mica ligation properties of Na+ compared to those of K+. Our results provide insight into the properties of PEO-PC complexes in potential applications, and large interfacial effects that can result from the seemingly innocuous replacement of K+ by Na+ ions.
Collapse
Affiliation(s)
- S A Angayarkanni
- Department of Materials and Interfaces , Weizmann Institute of Science , Rehovot 76100 , Israel
| | - Nir Kampf
- Department of Materials and Interfaces , Weizmann Institute of Science , Rehovot 76100 , Israel
| | - Jacob Klein
- Department of Materials and Interfaces , Weizmann Institute of Science , Rehovot 76100 , Israel
| |
Collapse
|
22
|
Thermoresponsive Poly(ß-hydroxyl amine)s: Synthesis of a New Stimuli Responsive Amphiphilic Homopolymer Family through Amine-Epoxy 'Click' Polymerization. Polymers (Basel) 2019; 11:polym11121941. [PMID: 31775388 PMCID: PMC6961043 DOI: 10.3390/polym11121941] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2019] [Revised: 11/14/2019] [Accepted: 11/19/2019] [Indexed: 11/30/2022] Open
Abstract
A new synthesis of amphiphilic homopolymers is described. In this synthesis, commercially available and inexpensive primary amines and di-epoxide molecules are utilized as AA- and BB-types of monomers in an amine-epoxy ‘click’ polymerization process. This process can be carried out in water and at room temperature. It does not require a catalyst or inert conditions and forms no byproducts. Therefore, the polymer synthesis can be carried out in open-air and bench-top conditions and a post-synthesis purification step is not required. The modularity of the synthesis, on the other hand, allows for facile structural modulation and tuning of the thermally triggered aggregation process in the temperature range of 7 to 91 °C. Finally, the underlying principles can be translated from linear architectures to polymer networks (hydrogels).
Collapse
|
23
|
Ye Q, He B, Zhang Y, Zhang J, Liu S, Zhou F. Grafting Robust Thick Zwitterionic Polymer Brushes via Subsurface-Initiated Ring-Opening Metathesis Polymerization for Antimicrobial and Anti-Biofouling. ACS APPLIED MATERIALS & INTERFACES 2019; 11:39171-39178. [PMID: 31559815 DOI: 10.1021/acsami.9b11946] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
In the present work, high-thickness zwitterionic polymer brushes based on imidazolium salts were successfully grafted via a novel subsurface-initiated ring-opening metathesis polymerization (subsurface-initiated ROMP) from polydimethylsiloxane (PDMS), and their antifouling performance was evaluated in detail. First, an initiator-embedded PDMS was prepared via copolymerization of PDMS prepolymer and ROMP initiator, and then zwitterionic polymer brushes were grafted via subsurface-initiated ROMP from surface to subsurface of the PDMS due to the implanted ROMP initiator. Results from a series of characterization methods such as infrared spectroscopy, X-ray photoelectron spectroscopy, contact angle, and atomic force microscopy proved the zwitterionic polymer brushes' successful grafting. The grafting thickness of zwitterionic polymer brushes via subsurface-initiated ROMP can reach the micron scale, and the as-prepared zwitterionic polymer based surfaces showed good lubricating properties compared to traditional surface-initiated ROMP, which hints that polymer brushes can be grafted not only on the surface but also on the subsurface of PDMS. The protein adhesion test and biofouling assay of zwitterionic polymer brushes were tested in the laboratory, and the results indicated that the zwitterionic polymer-functionalized PDMS can effectively resist the adhesion of bovine serum albumin and algae (Porphyridium and Dunaliella) and has good anti-bacterial activity against both Escherichia coli and Staphylococcus aureus.
Collapse
Affiliation(s)
- Qian Ye
- State Key Laboratory of Solidification Processing, Center of Advanced Lubrication and Seal Materials, School of Materials Science and Engineering , Northwestern Polytechnical University , No. 127, Youyi West Road , Xi'an 710072 , P. R. China
- Research & Development Institute of Northwestern Polytechnical University in Shenzhen , Shenzhen 518057 , P. R. China
| | - Baoluo He
- State Key Laboratory of Solidification Processing, Center of Advanced Lubrication and Seal Materials, School of Materials Science and Engineering , Northwestern Polytechnical University , No. 127, Youyi West Road , Xi'an 710072 , P. R. China
| | - Yun Zhang
- The Fourth Hospital of Xi'an , Xi'an Jiaotong University , No. 21, Jiefang Road , Xi'an 710004 , P. R. China
| | - Jin Zhang
- State Key Laboratory of Solidification Processing, Center of Advanced Lubrication and Seal Materials, School of Materials Science and Engineering , Northwestern Polytechnical University , No. 127, Youyi West Road , Xi'an 710072 , P. R. China
| | - Shujuan Liu
- State Key Laboratory of Solidification Processing, Center of Advanced Lubrication and Seal Materials, School of Materials Science and Engineering , Northwestern Polytechnical University , No. 127, Youyi West Road , Xi'an 710072 , P. R. China
| | - Feng Zhou
- State Key Laboratory of Solidification Processing, Center of Advanced Lubrication and Seal Materials, School of Materials Science and Engineering , Northwestern Polytechnical University , No. 127, Youyi West Road , Xi'an 710072 , P. R. China
- State Key Laboratory of Solid Lubrication , Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences , No. 18, Tianshui Middle Road , Lanzhou 730000 , P. R. China
| |
Collapse
|
24
|
Oh J, Jung KI, Jung HW, Khan A. A Modular and Practical Synthesis of Zwitterionic Hydrogels through Sequential Amine-Epoxy "Click" Chemistry and N-Alkylation Reaction. Polymers (Basel) 2019; 11:E1491. [PMID: 31547408 PMCID: PMC6780745 DOI: 10.3390/polym11091491] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Revised: 09/11/2019] [Accepted: 09/11/2019] [Indexed: 02/03/2023] Open
Abstract
In this work, the amine-epoxy "click" reaction is shown to be a valuable general tool in the synthesis of reactive hydrogels. The practicality of this reaction arises due to its catalyst-free nature, its operation in water, and commercial availability of a large variety of amine and epoxide molecules that can serve as hydrophilic network precursors. Therefore, hydrogels can be prepared in a modular fashion through a simple mixing of the precursors in water and used as produced (without requiring any post-synthesis purification step). The gelation behavior and final hydrogel properties depend upon the molecular weight of the precursors and can be changed as per the requirement. A post-synthesis modification through alkylation at the nitrogen atom of the newly formed β-hydroxyl amine linkages allows for functionalizing the hydrogels. For example, ring-opening reaction of cyclic sulfonic ester gives rise to surfaces with a zwitterionic character. Finally, the established gelation chemistry can be combined with soft lithography techniques such as micromolding in capillaries (MIMIC) to obtain hydrogel microstructures.
Collapse
Affiliation(s)
- Junki Oh
- Department of Chemical and Biological Engineering, Korea University, Seoul 02841, Korea.
| | - Kevin Injoe Jung
- Department of Chemical and Biological Engineering, Korea University, Seoul 02841, Korea.
| | - Hyun Wook Jung
- Department of Chemical and Biological Engineering, Korea University, Seoul 02841, Korea.
| | - Anzar Khan
- Department of Chemical and Biological Engineering, Korea University, Seoul 02841, Korea.
| |
Collapse
|
25
|
Su Y, Feng T, Feng W, Pei Y, Li Z, Huo J, Xie C, Qu X, Li P, Huang W. Mussel‐Inspired, Surface‐Attachable Initiator for Grafting of Antimicrobial and Antifouling Hydrogels. Macromol Rapid Commun 2019; 40:e1900268. [PMID: 31361063 DOI: 10.1002/marc.201900268] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Revised: 07/05/2019] [Indexed: 12/14/2022]
Affiliation(s)
- Yajuan Su
- MIIT Key Laboratory of Flexible Electronics & Shaanxi Key Laboratory of Flexible ElectronicsXi'an Key Laboratory of Flexible Electronics & Xi'an Key Laboratory of Biomedical Materials and EngineeringXi'an Institute of Flexible Electronics (IFE) & Xi'an Institute of Biomedical Materials and Engineering (IBME)Northwestern Polytechnical University (NPU) 127 West Youyi Road Xi'an 710072 China
- Center for Biomedical Engineering and Regenerative Medicine (CBERM)Frontier Institute of Science and Technology (FIST)Xi'an Jiaotong University Xi'an 710054 China
| | - Tao Feng
- MIIT Key Laboratory of Flexible Electronics & Shaanxi Key Laboratory of Flexible ElectronicsXi'an Key Laboratory of Flexible Electronics & Xi'an Key Laboratory of Biomedical Materials and EngineeringXi'an Institute of Flexible Electronics (IFE) & Xi'an Institute of Biomedical Materials and Engineering (IBME)Northwestern Polytechnical University (NPU) 127 West Youyi Road Xi'an 710072 China
| | - Wei Feng
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM)Nanjing Tech University (NanjingTech) 30 South Puzhu Road Nanjing 211800 China
| | - Yangyang Pei
- MIIT Key Laboratory of Flexible Electronics & Shaanxi Key Laboratory of Flexible ElectronicsXi'an Key Laboratory of Flexible Electronics & Xi'an Key Laboratory of Biomedical Materials and EngineeringXi'an Institute of Flexible Electronics (IFE) & Xi'an Institute of Biomedical Materials and Engineering (IBME)Northwestern Polytechnical University (NPU) 127 West Youyi Road Xi'an 710072 China
| | - Ziyue Li
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM)Nanjing Tech University (NanjingTech) 30 South Puzhu Road Nanjing 211800 China
| | - Jingjing Huo
- MIIT Key Laboratory of Flexible Electronics & Shaanxi Key Laboratory of Flexible ElectronicsXi'an Key Laboratory of Flexible Electronics & Xi'an Key Laboratory of Biomedical Materials and EngineeringXi'an Institute of Flexible Electronics (IFE) & Xi'an Institute of Biomedical Materials and Engineering (IBME)Northwestern Polytechnical University (NPU) 127 West Youyi Road Xi'an 710072 China
| | - Chao Xie
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Key Laboratory of StomatologyDepartment of Oral ImplantologySchool of StomatologyFourth Military Medical University 169 West Changle Road Xi'an 710032 China
| | - Xue Qu
- Key Laboratory for Ultrafine Materials of Ministry of EducationThe State Key Laboratory of Bioreactor EngineeringEast China University of Science and Technology 130 Meilong Road Shanghai 200237 China
| | - Peng Li
- MIIT Key Laboratory of Flexible Electronics & Shaanxi Key Laboratory of Flexible ElectronicsXi'an Key Laboratory of Flexible Electronics & Xi'an Key Laboratory of Biomedical Materials and EngineeringXi'an Institute of Flexible Electronics (IFE) & Xi'an Institute of Biomedical Materials and Engineering (IBME)Northwestern Polytechnical University (NPU) 127 West Youyi Road Xi'an 710072 China
- Center for Biomedical Engineering and Regenerative Medicine (CBERM)Frontier Institute of Science and Technology (FIST)Xi'an Jiaotong University Xi'an 710054 China
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM)Nanjing Tech University (NanjingTech) 30 South Puzhu Road Nanjing 211800 China
| | - Wei Huang
- MIIT Key Laboratory of Flexible Electronics & Shaanxi Key Laboratory of Flexible ElectronicsXi'an Key Laboratory of Flexible Electronics & Xi'an Key Laboratory of Biomedical Materials and EngineeringXi'an Institute of Flexible Electronics (IFE) & Xi'an Institute of Biomedical Materials and Engineering (IBME)Northwestern Polytechnical University (NPU) 127 West Youyi Road Xi'an 710072 China
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM)Nanjing Tech University (NanjingTech) 30 South Puzhu Road Nanjing 211800 China
| |
Collapse
|
26
|
Antibacterial response of polylactide surfaces modified with hydrophilic polymer brushes. IRANIAN POLYMER JOURNAL 2019. [DOI: 10.1007/s13726-019-00717-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
27
|
Li J, Sun CL, An P, Liu X, Dong R, Sun J, Zhang X, Xie Y, Qin C, Zheng W, Zhang HL, Jiang X. Construction of Dopamine-Releasing Gold Surfaces Mimicking Presynaptic Membrane by On-Chip Electrochemistry. J Am Chem Soc 2019; 141:8816-8824. [PMID: 31117642 DOI: 10.1021/jacs.9b01003] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
We report a strategy to construct a dopamine-releasing gold surface mimicking a presynaptic membrane on a microfluidic chip to simulate in vivo neural signaling. We constructed dopamine self-assembled monolayers (DA SAMs) by electrochemical deprotection of methyl group-protected DA SAMs on a gold surface. Electrochemically controllable release of DA SAMs can be realized by applying nonhydrolytic negative potential on the gold surface. Our method in constructing DA SAMs avoids the polymerization and protonation of DA molecules which may lead to the failure of the DA SAM formation. By combining microfluidics, we realized spatial and temporal controllable release of DA by electrochemistry from the gold surface. Furthermore, by culturing neurons on the patterned DA SAMs, the interface between the DA SAMs and the neurons could serve as a presynaptic membrane, and the spatiotemporal release of DA could modulate the neuron activity with high precision. Our study holds great promise in the fields of neurobiology research and drug screening.
Collapse
Affiliation(s)
- Jun Li
- MOE Key Laboratory of Space Applied Physics and Chemistry, Joint Lab of Nanofluidics and Interfaces (LONI), School of Natural and Applied Sciences , Northwestern Polytechnical University , Xi'an , Shanxi 710072 , P. R. China
| | - Chun-Lin Sun
- State Key Laboratory of Applied Organic Chemistry (SKLAOC), College of Chemistry and Chemical Engineering , Lanzhou University , Lanzhou , Gansu 730000 , P. R. China
| | - Pengrong An
- MOE Key Laboratory of Space Applied Physics and Chemistry, Joint Lab of Nanofluidics and Interfaces (LONI), School of Natural and Applied Sciences , Northwestern Polytechnical University , Xi'an , Shanxi 710072 , P. R. China
| | - Xiaoyan Liu
- CAS Center for Excellence in Nanoscience, CAS Key Lab for Biological Effects of Nanomaterials and Nanosafety , National Center for NanoScience and Technology , Beijing 100190 , P. R. China
| | - Ruihua Dong
- CAS Center for Excellence in Nanoscience, CAS Key Lab for Biological Effects of Nanomaterials and Nanosafety , National Center for NanoScience and Technology , Beijing 100190 , P. R. China
| | - Jinghong Sun
- MOE Key Laboratory of Space Applied Physics and Chemistry, Joint Lab of Nanofluidics and Interfaces (LONI), School of Natural and Applied Sciences , Northwestern Polytechnical University , Xi'an , Shanxi 710072 , P. R. China
| | - Xingyu Zhang
- MOE Key Laboratory of Space Applied Physics and Chemistry, Joint Lab of Nanofluidics and Interfaces (LONI), School of Natural and Applied Sciences , Northwestern Polytechnical University , Xi'an , Shanxi 710072 , P. R. China
| | - Yanbo Xie
- MOE Key Laboratory of Space Applied Physics and Chemistry, Joint Lab of Nanofluidics and Interfaces (LONI), School of Natural and Applied Sciences , Northwestern Polytechnical University , Xi'an , Shanxi 710072 , P. R. China
| | - Chuanguang Qin
- MOE Key Laboratory of Space Applied Physics and Chemistry, Joint Lab of Nanofluidics and Interfaces (LONI), School of Natural and Applied Sciences , Northwestern Polytechnical University , Xi'an , Shanxi 710072 , P. R. China
| | - Wenfu Zheng
- CAS Center for Excellence in Nanoscience, CAS Key Lab for Biological Effects of Nanomaterials and Nanosafety , National Center for NanoScience and Technology , Beijing 100190 , P. R. China
| | - Hao-Li Zhang
- State Key Laboratory of Applied Organic Chemistry (SKLAOC), College of Chemistry and Chemical Engineering , Lanzhou University , Lanzhou , Gansu 730000 , P. R. China
| | - Xingyu Jiang
- Department of Biomedical Engineering , Southern University of Science and Technology , No. 1088 Xueyuan Rd, Nanshan District , Shenzhen , Guangdong 518055 , P. R. China.,CAS Center for Excellence in Nanoscience, CAS Key Lab for Biological Effects of Nanomaterials and Nanosafety , National Center for NanoScience and Technology , Beijing 100190 , P. R. China
| |
Collapse
|
28
|
Liu J, Xiong Z, Zhang J, Peng C, Klajnert-Maculewicz B, Shen M, Shi X. Zwitterionic Gadolinium(III)-Complexed Dendrimer-Entrapped Gold Nanoparticles for Enhanced Computed Tomography/Magnetic Resonance Imaging of Lung Cancer Metastasis. ACS APPLIED MATERIALS & INTERFACES 2019; 11:15212-15221. [PMID: 30964632 DOI: 10.1021/acsami.8b21679] [Citation(s) in RCA: 81] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Design of dual mode or multimode contrast agents or nanoplatforms with antifouling properties is crucial for improved cancer diagnosis since the antifouling materials are able to escape the clearance of the reticuloendothelial system with improved pharmacokinetics. Herein, we present the creation of zwitterionic gadolinium(III) (Gd(III))-complexed dendrimer-entrapped gold nanoparticles (Au DEN) for enhanced dual mode computed tomography (CT)/magnetic resonance (MR) imaging of lung cancer metastasis. In the present work, poly(amidoamine) (PAMAM) dendrimers of generation 5 were partially decorated with carboxybetanie acrylamide (CBAA), 2-methacryloyloxyethyl phosphorylcholine (MPC), and 1,3-propane sultone (1,3-PS), respectively at different degrees, then used to entrap Au NPs within their interiors, and finally acetylated to cover their remaining amine termini. Through protein resistance, macrophage cellular uptake, and pharmacokinetics assays, we show that zwitterionic Au DEN modified with 1,3-PS exhibit the best antifouling property with the longest half-decay time (37.07 h) when compared to the CBAA- and MPC-modified Au DEN. Furthermore, with the optimized zwitterion type, we then prepared zwitterionic Gd(III)-loaded Au DEN modified with arginine-glycine-aspartic acid peptide for targeted dual mode CT/MR imaging of a lung cancer metastasis model. We disclose that the designed multifunctional Au DEN having an Au core size of 2.7 nm and a surface potential of 7.6 ± 0.9 mV display a good X-ray attenuation property, relatively high r1 relaxivity (13.17 mM s-1), acceptable cytocompatibility, and targeting specificity to αvβ3 integrin-expressing cancer cells and enable effective dual mode CT/MR imaging of a lung cancer metastasis model in vivo. The developed multifunctional zwitterion-functionalized Au DEN may be potentially adopted as an effective nanoprobe for enhanced dual-modal CT/MR imaging of other cancer types.
Collapse
Affiliation(s)
- Jinyuan Liu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, International Joint Laboratory for Advanced Fiber and Low-dimension Materials, College of Chemistry, Chemical Engineering and Biotechnology , Donghua University , Shanghai 201620 , P. R. China
| | - Zhijuan Xiong
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, International Joint Laboratory for Advanced Fiber and Low-dimension Materials, College of Chemistry, Chemical Engineering and Biotechnology , Donghua University , Shanghai 201620 , P. R. China
| | - Jiulong Zhang
- Department of Radiology, Shanghai Public Health Clinical Center , Fudan University , Shanghai 201508 , P. R. China
| | - Chen Peng
- Department of Radiology, Shanghai Public Health Clinical Center , Fudan University , Shanghai 201508 , P. R. China
- Cancer Center, Shanghai Tenth People's Hospital , Tongji University School of Medicine , Shanghai 200072 , P. R. China
| | - Barbara Klajnert-Maculewicz
- Department of General Biophysics, Faculty of Biology and Environmental Protection , University of Lodz , 141/143 Pomorska St. , 90-236 Lodz , Poland
| | - Mingwu Shen
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, International Joint Laboratory for Advanced Fiber and Low-dimension Materials, College of Chemistry, Chemical Engineering and Biotechnology , Donghua University , Shanghai 201620 , P. R. China
| | - Xiangyang Shi
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, International Joint Laboratory for Advanced Fiber and Low-dimension Materials, College of Chemistry, Chemical Engineering and Biotechnology , Donghua University , Shanghai 201620 , P. R. China
- CQM-Centro de Química da Madeira , Universidade da Madeira, Campus da Penteada , 9020-105 Funchal , Portugal
| |
Collapse
|
29
|
Jeong Y, Thuy LT, Ki SH, Ko S, Kim S, Cho WK, Choi JS, Kang SM. Multipurpose Antifouling Coating of Solid Surfaces with the Marine-Derived Polymer Fucoidan. Macromol Biosci 2018; 18:e1800137. [DOI: 10.1002/mabi.201800137] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2018] [Revised: 07/04/2018] [Indexed: 12/31/2022]
Affiliation(s)
- Yeonwoo Jeong
- Department of Chemistry; Chungbuk National University; Chungbuk 28644 Republic of Korea
| | - Le Thi Thuy
- Department of Biochemistry; Chungnam National University; Daejeon 34134 Republic of Korea
| | - So Hyun Ki
- Department of Chemistry; Chungnam National University; Daejeon 34134 Republic of Korea
| | - Sangwon Ko
- Transportation Environmental Research Team; Korea Railroad Research Institute; Uiwang 16105 Republic of Korea
| | - Suyeob Kim
- Department of Marine Biomaterials and Aquaculture; Pukyong National University; Busan 48513 Republic of Korea
| | - Woo Kyung Cho
- Department of Chemistry; Chungnam National University; Daejeon 34134 Republic of Korea
| | - Joon Sig Choi
- Department of Biochemistry; Chungnam National University; Daejeon 34134 Republic of Korea
| | - Sung Min Kang
- Department of Chemistry; Chungbuk National University; Chungbuk 28644 Republic of Korea
| |
Collapse
|
30
|
Patil N, Jérôme C, Detrembleur C. Recent advances in the synthesis of catechol-derived (bio)polymers for applications in energy storage and environment. Prog Polym Sci 2018. [DOI: 10.1016/j.progpolymsci.2018.04.002] [Citation(s) in RCA: 90] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
|
31
|
Moulay S. Recent Trends in Mussel-Inspired Catechol-Containing Polymers (A Review). ACTA ACUST UNITED AC 2018. [DOI: 10.13005/ojc/340301] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Syntheses and applications of mussel-inspired polymeric materials have gained a foothold in research in recent years. Mussel-inspired chemistry coupled to Michael addition and Schiff’s base reactions was the key success for this intensive research. Unequivocally, The basic building brick of these materials is catechol-containing moiety, namely, 3,4-dihydroxyphenyl-L-alanine (L-DOPA or DOPA) and dopamine (DA). These catechol-based units within the chemical structure of the material ensure chiefly its adhesive characteristic to adherends of different natures. The newly-made catechol-bearing polymeric materials exhibit unique features, implying their importance in several uses and applications. Technology advent is being advantaged with these holdfast mussel protein-like materials. This review sheds light into the recent advances of such mussel-inspired materials for their adhesion capacity to several substrata of different natures, and for their applications mainly in antifouling coatings and nanoparticles technology.
Collapse
Affiliation(s)
- Saad Moulay
- Molecular and Macromolecular Chemistry-Physics Laboratory, Department of Process Engineering, Faculty of Technology, Saâd Dahlab University of Blida, B.P. 270, Soumâa Road, 09000, Blida, Algeria
| |
Collapse
|
32
|
Zeng Q, Zhu Y, Yu B, Sun Y, Ding X, Xu C, Wu YW, Tang Z, Xu FJ. Antimicrobial and Antifouling Polymeric Agents for Surface Functionalization of Medical Implants. Biomacromolecules 2018; 19:2805-2811. [DOI: 10.1021/acs.biomac.8b00399] [Citation(s) in RCA: 73] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Qiang Zeng
- National Engineering Laboratory for Digital and Material Technology of Stomatology, School and Hospital of Stomatology, Peking University, Beijing 100081, China
| | - Yiwen Zhu
- Key Laboratory of Carbon Fiber and Functional Polymers (Beijing University of Chemical Technology), Ministry of Education, Beijing Laboratory of Biomedical Materials, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Bingran Yu
- Key Laboratory of Carbon Fiber and Functional Polymers (Beijing University of Chemical Technology), Ministry of Education, Beijing Laboratory of Biomedical Materials, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Yujie Sun
- National Engineering Laboratory for Digital and Material Technology of Stomatology, School and Hospital of Stomatology, Peking University, Beijing 100081, China
| | - Xiaokang Ding
- Key Laboratory of Carbon Fiber and Functional Polymers (Beijing University of Chemical Technology), Ministry of Education, Beijing Laboratory of Biomedical Materials, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Chen Xu
- Key Laboratory of Carbon Fiber and Functional Polymers (Beijing University of Chemical Technology), Ministry of Education, Beijing Laboratory of Biomedical Materials, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Yu-Wei Wu
- National Engineering Laboratory for Digital and Material Technology of Stomatology, School and Hospital of Stomatology, Peking University, Beijing 100081, China
| | - Zhihui Tang
- National Engineering Laboratory for Digital and Material Technology of Stomatology, School and Hospital of Stomatology, Peking University, Beijing 100081, China
| | - Fu-Jian Xu
- Key Laboratory of Carbon Fiber and Functional Polymers (Beijing University of Chemical Technology), Ministry of Education, Beijing Laboratory of Biomedical Materials, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| |
Collapse
|
33
|
Pranantyo D, Xu LQ, Kang ET, Chan-Park MB. Chitosan-Based Peptidopolysaccharides as Cationic Antimicrobial Agents and Antibacterial Coatings. Biomacromolecules 2018; 19:2156-2165. [DOI: 10.1021/acs.biomac.8b00270] [Citation(s) in RCA: 84] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Dicky Pranantyo
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Kent Ridge, Singapore 117585
| | - Li Qun Xu
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Kent Ridge, Singapore 117585
| | - En-Tang Kang
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Kent Ridge, Singapore 117585
| | - Mary B. Chan-Park
- Centre of Antimicrobial Bioengineering School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore 637459
| |
Collapse
|
34
|
Kim S, Gim T, Jeong Y, Ryu JH, Kang SM. Facile Construction of Robust Multilayered PEG Films on Polydopamine-Coated Solid Substrates for Marine Antifouling Applications. ACS APPLIED MATERIALS & INTERFACES 2018; 10:7626-7631. [PMID: 28853548 DOI: 10.1021/acsami.7b07199] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
We report an effective and versatile approach to control marine fouling on artificial surfaces based on specific chemical interactions found in marine mussels. The approach consists of mussel-inspired polydopamine coating, spin-coating-assisted deposition of poly(ethylene glycol) (PEG) catechols, and their cross-linking via catechol-Fe3+-catechol interactions. Using this approach, multilayered PEG films that were highly resistant to marine diatom adhesion were successfully constructed on various substrates, such as stainless steel, nylon, titanium oxide, and silicon oxide. We believe that our results will provide a basis for the construction of a marine antifouling agent that can be applied by a large variety of industries owing to its applicability to different types of substrates and stability under marine environments.
Collapse
Affiliation(s)
- Suyeob Kim
- Department of Marine Biomaterials & Aquaculture , Pukyong National University , Busan 48513 , Republic of Korea
| | - Taewoo Gim
- Department of Marine Biomaterials & Aquaculture , Pukyong National University , Busan 48513 , Republic of Korea
| | - Yeonwoo Jeong
- Department of Chemistry , Chungbuk National University , Chungbuk 28644 , Republic of Korea
| | - Ji Hyun Ryu
- Department of Bioengineering , University of California, San Diego , 9500 Gilman Drive , La Jolla , California 92093 , United States
| | - Sung Min Kang
- Department of Chemistry , Chungbuk National University , Chungbuk 28644 , Republic of Korea
| |
Collapse
|
35
|
Zhang H, Zhao T, Newland B, Liu W, Wang W, Wang W. Catechol functionalized hyperbranched polymers as biomedical materials. Prog Polym Sci 2018. [DOI: 10.1016/j.progpolymsci.2017.09.002] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
36
|
Hadjesfandiari N, Weinhart M, Kizhakkedathu JN, Haag R, Brooks DE. Development of Antifouling and Bactericidal Coatings for Platelet Storage Bags Using Dopamine Chemistry. Adv Healthc Mater 2018; 7. [PMID: 28961393 DOI: 10.1002/adhm.201700839] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2017] [Indexed: 11/10/2022]
Abstract
Platelets have a limited shelf life, due to the risk of bacterial contamination and platelet quality loss. Most platelet storage bags are made of a mixture of polyvinyl chloride with a plasticizer, denoted as pPVC. To improve biocompatibility of pPVC with platelets and to inhibit bacterial biofilm formation, an antifouling polymer coating is developed using mussel-inspired chemistry. A copolymer of N,N-dimethylacrylamide and N-(3-aminopropyl)methacrylamide hydrochloride is synthesized and coupled with catechol groups, named DA51-cat. Under mild aqueous conditions, pPVC is first equilibrated with an anchoring polydopamine layer, followed by a DA51-cat layer. Measurements show this coating decreases fibrinogen adsorption to 5% of the control surfaces. One-step coating with DA51-cat does not coat pPVC efficiently although it is sufficient for coating silicon wafers and gold substrates. The dual layer coating on platelet bags resists bacterial biofilm formation and considerably decreases platelet adhesion. A cationic antimicrobial peptide, E6, is conjugated to DA51-cat then coated on silicon wafers and introduces bactericidal activity to these surfaces. Time-of-flight second ion-mass spectroscopy is successfully applied to characterize these surfaces. pPVC is widely used in medical devices; this method provides an approach to controlling biofouling and bacterial growth on it without elaborate surface modification procedures.
Collapse
Affiliation(s)
- Narges Hadjesfandiari
- Center for Blood Research; University of British Columbia; 2350 Health Sciences Mall Vancouver V6T 1Z3 Canada
- Department of Chemistry; University of British Columbia; Vancouver V6T 1Z1 Canada
| | - Marie Weinhart
- Institute of Chemistry and Biochemistry; Freie Universität Berlin; Takustrasse 3 14195 Berlin Germany
| | - Jayachandran N. Kizhakkedathu
- Center for Blood Research; University of British Columbia; 2350 Health Sciences Mall Vancouver V6T 1Z3 Canada
- Department of Chemistry; University of British Columbia; Vancouver V6T 1Z1 Canada
- Department of Pathology and Laboratory Medicine; University of British Columbia; Vancouver V6T 2B5 Canada
| | - Rainer Haag
- Institute of Chemistry and Biochemistry; Freie Universität Berlin; Takustrasse 3 14195 Berlin Germany
| | - Donald E. Brooks
- Center for Blood Research; University of British Columbia; 2350 Health Sciences Mall Vancouver V6T 1Z3 Canada
- Department of Chemistry; University of British Columbia; Vancouver V6T 1Z1 Canada
- Department of Pathology and Laboratory Medicine; University of British Columbia; Vancouver V6T 2B5 Canada
| |
Collapse
|
37
|
Mu Y, Wu Z, Pei D, Wang J, Wan X. A versatile platform to achieve mechanically robust mussel-inspired antifouling coatings via grafting-to approach. J Mater Chem B 2018; 6:133-142. [DOI: 10.1039/c7tb02400b] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
A facile and efficient method to fabricate robust antifouling coatings via a grafting-to approach based on polyvinyl alcohol (PVA)-based biomimetic substrates is reported.
Collapse
Affiliation(s)
- Youbing Mu
- The Key Laboratory of Bio-based Materials
- Qingdao Institute of Bioenergy and Bioprocess Technology
- Chinese Academy of Sciences
- Qingdao
- P. R. China
| | - Zelin Wu
- The Key Laboratory of Bio-based Materials
- Qingdao Institute of Bioenergy and Bioprocess Technology
- Chinese Academy of Sciences
- Qingdao
- P. R. China
| | - Danfeng Pei
- The Key Laboratory of Bio-based Materials
- Qingdao Institute of Bioenergy and Bioprocess Technology
- Chinese Academy of Sciences
- Qingdao
- P. R. China
| | - Jiming Wang
- The Key Laboratory of Bio-based Materials
- Qingdao Institute of Bioenergy and Bioprocess Technology
- Chinese Academy of Sciences
- Qingdao
- P. R. China
| | - Xiaobo Wan
- The Key Laboratory of Bio-based Materials
- Qingdao Institute of Bioenergy and Bioprocess Technology
- Chinese Academy of Sciences
- Qingdao
- P. R. China
| |
Collapse
|
38
|
Xu G, Liu P, Pranantyo D, Xu L, Neoh KG, Kang ET. Antifouling and Antimicrobial Coatings from Zwitterionic and Cationic Binary Polymer Brushes Assembled via “Click” Reactions. Ind Eng Chem Res 2017. [DOI: 10.1021/acs.iecr.7b03132] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Gang Xu
- Department of Chemical & Biomolecular Engineering, National University of Singapore, Kent Ridge, Singapore 119260
| | - Peng Liu
- Department of Chemical & Biomolecular Engineering, National University of Singapore, Kent Ridge, Singapore 119260
| | - Dicky Pranantyo
- Department of Chemical & Biomolecular Engineering, National University of Singapore, Kent Ridge, Singapore 119260
| | - Liqun Xu
- Department of Chemical & Biomolecular Engineering, National University of Singapore, Kent Ridge, Singapore 119260
| | - Koon-Gee Neoh
- Department of Chemical & Biomolecular Engineering, National University of Singapore, Kent Ridge, Singapore 119260
| | - En-Tang Kang
- Department of Chemical & Biomolecular Engineering, National University of Singapore, Kent Ridge, Singapore 119260
| |
Collapse
|
39
|
Liao M, Liu H, Guo H, Zhou J. Mesoscopic Structures of Poly(carboxybetaine) Block Copolymer and Poly(ethylene glycol) Block Copolymer in Solutions. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2017; 33:7575-7582. [PMID: 28689413 DOI: 10.1021/acs.langmuir.7b01610] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
The antifouling property of exogenous materials is vital for their in vivo applications. In this work, dissipative particle dynamics simulations are performed to study the self-assembled morphologies of two copolymer systems containing poly(ethylene glycol) (PEG) and poly(carboxybetaine) (PCB) in aqueous solutions. Effects of polymer composition and polymer concentration on the self-assembled structures of the two copolymers (PLA-PEG and PLA-PCB) are investigated, respectively [PLA represents poly(lactic acid)]. Results show that whatever the copolymer composition is, PLA-PEG systems will self-assemble into core-shell structures, whereas onion-like and vesicle structures are also found for the PLA-PCB systems. Different morphologies are obtained at different polymer concentrations in both copolymer systems. Simulation results demonstrate that PCB is more stable than PEG in maintaining self-assembled spherical structures of copolymer systems because PLA-PEG forms dumbbell-like structures whereas PLA-PCB is spherical under the same polymer concentration. Although both copolymer systems can self-assemble into core-shell nanoparticles when the block ratio of PLA:PEG or PLA:PCB is 80:20, the core-shell structures of the nanoparticles are quite different. The shell layers formed by PEG in PLA-PEG nanoparticles are inhomogeneous in size because of the amphiphilicity of PEG, whereas the shell layers in PLA-PCB nanoparticles are homogenous because of the strong hydrophilicity of the zwitterionic PCB polymer block.
Collapse
Affiliation(s)
- Mingrui Liao
- School of Chemistry and Chemical Engineering, Guangdong Provincial Key Laboratory for Green Chemical Product Technology, South China University of Technology , Guangzhou, Guangdong 510640, P. R. China
| | - Hongyan Liu
- School of Chemistry and Chemical Engineering, Guangdong Provincial Key Laboratory for Green Chemical Product Technology, South China University of Technology , Guangzhou, Guangdong 510640, P. R. China
| | - Hongyu Guo
- School of Chemistry and Chemical Engineering, Guangdong Provincial Key Laboratory for Green Chemical Product Technology, South China University of Technology , Guangzhou, Guangdong 510640, P. R. China
| | - Jian Zhou
- School of Chemistry and Chemical Engineering, Guangdong Provincial Key Laboratory for Green Chemical Product Technology, South China University of Technology , Guangzhou, Guangdong 510640, P. R. China
| |
Collapse
|
40
|
Xu G, Liu X, Liu P, Pranantyo D, Neoh KG, Kang ET. Arginine-Based Polymer Brush Coatings with Hydrolysis-Triggered Switchable Functionalities from Antimicrobial (Cationic) to Antifouling (Zwitterionic). LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2017; 33:6925-6936. [PMID: 28617605 DOI: 10.1021/acs.langmuir.7b01000] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Arginine polymer based coatings with switchable properties were developed on glass slides (GS) to demonstrate the smart transition from antimicrobial (cationic) to fouling-resistant (zwitterionic) surfaces. l-Arginine methyl ester-methacryloylamide (Arg-Est) and l-arginine-methacryloylamide (Arg-Me) polymer brushes were grafted from the GS surface via surface-initiated reversible addition-fragmentation chain-transfer (SI-RAFT) polymerization. In comparison to the pristine GS and Arg-Me graft polymerized GS (GS-Arg-Me) surfaces, the Arg-Est polymer brushes-functionalized GS surfaces exhibit a superior antimicrobial activity. Upon hydrolysis treatment, the strong bactericidal efficacy switches to good resistance to adsorption of bovine serum albumin (BSA), the adhesion of Gram-positive bacteria Staphylococcus aureus and Gram-negative bacteria Escherichia coli, as well as the attachment of Amphora coffeaeformis. In addition, the switchable coatings are proven to be biocompatible. The stability and durability of the switchable coatings are also ascertained after exposure to filtered seawater for 30 days. Therefore, deposition of the proposed "smart coatings" offers another environmentally friendly alternative for combating biofouling.
Collapse
Affiliation(s)
- Gang Xu
- Department of Chemical and Biomolecular Engineering, National University of Singapore , 4 Engineering Drive 4, Kent Ridge, Singapore 117576
| | - Xianneng Liu
- Department of Chemical and Biomolecular Engineering, National University of Singapore , 4 Engineering Drive 4, Kent Ridge, Singapore 117576
| | - Peng Liu
- Department of Chemical and Biomolecular Engineering, National University of Singapore , 4 Engineering Drive 4, Kent Ridge, Singapore 117576
| | - Dicky Pranantyo
- Department of Chemical and Biomolecular Engineering, National University of Singapore , 4 Engineering Drive 4, Kent Ridge, Singapore 117576
| | - Koon-Gee Neoh
- Department of Chemical and Biomolecular Engineering, National University of Singapore , 4 Engineering Drive 4, Kent Ridge, Singapore 117576
| | - En-Tang Kang
- Department of Chemical and Biomolecular Engineering, National University of Singapore , 4 Engineering Drive 4, Kent Ridge, Singapore 117576
| |
Collapse
|
41
|
Huang T, Liu H, Liu P, Liu P, Li L, Shen J. Zwitterionic copolymers bearing phosphonate or phosphonic motifs as novel metal-anchorable anti-fouling coatings. J Mater Chem B 2017; 5:5380-5389. [PMID: 32264077 DOI: 10.1039/c7tb01017f] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Developing a facile but efficient anti-fouling surface coating is highly required for metallic implants. Here, we report two kinds of zwitterionic copolymers (both random and block) bearing phosphonic/phosphonate motifs/segments as novel metal anchorable antifouling coatings. Through conventional free radical polymerization and reversible addition-fragmentation chain transfer (RAFT) polymerization, three types of zwitterionic-phosphonic random copolymers with varying mol. ratios (9 : 1, 8 : 2, and 6 : 4) and a phosphonate-zwitterionic block copolymer were precisely prepared based on zwitterionic sulfobetaine methacrylate (SBMA) and phosphonate/phosphonic methacrylate. As evidenced by XPS and water contact angle tests, the two kinds of copolymers with distinguished presenting manners of the metal-anchorable phosphonate/phosphonic motifs were all successfully immobilized on the Ti substrates through a facile one-step post-functionalization. The immobilized copolymers equally exhibited strong inhibition of protein adsorption, platelet adhesion, and bacterial adhesion, endowing significantly improved antifouling ability to the metallic substrates. This work not only provides a novel approach to improve the antifouling ability of Ti substrates, the utilization of phosphonic/phosphonate based copolymers as efficient metal-anchorable coatings may offer a new platform for versatile surface functionalization of many metallic substrates.
Collapse
Affiliation(s)
- Tao Huang
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Jiangsu Key Laboratory of Bio-functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China.
| | | | | | | | | | | |
Collapse
|
42
|
Diblock copolymer containing bioinspired borneol and dopamine moieties: Synthesis and antibacterial coating applications. POLYMER 2017. [DOI: 10.1016/j.polymer.2017.03.078] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
43
|
Gao Q, Yu M, Su Y, Xie M, Zhao X, Li P, Ma PX. Rationally designed dual functional block copolymers for bottlebrush-like coatings: In vitro and in vivo antimicrobial, antibiofilm, and antifouling properties. Acta Biomater 2017; 51:112-124. [PMID: 28131941 DOI: 10.1016/j.actbio.2017.01.061] [Citation(s) in RCA: 121] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2016] [Revised: 01/09/2017] [Accepted: 01/23/2017] [Indexed: 12/15/2022]
Abstract
Numerous antimicrobial coatings have been developed for biomedical devices/implants, but few can simultaneously fulfill the requirements for antimicrobial and antifouling ability and biocompatibility. In this study, to develop an antimicrobial and antibiofilm surface coating, diblock amphiphilic molecules with antimicrobial and antifouling segments in a single chain were rationally designed and synthesized. Cationic antimicrobial polypeptides (AMP) were first synthesized by N-carboxyanhydride ring-opening polymerization (NCA-ROP). Heterofunctionalized poly(ethylene glycol) with different lengths (methacrylate-PEGn-tosyl, n=10/45/90) was synthesized and site-specifically conjugated with polypeptides to form diblock amphiphiles. Along with increased PEG chain length, hemolytic activity was considerably improved, and broad-spectrum antimicrobial activity is retained. Three MA-PEGn-b-AMP copolymers were further grafted onto the surface of silicone rubber (a commonly used catheter material) via plasma/UV-induced surface polymerizations to form a bottlebrush-like coating with excellent antimicrobial activity against several pathogenic bacteria (Escherichia coli, Pseudomonas aeruginosa, and Staphylococcus aureus), and effectively prevent biofilm formation. This bottlebrush coating also greatly reduced protein adsorption and platelet adhesion, indicating its excellent antifouling ability. An in vitro cytotoxicity study also demonstrated that this coating is biocompatible with mammalian cells. After subcutaneous implantation of the materials in rats, we demonstrated that the g-PEG45-b-AMP bottlebrush coating exhibits significant anti-infective activity in vivo. Thus, this facilely synthesized PEGylated AMP bottlebrush coating is a feasible method to prevent biomedical devices-associated infections. STATEMENT OF SIGNIFICANCE Current antimicrobial coatings are often associated with concerns such as antibiotic resistance, environmental pollution, short-time antimicrobial activity, biofouling, poor blood compatibility and cytotoxicity, etc. To overcome these drawbacks, a robust PEGylated cationic amphiphilic peptides-based bottlebrush-like surface coating is demonstrated here, which fulfil the requirements of antimicrobial and antifouling as well as biocompatibility in the meantime. Briefly, the rational designed g-PEGn-b-AMP block copolymers (n=10/45/90) were synthesized and grafted on silicone surface. This bottlebrush-like coating efficiently kill the contacted bacteria and prevent the biofilm formation, greatly reduced protein and platelet adhesion. It also exhibits excellent blood compatibility and low cytotoxicity in vitro. In particular, g-PEG45-b-AMP coating exhibits significant anti-infection effect in vivo. This coating offering an effective strategy for combating biomedical devices-associated infections.
Collapse
|
44
|
Deng J, Cheng C, Teng Y, Nie C, Zhao C. Mussel-inspired post-heparinization of a stretchable hollow hydrogel tube and its potential application as an artificial blood vessel. Polym Chem 2017. [DOI: 10.1039/c7py00071e] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
We report the fabrication and post-functionalization of a highly stretchable hydrogel tube and its potential application as an artificial blood vessel.
Collapse
Affiliation(s)
- Jie Deng
- College of Polymer Science and Engineering
- State Key Laboratory of Polymer Materials and Engineering
- Sichuan University
- Chengdu 610065
- China
| | - Chong Cheng
- College of Polymer Science and Engineering
- State Key Laboratory of Polymer Materials and Engineering
- Sichuan University
- Chengdu 610065
- China
| | - Yingying Teng
- National Engineering Research Center for Biomaterials
- Sichuan University
- Chengdu 610064
- China
| | - Chuanxiong Nie
- College of Polymer Science and Engineering
- State Key Laboratory of Polymer Materials and Engineering
- Sichuan University
- Chengdu 610065
- China
| | - Changsheng Zhao
- College of Polymer Science and Engineering
- State Key Laboratory of Polymer Materials and Engineering
- Sichuan University
- Chengdu 610065
- China
| |
Collapse
|
45
|
Goor OJGM, Brouns JEP, Dankers PYW. Introduction of anti-fouling coatings at the surface of supramolecular elastomeric materials via post-modification of reactive supramolecular additives. Polym Chem 2017. [DOI: 10.1039/c7py00801e] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
A covalent anti-fouling is introduced at the surface of supramolecular ureidopyrimidinone (UPy) based materials to prevent both protein and cell adhesion.
Collapse
Affiliation(s)
- Olga J. G. M. Goor
- Institute for Complex Molecular Systems
- Eindhoven University of Technology
- 5600 MB Eindhoven
- The Netherlands
- Laboratory of Chemical Biology
| | - Joyce E. P. Brouns
- Institute for Complex Molecular Systems
- Eindhoven University of Technology
- 5600 MB Eindhoven
- The Netherlands
- Laboratory of Chemical Biology
| | - Patricia Y. W. Dankers
- Institute for Complex Molecular Systems
- Eindhoven University of Technology
- 5600 MB Eindhoven
- The Netherlands
- Laboratory of Chemical Biology
| |
Collapse
|
46
|
Peng L, Li Z, Li X, Xue H, Zhang W, Chen G. Integrating Sugar and Dopamine into One Polymer: Controlled Synthesis and Robust Surface Modification. Macromol Rapid Commun 2016; 38. [DOI: 10.1002/marc.201600548] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2016] [Revised: 10/25/2016] [Indexed: 11/07/2022]
Affiliation(s)
- Lun Peng
- Center for Soft Condensed Matter Physics and Interdisciplinary Research; Soochow University; Suzhou 215006 P. R. China
| | - Zhiyun Li
- Center for Soft Condensed Matter Physics and Interdisciplinary Research; Soochow University; Suzhou 215006 P. R. China
| | - Xiaohui Li
- Center for Soft Condensed Matter Physics and Interdisciplinary Research; Soochow University; Suzhou 215006 P. R. China
| | - Hui Xue
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials; College of Chemistry; Chemical Engineering and Materials Science of Soochow University; Soochow University; Suzhou 215123 P. R. China
| | - Weidong Zhang
- Center for Soft Condensed Matter Physics and Interdisciplinary Research; Soochow University; Suzhou 215006 P. R. China
| | - Gaojian Chen
- Center for Soft Condensed Matter Physics and Interdisciplinary Research; Soochow University; Suzhou 215006 P. R. China
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials; College of Chemistry; Chemical Engineering and Materials Science of Soochow University; Soochow University; Suzhou 215123 P. R. China
| |
Collapse
|
47
|
Leibig D, Müller AHE, Frey H. Anionic Polymerization of Vinylcatechol Derivatives: Reversal of the Monomer Gradient Directed by the Position of the Catechol Moiety in the Copolymerization with Styrene. Macromolecules 2016. [DOI: 10.1021/acs.macromol.6b00831] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Daniel Leibig
- Institute
of Organic Chemistry, Johannes Gutenberg University Mainz, Duesbergweg
10-14, D-55128 Mainz, Germany
- Graduate School
Materials Science in Mainz, Staudinger
Weg 9, D-55128 Mainz, Germany
| | - Axel H. E. Müller
- Institute
of Organic Chemistry, Johannes Gutenberg University Mainz, Duesbergweg
10-14, D-55128 Mainz, Germany
| | - Holger Frey
- Institute
of Organic Chemistry, Johannes Gutenberg University Mainz, Duesbergweg
10-14, D-55128 Mainz, Germany
| |
Collapse
|