1
|
Himshweta, Verma N, Trehan N, Singh M. Molecularly imprinted polymers in the analysis of chlorogenic acid: A review. Anal Biochem 2024; 694:115616. [PMID: 38996900 DOI: 10.1016/j.ab.2024.115616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 06/28/2024] [Accepted: 07/10/2024] [Indexed: 07/14/2024]
Abstract
Chlorogenic acid, a phenolic compound, is prevalent across various plant species and has been known for its pharmacological advantages. Health care experts have identified chlorogenic acid as a potential biomarker for treatment of a wide range of illnesses. Therefore, achieving efficient extraction and analysis of chlorogenic acid from plants and their products has become essential. Molecularly imprinted polymers (MIPs) are highly effective adsorbent for the extraction of chlorogenic acid from complex matrices. Currently, there is a lack of comprehensive review article that consolidate the methods utilized for the purification of chlorogenic acid through molecular imprinting. In this context, we have surveyed the common approaches employed in preparing MIPs specifically designed for the analysis of chlorogenic acid, including both conventional and newly developed. This review discusses the advantages, limitations of polymerization techniques and proposed strategies to produce more efficient MIPs for chlorogenic acid enrichment in complex samples. Additionaly, we present advanced imprinting methods for designing MIPs, which improve the adsorption capacity, sensitivity and selectivity towards chlorogenic acid.
Collapse
Affiliation(s)
- Himshweta
- Biosensor Development Group, Department of Biotechnology & Food Technology, Punjabi University Patiala, 147002, Punjab, India.
| | - Neelam Verma
- Biosensor Development Group, Department of Biotechnology & Food Technology, Punjabi University Patiala, 147002, Punjab, India.
| | - Nitu Trehan
- Department of Biotechnology, Mata Gujri College Fatehgarh Sahib-140407, Punjab, India.
| | - Minni Singh
- Functional Food and Nanotechnology Group, Department of Biotechnology & Food Technology, Punjabi University Patiala-147002, Punjab, India.
| |
Collapse
|
2
|
Rahimpoor R, Soleymani-Ghoozhdi D, Firoozichahak A, Alizadeh S. Needle trap device technique: From fabrication to sampling. Talanta 2024; 276:126255. [PMID: 38776771 DOI: 10.1016/j.talanta.2024.126255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Revised: 03/17/2024] [Accepted: 05/11/2024] [Indexed: 05/25/2024]
Abstract
Needle Trap Device (NTD) as a novel, versatile, and eco-friendly technique has played an important role in analytical and environmental chemistry. The distinctive role of this interdisciplinary technique can be defended through the sampling and analysis of biological samples and industrial pollutants in gaseous and liquid environments. In recent years, significant efforts have been made to enhance the performance of the needle trap device resulting in the development of novel extraction routes by various packing materials with improved selectivity and enhanced adsorption characteristics. These achievements can lead to the facilitated pre-concentration of desired analytes. This review tries to have a comparative and comprehensive survey of the three important areas of NTD technique: I) Fabrication and preparation procedures of NTDs; II) Sampling techniques of pollutants using NTDs; and III) Employed materials as adsorbents in NTDs. In the packing-material section, the commercial and synthetic adsorbents such as carbon materials, metal-organic frameworks, aerogel, and polymers are considered. Furthermore, the limitations and potential areas for future development of the NTD technique are presented.
Collapse
Affiliation(s)
- Razzagh Rahimpoor
- Department of Occupational Health Engineering, Research Center for Health Sciences, School of Health, Larestan University of Medical Sciences, Larestan, Iran
| | | | - Ali Firoozichahak
- Department of Occupational Health, Faculty of Health, Social Determinants of Health Research Center, Gonabad University of Medical Science, Gonabad, Iran.
| | - Saber Alizadeh
- Department of Chemistry, Bu-Ali-Sina University, Hamedan, Iran
| |
Collapse
|
3
|
Farooq S, Xu L, Ullah S, Li J, Nie J, Ping J, Ying Y. Advancements and greenification potential of magnetic molecularly imprinted polymers for chromatographic analysis of veterinary drug residues in milk. Compr Rev Food Sci Food Saf 2024; 23:e13399. [PMID: 39072953 DOI: 10.1111/1541-4337.13399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 06/04/2024] [Accepted: 06/10/2024] [Indexed: 07/30/2024]
Abstract
Milk, as a widely consumed nutrient-rich food, is crucial for bone health, growth, and overall nutrition. The persistent application of veterinary drugs for controlling diseases and heightening milk yield has imparted substantial repercussions on human health and environmental ecosystems. Due to the high demand, fresh consumption, complex composition of milk, and the potential adverse impacts of drug residues, advanced greener analytical methods are necessitated. Among them, functional materials-based analytical methods attract wide concerns. The magnetic molecularly imprinted polymers (MMIPs), as a kind of typical functional material, possess excellent greenification characteristics and potencies, and they are easily integrated into various detection technologies, which have offered green approaches toward analytes such as veterinary drugs in milk. Despite their increasing applications and great potential, MMIPs' use in dairy matrices remains underexplored, especially regarding ecological sustainability. This work reviews recent advances in MMIPs' synthesis and application as efficient sorbents for veterinary drug extraction in milk followed by chromatographic analysis. The uniqueness and effectiveness of MMIPs in real milk samples are evaluated, current limitations are addressed, and greenification opportunities are proposed. MMIPs show promise in revolutionizing green analytical procedures for veterinary drug detection, aligning with the environmental goals of modern food production systems.
Collapse
Affiliation(s)
- Saqib Farooq
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, China
- Innovation Platform of Micro/Nano Technology for Biosensing, ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, China
| | - Lizhou Xu
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, China
- Innovation Platform of Micro/Nano Technology for Biosensing, ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, China
| | - Safat Ullah
- School of Medicine, Keele University, Keele, Staffordshire, UK
| | - Jinhua Li
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Research Center for Coastal Environmental Engineering Technology of Shandong Province, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, China
| | - Jiyun Nie
- College of Horticulture, Qingdao Agriculture University/Qingdao Key Lab of Modern Agriculture Quality and Safety Engineering, Qingdao, China
| | - Jianfeng Ping
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, China
- Innovation Platform of Micro/Nano Technology for Biosensing, ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, China
| | - Yibin Ying
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, China
- Innovation Platform of Micro/Nano Technology for Biosensing, ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, China
| |
Collapse
|
4
|
Góral D, Marczuk A, Góral-Kowalczyk M, Koval I, Andrejko D. Application of Iron Nanoparticle-Based Materials in the Food Industry. MATERIALS (BASEL, SWITZERLAND) 2023; 16:780. [PMID: 36676517 PMCID: PMC9862918 DOI: 10.3390/ma16020780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 01/09/2023] [Accepted: 01/10/2023] [Indexed: 06/17/2023]
Abstract
Due to their different properties compared to other materials, nanoparticles of iron and iron oxides are increasingly used in the food industry. Food technologists have especially paid attention to their ease of separation by magnetic fields and biocompatibility. Unfortunately, the consumption of increasing amounts of nanoparticles has raised concerns about their biotoxicity. Hence, knowledge about the applicability of iron nanoparticle-based materials in the food industry is needed not only among scientists, but also among all individuals who are involved in food production. The first part of this article describes typical methods of obtaining iron nanoparticles using chemical synthesis and so-called green chemistry. The second part of this article describes the use of iron nanoparticles and iron nanoparticle-based materials for active packaging, including the ability to eliminate oxygen and antimicrobial activity. Then, the possibilities of using the magnetic properties of iron nano-oxides for enzyme immobilization, food analysis, protein purification and mycotoxin and histamine removal from food are described. Other described applications of materials based on iron nanoparticles are the production of artificial enzymes, process control, food fortification and preserving food in a supercooled state. The third part of the article analyzes the biocompatibility of iron nanoparticles, their impact on the human body and the safety of their use.
Collapse
Affiliation(s)
- Dariusz Góral
- Department of Biological Bases of Food and Feed Technologies, Faculty of Production Engineering, University of Life Sciences in Lublin, 20-612 Lublin, Poland
| | - Andrzej Marczuk
- Department of Agricultural Forestry and Transport Machines, Faculty of Production Engineering, University of Life Sciences in Lublin, 20-950 Lublin, Poland
| | - Małgorzata Góral-Kowalczyk
- Department of Agricultural Forestry and Transport Machines, Faculty of Production Engineering, University of Life Sciences in Lublin, 20-950 Lublin, Poland
| | - Iryna Koval
- Department of Physical, Analytical and General Chemistry, Lviv Polytechnic National University, 79013 Lviv, Ukraine
| | - Dariusz Andrejko
- Department of Biological Bases of Food and Feed Technologies, Faculty of Production Engineering, University of Life Sciences in Lublin, 20-612 Lublin, Poland
| |
Collapse
|
5
|
Yang F, Fu D, Li P, Sui X, Xie Y, Chi J, Liu J, Huang B. Magnetic Molecularly Imprinted Polymers for the Separation and Enrichment of Cannabidiol from Hemp Leaf Samples. ACS OMEGA 2023; 8:1240-1248. [PMID: 36643476 PMCID: PMC9835775 DOI: 10.1021/acsomega.2c06649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Accepted: 12/07/2022] [Indexed: 06/17/2023]
Abstract
Cannabidiol (CBD) has attracted immense attention due to its excellent clinical effects in the treatment of various diseases. However, rapid and accurate extraction of CBD from hemp plant concentrates remains a challenge. Thus, novel magnetic molecularly imprinted polymers (CBD-MMIPs) with specific recognizing capability for CBD were synthesized using ethylene glycol dimethacrylate as the cross-linker, CBD as the template, methacrylic acid as the functional monomer, azobisisobutyronitrile as the initiator, and Fe3O4 nanoparticles modified with SiO2 as the magnetic carrier. The morphological, magnetic, and adsorption properties of obtained CBD-MMIPs were characterized by scanning electron microscopy, transmission electron microscopy, X-ray diffraction, Fourier transform infrared spectroscopy, vibrating sample magnetometry, surface area and porosity analyses, and various adsorption experiments. The results showed that the CBD-MMIPs had selective specificity and high adsorption capacity for CBD. The adsorption of CBD by CBD-MMIPs could reach equilibrium in a short time (30 min), and the maximum adsorption capacity was as high as 26.51 mg/g. The specific recognition and selectivity properties of CBD-MMIPs to CBD were significantly higher than that of other structural analogues, and the regeneration tests established that the CBD-MMIPs had good recyclability. Furthermore, the CBD-MMIPs could be successfully used as an adsorbent to the extraction of CBD from hemp leaf sample concentrates with high recovery efficiencies (93.46-97.40%).
Collapse
|
6
|
Rahimpoor R, Firoozichahak A, Alizadeh S, Soleymani-Ghoozhdi D, Mehregan F. Application of a needle trap device packed with a MIP@MOF nano-composite for efficient sampling and determination of airborne diazinon pesticide. RSC Adv 2022; 12:16267-16276. [PMID: 35733694 PMCID: PMC9153383 DOI: 10.1039/d2ra01614a] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Accepted: 05/24/2022] [Indexed: 11/21/2022] Open
Abstract
In this research, a novel, selective, and efficient porous adsorbent nano-composite comprising a molecularly imprinted polymer and a metal-organic framework (MIP@MOF) was employed for sampling, extraction and analysis of diazinon from the air by a needle trap device (NTD), for the first time. The synthesized MIP@MOF sorbent was characterized by the FT-IR, XRD, FE-SEM, TEM, and EDS techniques. Then, the effective parameters of the sampling (temperature and humidity) and desorption (time and temperature) process were optimized by response surface methodology (RSM). The optimum values of temperature and humidity of the sampling chamber were estimated to be 20 °C and 25.0%, respectively. Also, the highest response during the analyte desorption was obtained at 262 °C and 4.5 minutes. For more details, the performance of the MIP@MOF:NTD method was evaluated by determination of important parameters such as repeatability, reproducibility, the limit of detection (LOD), and the limit of quantification (LOQ), and then compared with the NIOSH 5600 standard method. The values of LOD and LOQ for the targeted analyte were determined to be 0.02 and 0.1 μg m-3, respectively. Also, the repeatability and reproducibility of the proposed method were obtained in the range of (3.9-5.1)% and (5.1-6.4)%, respectively, which proved the acceptable precision of the method. Furthermore, the results of this study exhibited a high correlation coefficient (R 2 = 0.9781) between the proposed method and the recommended NIOSH method. Finally, the proposed procedure was utilized for sampling and determination of the airborne diazinon in real conditions. These results indicated that the proposed MIP@MOF:NTD method can be employed as a fast, simple, environmentally friendly, selective, and effective procedure for sampling and determining diazinon in air.
Collapse
Affiliation(s)
- Razzagh Rahimpoor
- Department of Occupational Health Engineering, Research Center for Health Sciences, School of Health, Larestan University of Medical Sciences Larestan Iran
| | - Ali Firoozichahak
- Department of Occupational Health, Faculty of Health, Social Determinants of Health Research Center, Gonabad University of Medical Science Gonabad Iran
| | - Saber Alizadeh
- Department of Chemistry, Bu-Ali-Sina University Hamedan Iran
| | - Danial Soleymani-Ghoozhdi
- Student Research Committee, Faculty of Public Health, Kerman University of Medical Sciences Kerman Iran
| | - Faeze Mehregan
- School of Medicine, Shahrekord University of Medical Sciences Shahrekord Iran
| |
Collapse
|
7
|
Gong Z, Wan Q, Song J, Li M, He W, Zhou Z, Su P, Zhang C, Yang Y. Room temperature fabrication of magnetic covalent organic frameworks for analyzing sulfonamide residues in animal-derived foods. J Sep Sci 2022; 45:1514-1524. [PMID: 35178864 DOI: 10.1002/jssc.202100978] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 02/07/2022] [Accepted: 02/12/2022] [Indexed: 11/12/2022]
Abstract
A magnetic solid phase extraction method based on magnetic covalent organic frameworks (TpBD@Fe3 O4 ) combined with high performance liquid chromatography has been developed to detect the sulfonamides including sulfadiazine, sulfamerazine, sulfamethazine and sulfamethoxazole in milk and meat. TpBD@Fe3 O4 were synthesized at room temperature under mild reaction conditions with a simple and rapid operation. The TpBD@Fe3 O4 exhibited higher extraction efficiency because of the π-π and electrostatic interactions between the benzene ring structure of the TpBD and the SA molecules. The extraction conditions including the dosage of adsorbents, the type and dosage of eluent, the elution time and the pH of the sample solution were fully optimized. The detection results showed good linearity over a wide range (50-5×104 ng/mL) and low detection limits (3.39-5.77 ng/mL) for the SA targets. The practicability of this MSPE-HPLC method was further evaluated by analyzing milk and meat samples, with recoveries of the targets of 71.6%-110.8% in milk and 71.9%-109.7% in pork. The successful detection of SAs residues has demonstrated the TpBD@Fe3 O4 excellent practical potential for analyzing pharmaceutical residues in animal-derived foods. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Zhen Gong
- College of Chemistry, Beijing Key Laboratory of Environmentally Harmful Chemical Analysis, Beijing University of Chemical Technology, Beijing, 100029, P.R. China
| | - Qianqian Wan
- College of Chemistry, Beijing Key Laboratory of Environmentally Harmful Chemical Analysis, Beijing University of Chemical Technology, Beijing, 100029, P.R. China
| | - Jiayi Song
- College of Chemistry, Beijing Key Laboratory of Environmentally Harmful Chemical Analysis, Beijing University of Chemical Technology, Beijing, 100029, P.R. China
| | - Meng Li
- College of Chemistry, Beijing Key Laboratory of Environmentally Harmful Chemical Analysis, Beijing University of Chemical Technology, Beijing, 100029, P.R. China
| | - Wenting He
- College of Chemistry, Beijing Key Laboratory of Environmentally Harmful Chemical Analysis, Beijing University of Chemical Technology, Beijing, 100029, P.R. China
| | - Zixin Zhou
- College of Chemistry, Beijing Key Laboratory of Environmentally Harmful Chemical Analysis, Beijing University of Chemical Technology, Beijing, 100029, P.R. China
| | - Ping Su
- College of Chemistry, Beijing Key Laboratory of Environmentally Harmful Chemical Analysis, Beijing University of Chemical Technology, Beijing, 100029, P.R. China
| | - Chunting Zhang
- College of Chemistry, Beijing Key Laboratory of Environmentally Harmful Chemical Analysis, Beijing University of Chemical Technology, Beijing, 100029, P.R. China
| | - Yi Yang
- College of Chemistry, Beijing Key Laboratory of Environmentally Harmful Chemical Analysis, Beijing University of Chemical Technology, Beijing, 100029, P.R. China
| |
Collapse
|
8
|
Cheng G, Li X, Li X, Chen J, Liu Y, Zhao G, Zhu G. Surface imprinted polymer on a metal-organic framework for rapid and highly selective adsorption of sulfamethoxazole in environmental samples. JOURNAL OF HAZARDOUS MATERIALS 2022; 423:127087. [PMID: 34523475 DOI: 10.1016/j.jhazmat.2021.127087] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 08/20/2021] [Accepted: 08/28/2021] [Indexed: 06/13/2023]
Abstract
The demand for the removal of pollutants in aqueous solution has triggered extensive studies to optimize the performance of adsorbents, but the adsorption rate and selectivity of adsorbents have been overlooked. Hierarchically ordered porous vinyl-functionalized UIO-66 was used as supporter to prepare a surface molecular imprinted polymer (MIP-IL@UIO-66). The UIO-66 with large specific surface area significantly increased the number of active site of polymer, and so the MIP-IL@UIO-66 can achieve the rapid and highly selective adsorption of sulfamethoxazole (SMZ) in water. The structure and morphology of MIP-IL@UIO-66 was examined using scanning electron microscopy, Fourier transform infrared spectroscopy, nitrogen adsorption-desorption isotherms, thermogravimetry, X-ray photoelectron spectroscopy, and X-ray powder diffraction. Results indicate that the presented MIP-IL@UIO-66 has an ultrafast equilibrium rate (equilibrium time, 10 min), large adsorption capability (maximum capacity, 284.66 mg g-1), excellent adsorption selectivity (selectivity coefficient, 11.36), and good reusability (number of cycles, 5 times) via equilibrium adsorption experiments. Subsequently, as a novel solid phase extraction (SPE) adsorbent, the adsorption performance of SMZ onto MIP-IL@UIO-66 was better than that of a commercial SPE adsorbent. A MISPE column combined with high-performance liquid chromatography (HPLC) was presented to detect SMZ in water, soil, egg, and pork samples with recoveries of 91-106%. Hydrogen bonds, electrostatic and π-π interactions, and molecular memory were attributed to recognizing the SMZ of MIP-IL@UIO-66.
Collapse
Affiliation(s)
- Guohao Cheng
- School of Environment, Henan Key Laboratory for Environmental Pollution Control, Key Laboratory for Yellow River and Huai River Water Environmental Pollution Control, Ministry of Education, Henan Normal University, Xinxiang, Henan 453007, PR China
| | - Xing Li
- School of Environment, Henan Key Laboratory for Environmental Pollution Control, Key Laboratory for Yellow River and Huai River Water Environmental Pollution Control, Ministry of Education, Henan Normal University, Xinxiang, Henan 453007, PR China
| | - Xian Li
- School of Environment, Henan Key Laboratory for Environmental Pollution Control, Key Laboratory for Yellow River and Huai River Water Environmental Pollution Control, Ministry of Education, Henan Normal University, Xinxiang, Henan 453007, PR China
| | - Jingfan Chen
- School of Environment, Henan Key Laboratory for Environmental Pollution Control, Key Laboratory for Yellow River and Huai River Water Environmental Pollution Control, Ministry of Education, Henan Normal University, Xinxiang, Henan 453007, PR China
| | - Yongli Liu
- School of Environment, Henan Key Laboratory for Environmental Pollution Control, Key Laboratory for Yellow River and Huai River Water Environmental Pollution Control, Ministry of Education, Henan Normal University, Xinxiang, Henan 453007, PR China
| | - Guoqiang Zhao
- College of Environmental and Resource Science, Zhejiang University, Hangzhou 310058, PR China
| | - Guifen Zhu
- School of Environment, Henan Key Laboratory for Environmental Pollution Control, Key Laboratory for Yellow River and Huai River Water Environmental Pollution Control, Ministry of Education, Henan Normal University, Xinxiang, Henan 453007, PR China.
| |
Collapse
|
9
|
Cui Y, Lin J, Xu Y, Li Q, Chen Y, Ding L. Hydrophilic crosslinking agent-incorporated magnetic imprinted materials with enhanced selectivity for sulfamethazine adsorption. Sep Purif Technol 2021. [DOI: 10.1016/j.seppur.2021.119302] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
10
|
Li J, Wang Y, Yu X. Magnetic Molecularly Imprinted Polymers: Synthesis and Applications in the Selective Extraction of Antibiotics. Front Chem 2021; 9:706311. [PMID: 34422765 PMCID: PMC8371043 DOI: 10.3389/fchem.2021.706311] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Accepted: 07/02/2021] [Indexed: 11/25/2022] Open
Abstract
Recently, magnetic molecularly imprinted polymers (MMIPs) have integrated molecular imprinting technology (MIT) and magnetic separation technology and become a novel material with specific recognition and effective separation of target molecules. Based on their special function, they can be widely used to detect contaminants such as antibiotics. The antibiotic residues in the environment not only cause harm to the balance of the ecosystem but also induce bacterial resistance to specific antibiotics. Given the above consideration, it is especially important to develop sensitive and selective methods for measuring antibiotics in the complex matrix. The combination of MMIPs and conventional analytical methods provides a rapid approach to separate and determine antibiotics residues. This article gives a systematic overview of synthetic approaches of the novel MMIPs materials, briefly introduces their use in sample pretreatment prior to antibiotic detection, and provides a perspective for future research.
Collapse
Affiliation(s)
- Junyu Li
- Department of Chemistry, Shandong University, Weihai, China
| | - Yiran Wang
- Department of Chemistry, Shandong University, Weihai, China
| | - Xiuxia Yu
- Department of Chemistry, Shandong University, Weihai, China
| |
Collapse
|
11
|
Li F, Li X, Su J, Li Y, He X, Chen L, Zhang Y. A strategy of utilizing Cu 2+-mediating interaction to prepare magnetic imprinted polymers for the selective detection of celastrol in traditional Chinese medicines. Talanta 2021; 231:122339. [PMID: 33965017 DOI: 10.1016/j.talanta.2021.122339] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 03/10/2021] [Accepted: 03/18/2021] [Indexed: 01/19/2023]
Abstract
In this work, a novel strategy to prepare molecularly imprinted polymers (MIPs) functionalized magnetic carbon nanotubes (MCNTs) via a facile sol-gel polymerization by adopting Cu2+-mediating interaction was presented for selective recognition of celastrol (Cel), in the traditional Chinese medicines (TCM). Firstly, template Cel, 3-aminopropyltriethoxysilane (APTES) as monomer and Cu2+ (co-monomer) were mixed to form a self-assembled pre-complex, in which Cu2+ could coordinate with Cel. Meanwhile, APTES plays a role of bridge between APTES and Cel. Secondly, carboxyl modified MCNTs as substrate was added into the pre-complex solution. After that, a multi-step sol-gel polymerization process was occurred in the presence of tetraethylorthosilicate as cross-linker and acetic acid as catalyst. Finally, MIPs layer was formed on the surface of the MCNTs (Cel-MIPs@MCNTs) after the removal of template with methanol/acetic. The morphology and structure of Cel-MIPs@MCNTs was investigated by various characterization techniques. The adsorption performance of Cel-MIPs@MCNTs to Cel was illustrated by kinetic, isothermal and selective binding experiments. The results displayed that the Cel-MIPs@MCNTs possessed fast kinetic equilibrium time (40 s), high adsorption capacity (13.35 μg mg-1), good imprinting factor of 3.41, and high magnetic responsivity (44.38 emu·g-1), which can be used as an ideal adsorbent for rapid isolation and enrichment of target analytes. A selective and sensitive method based on Cel-MIPs@MCNTs coupling with HPLC was developed for Cel determination including a wide linear range (0.15-200 μg mL-1) with correlation coefficient of 0.9998, a low limit of detection (0.05 μg mL-1). Furthermore, the applicability of Cel-MIPs@MCNTs was demonstrated to isolate and determine Cel in TCM samples with satisfactory recoveries ranged from 84.47% to 91.5% (RSD<5.35%). The results revealed that Cel-MIPs@MCNTs offer great potential as an adsorbent for selective and efficient isolation of Cel from complex TCM samples.
Collapse
Affiliation(s)
- Fei Li
- College of Chemistry, Tianjin Key Laboratory of Biosensing and Molecular Recognition, State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, 300071, China
| | - Xiaoxuan Li
- College of Chemistry, Tianjin Key Laboratory of Biosensing and Molecular Recognition, State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, 300071, China
| | - Jie Su
- School of Chemistry and Chemical Engineering, Shandong University, Jinan, Shandong, 250100, China
| | - Yijun Li
- College of Chemistry, Tianjin Key Laboratory of Biosensing and Molecular Recognition, State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, 300071, China; National Demonstration Center for Experimental Chemistry Education (Nankai University), Tianjin, 300071, China
| | - Xiwen He
- College of Chemistry, Tianjin Key Laboratory of Biosensing and Molecular Recognition, State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, 300071, China
| | - Langxing Chen
- College of Chemistry, Tianjin Key Laboratory of Biosensing and Molecular Recognition, State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, 300071, China.
| | - Yukui Zhang
- College of Chemistry, Tianjin Key Laboratory of Biosensing and Molecular Recognition, State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, 300071, China; Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116011, China
| |
Collapse
|
12
|
Preparation of biocompatible molecularly imprinted film on biowaste-derived magnetic pomegranate rind carbon for protein recognition in biological sample. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 115:111063. [DOI: 10.1016/j.msec.2020.111063] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2019] [Revised: 04/26/2020] [Accepted: 05/05/2020] [Indexed: 02/04/2023]
|
13
|
Cheng Y, Nie J, Liu H, Kuang L, Xu G. Synthesis and characterization of magnetic molecularly imprinted polymers for effective extraction and determination of kaempferol from apple samples. J Chromatogr A 2020; 1630:461531. [PMID: 32950815 DOI: 10.1016/j.chroma.2020.461531] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 09/04/2020] [Accepted: 09/06/2020] [Indexed: 10/23/2022]
Abstract
The specific of magnetic molecularly imprinted polymers (Fe3O4@SiO2-MIPs) for kaempferol were fabricated by using acrylamide (AM) as the functional monomer, azobisisobutyronitrile (AIBN) as the initiator and ethylene glycol dimethacrylate (EGDMA) as the cross-linker. The Fe3O4@SiO2-MIPs showed high adsorption capacity (3.84 mg/g) for kaempferol, and the adsorption equilibrium was achieved within 50 min. The specific recognition capacity of Fe3O4@SiO2-MIPs was 3.02 times as high as that of Fe3O4@SiO2-NIPs. The Fe3O4@SiO2-MIPs showed high selectivity towards kaempferol over structural analogues. The recoveries of proposed method at three spiked levels analysis were ranged from 90.5% to 95.4% with the relative standard deviations (RSD) less than 5%. The obtained Fe3O4@SiO2-MIPs were successfully applied for the extraction and determination of kaempferol from apple samples. The established method was simple and feasible, which showed high selectivity, fast separation and satisfactory recoveries for real sample analysis.
Collapse
Affiliation(s)
- Yang Cheng
- Institute of Pomology, Chinese Academy of Agricultural Sciences/Laboratory of Quality & Safety Risk Assessment for Fruit (Xingcheng), Ministry of Agriculture and Rural Affairs/Supervision &Test Center of Fruit and Nursery Stocks Quality (Xingcheng), Ministry of Agriculture and Rural Affairs, Xingcheng 125100, PR China
| | - Jiyun Nie
- College of Horticulture, Qingdao Agriculture University/Qingdao Key Lab of Modern Agriculture Quality and Safety Engineering, Qingdao 266109, PR China; Institute of Pomology, Chinese Academy of Agricultural Sciences/Laboratory of Quality & Safety Risk Assessment for Fruit (Xingcheng), Ministry of Agriculture and Rural Affairs/Supervision &Test Center of Fruit and Nursery Stocks Quality (Xingcheng), Ministry of Agriculture and Rural Affairs, Xingcheng 125100, PR China.
| | - Hongdi Liu
- Institute of Pomology, Chinese Academy of Agricultural Sciences/Laboratory of Quality & Safety Risk Assessment for Fruit (Xingcheng), Ministry of Agriculture and Rural Affairs/Supervision &Test Center of Fruit and Nursery Stocks Quality (Xingcheng), Ministry of Agriculture and Rural Affairs, Xingcheng 125100, PR China
| | - Lixue Kuang
- Institute of Pomology, Chinese Academy of Agricultural Sciences/Laboratory of Quality & Safety Risk Assessment for Fruit (Xingcheng), Ministry of Agriculture and Rural Affairs/Supervision &Test Center of Fruit and Nursery Stocks Quality (Xingcheng), Ministry of Agriculture and Rural Affairs, Xingcheng 125100, PR China
| | - Guofeng Xu
- Institute of Pomology, Chinese Academy of Agricultural Sciences/Laboratory of Quality & Safety Risk Assessment for Fruit (Xingcheng), Ministry of Agriculture and Rural Affairs/Supervision &Test Center of Fruit and Nursery Stocks Quality (Xingcheng), Ministry of Agriculture and Rural Affairs, Xingcheng 125100, PR China
| |
Collapse
|
14
|
Shu H, Chen G, Wang L, Cui X, Wang Q, Li W, Chang C, Guo Q, Luo Z, Fu Q. Adenine-coated magnetic multiwalled carbon nanotubes for the selective extraction of aristolochic acids based on multiple interactions. J Chromatogr A 2020; 1627:461382. [DOI: 10.1016/j.chroma.2020.461382] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 06/28/2020] [Accepted: 06/30/2020] [Indexed: 01/30/2023]
|
15
|
Core-Shell Molecularly Imprinted Polymers on Magnetic Yeast for the Removal of Sulfamethoxazole from Water. Polymers (Basel) 2020; 12:polym12061385. [PMID: 32575714 PMCID: PMC7362263 DOI: 10.3390/polym12061385] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 06/16/2020] [Accepted: 06/17/2020] [Indexed: 02/07/2023] Open
Abstract
In this work, magnetic yeast (MY) was produced through an in situ one-step method. Then, MY was used as the core and the antibiotic sulfamethoxazole (SMX) as the template to produce highly selective magnetic yeast-molecularly imprinted polymers (MY@MIPs). The physicochemical properties of MY@MIPs were assessed by Fourier-transform infrared spectroscopy (FT-IR), a vibrating sample magnetometer (VSM), X-ray diffraction (XRD), thermogravimetric analysis (TGA), specific surface area (SBET) determination, and scanning electron microscopy (SEM). Batch adsorption experiments were carried out to compare MY@MIPs with MY and MY@NIPs (magnetic yeast-molecularly imprinted polymers without template), with MY@MIPs showing a better performance in the removal of SMX from water. Adsorption of SMX onto MY@MIPs was described by the pseudo-second-order kinetic model and the Langmuir isotherm, with maximum adsorption capacities of 77 and 24 mg g-1 from ultrapure and wastewater, respectively. Furthermore, MY@MIPs displayed a highly selective adsorption toward SMX in the presence of other pharmaceuticals, namely diclofenac (DCF) and carbamazepine (CBZ). Finally, regeneration experiments showed that SMX adsorption decreased 21 and 34% after the first and second regeneration cycles, respectively. This work demonstrates that MY@MIPs are promising sorbent materials for the selective removal of SMX from wastewater.
Collapse
|
16
|
Liu T, Dong M, Zhou F, Yang D, Zhang X. Development and validation of an analytical method for detecting chlorantraniliprole residues in fresh tea leaves. FOOD SCIENCE AND HUMAN WELLNESS 2019. [DOI: 10.1016/j.fshw.2019.11.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
17
|
Zhao X, Wang P, Ye C, Wang H, Cao W. Preconcentration of Sulfamethoxazole Using a Molecularly Imprinted Polymer (MIP) Prepared by Zeolitic Imidazolate Framework-8 - Hemoglobin Catalyzed by Electrochemically Mediated Atom Transfer Radical Polymerization with Electrochemical Determination on a Screen-Printed Electrode. ANAL LETT 2019. [DOI: 10.1080/00032719.2019.1656223] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Affiliation(s)
- Xiaoya Zhao
- Wuhan Customs District of China, Wuhan, China
| | - Peng Wang
- Wuhan Customs District of China, Wuhan, China
| | - Cheng Ye
- Wuhan Customs District of China, Wuhan, China
| | - Han Wang
- Wuhan Customs District of China, Wuhan, China
| | - Wei Cao
- Wuhan Customs District of China, Wuhan, China
| |
Collapse
|
18
|
Yigaimu A, Muhammad T, Yang W, Muhammad I, Wubulikasimu M, Piletsky SA. Magnetic Molecularly Imprinted Polymer Particles Based Micro-Solid Phase Extraction for the Determination of 4-Nitrophenol in Lake Water. Macromol Res 2019. [DOI: 10.1007/s13233-019-7151-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
19
|
Li WK, Shi YP. Recent advances and applications of carbon nanotubes based composites in magnetic solid-phase extraction. Trends Analyt Chem 2019. [DOI: 10.1016/j.trac.2019.06.039] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
20
|
Li ZB, Liu J, Liu JX, Wang ZH, Wang JP. Determination of sulfonamides in meat with dummy-template molecularly imprinted polymer-based chemiluminescence sensor. Anal Bioanal Chem 2019; 411:3179-3189. [PMID: 30989269 DOI: 10.1007/s00216-019-01792-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2018] [Revised: 02/27/2019] [Accepted: 03/19/2019] [Indexed: 12/26/2022]
Abstract
In this study, a molecularly imprinted polymer capable of recognizing 15 sulfonamides was first synthesized with sulfabenz as the dummy template. The calculation results from computation simulation showed that the specific 3D conformation of the template had an important influence on the polymer's recognition ability. Then, the polymer was used as recognition reagent to prepare a chemiluminescence sensor on a conventional 96-well microplate for the determination of the residues of 15 sulfonamides in meat (chicken and pork). Due to the 4-(imidazol-1-yl)phenol-enhanced luminol-H2O2 system, the limits of detection for the 15 analytes were in the range of 1.0-12 pg/mL. The recoveries from the standard fortified blank samples were in the range of 72.7-99%. Furthermore, one assay could be finished within 30 min, and the sensor could be reused 4 times. Therefore, this sensor could be used as a very useful tool for routine screening of residues of sulfonamides in meat samples. Graphical abstract Assay procedures of the molecularly imprinted polymer-based chemiluminescence sensor for determination of sulfonamides.
Collapse
Affiliation(s)
- Zhao Bin Li
- College of Veterinary Medicine, Agricultural University of Hebei, Baoding, 071000, Hebei, China
| | - Jing Liu
- College of Veterinary Medicine, Agricultural University of Hebei, Baoding, 071000, Hebei, China
| | - Ju Xiang Liu
- College of Veterinary Medicine, Agricultural University of Hebei, Baoding, 071000, Hebei, China
| | - Zhan Hui Wang
- College of Veterinary Medicine, China Agricultural University, Beijing, 071000, China
| | - Jian Ping Wang
- College of Veterinary Medicine, Agricultural University of Hebei, Baoding, 071000, Hebei, China.
| |
Collapse
|
21
|
Guo SF, Chen XY, Wang P, Chen C, Pan RH, Ling YT, Tang YZ. Preparation of Molecularly Imprinted Composites Initiated by Hemin/Graphene Hybrid Nanosheets and Its Application in Detection of Sulfamethoxazole. Curr Med Sci 2019; 39:159-165. [PMID: 30868507 DOI: 10.1007/s11596-019-2014-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Revised: 12/12/2018] [Indexed: 12/27/2022]
Abstract
Molecularly imprinted polymers (MIPs) exhibit high selectivity resulting from imprinted cavities and superior performance from functional materials, which have attracted much attention in many fields. However, the combination of MIPs film and functional materials is a great challenge. In this study, hemin/graphene hybrid nanosheets (H-GNs) were used to initiate the imprinted polymerization by catalyzing the generation of free radicals. Thus, MIPs using sulfamethoxazole as the template was directly prepared on the surface of H-GNs without any film modification. Most importantly, the template could be absorbed on the H-GNs to enhance the number of imprinted sites per unit surface area, which could improve the selectivity of MIPs film. Thus, the composites could exhibit high adsorption capacity (29.4 mg/g), imprinting factor (4.2) and excellent conductivity, which were modified on the surface of electrode for rapid, selective and sensitive detection of sulfamethoxazole in food and serum samples. The linear range was changed from 5 μg/kg to 1 mg/g and the limit of detection was 1.2 μg/kg. This sensor was free from interference caused by analogues of sulfamethoxazole, which provides a novel insight for the preparation of MIPs-based sensor and its application in food safety monitoring and human exposure study.
Collapse
Affiliation(s)
- Shao-Fei Guo
- Hubei Entry-Exit Inspection and Quarantine Bureau of PRC, Wuhan, 430022, China
| | - Xiao-Yu Chen
- Hubei Entry-Exit Inspection and Quarantine Bureau of PRC, Wuhan, 430022, China
| | - Peng Wang
- Hubei Entry-Exit Inspection and Quarantine Bureau of PRC, Wuhan, 430022, China
| | - Cheng Chen
- Hubei Entry-Exit Inspection and Quarantine Bureau of PRC, Wuhan, 430022, China
| | - Rui-Hua Pan
- Hubei Entry-Exit Inspection and Quarantine Bureau of PRC, Wuhan, 430022, China
| | - Yue-Tao Ling
- Hubei Entry-Exit Inspection and Quarantine Bureau of PRC, Wuhan, 430022, China
| | - Yi-Zhu Tang
- Hubei Institute of Sport Science, Wuhan, 430205, China.
| |
Collapse
|
22
|
Baeza Fonte AN, Rodríguez Castro G, Liva-Garrido M. Multi-residue analysis of sulfonamide antibiotics in honey samples by on-line solid phase extraction using molecularly imprinted polymers coupled to liquid chromatography-tandem mass spectrometry. J LIQ CHROMATOGR R T 2019. [DOI: 10.1080/10826076.2018.1533477] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Affiliation(s)
- Alen-Nils Baeza Fonte
- Institute of Science and Technology of Materials, University of Havana, Havana, Cuba
| | | | - María Liva-Garrido
- Institute of Science and Technology of Materials, University of Havana, Havana, Cuba
| |
Collapse
|
23
|
Babamiri B, Salimi A, Hallaj R, Hasanzadeh M. Nickel nanoclusters as a novel emitter for molecularly imprinted electrochemiluminescence based sensor toward nanomolar detection of creatinine. Biosens Bioelectron 2018; 107:272-279. [DOI: 10.1016/j.bios.2018.02.022] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2017] [Revised: 01/24/2018] [Accepted: 02/07/2018] [Indexed: 01/26/2023]
|
24
|
Kamari K, Taheri A. Preparation and evaluation of magnetic core–shell mesoporous molecularly imprinted polymers for selective adsorption of amitriptyline in biological samples. J Taiwan Inst Chem Eng 2018. [DOI: 10.1016/j.jtice.2018.02.031] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
25
|
Zhang Z, Li L. Efficient synthesis of molecularly imprinted polymers with bio-recognition sites for the selective separation of bovine hemoglobin. J Sep Sci 2018; 41:2479-2487. [DOI: 10.1002/jssc.201701479] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2017] [Revised: 02/11/2018] [Accepted: 02/12/2018] [Indexed: 11/07/2022]
Affiliation(s)
- Zulei Zhang
- School of Biology and Chemical Engineering; Jiaxing University; Jiaxing China
| | - Lei Li
- School of Biology and Chemical Engineering; Jiaxing University; Jiaxing China
| |
Collapse
|
26
|
Bitas D, Samanidou V. Molecularly Imprinted Polymers as Extracting Media for the Chromatographic Determination of Antibiotics in Milk. Molecules 2018; 23:E316. [PMID: 29393877 PMCID: PMC6017535 DOI: 10.3390/molecules23020316] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2017] [Revised: 01/26/2018] [Accepted: 02/01/2018] [Indexed: 11/16/2022] Open
Abstract
Milk-producing animals are typically kept stationary in overcrowded large-scale farms and in most cases under unsanitary conditions, which promotes the development of infections. In order to maintain sufficient health status among the herd or promote growth and increase production, farmers administer preventative antibiotic doses to the animals through their feed. However, many antibiotics used in cattle farms are intended for the treatment of bacterial infections in humans. This results in the development of antibiotic-resistant bacteria which pose a great risk for public health. Additionally, antibiotic residues are found in milk and dairy products, with potential toxic effects for the consumers. Hence the need of antibiotic residues monitoring in milk arises. Analytical methods were developed for the determination of antibiotics in milk, with key priority given to the analyte extraction and preconcentration step. Extraction can benefit from the production of molecularly imprinted polymers (MIPs) that can be applied as sorbents for the extraction of specific antibiotics. This review focuses on the principals of molecular imprinting technology and synthesis methods of MIPs, as well as the application of MIPs and MIPs composites for the chromatographic determination of various antibiotic categories in milk found in the recent literature.
Collapse
Affiliation(s)
- Dimitrios Bitas
- Laboratory of Analytical Chemistry, Department of Chemistry, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece.
| | - Victoria Samanidou
- Laboratory of Analytical Chemistry, Department of Chemistry, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece.
| |
Collapse
|
27
|
Su Y, Qiu B, Chang C, Li X, Zhang M, Zhou B, Yang Y. Separation of bovine hemoglobin using novel magnetic molecular imprinted nanoparticles. RSC Adv 2018; 8:6192-6199. [PMID: 35539629 PMCID: PMC9078349 DOI: 10.1039/c7ra12457k] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2017] [Accepted: 12/23/2017] [Indexed: 11/30/2022] Open
Abstract
Magnetic molecular imprinted nanoparticles (MMIPs), combining the progressiveness of magnetic nanoparticles and surface molecular imprinting technology, have attracted increasing attention because of the high efficiency and specificity in isolation and enrichment of the target protein. This study focused on the preparation of bovine hemoglobin MMIPs with bovine hemoglobin (BHb) as the template protein and the molecular imprinted polymer covering the functional magnetic nanoparticles modified with silane and acrylic groups. The physicochemical characteristics as well as the dynamics and isothermal adsorption properties of the generated nanoparticles were investigated to determine their efficiency and specificity in the adsorption of target protein. The maximum adsorption of the target protein was 169.29 mg g−1 at a specific pH, which was much larger than those obtained in some other research reports. MMIPs showed favorable selectivity towards BHb in a mixture of three different proteins. The results indicated the significant effects and broad prospects of MMIPs in the isolation and enrichment of specific proteins in the field of food, medicine and biological research. Magnetic molecular imprinted nanoparticles (MMIPs), combining the progressiveness of magnetic nanoparticles and surface molecular imprinting technology, have shown the high efficiency and specificity in isolation and enrichment of the target protein.![]()
Collapse
Affiliation(s)
- Yujie Su
- State Key Laboratory of Food Science and Technology
- Jiangnan University
- Wuxi 214122
- PR China
- School of Food Science and Technology
| | - Bixia Qiu
- State Key Laboratory of Food Science and Technology
- Jiangnan University
- Wuxi 214122
- PR China
- School of Food Science and Technology
| | - Cuihua Chang
- State Key Laboratory of Food Science and Technology
- Jiangnan University
- Wuxi 214122
- PR China
- School of Food Science and Technology
| | - Xin Li
- State Key Laboratory of Food Science and Technology
- Jiangnan University
- Wuxi 214122
- PR China
- School of Food Science and Technology
| | - Mengqi Zhang
- State Key Laboratory of Food Science and Technology
- Jiangnan University
- Wuxi 214122
- PR China
- School of Food Science and Technology
| | - Bei Zhou
- Jiangsu Kang De Egg Industry Co., Ltd
- Nantong 226600
- PR China
| | - Yanjun Yang
- State Key Laboratory of Food Science and Technology
- Jiangnan University
- Wuxi 214122
- PR China
- School of Food Science and Technology
| |
Collapse
|
28
|
Zheng L, Zhao XE, Ji W, Wang X, Tao Y, Sun J, Xu Y, Wang X, Zhu S, You J. Core-shell magnetic molecularly imprinted polymers used rhodamine B hydroxyproline derivate as template combined with in situ derivatization for the specific measurement of L-hydroxyproline. J Chromatogr A 2018; 1532:30-39. [DOI: 10.1016/j.chroma.2017.11.053] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2017] [Revised: 11/08/2017] [Accepted: 11/22/2017] [Indexed: 11/24/2022]
|
29
|
Zhang J, Li B, Yue H, Wang J, Zheng Y. Highly selective and efficient imprinted polymers based on carboxyl-functionalized magnetic nanoparticles for the extraction of gallic acid from pomegranate rind. J Sep Sci 2017; 41:540-547. [DOI: 10.1002/jssc.201700822] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2017] [Revised: 10/16/2017] [Accepted: 10/17/2017] [Indexed: 12/20/2022]
Affiliation(s)
- Junjie Zhang
- Department of Chemistry; School of Science; Xi'an Jiaotong University; Xi'an China
| | - Benqiang Li
- Department of Chemistry; School of Science; Xi'an Jiaotong University; Xi'an China
| | - Huijuan Yue
- Department of Chemistry; School of Science; Xi'an Jiaotong University; Xi'an China
| | - Jing Wang
- Department of Chemistry; School of Science; Xi'an Jiaotong University; Xi'an China
| | - Yuansuo Zheng
- Department of Chemistry; School of Science; Xi'an Jiaotong University; Xi'an China
| |
Collapse
|
30
|
Socas-Rodríguez B, González-Sálamo J, Hernández-Borges J, Rodríguez-Delgado MÁ. Recent applications of nanomaterials in food safety. Trends Analyt Chem 2017. [DOI: 10.1016/j.trac.2017.07.002] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
31
|
Simultaneous Determination of Erythromycin, Tetracycline, and Chloramphenicol Residue in Raw Milk by Molecularly Imprinted Polymer Mixed with Solid-Phase Extraction. FOOD ANAL METHOD 2017. [DOI: 10.1007/s12161-017-1008-x] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
32
|
Green and facile approach for enhancing the inherent magnetic properties of carbon nanotubes for water treatment applications. PLoS One 2017; 12:e0180636. [PMID: 28708835 PMCID: PMC5510820 DOI: 10.1371/journal.pone.0180636] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2017] [Accepted: 06/19/2017] [Indexed: 11/19/2022] Open
Abstract
Current methods for preparing magnetic composites with carbon nanotubes (MCNT) commonly include extensive use of treatment with strong acids and result in massive losses of carbon nanotubes (CNTs). In this study we explore the potential of taking advantage of the inherent magnetic properties associated with the metal (alloy or oxide) incorporated in CNTs during their production. The as-received CNTs are refined by applying a permanent magnet to a suspension of CNTs to separate the high-magnetic fraction; the low-magnetic fraction is discarded with the solvent. The collected MCNTs were characterized by a suite of 10 diffraction and spectroscopic techniques. A key discovery is that metallic nano-clusters of Fe and/or Ni located in the interior cavities of the nanotubes give MCNTs their ferromagnetic character. After refinement using our method, the MCNTs show saturation magnetizations up to 10 times that of the as-received materials. In addition, we demonstrate the ability of these MCNTs to repeatedly remove atrazine from water in a cycle of dispersion into a water sample, adsorption of the atrazine onto the MCNTs, collection by magnetic attraction and regeneration by ethanol. The resulting MCNTs show high adsorption capacities (> 40 mg-atrazine/g), high magnetic response, and straightforward regeneration. The method presented here is simpler, faster, and substantially reduces chemical waste relative to current techniques and the resulting MCNTs are promising adsorbents for organic/chemical contaminants in environmental waters.
Collapse
|
33
|
Sedghi R, Heidari B, Yassari M. Novel molecularly imprinted polymer based on β-cyclodextrin@graphene oxide: Synthesis and application for selective diphenylamine determination. J Colloid Interface Sci 2017; 503:47-56. [PMID: 28500939 DOI: 10.1016/j.jcis.2017.05.013] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2017] [Revised: 04/30/2017] [Accepted: 05/05/2017] [Indexed: 11/26/2022]
Abstract
A sensitive and selective molecularly imprinted polymer (MIP) for the determination of diphenylamine (DPA) was developed based on host-guest interactions of a cyclodextrin-based polymer which possesses an inherent affinity for the target. The proposed GO@MIP has been prepared using the graphene oxide (GO) sheets as surface of polymerization, DPA as target molecule, β-cyclodextrin (β-CD) and acrylamide (AM) as functional monomers, azobisisobutyronitrile (AIBN) as initiator and N, N methylene bisacrylamide (MBAm) as crosslinker which denoted as GO@MIP nanocomposite. The MIP sites were formed by the inclusion complex through interaction of DPA and β-CD, followed by extraction of target. The resulting GO@MIP nanocomposite possess a fast adsorption kinetics, highly improved imprinting effect, high adsorption capacity, and it can be applied to fast extraction of DPA. The resultant GO@MIP nanocomposite was characterized using the Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), thermogravimetric analysis (TGA) scanning electron microscope (SEM) and energy-dispersive spectroscopy (EDS) analysis. On the other hand, the non-imprinted polymer (GO@NIP nanocomposite) has been synthesized and was used in the adsorption experiments. The MIP exhibited good affinity with a maximum adsorption capacity of 95.98mgg-1 and excellent selectivity toward DPA than other structural analogues such as 2-amino benzophenone and dithizone.
Collapse
Affiliation(s)
- Roya Sedghi
- Department of Polymer & Materials Chemistry, Faculty of Chemistry & Petroleum Sciences, Shahid Beheshti University, G.C, 1983969411 Tehran, Iran.
| | - Bahareh Heidari
- Department of Polymer & Materials Chemistry, Faculty of Chemistry & Petroleum Sciences, Shahid Beheshti University, G.C, 1983969411 Tehran, Iran
| | - Mehrasa Yassari
- Department of Polymer & Materials Chemistry, Faculty of Chemistry & Petroleum Sciences, Shahid Beheshti University, G.C, 1983969411 Tehran, Iran
| |
Collapse
|
34
|
Niu M, Sun C, Zhang K, Li G, Meriem F, Pham-Huy C, Hui X, Shi J, He H. A simple extraction method for norfloxacin from pharmaceutical wastewater with a magnetic core–shell molecularly imprinted polymer with the aid of computer simulation. NEW J CHEM 2017. [DOI: 10.1039/c6nj03901d] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The best functional monomer was screened using computer simulation. Interaction mechanism between MMIP and norfloxacin was explained using pH optimization and zeta potential detection.
Collapse
Affiliation(s)
- Muchuan Niu
- Department of Analytical Chemistry
- China Pharmaceutical University
- Nanjing 210009
- China
| | - Cheng Sun
- State Key Laboratory of Pollution Control and Resource Reuse
- School of the Environment
- Nanjing University
- Nanjing 210046
- P. R. China
| | - Kai Zhang
- Department of Analytical Chemistry
- China Pharmaceutical University
- Nanjing 210009
- China
| | - Geyuan Li
- Department of Analytical Chemistry
- China Pharmaceutical University
- Nanjing 210009
- China
| | - Fizir Meriem
- Department of Analytical Chemistry
- China Pharmaceutical University
- Nanjing 210009
- China
| | | | - Xuanhong Hui
- Department of Analytical Chemistry
- China Pharmaceutical University
- Nanjing 210009
- China
| | - Jianrong Shi
- Institute of Food Quality and Safety
- Jiangsu Academy of Agricultural Science
- Nanjing
- China
| | - Hua He
- Department of Analytical Chemistry
- China Pharmaceutical University
- Nanjing 210009
- China
- Key Laboratory of Drug Quality Control and Pharmacovigilance
| |
Collapse
|
35
|
Ma RT, Sun XY, Ha W, Chen J, Shi YP. Improved surface imprinting based on a simplified mass-transfer process for the selective extraction of IgG. J Mater Chem B 2017; 5:7512-7518. [DOI: 10.1039/c7tb01519d] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The adsorption and elution efficiencies of conventional MMIPs were almost doubled by preparing MMINs.
Collapse
Affiliation(s)
- Run-tian Ma
- CAS Key Laboratory of Chemistry of Northwestern Plant Resources and Key Laboratory for Natural Medicine of Gansu Province
- Lanzhou Institute of Chemical Physics
- Chinese Academy of Sciences (CAS)
- Lanzhou 730000
- P. R. China
| | - Xiao-yu Sun
- CAS Key Laboratory of Chemistry of Northwestern Plant Resources and Key Laboratory for Natural Medicine of Gansu Province
- Lanzhou Institute of Chemical Physics
- Chinese Academy of Sciences (CAS)
- Lanzhou 730000
- P. R. China
| | - Wei Ha
- CAS Key Laboratory of Chemistry of Northwestern Plant Resources and Key Laboratory for Natural Medicine of Gansu Province
- Lanzhou Institute of Chemical Physics
- Chinese Academy of Sciences (CAS)
- Lanzhou 730000
- P. R. China
| | - Juan Chen
- CAS Key Laboratory of Chemistry of Northwestern Plant Resources and Key Laboratory for Natural Medicine of Gansu Province
- Lanzhou Institute of Chemical Physics
- Chinese Academy of Sciences (CAS)
- Lanzhou 730000
- P. R. China
| | - Yan-ping Shi
- CAS Key Laboratory of Chemistry of Northwestern Plant Resources and Key Laboratory for Natural Medicine of Gansu Province
- Lanzhou Institute of Chemical Physics
- Chinese Academy of Sciences (CAS)
- Lanzhou 730000
- P. R. China
| |
Collapse
|
36
|
González-Sálamo J, Socas-Rodríguez B, Hernández-Borges J, Rodríguez-Delgado MÁ. Nanomaterials as sorbents for food sample analysis. Trends Analyt Chem 2016. [DOI: 10.1016/j.trac.2016.09.009] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
37
|
Shi L, Tang Y, Hao Y, He G, Gao R, Tang X. Selective adsorption of protein by a high-efficiency Cu2+-cooperated magnetic imprinted nanomaterial. J Sep Sci 2016; 39:2876-83. [DOI: 10.1002/jssc.201600413] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2016] [Revised: 05/14/2016] [Accepted: 05/18/2016] [Indexed: 11/11/2022]
Affiliation(s)
- Lu Shi
- Institute of Analytical Science, School of Science; Xi′an Jiaotong University; Xi′an China
| | - Yuhai Tang
- Institute of Analytical Science, School of Science; Xi′an Jiaotong University; Xi′an China
- School of Pharmacy; Xi′an Jiaotong University; Xi′an China
| | - Yi Hao
- Institute of Analytical Science, School of Science; Xi′an Jiaotong University; Xi′an China
- School of Pharmacy; Xi′an Jiaotong University; Xi′an China
| | - Gaiyan He
- Institute of Analytical Science, School of Science; Xi′an Jiaotong University; Xi′an China
- School of Pharmacy; Xi′an Jiaotong University; Xi′an China
| | - Ruixia Gao
- Institute of Analytical Science, School of Science; Xi′an Jiaotong University; Xi′an China
| | - Xiaoshuang Tang
- Department of Urology, The Second Affiliated Hospital; Xi′an Jiaotong University; Xi′an China
| |
Collapse
|
38
|
He G, Tang Y, Hao Y, Shi J, Gao R. Preparation and application of magnetic molecularly imprinted nanoparticles for the selective extraction of osthole inLibanotis Buchtomensisherbal extract. J Sep Sci 2016; 39:2313-20. [DOI: 10.1002/jssc.201600266] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2016] [Revised: 04/02/2016] [Accepted: 04/04/2016] [Indexed: 12/24/2022]
Affiliation(s)
- Gaiyan He
- Institute of Analytical Science, School of Science; Xi'an Jiaotong University; Xi'an China
- School of Pharmacy; Xi'an Jiaotong University; Xi'an China
| | - Yuhai Tang
- Institute of Analytical Science, School of Science; Xi'an Jiaotong University; Xi'an China
- School of Pharmacy; Xi'an Jiaotong University; Xi'an China
| | - Yi Hao
- Institute of Analytical Science, School of Science; Xi'an Jiaotong University; Xi'an China
- School of Pharmacy; Xi'an Jiaotong University; Xi'an China
| | - Juan Shi
- School of Pharmacy; Xi'an Jiaotong University; Xi'an China
| | - Ruixia Gao
- Institute of Analytical Science, School of Science; Xi'an Jiaotong University; Xi'an China
| |
Collapse
|
39
|
Zhang M, Zhao HT, Yang X, Zhang WT, Wang J, Liu GY, Zhang H, Dong AJ. Preparation and characterization of surface molecularly imprinted film coated on a magnetic nanocore for the fast and selective recognition of the new neonicotinoid insecticide paichongding (IPP). RSC Adv 2016. [DOI: 10.1039/c5ra22138b] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The selective recognition of IPP-MMIPs and IPP-MNIPs for four kinds of neonicotinoid insecticides, including IPP, imidacloprid, thiamethoxam and thiacloprid.
Collapse
Affiliation(s)
- M. Zhang
- Department of Food Sciences and Engineering
- School of Chemical Engineering and Technology
- Harbin Institute of Technology
- 150090 Harbin
- PR China
| | - H. T. Zhao
- Department of Food Sciences and Engineering
- School of Chemical Engineering and Technology
- Harbin Institute of Technology
- 150090 Harbin
- PR China
| | - X. Yang
- Department of Food Sciences and Engineering
- School of Chemical Engineering and Technology
- Harbin Institute of Technology
- 150090 Harbin
- PR China
| | - W. T. Zhang
- Department of Food Sciences and Engineering
- School of Chemical Engineering and Technology
- Harbin Institute of Technology
- 150090 Harbin
- PR China
| | - J. Wang
- Department of Food Sciences and Engineering
- School of Chemical Engineering and Technology
- Harbin Institute of Technology
- 150090 Harbin
- PR China
| | - G. Y. Liu
- Department of Food Sciences and Engineering
- School of Chemical Engineering and Technology
- Harbin Institute of Technology
- 150090 Harbin
- PR China
| | - H. Zhang
- Department of Food Sciences and Engineering
- School of Chemical Engineering and Technology
- Harbin Institute of Technology
- 150090 Harbin
- PR China
| | - A. J. Dong
- Department of Food Sciences and Engineering
- School of Chemical Engineering and Technology
- Harbin Institute of Technology
- 150090 Harbin
- PR China
| |
Collapse
|
40
|
Huang W, Xu P, Yang W, Xu W. Thermosensitive molecularly imprinted polymers based on magnetic nanoparticles for the recognition of sulfamethazine. RSC Adv 2016. [DOI: 10.1039/c6ra16162f] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Schematic illustration of the preparation of tmips.
Collapse
Affiliation(s)
- Weihong Huang
- School of the Environment and Safety Engineering
- Jiangsu University
- Zhenjiang 212013
- China
| | - Ping Xu
- School of the Environment and Safety Engineering
- Jiangsu University
- Zhenjiang 212013
- China
| | - Wenming Yang
- School of Materials Science and Engineering
- Jiangsu University
- Zhenjiang 212013
- China
| | - Wanzhen Xu
- School of the Environment and Safety Engineering
- Jiangsu University
- Zhenjiang 212013
- China
| |
Collapse
|
41
|
Abdollahi E, Abdouss M, Mohammadi A. Synthesis of a nano molecularly imprinted polymeric sorbent for solid phase extraction and determination of phenytoin in plasma, urine, and wastewater by HPLC. RSC Adv 2016. [DOI: 10.1039/c6ra00421k] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
In this work a nano polymeric sorbent for phenytoin was synthesized by non-covalent molecularly imprinted polymerization approach.
Collapse
Affiliation(s)
- E. Abdollahi
- Department of Chemistry
- Amirkabir University of Technology
- Tehran 15875-4413
- Iran
- Department of Drug and Food Control
| | - M. Abdouss
- Department of Chemistry
- Amirkabir University of Technology
- Tehran 15875-4413
- Iran
| | - A. Mohammadi
- Department of Drug and Food Control
- Faculty of Pharmacy
- Tehran University of Medical Sciences
- Tehran 14155-6451
- Iran
| |
Collapse
|
42
|
Sahu N, Das D, Mondal S, Roy S, Dutta P, Sepay N, Gupta S, López-Torres E, Sinha C. The structural characterization and biological activity of sulfamethoxazolyl-azo-p-cresol, its copper(ii) complex and their theoretical studies. NEW J CHEM 2016. [DOI: 10.1039/c5nj02983j] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Sulfonamide-azophenol and its copper(ii) complex exhibit antimicrobial activity and interaction with DNA. Molecular docking was used to determine the mechanism of drug action.
Collapse
Affiliation(s)
- Nilima Sahu
- Department of Chemistry
- Jadavpur University
- Kolkata-700032
- India
| | - Dipankar Das
- Department of Chemistry
- Jadavpur University
- Kolkata-700032
- India
| | - Sudipa Mondal
- Department of Chemistry
- Jadavpur University
- Kolkata-700032
- India
| | - Suman Roy
- Department of Chemistry
- Jadavpur University
- Kolkata-700032
- India
| | - Paramita Dutta
- Department of Chemistry
- Jadavpur University
- Kolkata-700032
- India
| | - Nayim Sepay
- Department of Chemistry
- Jadavpur University
- Kolkata-700032
- India
| | - Suvroma Gupta
- Department of Biotechnology
- Haldia Institute of Technology
- India
| | | | | |
Collapse
|