1
|
Precise delivery of doxorubicin and imiquimod through pH-responsive tumor microenvironment-active targeting micelles for chemo- and immunotherapy. Mater Today Bio 2022; 17:100482. [DOI: 10.1016/j.mtbio.2022.100482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 10/19/2022] [Accepted: 10/29/2022] [Indexed: 11/06/2022] Open
|
2
|
Syntheses of Polypeptides and Their Biomedical Application for Anti-Tumor Drug Delivery. Int J Mol Sci 2022; 23:ijms23095042. [PMID: 35563433 PMCID: PMC9104059 DOI: 10.3390/ijms23095042] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 04/28/2022] [Accepted: 04/29/2022] [Indexed: 12/24/2022] Open
Abstract
Polypeptides have attracted considerable attention in recent decades due to their inherent biodegradability and biocompatibility. This mini-review focuses on various ways to synthesize polypeptides, as well as on their biomedical applications as anti-tumor drug carriers over the past five years. Various approaches to preparing polypeptides are summarized, including solid phase peptide synthesis, recombinant DNA techniques, and the polymerization of activated amino acid monomers. More details on the polymerization of specifically activated amino acid monomers, such as amino acid N-carboxyanhydrides (NCAs), amino acid N-thiocarboxyanhydrides (NTAs), and N-phenoxycarbonyl amino acids (NPCs), are introduced. Some stimuli-responsive polypeptide-based drug delivery systems that can undergo different transitions, including stability, surface, and size transition, to realize a better anti-tumor effect, are elaborated upon. Finally, the challenges and opportunities in this field are briefly discussed.
Collapse
|
3
|
Das M, Joshi A, Devkar R, Seshadri S, Thakore S. Vitamin-H Channeled Self-Therapeutic P-gp Inhibitor Curcumin-Derived Nanomicelles for Targeting the Tumor Milieu by pH- and Enzyme-Triggered Hierarchical Disassembly. Bioconjug Chem 2022; 33:369-385. [PMID: 35015523 DOI: 10.1021/acs.bioconjchem.1c00614] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
An effective nanocarrier-mediated drug delivery to cancer cells primarily faces limitations like the presence of successive drug delivery barriers, insufficient circulation time, drug leakage, and decreased tumor penetration capacity. With the aim of addressing this paradox, a self-therapeutic, curcumin-derived copolymer was synthesized by conjugation with PEGylated biotin via enzyme- and acid-labile ester and acetal linkages. This copolymer is a prodrug of curcumin and self-assembles into ∼150-200 nm-sized nanomicelles; it is capable of encapsulating doxorubicin (DOX) and hence can be designated as self-therapeutic. pH- and enzyme-responsive linkages in the polymer skeleton assist in its hierarchical disassembly only in the tumor microenvironment. Further, the conjugation of biotin and poly(ethylene glycol) (PEG) imparts features of tumor specificity and improved circulation times to the nanocarrier. The dynamic light scattering (DLS) analysis supports this claim and demonstrates rapid swelling and disruption of micelles under acidic pH. UV-vis spectroscopy provided evidence of an accelerated acetal degradation at pH 4.0 and 5.0. The in vitro release studies revealed a controlled release of DOX under acidic conditions and curcumin release in response to the enzyme. The value of the combination index calculated on HepG2 cells was found to be <1, and hence, the drug pair curcumin and DOX acts synergistically for tumor regression. To prove the efficiency of acid-labile linkages and the prodrug strategy for effective cancer therapy, curcumin-derived polymers devoid of sensitive linkages were also prepared. The prodrug stimuli-responsive nanomicelles showed enhanced cell cytotoxicity and tumor penetration capability on HepG2 cells as well as drug-resistant MCF-7 cell lines and no effect on normal NIH/3T3 fibroblasts as compared to the nonresponsive micelles. The results were also supported by in vivo evidence on a hepatocellular carcinoma (HCC)-induced nude mice model. An evident decrease in MMP-2, MMP-9, and α-fetoprotein (AFP), the biomarkers specific to tumor progression, was observed along with metastasis upon treatment with the drug-loaded dual-responsive nanomicelles. These observations corroborated with the SGOT and SGPT data as well as the histoarchitecture of the liver tissue in mice.
Collapse
Affiliation(s)
- Manita Das
- Department of Chemistry, Faculty of Science, The Maharaja Sayajirao University of Baroda, Vadodara 390 002, India
| | - Apeksha Joshi
- Department of Zoology, Faculty of Science, The Maharaja Sayajirao University of Baroda, Vadodara 390 002, India
| | - Ranjitsinh Devkar
- Department of Zoology, Faculty of Science, The Maharaja Sayajirao University of Baroda, Vadodara 390 002, India
| | - Sriram Seshadri
- Institute of Science, Nirma University, Ahmedabad 382 481, India
| | - Sonal Thakore
- Department of Chemistry, Faculty of Science, The Maharaja Sayajirao University of Baroda, Vadodara 390 002, India.,Institute of Interdisciplinary Studies, The Maharaja Sayajirao University of Baroda, Vadodara 390 002, India
| |
Collapse
|
4
|
Guo C, Yuan H, Zhang Y, Yin T, He H, Gou J, Tang X. Asymmetric polymersomes, from the formation of asymmetric membranes to the application on drug delivery. J Control Release 2021; 338:422-445. [PMID: 34496272 DOI: 10.1016/j.jconrel.2021.09.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 09/02/2021] [Accepted: 09/03/2021] [Indexed: 12/18/2022]
Abstract
Nano drug delivery systems have attracted researchers' growing attention and are gradually emerging into the public views. More and more nano-formulations are being approved for marketing or clinical use, representing the field's booming development. Copolymer self-assembly systems such as micelles, nanoparticles, polymersomes occupy a prominent position in the field of nano-drug delivery carriers. Among them, polymersomes, unlike micelles or nanoparticles, resemble liposomes' structure and possess large internal hollow hydrophilic reservoirs, allowing them to carry hydrophilic drugs. Nevertheless, their insufficient drug loading efficiency and unruly self-assembly morphology have somewhat constrained their applications. Especially for the delivery of biomacromolecule such as peptides, the encapsulation efficiency is always considered to be a formidable obstacle, even if the enormous hydrophilic core would render the polymersomes to have considerable potential in this regard. Reassuringly, the emergence of asymmetric polymersomes holds the prospect of solving this problem. With the development of synthetic technology and a deeper understanding of the self-assembly process, the asymmetric polymersomes which are with different inner and outer shell composition have been gradually recognized by researchers. It has made possible elevated drug loading, more controllable assembly processes and release performance. The internal hydrophilic blocks different from the outer shell could be engineered to have a more remarkable affinity to the cargos or could contain a non-watery aqueous phase to enable the thermodynamically preferred encapsulation of cargos, which would allow for a substantial improvement in drug encapsulation efficiency compared to the conventional approach. In this paper, we aim to deepen the understanding to asymmetric polymersomes and lay the foundation for the development of this field by describing four main elements: the mechanism of their preparation and asymmetric membrane formation process, the characterization of asymmetric membranes, the efficient drug loading, and the special stimulus-responsive release mechanism.
Collapse
Affiliation(s)
- Chen Guo
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, Liaoning, PR China
| | - Haoyang Yuan
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, Liaoning, PR China
| | - Yu Zhang
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, Liaoning, PR China
| | - Tian Yin
- School of Functional Food and Wine, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, Liaoning, PR China
| | - Haibing He
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, Liaoning, PR China
| | - Jingxin Gou
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, Liaoning, PR China.
| | - Xing Tang
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, Liaoning, PR China.
| |
Collapse
|
5
|
Feng H, Linders J, Myszkowska S, Mayer C. Capsules from synthetic diblock-peptides as potential artificial oxygen carriers. J Microencapsul 2021; 38:276-284. [PMID: 33722172 DOI: 10.1080/02652048.2021.1903594] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The design of an encapsulation system consisting of a synthetic peptide which is fully biodegradable into non-toxic constituents. This system should be capable of encapsulating perfluorinated hydrocarbons and should be a promising basis for oxygen carriers to be used as artificial blood replacement. A diblock-peptide is synthesised following a phosgene-free method and characterised by 1H-NMR. Subsequently, this diblock-peptide is self-assembled with perfluorodecalin (PFD) to form PFD-filled capsules as potential artificial oxygen carriers allowing for rapid oxygen uptake and release. The diblock-peptide Bu-PAsp10-PPhe10 is successfully synthesised and used to encapsulate PFD. The capsules have a spherical shape with an average diameter of 360 nm in stable aqueous dispersion. NMR measurements prove their physical capability for reversible uptake and release of oxygen. The resulting capsules are expected to be fully biodegradable and possibly could act as oxygen carriers for artificial blood replacement.
Collapse
Affiliation(s)
- Huayang Feng
- Institute for Physical Chemistry, CeNIDE, University of Duisburg-Essen, Essen, Germany
| | - Jürgen Linders
- Institute for Physical Chemistry, CeNIDE, University of Duisburg-Essen, Essen, Germany
| | - Sascha Myszkowska
- Institute for Physical Chemistry, CeNIDE, University of Duisburg-Essen, Essen, Germany
| | - Christian Mayer
- Institute for Physical Chemistry, CeNIDE, University of Duisburg-Essen, Essen, Germany
| |
Collapse
|
6
|
Guo Z, Shi L, Feng H, Yang F, Li Z, Zhang J, Jin L, Li J. Reduction-sensitive nanomicelles: Delivery celastrol for retinoblastoma cells effective apoptosis. CHINESE CHEM LETT 2021. [DOI: 10.1016/j.cclet.2020.03.066] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
7
|
Shi L, Feng H, Li Z, Shi J, Jin L, Li J. Co-Delivery of Paclitaxel and siRNA with pH-Responsive Polymeric Micelles for Synergistic Cancer Therapy. J Biomed Nanotechnol 2021; 17:322-329. [PMID: 33785102 DOI: 10.1166/jbn.2021.3039] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Due to the complex physiological characteristics of tumors, chemotherapy or gene therapy alone cannot completely kill tumor cells. Therefore, combining chemotherapy with gene therapy for combination therapy is the key to solving this problem. However, there are still significant challenges in how to simultaneously deliver and rapidly release the drugs and siRNA into cancer cells. In this work, a triblock copolymer was synthesized to co-deliver siRNA and paclitaxel to tumor cells. This system has an acid-sensitive subsurface layer, which can not only load siRNA to prevent premature drug release but also has good controlled release performance. In vitro experiments showed that polymeric vectors can efficiently deliver siRNA and paclitaxel simultaneously into tumor cells for rapid release within the tumor cells. This study reveals that this novel polymeric micelle is a suitable vector for the codelivery of chemotherapeutic drugs and siRNA to cancer cells, representing an important advance in nanotechnology, nanomedicine, drug delivery, and cancer therapy.
Collapse
Affiliation(s)
- Liuqi Shi
- Henan Eye Hospital, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou 450003, P. R. China
| | - Huayang Feng
- Henan Eye Hospital, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou 450003, P. R. China
| | - Zhanrong Li
- Henan Eye Hospital, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou 450003, P. R. China
| | - Jun Shi
- School of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450001, P. R. China
| | - Lin Jin
- Henan Eye Hospital, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou 450003, P. R. China
| | - Jingguo Li
- Henan Eye Hospital, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou 450003, P. R. China
| |
Collapse
|
8
|
pH-sensitive polymeric nanocarriers for antitumor biotherapeutic molecules targeting delivery. Biodes Manuf 2021. [DOI: 10.1007/s42242-020-00105-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
9
|
Supasena W, Muangnoi C, Praengam K, Wong TW, Qiu G, Ye S, Wu J, Tanasupawat S, Rojsitthisak P. Enhanced selective cytotoxicity of doxorubicin to breast cancer cells by methoxypolyethylene glycol conjugation via a novel beta-thiopropanamide linker. Eur Polym J 2020. [DOI: 10.1016/j.eurpolymj.2020.110056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
10
|
Li Z, Guo Z, Chu D, Feng H, Zhang J, Zhu L, Li J. Effectively suppressed angiogenesis-mediated retinoblastoma growth using celastrol nanomicelles. Drug Deliv 2020; 27:358-366. [PMID: 32091275 PMCID: PMC7054910 DOI: 10.1080/10717544.2020.1730522] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Celastrol, a Chinese herbal medicine, has already shown an inhibition effect on retinoblastoma growth activity in our previous research, but its mechanism is not well understood. Angiogenesis is a main driving force in many tumors. Here, we studied whether celastrol could inhibit angiogenesis-mediated retinoblastoma growth, if so, through what mechanism. In this work, we developed celastrol-loaded polymeric nanomicelles to improve the poor water solubility of celastrol. When given an intraperitoneal injection to mice bearing human retinoblastoma xenografts, celastrol nanomicelles (CNMs, 27.2 mg/kg/2 days) significantly reduced the weight and the volume of tumors and decreased tumor angiogenesis. We found that CNMs suppressed hypoxia-induced proliferation, migration, and invasion by human umbilical vascular endothelial cells (EA.hy 926) in a dose-dependent manner. Furthermore, CNMs inhibited SO-Rb 50 cells-induced sprouting of the vessels and vascular formation in chick embryo chorioallantoic membrane assay in vitro. To understand the molecular mechanism of these activities, we assessed the signaling pathways in CoCl2 treated EA.hy 926. CNMs inhibited the hypoxia-induced HIF-1α and VEGF. In conclusion, our results reveal that CNMs target the HIF-1α/VEGF pathway, which may be an important reason for the suppression of retinoblastoma growth and angiogenesis.
Collapse
Affiliation(s)
- Zhanrong Li
- Henan Eye Hospital, Henan Provincial People's Hospital, Zhengzhou University People's Hospital, Zhengzhou, P. R. China
| | - Zhihua Guo
- Henan Eye Hospital, Henan Provincial People's Hospital, Zhengzhou University People's Hospital, Zhengzhou, P. R. China
| | - Dandan Chu
- Henan Eye Hospital, Henan Provincial People's Hospital, Zhengzhou University People's Hospital, Zhengzhou, P. R. China
| | - Huayang Feng
- Henan Eye Hospital, Henan Provincial People's Hospital, Zhengzhou University People's Hospital, Zhengzhou, P. R. China
| | - Junjie Zhang
- Henan Eye Hospital, Henan Provincial People's Hospital, Zhengzhou University People's Hospital, Zhengzhou, P. R. China
| | - Lei Zhu
- Henan Eye Hospital, Henan Provincial People's Hospital, Zhengzhou University People's Hospital, Zhengzhou, P. R. China
| | - Jingguo Li
- Henan Eye Hospital, Henan Provincial People's Hospital, Zhengzhou University People's Hospital, Zhengzhou, P. R. China
| |
Collapse
|
11
|
Boonpavanitchakul K, Bast LK, Bruns N, Magaraphan R. Silk Sericin-Polylactide Protein-Polymer Conjugates as Biodegradable Amphiphilic Materials and Their Application in Drug Release Systems. Bioconjug Chem 2020; 31:2312-2324. [PMID: 32927943 DOI: 10.1021/acs.bioconjchem.0c00399] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Silk sericin (SS) is a byproduct of silk production. In order to transform it into value-added products, sericin can be used as a biodegradable and pH-responsive building block in drug delivery materials. To this end, amphiphilic substances were synthesized via the conjugation of hydrophobic polylactide (PLA) to the hydrophilic sericin using a bis-aryl hydrazone linker. PLA was esterified with a terephthalaldehydic acid to obtain aromatic aldehyde terminated PLA (PLA-CHO). In addition, lysine groups of SS were modified with the linker succinimidyl-6-hydrazino-nicotinamide (S-HyNic). Then, both macromolecules were mixed to form the amphipilic protein-polymer conjugate in buffer-DMF solution. The formation of bis-aryl hydrazone linkages was confirmed and quantified by UV-vis spectroscopy. SS-PLA conjugates self-assembled in water into spherical multicompartment micelles with a diameter of around 100 nm. Doxorubicin (DOX) was selected as a model drug for studying the pH-dependent drug release from SS-PLA nanoparticles. The release rate of the encapsulated drug was slower than that of the free drug and dependent on pH, faster at pH 5.0, and it resulted in a larger cumulative amount of drug released than at physiological pH of 7.4. The SS-PLA conjugate of high PLA branches showed smaller particle size and lower loading capacity than the one with low PLA branches. Both SS-PLA conjugates had negligible cytotoxicity, whereas after loading with DOX, the SS-PLA micelles were highly toxic for the human liver carcinoma immortalized cell line HepG2. Therefore, the SS-based biodegradable amphiphilic material showed great potential as a drug carrier for cancer therapy.
Collapse
Affiliation(s)
| | - Livia K Bast
- Adolphe Merkle Institute, University of Fribourg, Chemin des Verdiers 4, 1700, Fribourg, Switzerland.,Department of Pure and Applied Chemistry, University of Strathclyde, Thomas Graham Building, 295 Cathedral Street, Glasgow G1 1XL, United Kingdom
| | - Nico Bruns
- Adolphe Merkle Institute, University of Fribourg, Chemin des Verdiers 4, 1700, Fribourg, Switzerland.,Department of Pure and Applied Chemistry, University of Strathclyde, Thomas Graham Building, 295 Cathedral Street, Glasgow G1 1XL, United Kingdom
| | - Rathanawan Magaraphan
- The Petroleum and Petrochemical College, Chulalongkorn University, Phayathai, Bangkok, 10330, Thailand.,Polymer Processing and Polymer Nanomaterials Research Unit, Chulalongkorn University, Phayathai, Bangkok, 10330. Thailand.,Green Materials for Industrial Application Research Unit, Faculty of Science, Chulalongkorn University, Phayathai, Bangkok, 10330, Thailand
| |
Collapse
|
12
|
Feng H, Chu D, Yang F, Li Z, Fan B, Jin L, Li J. Hypoxia-Responsive Polymeric Micelles for Enhancing Cancer Treatment. Front Chem 2020; 8:742. [PMID: 33033713 PMCID: PMC7509442 DOI: 10.3389/fchem.2020.00742] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Accepted: 07/17/2020] [Indexed: 12/12/2022] Open
Abstract
Polymeric drug vectors have shown great potentials in cancer therapy. However, intelligent controlled release of drugs has become a major challenge in nanomedicine research. Hypoxia-responsive polymeric micelles have received widespread attention in recent years due to the inherent hypoxic state of tumor tissue. In this study, a novel diblock polymer consisting of polyethylene glycol and poly[glutamic acid (3-(2-nitro-imidazolyl)-propyl)] was synthesized and self-assembled into hypoxia-responsive polymeric micelles for the controlled release of doxorubicin (DOX). The cell experiments demonstrated that DOX-loaded micelles had a stronger killing capacity on tumor cells under hypoxic conditions, while the blank micelles had good biocompatibility. All the experiments indicate that our hypoxia-responsive polymeric micelles have a great potential for enhanced cancer treatment.
Collapse
Affiliation(s)
- Huayang Feng
- Henan Provincial People's Hospital, Zhengzhou University People's Hospital, Zhengzhou, China
- School of Materials Science and Engineering, Zhengzhou University, Zhengzhou, China
| | - Dandan Chu
- Henan Provincial People's Hospital, Zhengzhou University People's Hospital, Zhengzhou, China
| | - Fan Yang
- Henan Provincial People's Hospital, Zhengzhou University People's Hospital, Zhengzhou, China
| | - Zhanrong Li
- Henan Provincial People's Hospital, Zhengzhou University People's Hospital, Zhengzhou, China
| | - Bingbing Fan
- School of Materials Science and Engineering, Zhengzhou University, Zhengzhou, China
| | - Lin Jin
- Henan Provincial People's Hospital, Zhengzhou University People's Hospital, Zhengzhou, China
| | - Jingguo Li
- Henan Provincial People's Hospital, Zhengzhou University People's Hospital, Zhengzhou, China
- School of Materials Science and Engineering, Zhengzhou University, Zhengzhou, China
| |
Collapse
|
13
|
Su Z, Xu Y, Wang Y, Shi W, Han S, Shuai X. A pH and reduction dual-sensitive polymeric nanomicelle for tumor microenvironment triggered cellular uptake and controlled intracellular drug release. Biomater Sci 2020; 7:3821-3831. [PMID: 31268075 DOI: 10.1039/c9bm00825j] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Minimal drug leakage during blood circulation and intracellular drug delivery in tumor sites are of great significance in chemotherapeutics. Herein we propose an interlayer crosslinked polymeric micelle with tumor acidity and reduction dual sensitivity for highly efficient drug delivery to cancer cells. A novel copolymer mPEG-C[double bond, length as m-dash]N-PAsp(MEA)-CA was synthesized and self-assembled into a dual-sensitive interlayer-crosslinked micelle (ICM). The micelle was composed of a tumor acidity sheddable PEG outer layer, a reduction-sensitive disulfide-crosslinked interlayer (PAsp(MEA)) and a hydrophobic core of cholic acid (CA) for doxorubicin (DOX) delivery. The nano-sized ICM was stable and showed little drug leakage in a neutral physiological environment. In tumor microenvironments (TMEs) with mild acidity, the PEG outer layer was readily detached due to the hydrolysis of the Schiff base linker, and the surface of the ICM was switched to positively charged to enhance the cellular uptake. Furthermore, inside tumor cells DOX was rapidly released due to the reduction of disulfide bonds by glutathione (GSH). The DOX-loaded ICM exhibited an effective anticancer effect against C6 glioma and reduced side effects both in vitro and in vivo. The study reveals that this pH and reduction dual-sensitive micelle may have great potential to mediate effective anticancer therapy.
Collapse
Affiliation(s)
- Zhenwei Su
- PCFM Lab of Ministry of Education, School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou 510275, China.
| | | | | | | | | | | |
Collapse
|
14
|
Polymeric micelle with pH-induced variable size and doxorubicin and siRNA co-delivery for synergistic cancer therapy. APPLIED NANOSCIENCE 2020. [DOI: 10.1007/s13204-020-01263-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
15
|
Francis AP, Jayakrishnan A. Conjugating doxorubicin to polymannose: a new strategy for target specific delivery to lung cancer cells. JOURNAL OF BIOMATERIALS SCIENCE-POLYMER EDITION 2019; 30:1471-1488. [PMID: 31322972 DOI: 10.1080/09205063.2019.1646475] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
As mannose receptors are known to be over-expressed in cancer cells, we synthesized polymannose-doxorubicin (PM-DOX) conjugates with the objective of targeting the drug to cancer cells. DOX was conjugated to oxidized PM through Schiff's linkages to obtain PM-DOX conjugates. In order to examine the superior targeting efficacy of PM-DOX conjugate, sodium alginate (SA) was conjugated to DOX by similar chemistry and compared with PM-DOX conjugate. The cytotoxicity of the conjugates was investigated in A549 cell lines using MTT Assay and the cell uptake and retention studies, were performed using flow cytometry and cell imaging. In vitro drug release studies with both PM-DOX and SA-DOX conjugates showed an initial burst release of DOX up to 37-39% at 1 h, followed by a steady release up to 58-62% at 24 h in human plasma while negligible release was observed in phosphate buffered saline. The conjugates exhibited negligible hemolytic potential to human erythrocytes compared to free DOX. The PM-DOX conjugate showed better cytotoxic potential against A549 cells at lower concentration (equivalent to 0.27 μg/mL of DOX) at 72 h compared to free DOX and SA-DOX conjugate. Further, PM-DOX conjugate showed enhanced uptake by the cells in comparison with SA-DOX conjugate thereby confirming the target specificity of PM to the cancer cells.
Collapse
Affiliation(s)
- Arul Prakash Francis
- Biomaterials Laboratory, Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras , Chennai , Tamil Nadu , India
| | - A Jayakrishnan
- Biomaterials Laboratory, Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras , Chennai , Tamil Nadu , India
| |
Collapse
|
16
|
Dong Y, Du P, Pei M, Liu P. Design, postpolymerization conjugation and self-assembly of a di-block copolymer-based prodrug for tumor intracellular acid-triggered DOX release. J Mater Chem B 2019; 7:5640-5647. [DOI: 10.1039/c9tb01511f] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
A novel di-block copolymer-based prodrug was designed by atom transfer radical polymerization (ATRP) of glycidyl methacrylate (GMA) with a polyethylene glycol-based initiator (PEG-Br), postpolymerization aldehyde-modification, and doxorubicin (DOX) conjugation via an acid-labile imine bond.
Collapse
Affiliation(s)
- Yuman Dong
- State Key Laboratory of Applied Organic Chemistry
- College of Chemistry and Chemical Engineering
- Lanzhou University
- Lanzhou 730000
- People's Republic of China
| | - Pengcheng Du
- State Key Laboratory of Applied Organic Chemistry
- College of Chemistry and Chemical Engineering
- Lanzhou University
- Lanzhou 730000
- People's Republic of China
| | - Mingliang Pei
- State Key Laboratory of Applied Organic Chemistry
- College of Chemistry and Chemical Engineering
- Lanzhou University
- Lanzhou 730000
- People's Republic of China
| | - Peng Liu
- State Key Laboratory of Applied Organic Chemistry
- College of Chemistry and Chemical Engineering
- Lanzhou University
- Lanzhou 730000
- People's Republic of China
| |
Collapse
|
17
|
Zhang L, Yin T, Li B, Zheng R, Qiu C, Lam KS, Zhang Q, Shuai X. Size-Modulable Nanoprobe for High-Performance Ultrasound Imaging and Drug Delivery against Cancer. ACS NANO 2018; 12:3449-3460. [PMID: 29634240 DOI: 10.1021/acsnano.8b00076] [Citation(s) in RCA: 79] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Among medical imaging modalities available in the clinic, ultrasonography is the most convenient, inexpensive, ionizing-radiation-free, and most common. Micrometer-size perfluorocarbon bubbles have been used as efficient contrast for intravascular ultrasonography, but they are too big for tumor penetration. Nanodroplets (250-1000 nm) encapsulating both perfluorocarbon and drug have been used as an ultrasound-triggered release drug delivery platform against cancer, but they are generally not useful as a tumor imaging agent. The present study aims to develop a type of pH-sensitive, polymersome-based, perfluorocarbon encapsulated ultrasonographic nanoprobe, capable of maintaining at 178 nm during circulation and increasing to 437 nm at the acidic tumor microenvironment. Its small size allowed efficient tumor uptake. At the tumor site, the nanoparticle swells, resulting in lowering of the vaporization threshold for the perfluorocarbon, efficient conversion of nanoprobes to echogenic nano/microbubbles for ultrasonic imaging, and eventual release of doxorubicin from the theranostic nanoprobe for deep tissue chemotherapy, triggered by irradiation with low-frequency ultrasound.
Collapse
Affiliation(s)
- Lu Zhang
- Guangdong Provincial Key Lab of Liver Disease and Department of Medical Ultrasonic , The Third Affiliated Hospital of Sun Yat-sen University , Guangzhou 510630 , China
- Department of Biochemistry and Molecular Medicine, UC Davis Comprehensive Cancer Center , University of California Davis , Sacramento , California 95817 , United States
- PCFM Lab of Ministry of Education, School of Materials Science and Engineering , Sun Yat-sen University , Guangzhou 510275 , China
| | - Tinghui Yin
- Guangdong Provincial Key Lab of Liver Disease and Department of Medical Ultrasonic , The Third Affiliated Hospital of Sun Yat-sen University , Guangzhou 510630 , China
| | - Bo Li
- PCFM Lab of Ministry of Education, School of Materials Science and Engineering , Sun Yat-sen University , Guangzhou 510275 , China
| | - Rongqin Zheng
- Guangdong Provincial Key Lab of Liver Disease and Department of Medical Ultrasonic , The Third Affiliated Hospital of Sun Yat-sen University , Guangzhou 510630 , China
| | - Chen Qiu
- Guangdong Provincial Key Lab of Liver Disease and Department of Medical Ultrasonic , The Third Affiliated Hospital of Sun Yat-sen University , Guangzhou 510630 , China
| | - Kit S Lam
- Department of Biochemistry and Molecular Medicine, UC Davis Comprehensive Cancer Center , University of California Davis , Sacramento , California 95817 , United States
| | - Qi Zhang
- Guangdong Provincial Key Lab of Liver Disease and Department of Medical Ultrasonic , The Third Affiliated Hospital of Sun Yat-sen University , Guangzhou 510630 , China
| | - Xintao Shuai
- Guangdong Provincial Key Lab of Liver Disease and Department of Medical Ultrasonic , The Third Affiliated Hospital of Sun Yat-sen University , Guangzhou 510630 , China
- PCFM Lab of Ministry of Education, School of Materials Science and Engineering , Sun Yat-sen University , Guangzhou 510275 , China
| |
Collapse
|
18
|
Feng H, Chu D, Li Z, Guo Z, Jin L, Fan B, Zhang J, Li J. A DOX-loaded polymer micelle for effectively inhibiting cancer cells. RSC Adv 2018; 8:25949-25954. [PMID: 35541975 PMCID: PMC9082780 DOI: 10.1039/c8ra04089c] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Accepted: 07/16/2018] [Indexed: 11/21/2022] Open
Abstract
A novel triblock polymer is synthesized and self-assembled with doxorubicin to form DOX-loaded micelles. The synthetic process involves the ring-opening polymerization, carboxylation and amidation reactions, and the structures are characterized. The drug release test indicated that the micelles have the ability to control the release of drugs. The cell uptake results indicated that the DOX-loaded micelles could enter cancer cells easily, and the cytotoxicity and apoptosis test confirmed that DOX-loaded micelles have a strong killing effect on tumor cells, while the blank micelles do not have cytotoxicity. Therefore, the novel polymer micelles are a promising carrier for delivery of anticancer drugs to enhance cancer treatment. A novel triblock polymer is synthesized and self-assembled with doxorubicin to form DOX-loaded micelles.![]()
Collapse
Affiliation(s)
- Huayang Feng
- People's Hospital of Zhengzhou University
- Zhengzhou University
- China
- School of Material Science and Engineering
- Zhengzhou University
| | - Dandan Chu
- People's Hospital of Zhengzhou University
- Zhengzhou University
- China
| | - Zhanrong Li
- People's Hospital of Zhengzhou University
- Zhengzhou University
- China
| | - Zhihua Guo
- People's Hospital of Zhengzhou University
- Zhengzhou University
- China
| | - Lin Jin
- People's Hospital of Zhengzhou University
- Zhengzhou University
- China
| | - Bingbing Fan
- School of Material Science and Engineering
- Zhengzhou University
- China
| | - Junjie Zhang
- People's Hospital of Zhengzhou University
- Zhengzhou University
- China
| | - Jingguo Li
- People's Hospital of Zhengzhou University
- Zhengzhou University
- China
- School of Material Science and Engineering
- Zhengzhou University
| |
Collapse
|
19
|
Zhang H, Xu W, Omari-Siaw E, Liu Y, Chen B, Chen D, Yu J, Xu X. Redox-responsive PEGylated self-assembled prodrug-nanoparticles formed by single disulfide bond bridge periplocymarin-vitamin E conjugate for liver cancer chemotherapy. Drug Deliv 2017; 24:1170-1178. [PMID: 28835137 PMCID: PMC8241199 DOI: 10.1080/10717544.2017.1365393] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2017] [Revised: 07/31/2017] [Accepted: 08/06/2017] [Indexed: 12/22/2022] Open
Abstract
Periplocymarin (PPM), a cardiac glycoside, has a narrow therapeutic index, poor tumor selectivity and severe cardiovascular toxicity which hinder its wide clinical applications in cancer treatment. Herein, we report novel redox-responsive prodrug-nanoparticles (MPSSV-NPs) self-assembled by co-nanoprecipitation of PPM-vitamin E conjugate and a PEG derivative of linoleate (mPEG2000-LA) in water. It was found that the characteristics of PPM-vitamin E nanoparticles (PSSV-NPs) were improved through co-nanoprecipitation with increased percentages of mPEG2000-LA. Moreover, the MPSSV-NPs were optimized according to the in vitro release and cytotoxicity study. Furthermore, the optimized MPSSV-NPs dramatically enhanced the circulation time and tumor distribution of PSSV-NPs after single intravenous injection. The in vivo studies in malignant H22-bearing mice revealed that MPSSV-NPs could effectively suppress tumor growth without causing obvious systemic toxicity. Altogether, these results suggested that MPSSV-NPs could offer a safe, multifunctional and viable nanoplatform for cardiac glycosides in cancer treatment.
Collapse
Affiliation(s)
- Huiyun Zhang
- Department of Pharmaceutics, School of Pharmacy, Center for Nano Drug/Gene Delivery and Tissue Engineering, Jiangsu University, Zhenjiang, People’s Republic of China
| | - Wenqian Xu
- Department of Pharmaceutics, School of Pharmacy, Center for Nano Drug/Gene Delivery and Tissue Engineering, Jiangsu University, Zhenjiang, People’s Republic of China
| | - Emmanuel Omari-Siaw
- Department of Pharmaceutics, School of Pharmacy, Center for Nano Drug/Gene Delivery and Tissue Engineering, Jiangsu University, Zhenjiang, People’s Republic of China
| | - Yingkun Liu
- Department of Pharmaceutics, School of Pharmacy, Center for Nano Drug/Gene Delivery and Tissue Engineering, Jiangsu University, Zhenjiang, People’s Republic of China
| | - Baoding Chen
- Department of Ultrasound, The Affiliated Hospital of Jiangsu University, Zhenjiang, People’s Republic of China
| | - Deyu Chen
- Department of Radiation Oncology, The Affiliated Hospital of Jiangsu University, Zhenjiang, People’s Republic of China
| | - Jiangnan Yu
- Department of Pharmaceutics, School of Pharmacy, Center for Nano Drug/Gene Delivery and Tissue Engineering, Jiangsu University, Zhenjiang, People’s Republic of China
- School of Pharmacy, China Pharmaceutical University, Nanjing, People’s Republic of China
| | - Ximing Xu
- Department of Pharmaceutics, School of Pharmacy, Center for Nano Drug/Gene Delivery and Tissue Engineering, Jiangsu University, Zhenjiang, People’s Republic of China
| |
Collapse
|
20
|
Amphipathic dextran-doxorubicin prodrug micelles for solid tumor therapy. Colloids Surf B Biointerfaces 2017; 158:47-56. [DOI: 10.1016/j.colsurfb.2017.06.023] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2017] [Revised: 05/24/2017] [Accepted: 06/19/2017] [Indexed: 01/07/2023]
|
21
|
Ramasamy T, Ruttala HB, Gupta B, Poudel BK, Choi HG, Yong CS, Kim JO. Smart chemistry-based nanosized drug delivery systems for systemic applications: A comprehensive review. J Control Release 2017; 258:226-253. [DOI: 10.1016/j.jconrel.2017.04.043] [Citation(s) in RCA: 246] [Impact Index Per Article: 35.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2016] [Revised: 04/28/2017] [Accepted: 04/30/2017] [Indexed: 12/21/2022]
|
22
|
Battistella C, Klok HA. Controlling and Monitoring Intracellular Delivery of Anticancer Polymer Nanomedicines. Macromol Biosci 2017; 17. [DOI: 10.1002/mabi.201700022] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2017] [Revised: 03/03/2017] [Indexed: 12/31/2022]
Affiliation(s)
- Claudia Battistella
- École Polytechnique Fédérale de Lausanne (EPFL); Institut des Matériaux et Institut des Sciences et Ingénierie Chimiques; Laboratoire des Polymères; Bâtiment MXD; Station 12 CH-1015 Lausanne Switzerland
| | - Harm-Anton Klok
- École Polytechnique Fédérale de Lausanne (EPFL); Institut des Matériaux et Institut des Sciences et Ingénierie Chimiques; Laboratoire des Polymères; Bâtiment MXD; Station 12 CH-1015 Lausanne Switzerland
| |
Collapse
|
23
|
Theerasilp M, Chalermpanapun P, Ponlamuangdee K, Sukvanitvichai D, Nasongkla N. Imidazole-modified deferasirox encapsulated polymeric micelles as pH-responsive iron-chelating nanocarrier for cancer chemotherapy. RSC Adv 2017. [DOI: 10.1039/c6ra26669j] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Modified deferasirox encapsulated polymeric micelles demonstrate pH-responsive and ON–OFF release behavior to deplete the iron level in cancer cells. The cellular iron deficiency is a novel strategy for cancer treatment.
Collapse
Affiliation(s)
- Man Theerasilp
- Department of Biomedical Engineering
- Faculty of Engineering
- Mahidol University
- Thailand
| | - Punlop Chalermpanapun
- Department of Biomedical Engineering
- Faculty of Engineering
- Mahidol University
- Thailand
| | | | - Dusita Sukvanitvichai
- Department of Biomedical Engineering
- Faculty of Engineering
- Mahidol University
- Thailand
| | - Norased Nasongkla
- Department of Biomedical Engineering
- Faculty of Engineering
- Mahidol University
- Thailand
| |
Collapse
|
24
|
Qu X, Yang Z. Benzoic-Imine-Based Physiological-pH-Responsive Materials for Biomedical Applications. Chem Asian J 2016; 11:2633-2641. [DOI: 10.1002/asia.201600452] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2016] [Indexed: 12/31/2022]
Affiliation(s)
- Xiaozhong Qu
- State Key Laboratory of Polymer Physics and Chemistry; Institute of Chemistry; Chinese Academy of Sciences; Beijing 100190 P. R. China
- College of Materials Science and Opto-Electronic Technology; University of Chinese Academy of Sciences; Beijing 100049 P. R. China
| | - Zhenzhong Yang
- State Key Laboratory of Polymer Physics and Chemistry; Institute of Chemistry; Chinese Academy of Sciences; Beijing 100190 P. R. China
| |
Collapse
|
25
|
Cai G, Mao C. A facile way to fabricate pH-sensitive charge-conversion polymeric nanoparticles with tunable pH conversion point. RSC Adv 2016. [DOI: 10.1039/c6ra05825f] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
pH-Sensitive charge-conversion polymeric nanoparticles could significantly enhance drug bioavailability due to improved tumor cell internalization.
Collapse
Affiliation(s)
- Guoqiang Cai
- MOE Key Laboratory of Advanced Textile Materials & Manufacturing Technology
- Zhejiang Sci-Tech University
- Hangzhou 310018
- China
| | - Congxing Mao
- MOE Key Laboratory of Advanced Textile Materials & Manufacturing Technology
- Zhejiang Sci-Tech University
- Hangzhou 310018
- China
| |
Collapse
|