1
|
Rakhi SF, Reza AHMM, Davies B, Wang J, Qin J, Tang Y. Improvement of growth and lipid accumulation in microalgae with aggregation-induced emission-based nanomaterials towards sustainable lipid production. NANOSCALE 2025; 17:1308-1316. [PMID: 39620719 DOI: 10.1039/d4nr02361g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2025]
Abstract
Microalgae are a hot research area owing to their promising applications for sustainable food, biofunctional compounds, and biofuel feedstock. However, low lipid content in algal biomass is still a challenge that needs to be resolved for commercial use. The current approaches are not satisfactory for achieving high growth and lipid accumulation in algal cells. This research aims to understand and evaluate the effects of light spectral shift on growth and lipid biosynthesis in a green microalga, Chlamydomonas reinhardtii. As a novel approach, an aggregation-induced emission luminogen (AIEgen), TPA-A (C21H19NO), was introduced into the culture media for tailoring the wavelength to a specific range to enhance photosynthesis and lipid production. Algal growth almost doubled at 10 μM TPA-A exposure compared to the control. A significant increase (*p < 0.05) in lipid accumulation was observed in the algal cells exposed to TPA-A. The elevated level of chlorophyll was attributed to fast algal growth. Furthermore, this luminogen was highly biocompatible (∼97% cell viability) on the HaCaT cell line at a concentration of 10 μM in under light conditions. No residues of TPA-A were detected after 7 days in culture media, indicating that this AIEgen was easily degradable. This AIE-based nanomaterial overcomes the conventional fluorophores' aggregation-caused quenching effect by providing increased fluorescence with AIEgen. This approach for lipid induction with increased algal growth provides potential for the algal biofactory to produce sustainable bioproducts and eco-friendly biofuels.
Collapse
Affiliation(s)
- Sharmin Ferdewsi Rakhi
- College of Science and Engineering, Flinders University, South Australia 5042, Australia.
- Institute for NanoScale Science and Technology, Flinders University, South Australia 5042, Australia
| | - Abdul Hakim Mohammad Mohsinul Reza
- College of Science and Engineering, Flinders University, South Australia 5042, Australia.
- Institute for NanoScale Science and Technology, Flinders University, South Australia 5042, Australia
| | - Brynley Davies
- College of Science and Engineering, Flinders University, South Australia 5042, Australia.
| | - Jianzhong Wang
- Institute for NanoScale Science and Technology, Flinders University, South Australia 5042, Australia
- College of Veterinary Medicine, Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Provincial Key Laboratory of Animal Microecology and Healthy Breeding, Engineering Research Center of Microecological Vaccines (Drugs) for Major Animal Diseases, Ministry of Education, Jilin Agricultural University, Changchun 130118, China
| | - Jianguang Qin
- College of Science and Engineering, Flinders University, South Australia 5042, Australia.
| | - Youhong Tang
- College of Science and Engineering, Flinders University, South Australia 5042, Australia.
- Institute for NanoScale Science and Technology, Flinders University, South Australia 5042, Australia
| |
Collapse
|
2
|
Maurya RS, Radhakrishnan TP. Molecular Structural Control of the Amorphous-Crystalline Balance in Solids: Structure-Phase Correlation in DADQs with Enhanced/Switchable Fluorescence. Chemistry 2025:e202404709. [PMID: 39817410 DOI: 10.1002/chem.202404709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2024] [Revised: 01/15/2025] [Accepted: 01/15/2025] [Indexed: 01/18/2025]
Abstract
The amorphous/crystalline (A/C) assembly in molecular solids has a direct bearing on their attributes and applications, including mechanical, pharmaceutical, electronic and photophysical. A systematic analysis of the molecular features and interactions that determine the predilection towards the A, C or bi-stable A-C states is critical. This fundamental problem is addressed through an exhaustive investigation of a large family of alkoxyalkyl diaminodicyanoquinodimethanes (ROR'-DADQs); enhancement of their fluorescence from the solution, to the A, to the C state serves as an excellent signature of the phase preference and temporal stability. Their thermal characteristics and single crystal structure investigations coupled with Hirshfeld surface analysis of the intermolecular interactions, not only confirm the spectroscopic observations, but also reveal the significant impact of the molecular structural features, key interactions like H-bonds, and molecular orientations in the lattice, on the phase stability. These explorations lead to a basic structure-phase correlation; its predictive power is demonstrated by identifying the borderline systems as functional phase change materials, and the subsequent verification through the reversible cycles of fluorescence switching between the A/C states. The factors promoting the A or C forms of molecular solids can guide the design of novel materials exploiting such supramolecular structures and their interconversions.
Collapse
Affiliation(s)
| | - T P Radhakrishnan
- School of Chemistry, University of Hyderabad, Hyderabad, 500 046, India
| |
Collapse
|
3
|
Singh S, Mandal K, Chakravarty M. Tetra-benzimidazoles flanking divinyl-phenothiazine: AIEgens as aza-Michael acceptors in concentration-tuned responses to biogenic amine vapors. Chem Commun (Camb) 2025; 61:728-731. [PMID: 39661073 DOI: 10.1039/d4cc05725b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2024]
Abstract
Tetra-benzimidazole rotors flanking a divinyl-phenothiazine stator are realized as red AIEgens and newly identified as efficient aza-Michael acceptors for the identification of biogenic amine vapors. Weakly red-emissive solids display a blue-shifted turn-on emission by rapid aza-Michael addition and simultaneous reverse Knoevenagel reactions. Concentration variation imposes better crystallinity and facilitates radiative decay, offering distinct emissions.
Collapse
Affiliation(s)
- Sameer Singh
- Department of Chemistry, Birla Institute of Technology and Sciences, Pilani-Hyderabad Campus, Jawahar Nagar, Shamirpet, Hyderabad - 500078, India.
| | - Kalyaneswar Mandal
- Tata Institute of Fundamental Research Hyderabad, 36/p Gopanpally, Hyderabad, Telangana - 500046, India.
| | - Manab Chakravarty
- Department of Chemistry, Birla Institute of Technology and Sciences, Pilani-Hyderabad Campus, Jawahar Nagar, Shamirpet, Hyderabad - 500078, India.
| |
Collapse
|
4
|
Wang Y, Pham TC, Huang J, Wu J, Dehaen W. Heteroaryl-Fused Triazapentalenes: Synthesis and Aggregation-Induced Emission. Molecules 2025; 30:156. [PMID: 39795212 PMCID: PMC11721409 DOI: 10.3390/molecules30010156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 11/30/2024] [Accepted: 12/30/2024] [Indexed: 01/13/2025] Open
Abstract
A pyridine-fused triazapentalene shows weak fluorescence in solution and is readily accessible via nitrene-mediated cyclization. In this study, a modified Cadogan reaction was used to synthesize HetATAP 1. Palladium-catalyzed reactions have been used as post-functionalization methods. Interestingly, modified Suzuki cross-couplings with various boronic acids resulted in poor to moderate yields of HetATAPs 2-5 which were arylated at the azole moiety. Direct CH arylation of HetATAP 1 gave the products with the same regiochemistry in satisfactory yields. The structures of HetATAPs 2-5 were confirmed using NMR analysis. In addition, the photophysical properties of HetATAPs 1-5 were studied under various conditions. Particularly, the emission of HetATAPs 2-5 is enhanced in the solid and aggregate state.
Collapse
Affiliation(s)
- Yingchun Wang
- Henan Key Laboratory of Water Pollution Control and Rehabilitation Technology, Henan University of Urban Construction, Pingdingshan 467036, China;
- Sustainable Chemistry for Metals and Molecules, Department of Chemistry, KU Leuven, Celestijnenlaan 200F, 3001 Leuven, Belgium (J.H.)
| | - Thanh Chung Pham
- Sustainable Chemistry for Metals and Molecules, Department of Chemistry, KU Leuven, Celestijnenlaan 200F, 3001 Leuven, Belgium (J.H.)
| | - Jianjun Huang
- Sustainable Chemistry for Metals and Molecules, Department of Chemistry, KU Leuven, Celestijnenlaan 200F, 3001 Leuven, Belgium (J.H.)
| | - Junfeng Wu
- Henan Key Laboratory of Water Pollution Control and Rehabilitation Technology, Henan University of Urban Construction, Pingdingshan 467036, China;
| | - Wim Dehaen
- Sustainable Chemistry for Metals and Molecules, Department of Chemistry, KU Leuven, Celestijnenlaan 200F, 3001 Leuven, Belgium (J.H.)
| |
Collapse
|
5
|
Zhao J, Zaheer M, You J, Owyong TC, Giel MC, Praveen P, Li W, Hou J, Hogan CF, Zhao E, Ding S, Hong Y. Functionalized α-Cyanostilbene Derivatives for Detection of Hypoxia or Proteostasis Imbalance in Live Cells. Chemistry 2024; 30:e202402630. [PMID: 39229809 DOI: 10.1002/chem.202402630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 09/04/2024] [Accepted: 09/04/2024] [Indexed: 09/05/2024]
Abstract
α-Cyanostilbene represents one of the easily functionalized aggregation-induced emission (AIE) scaffolds. It has been widely adopted for the construction of fluorescent materials for broad applications. Here, we further expanded the utilization of α-cyanostilbene derivatives for the detection of hypoxia or proteostasis imbalance in live cells. Four different amine containing donors were introduced to construct α-cyanostilbene derivatives (R-ASC) with donor-acceptor scaffolds. Equipped with the cysteine (Cys) reactive group, maleimide (MI), R-ASC-MI shows fluorescence turn-on property upon binding with unfolded proteins in vitro and in live cells under proteostatic stress. By virtue of R-ASC-MI, the level of unfolded protein loads in cells can be quantified by flow cytometry, or visualized under microscope. Furthermore, we also characterized the performance of R-ASC-NO2, synthetic precursors of R-ASC-MI, in cellular hypoxia. R-ASC-NO2 revealed upregulated activities of nitroreductase, as well as increased hydrophobicity in live cells, under either chemical (NaN3) induced or atmospheric (1 % O2) hypoxia. Together, the advantages of easy modification and high signal-to-noise ratio of new α-cyanostilbene derivatives reported in this work highlight the great potential of α-cyanostilbene in constructing functional biosensors and many other domains.
Collapse
Affiliation(s)
- Jiamin Zhao
- Department of Biochemistry and Chemistry, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC, Australia
| | - Maryam Zaheer
- Department of Biochemistry and Chemistry, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC, Australia
| | - Jiawei You
- Department of Urology, The First Affiliated Hospital of Soochow University, Suzhou, 215006, China
| | - Tze Cin Owyong
- Department of Biochemistry and Chemistry, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC, Australia
| | - Marie-Claire Giel
- Department of Biochemistry and Chemistry, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC, Australia
| | - Praveen Praveen
- Department of Biochemistry and Chemistry, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC, Australia
| | - Wenyi Li
- Department of Biochemistry and Chemistry, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC, Australia
| | - Jianquan Hou
- Department of Urology, The First Affiliated Hospital of Soochow University, Suzhou, 215006, China
| | - Conor F Hogan
- Department of Biochemistry and Chemistry, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC, Australia
| | - Engui Zhao
- School of Science, Harbin Institute of Technology, Shenzhen, Guangdong, 518055, China
| | - Siyang Ding
- Department of Biochemistry and Chemistry, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC, Australia
| | - Yuning Hong
- Department of Biochemistry and Chemistry, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC, Australia
| |
Collapse
|
6
|
Filipek P, Kałkus M, Szlapa-Kula A, Filapek M. Bithiophene-Based Donor-π-Acceptor Compounds Exhibiting Aggregation-Induced Emission as Agents to Detect Hidden Fingerprints and Electrochromic Materials. Molecules 2024; 29:5747. [PMID: 39683905 DOI: 10.3390/molecules29235747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 11/23/2024] [Accepted: 11/28/2024] [Indexed: 12/18/2024] Open
Abstract
A group of bithiophenyl compounds comprising the cyanoacrylate moiety were designed and successfully synthesized. The optical, (spectro)electrochemical, and aggregation-induced emission properties were studied. DFT calculations were used to explain the reaction's regioselectivity and to determine the molecules' energy parameters (i.e., band gaps, HOMO levels, and LUMO levels). The aggregation-induced emission of compounds has been studied in the mixture of DMF (as a good solvent) and water (as a poor solvent), with different water fractions ranging from 0% to 99%. It has been shown that there are differences in the physicochemical properties of the obtained compounds due to the length of the alkyl chain in the ester group. Investigated derivatives were tested for their potential use in visualizing latent fingerprints and electrochromic materials.
Collapse
Affiliation(s)
- Patrycja Filipek
- Institute of Chemistry, Faculty of Science and Technology, University of Silesia, Szkolna 9, 40-007 Katowice, Poland
| | - Magdalena Kałkus
- Institute of Chemistry, Faculty of Science and Technology, University of Silesia, Szkolna 9, 40-007 Katowice, Poland
| | - Agata Szlapa-Kula
- Institute of Chemistry, Faculty of Science and Technology, University of Silesia, Szkolna 9, 40-007 Katowice, Poland
| | - Michał Filapek
- Institute of Chemistry, Faculty of Science and Technology, University of Silesia, Szkolna 9, 40-007 Katowice, Poland
| |
Collapse
|
7
|
Hernández‐Rodríguez J, Daría AMS, Alquegui MS, González‐Sánchez L, Gómez S. Role of Dark States and Stokes Shift Simulations for Tetraphenylpyrazine Compared to Other Donor-Acceptor Photosensitizers. Chemphyschem 2024; 25:e202400563. [PMID: 39088312 PMCID: PMC11614373 DOI: 10.1002/cphc.202400563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 08/01/2024] [Accepted: 08/01/2024] [Indexed: 08/03/2024]
Abstract
An excellent agreement for simulated and measured absorption and emission spectra is found for four donor-acceptor aromatic molecules (tetraphenylpyrazine, tetraphenylethene, distirylanthracene and hexaphenylsilole) whose derivatives serve as solid state photosensitizers. After comparing several hybrid TDDFT functionals, EOM-CCSD, and experiments, the best agreement was found with TD-B3LYP and double zeta basis sets (6-31G** and def2-SVP) for one molecule in gas phase. A full characterisation of twelve to twenty electronic excited states was performed in every system. Symmetry-forbidden bands are found in the absorption spectra by sampling fifty to hundred geometries from a Wigner distribution. The density of states in the region 2-6 eV was also analysed, showing a very packed region of excited states and suggesting that dark electronic states may play a role in the dynamics of some of the photoexcited systems. Further calculations were done with QM/xTB at geometries extracted from previously published X-ray data to evaluate the influence of the environment on the excitations of the four aggregated molecular crystals.
Collapse
Affiliation(s)
| | | | | | | | - Sandra Gómez
- Departamento de Química FísicaUniversidad de Salamanca37008SalamancaSpain
| |
Collapse
|
8
|
Sekine K, Fuji K, Kawashima K, Mori T, Kuninobu Y. Gold-Catalyzed Synthesis of 5H-Benzo[b]indeno[2,1-d]silines by Insertion of Vinyl Carbocations into the Si-H Bond. Chemistry 2024; 30:e202403163. [PMID: 39289886 DOI: 10.1002/chem.202403163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 09/16/2024] [Accepted: 09/17/2024] [Indexed: 09/19/2024]
Abstract
We have developed a gold-catalyzed cascade reaction of aryldiynes bearing a hydrosilyl group to afford a variety of unexplored 5H-benzo[b]indeno[2,1-d]silines. The reaction system is applicable to the synthesis of bidirectionally π-extended silacycles from tetra(alkynyl)aryl compounds. Computational studies suggest that 5H-benzo[b]indeno[2,1-d]silines are formed via the insertion of a vinyl carbocation intermediate into the Si-H bond.
Collapse
Affiliation(s)
- Kohei Sekine
- Institute for Materials Chemistry and Engineering, Kyushu University, 6-1 Kasugakoen, Kasuga-shi, Fukuoka, 816-8580, Japan
- Interdisciplinary Graduate School of Engineering Sciences, Kyushu University, 6-1 Kasugakoen, Kasuga-shi, Fukuoka, 816-8580, Japan
| | - Kazuto Fuji
- Interdisciplinary Graduate School of Engineering Sciences, Kyushu University, 6-1 Kasugakoen, Kasuga-shi, Fukuoka, 816-8580, Japan
| | - Kyohei Kawashima
- Institute for Materials Chemistry and Engineering, Kyushu University, 6-1 Kasugakoen, Kasuga-shi, Fukuoka, 816-8580, Japan
| | - Toshifumi Mori
- Institute for Materials Chemistry and Engineering, Kyushu University, 6-1 Kasugakoen, Kasuga-shi, Fukuoka, 816-8580, Japan
- Interdisciplinary Graduate School of Engineering Sciences, Kyushu University, 6-1 Kasugakoen, Kasuga-shi, Fukuoka, 816-8580, Japan
| | - Yoichiro Kuninobu
- Institute for Materials Chemistry and Engineering, Kyushu University, 6-1 Kasugakoen, Kasuga-shi, Fukuoka, 816-8580, Japan
- Interdisciplinary Graduate School of Engineering Sciences, Kyushu University, 6-1 Kasugakoen, Kasuga-shi, Fukuoka, 816-8580, Japan
| |
Collapse
|
9
|
Gawade VK, Jadhav RW, Bhosale SV. AIE-Based & Organic Luminescent Materials: Nanoarchitectonics and Advanced Applications. Chem Asian J 2024; 19:e202400682. [PMID: 39136399 DOI: 10.1002/asia.202400682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 07/31/2024] [Indexed: 10/18/2024]
Abstract
Organic luminescence materials makes the molecule more enthusiastic in wide variety of applications. The luminescent organic materials are in a attraction of the researchers, and the Aggregation-Induced Emission (AIE) is attributed to the occurrence that particular chromophores (typically fluorophores) display very low or nearly no emission in the monomolecular soluble state but become highly emissive when forming aggregates in solution or in solid state. This phenomenon is relatively abnormal when compared with many other traditional fluorophores. AIE research suppresses aggregation-caused quenching (ACQ). Nevertheless, the carbon dots (CDs) and quantum dots have shown to have tyical florescence properties, therefore, recent years many researchers have also attracted for their developments. The CDs, luminescent, and AIE materials are not only used in biomedical applications and organic light-emitting diodes but also in sensing, self-assembly, and other areas. One should introduce promising material to a designed framework that exhibits AIE characteristics to ensure moral results in AIE. Amongest, AIE-active tetraphenylethylene (TPE) is attractive fluorophores due to its easy synthesis strategy. This review article discusses the synthesis properties of TPE, CDs, and luminescent materials with a broad range of applications. We have outlined linear, branched-shaped supramolecular, and hybrid macromolecules due to its potential in the future.
Collapse
Affiliation(s)
- Vilas K Gawade
- Department of Chemistry, School of Chemical Sciences, Central University of Karnataka, Karnataka, Kalaburgi, 585367, India
| | - Ratan W Jadhav
- Department of Chemical Sciences, IISER Kolkata, Kolkata, 741246, India
| | - Sheshanath V Bhosale
- Department of Chemistry, School of Chemical Sciences, Central University of Karnataka, Karnataka, Kalaburgi, 585367, India
| |
Collapse
|
10
|
Xie J, Lei J, Zhang L, Liang J, Mei S, Chen L, Wang X, Liu W, Wang Y, Hu B. AIEgen-functionalized metal-organic gel as a bifunctional platform for efficient adsorption and portable sensing of gaseous iodine. Chem Commun (Camb) 2024; 60:12409-12412. [PMID: 39373597 DOI: 10.1039/d4cc04040f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/08/2024]
Abstract
Herein, we proposed a novel metal-organic gel (YTU-G-1) for efficient adsorption and portable sensing of gaseous iodine. YTU-G-1 exhibits an unprecedentedly high detection sensitivity (KSV = 2.21 × 106 L mol-1) and an extremely low limit of detection (LOD) down to the pmol level (481 pmol L-1). YTU-G-1 also shows a marked iodine adsorption capacity of 1.398 g g-1. A wearable membrane was successfully fabricated via the electrospinning technique, which exhibits excellent skin-compatibility and serves as a portable tool for sensitive response to potential on-site nuclear emergencies.
Collapse
Affiliation(s)
- Jian Xie
- School of Life and Environmental Sciences, Shaoxing University, Shaoxing 312000, China.
| | - Ji Lei
- School of Life and Environmental Sciences, Shaoxing University, Shaoxing 312000, China.
| | - Lilin Zhang
- School of Environmental and Material Engineering, Yantai University, Yantai 264005, China
| | - Jinpeng Liang
- School of Life and Environmental Sciences, Shaoxing University, Shaoxing 312000, China.
| | - Sen Mei
- State Key Laboratory of Radiation Medicine and Protection, School of Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China
| | - Lixi Chen
- State Key Laboratory of Radiation Medicine and Protection, School of Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China
| | - Xia Wang
- School of Environmental and Material Engineering, Yantai University, Yantai 264005, China
| | - Wei Liu
- School of Environmental and Material Engineering, Yantai University, Yantai 264005, China
| | - Yanlong Wang
- State Key Laboratory of Radiation Medicine and Protection, School of Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China
| | - Baowei Hu
- School of Life and Environmental Sciences, Shaoxing University, Shaoxing 312000, China.
| |
Collapse
|
11
|
Maiti A, Manna SK, Halder S, Ganguly R, Karak A, Ghosh P, Jana K, Mahapatra AK. Near-Infrared Fluorescent Turn-On Probe for Selective Detection of Hypochlorite in Aqueous Medium and Live Cell Imaging. Chem Res Toxicol 2024; 37:1682-1690. [PMID: 39287930 DOI: 10.1021/acs.chemrestox.4c00222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/19/2024]
Abstract
Hypochlorite, as an important reactive oxygen species (ROS), plays a vital role in many physiological and pathological processes, but an excess concentration of hypochlorite (ClO-) may become toxic to humans and cause disease. Hence, the selective and rapid detection of hypochlorite (ClO-) is necessary for human safety. Here, we report a novel near-infrared (NIR) fluorescence "turn-on" and highly selective benzophenoxazinium chloride-based fluorescent probe, BPH (benzophenoxazinium dihydroxy benzaldehyde), for hypochlorite detection. Due to hypochlorite-induced vicinal diol oxidation to the corresponding ortho benzoquinone derivative, the photoinduced electron transfer (PET) process, which was operating from vicinal diol to the benzophenoxazinium chloride receptor moiety, was suddenly inhibited, as a result of which strong NIR fluorescence "turn-on" emission was observed. The detection limit of BPH was found to be 2.39 × 10-10 M, or 0.23 nM. BPH was successfully applied for exogenous and endogenous hypochlorite detection in live MDA-MB 231 cells.
Collapse
Affiliation(s)
- Anwesha Maiti
- Molecular Sensor and Supramolecular Chemistry Laboratory, Department of Chemistry, Indian Institute of Engineering Science and Technology, Howrah, Shibpur, West Bengal 711103, India
| | - Saikat Kumar Manna
- Department of Chemistry, Haldia Government College, Haldia, Purba Medinipur, Debhog, West Bengal 721657, India
| | - Satyajit Halder
- Division of Molecular Medicine, Bose Institute, P 1/12, CIT Scheme VIIM, Kolkata 700054, India
| | - Rajdeep Ganguly
- Centre for Healthcare Science and Technology, Indian Institute of Engineering Science and Technology, Shibpur 711103, India
| | - Anirban Karak
- Molecular Sensor and Supramolecular Chemistry Laboratory, Department of Chemistry, Indian Institute of Engineering Science and Technology, Howrah, Shibpur, West Bengal 711103, India
| | - Pintu Ghosh
- Molecular Sensor and Supramolecular Chemistry Laboratory, Department of Chemistry, Indian Institute of Engineering Science and Technology, Howrah, Shibpur, West Bengal 711103, India
| | - Kuladip Jana
- Division of Molecular Medicine, Bose Institute, P 1/12, CIT Scheme VIIM, Kolkata 700054, India
| | - Ajit Kumar Mahapatra
- Molecular Sensor and Supramolecular Chemistry Laboratory, Department of Chemistry, Indian Institute of Engineering Science and Technology, Howrah, Shibpur, West Bengal 711103, India
| |
Collapse
|
12
|
Fu B, Wang L, Chen K, Yuan X, Yin J, Wang S, Shi D, Zhu B, Guan W, Zhang Q, Xiong T. Enantioselective Copper-Catalyzed Sequential Hydrosilylation of Arylmethylenecyclopropanes. Angew Chem Int Ed Engl 2024; 63:e202407391. [PMID: 39023320 DOI: 10.1002/anie.202407391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 07/13/2024] [Accepted: 07/17/2024] [Indexed: 07/20/2024]
Abstract
Despite impressive advances in the construction of enantioenriched silacarbocycles featuring silicon-stereogenic centers via a selection of well-defined sila-synthons, the development of a more convenient and economic method with readily available starting materials is significantly less explored and remains a considerable challenge. Herein, we report the first example of copper-catalyzed sequential hydrosilylation of readily accessible methylenecyclopropanes (MCPs) and primary silanes, affording an efficient and convenient route to a wide range of chiral silacyclopentanes bearing consecutive silicon- and carbon-stereogenic centers with excellent enantio- and diastereoselectivities (generally ≥98 % ee, >25 : 1 dr). Mechanistic studies reveal that these reactions combine copper-catalyzed intermolecular ring-opening hydrosilylation of aryl MCPs and intramolecular asymmetric hydrosilylation of the resultant Z/E mixture of homoallylic silanes.
Collapse
Affiliation(s)
- Bin Fu
- Jilin Province Key Laboratory of Organic Functional Molecular Design & Synthesis, Department of Chemistry, Northeast Normal University, Changchun, 130024, China
- School of Chemistry and Environmental Engineering, Changchun University of Science and Technology, Changchun, 130024, China
| | - Lianghua Wang
- Jilin Province Key Laboratory of Organic Functional Molecular Design & Synthesis, Department of Chemistry, Northeast Normal University, Changchun, 130024, China
| | - Kexin Chen
- Institute of Functional Material Chemistry, Department of Chemistry, Northeast Normal University, Changchun, 130024, China
| | - Xiuping Yuan
- Jilin Province Key Laboratory of Organic Functional Molecular Design & Synthesis, Department of Chemistry, Northeast Normal University, Changchun, 130024, China
| | - Jianjun Yin
- Jilin Province Key Laboratory of Organic Functional Molecular Design & Synthesis, Department of Chemistry, Northeast Normal University, Changchun, 130024, China
| | - Simin Wang
- Jilin Province Key Laboratory of Organic Functional Molecular Design & Synthesis, Department of Chemistry, Northeast Normal University, Changchun, 130024, China
| | - Dazhen Shi
- Jilin Province Key Laboratory of Organic Functional Molecular Design & Synthesis, Department of Chemistry, Northeast Normal University, Changchun, 130024, China
| | - Bo Zhu
- Institute of Functional Material Chemistry, Department of Chemistry, Northeast Normal University, Changchun, 130024, China
| | - Wei Guan
- Institute of Functional Material Chemistry, Department of Chemistry, Northeast Normal University, Changchun, 130024, China
| | - Qian Zhang
- Jilin Province Key Laboratory of Organic Functional Molecular Design & Synthesis, Department of Chemistry, Northeast Normal University, Changchun, 130024, China
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, 200032, China
| | - Tao Xiong
- Jilin Province Key Laboratory of Organic Functional Molecular Design & Synthesis, Department of Chemistry, Northeast Normal University, Changchun, 130024, China
| |
Collapse
|
13
|
Balszuweit J, Stahl P, Cappellari V, Lorberg RY, Wölper C, Niemeyer FC, Koch J, Prymak O, Knauer SK, Strassert CA, Voskuhl J. Merging of a Supramolecular Ligand with a Switchable Luminophore - Light-Responsiveness, Photophysics and Bioimaging. Chemistry 2024; 30:e202402578. [PMID: 39054904 DOI: 10.1002/chem.202402578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 07/25/2024] [Accepted: 07/26/2024] [Indexed: 07/27/2024]
Abstract
In this contribution we report on a novel approach towards luminescent light-responsive ligands. To this end, cyanostilbene- guanidiniocarbonyl-pyrrole hybrids were designed and investigated. Merging of a luminophore with a supramolecular bioactive ligand bears numerous advantages by overcoming the typical drawbacks of drug-labelling, influencing the overall performance of the active species by attachment of a large luminophore. Here we were able to establish a simple and easily accessible synthesis route to different cyanostyryl-guanidininiocarbonyl-pyrrole (CGCP) derivatives. These compounds were investigated regarding their light-responsive double bond isomerisation, their molecular structures in single crystals by means of X-ray diffractometry, their emission properties by state of the art photophysical characterisation as well as bioimaging and assessment of cell toxicity.
Collapse
Affiliation(s)
- Jan Balszuweit
- Faculty of Chemistry (Organic Chemistry), Center of Medical Biotechnology (ZMB) and Center for Nanointegration Duisburg-Essen (CENIDE), University of Duisburg-Essen, Universitätsstr. 7, 45117, Essen, Germany
| | - Paul Stahl
- Department of Molecular Biology II, Center of Medical Biotechnology (ZMB), University of Duisburg Essen, Universitätsstr. 2, 45141, Essen, Germany
| | - Victoria Cappellari
- Institut für Anorganische und Analytische Chemie, CeNTech, CiMIC, SoN, Universität Münster, Heisenbergstr. 11, 48149, Münster, Germany
| | - Rick Y Lorberg
- Faculty of Chemistry (Organic Chemistry), Center of Medical Biotechnology (ZMB) and Center for Nanointegration Duisburg-Essen (CENIDE), University of Duisburg-Essen, Universitätsstr. 7, 45117, Essen, Germany
| | - Christoph Wölper
- Institute for Inorganic Chemistry and Center for NanoIntegration (CENIDE), University of Duisburg-Essen, Universitätsstr. 5-7, 45117, Essen, Germany
| | - Felix C Niemeyer
- Faculty of Chemistry (Organic Chemistry), Center of Medical Biotechnology (ZMB) and Center for Nanointegration Duisburg-Essen (CENIDE), University of Duisburg-Essen, Universitätsstr. 7, 45117, Essen, Germany
| | - Johannes Koch
- Center of Medical Biotechnology (ZMB), University of Duisburg Essen, Universitätsstr. 2, 45141, Essen, Germany
| | - Oleg Prymak
- Institute for Inorganic Chemistry and Center for NanoIntegration (CENIDE), University of Duisburg-Essen, Universitätsstr. 5-7, 45117, Essen, Germany
| | - Shirley K Knauer
- Department of Molecular Biology II, Center of Medical Biotechnology (ZMB), University of Duisburg Essen, Universitätsstr. 2, 45141, Essen, Germany
| | - Cristian A Strassert
- Institut für Anorganische und Analytische Chemie, CeNTech, CiMIC, SoN, Universität Münster, Heisenbergstr. 11, 48149, Münster, Germany
| | - Jens Voskuhl
- Faculty of Chemistry (Organic Chemistry), Center of Medical Biotechnology (ZMB) and Center for Nanointegration Duisburg-Essen (CENIDE), University of Duisburg-Essen, Universitätsstr. 7, 45117, Essen, Germany
| |
Collapse
|
14
|
Guo S, Wang W, Zhang Y. Radical-Chain Hydrosilylation of Alkenes Enabled by Triplet Energy Transfer. Chemistry 2024; 30:e202402051. [PMID: 38978189 DOI: 10.1002/chem.202402051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Revised: 07/03/2024] [Accepted: 07/08/2024] [Indexed: 07/10/2024]
Abstract
Development of mild, robust and metal-free catalytic approach for the hydrosilylation of alkenes is critical to the advancement of modern organosilicon chemistry given their powerful capacity in the construction of various C-Si bonds. Herein, we wish to disclose a visible light-triggered organophotocatalytic strategy, which proceeds via a triplet energy transfer (EnT)-enabled radical chain pathway. Notably, this redox-neutral protocol is capable of accommodating a broad spectrum of electron-deficient and -rich alkenes with excellent functional group compatibility. Electron-deficient alkenes are more reactive and the reaction could be finished within a couple of minutes even in PBS solution with extremely low concentration, which suggests its click-like potential in organic synthesis. The preparative power of the transformations has been further highlighted in a number of complex settings, including the late-stage functionalization and scale-up experiments. Furthermore, although only highly reactive (TMS)3SiH is suitable hydrosilane substrate, our studies revealed the great reactivity and versatility of (TMS)3Si- group in diverse C-Si and Si-Si bond cleavage-based transformations, enabling the rapid introduction of diverse functional groups and the facile construction of valuable quaternary silicon architectures.
Collapse
Affiliation(s)
- Shixun Guo
- Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, Shanghai Key Laboratory of New Drug Design, and School of Pharmacy, East China University of Science and Technology, Shanghai, 200237, P. R. China
| | - Wei Wang
- Department of Pharmacology and Toxicology and BIO5 Institute, University of Arizona, Tucson, AZ, 85721-0207, USA
| | - Yongqiang Zhang
- Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, Shanghai Key Laboratory of New Drug Design, and School of Pharmacy, East China University of Science and Technology, Shanghai, 200237, P. R. China
| |
Collapse
|
15
|
Tatsi E, Nitti A, Pasini D, Griffini G. Aggregation-induced emissive nanoarchitectures for luminescent solar concentrators. NANOSCALE 2024; 16:15502-15514. [PMID: 39073376 DOI: 10.1039/d4nr01910e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/30/2024]
Abstract
Aggregation-induced emission (AIE), the phenomenon by which selected luminophores undergo the enhancement of emission intensity upon aggregation, has demonstrated potential in materials and biomaterials science, and in particular in those branches for which spectral management in the solid state is of fundamental importance. Its development in the area of luminescent spectral conversion devices like luminescent solar concentrators (LSCs) is instead still in its infancy. This account aims at summarizing relevant contributions made in this field so far, with a special emphasis on the design of molecular and macromolecular architectures capable of extending their spectral breadth to the deep-red (DR) and the near-infrared (NIR) wavelengths. Because of the many prospective advantages characterizing these spectral regions in terms of photon flux density and human-eye perception, it is anticipated that further development in the design, synthesis and engineering of advanced molecular and macromolecular DR/NIR-active AIE luminophores will enable faster and easier integration of LSCs into the built environment as highly transparent, active elements for unobtrusive light-to-electricity conversion.
Collapse
Affiliation(s)
- Elisavet Tatsi
- Department of Chemistry, Materials and Chemical Engineering "Giulio Natta", Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133 Milano, Italy.
| | - Andrea Nitti
- Department of Chemistry and INSTM Research Unit, University of Pavia, Viale Taramelli 10, Pavia 27100, Italy.
| | - Dario Pasini
- Department of Chemistry and INSTM Research Unit, University of Pavia, Viale Taramelli 10, Pavia 27100, Italy.
| | - Gianmarco Griffini
- Department of Chemistry, Materials and Chemical Engineering "Giulio Natta", Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133 Milano, Italy.
| |
Collapse
|
16
|
Hu T, Zhang Y, Wang W, Li Q, Huang L, Gao J, Kuang Y, Zhao C, Zhou S, Gao L, Su Z, Song Z. Lewis Base-Catalyzed Dynamic Kinetic Asymmetric Transformation of Racemic Chlorosilanes en Route to Si-Stereogenic Silylethers. J Am Chem Soc 2024; 146:23092-23102. [PMID: 39108025 DOI: 10.1021/jacs.4c04390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/22/2024]
Abstract
Enantiopure Si-stereogenic organosilanes are highly valued in the fields of organic synthesis, development of advanced materials, and drug discovery. However, they are not naturally occurring, and their synthesis has been largely confined to resolution of racemic silanes or desymmetrization of symmetric silanes. In contrast, the dynamic kinetic asymmetric transformation (DYKAT) of racemic organosilanes offers a mechanistically distinct approach and would broaden the accessibility of Si-stereogenic silanes in an enantioconvergent manner. In this study, we report a Lewis base-catalyzed DYKAT of racemic chlorosilanes. The chiral isothiourea catalyst, (S)-benzotetramisole, facilitates silyletherification with phenols, yielding (R)-silylethers in good yields with high enantioselectivity (27 examples, up to 86% yield, up to 98:2 er). Kinetic analysis, control experiments, and DFT calculations suggest that a two-catalyst-bound pentacoordinate silicate is responsible for the Si-configurational epimerization of the ion-paired tetracoordinated silicon intermediates.
Collapse
Affiliation(s)
- Tianbao Hu
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Yan Zhang
- Key Laboratory of Green Chemistry and Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, China
| | - Wanshu Wang
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
- Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education, Hangzhou Normal University, Hangzhou 311121, China
| | - Qin Li
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Liying Huang
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Jiahui Gao
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Yuzhong Kuang
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Chen Zhao
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Song Zhou
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Lu Gao
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Zhishan Su
- Key Laboratory of Green Chemistry and Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, China
| | - Zhenlei Song
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| |
Collapse
|
17
|
Asthana S, Mouli MSSV, Tamrakar A, Wani MA, Mishra AK, Pandey R, Pandey MD. Recent advances in AIEgen-based chemosensors for small molecule detection, with a focus on ion sensing. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2024; 16:4431-4484. [PMID: 38913433 DOI: 10.1039/d4ay00618f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/26/2024]
Abstract
Since the aggregation-based emission (AIE) phenomenon emerged in 2001, numerous chemical designs have been built around the AIE concept, displaying its utility for diverse applications, including optics, electronics, energy, and biosciences. The present review critically evaluates the broad applicability of AIEgen-based chemical models towards sensing small analytes and the structural design strategies adjusting the mode of action reported since the last decade. Various AIEgen models have been discussed, providing qualitative and quantitative estimation of cationic metal ions and anionic species, as well as biomolecular, cellular, and organelle-specific probes. A systematic overview of the reported structural design and the underlying working mode will pave the way for designing and developing the next generation of AIEgens for specific applications.
Collapse
Affiliation(s)
- Surabhi Asthana
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi, 221005, India.
| | - M S S Vinod Mouli
- Department of Chemistry, Indian Institute of Technology Hyderabad, Sangareddy-502285, India.
| | - Arpna Tamrakar
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi, 221005, India.
| | - Manzoor Ahmad Wani
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi, 221005, India.
| | - Ashutosh Kumar Mishra
- Department of Chemistry, Indian Institute of Technology Hyderabad, Sangareddy-502285, India.
| | - Rampal Pandey
- Department of Chemistry, Maulana Azad National Institute of Technology, Bhopal-462007, India.
| | - Mrituanjay D Pandey
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi, 221005, India.
| |
Collapse
|
18
|
Oyama H, Nishimura Y. Substituent effects of halogens on the excited-state intermolecular proton transfer reactions. Photochem Photobiol Sci 2024; 23:1341-1352. [PMID: 38850493 DOI: 10.1007/s43630-024-00598-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Accepted: 05/27/2024] [Indexed: 06/10/2024]
Abstract
Fluorescent aromatic urea compounds undergo excited-state intermolecular proton transfer (ESPT) in the presence of acetate anions to produce an excited state of the tautomer (T*) from the excited state of the complex (N*), resulting in dual fluorescence. Herein, we performed spectroscopic measurements of anthracen-1-yl-3-phenylurea derivatives with substituents, -CF3, -F, or -Cl, at the p-position of the phenyl group in the presence of acetate to investigate the substituent effects on the ESPT reaction and the deactivation processes of N* and T*. Kinetic analysis showed that the reverse ESPT rate constant (k-PT) depended on the respective substituents, suggesting that each substituent may influence the reverse ESPT process differently. In particular, since the electron-withdrawing properties of -F are estimated by the - I and + Iπ effects, it is plausible that -F has a slight electron-donating property and influences the reverse process from T* to N* in the excited state. This study shows that it is possible to control emission by selecting specific substituents in the ESPT system.
Collapse
Affiliation(s)
- Hiroki Oyama
- Graduate School of Pure and Applied Sciences, University of Tsukuba, 1-1-1 Tennoudai, Tsukuba, Ibaraki, 305-8571, Japan
| | - Yoshinobu Nishimura
- Graduate School of Pure and Applied Sciences, University of Tsukuba, 1-1-1 Tennoudai, Tsukuba, Ibaraki, 305-8571, Japan.
| |
Collapse
|
19
|
Liu C, Schmidtmann M, Müller T. A Bis(silylene)silole - synthesis, properties and reactivity. Dalton Trans 2024; 53:10446-10452. [PMID: 38855883 DOI: 10.1039/d4dt01112k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/11/2024]
Abstract
A 1,1-bis(silylene)silole has been synthesised by a double salt-metathesis reaction from potassium silacyclopentadienediide, K2[1], and an amidinato-stabilized silylene chloride in a 1 : 2 ratio. The red colour of the title compound is due to the lp(Si)/π*(silole) transition. This band is bathochromically shifted compared to that of other 1,1-bissilylsiloles suggesting enhanced conjugation between the silole π-system and the newly formed Si(II)-Si(IV)-Si(II) group. The bissilylene is easily oxidised by the elemental chalcogens S, Se, and Te and forms a bissilaimide by reaction with an arylazide.
Collapse
Affiliation(s)
- Chenghuan Liu
- Institut für Chemie, Carl Ossietzky Universität Oldenburg, Carl von Ossietzky-Str. 9-11, 26129 Oldenburg, Federal Republic of Germany, European Union.
| | - Marc Schmidtmann
- Institut für Chemie, Carl Ossietzky Universität Oldenburg, Carl von Ossietzky-Str. 9-11, 26129 Oldenburg, Federal Republic of Germany, European Union.
| | - Thomas Müller
- Institut für Chemie, Carl Ossietzky Universität Oldenburg, Carl von Ossietzky-Str. 9-11, 26129 Oldenburg, Federal Republic of Germany, European Union.
| |
Collapse
|
20
|
Gisbert Y, Simón Marqués P, Baccini C, Abid S, Saffon-Merceron N, Rapenne G, Kammerer C. Copper-catalysed perarylation of cyclopentadiene: synthesis of hexaarylcyclopentadienes. Chem Sci 2024; 15:9127-9137. [PMID: 38903211 PMCID: PMC11186316 DOI: 10.1039/d4sc02458c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Accepted: 05/14/2024] [Indexed: 06/22/2024] Open
Abstract
While hexaphenylsilacyclopentadiene (hexaphenylsilole) is viewed as an archetypal Aggregation-Induced Emission (AIE) luminogen, its isostructural hydrocarbon surrogate hexaphenylcyclopentadiene has strikingly never been investigated in this context, most probably due to a lack of synthetic availability. Herein, we report a straightforward synthesis of hexaphenylcyclopentadiene, via the direct perarylation of cyclopentadiene upon copper(i) catalysis under microwave activation, with the formation of six new C-C bonds in a single synthetic operation. Using zirconocene dichloride as a convenient source of cyclopentadiene and a variety of aryl iodides as coupling partners, this copper-catalysed cross-coupling reaction gave rise to a series of unprecedented hexaarylcyclopentadienes. The latter are direct precursors of extended π-conjugated polycyclic compounds, and their cyclodehydrogenation under Scholl reaction conditions yielded helicenic 17,17-diarylcyclopenta[l,l']diphenanthrenes. These structurally complex polyannelated fluorene derivatives can now be prepared in only two synthetic steps from cyclopentadiene.
Collapse
Affiliation(s)
- Yohan Gisbert
- CEMES, Université de Toulouse, CNRS 29 Rue Marvig 31055 Toulouse France
| | | | - Caterina Baccini
- CEMES, Université de Toulouse, CNRS 29 Rue Marvig 31055 Toulouse France
| | - Seifallah Abid
- CEMES, Université de Toulouse, CNRS 29 Rue Marvig 31055 Toulouse France
| | - Nathalie Saffon-Merceron
- Université de Toulouse, UPS, Institut de Chimie de Toulouse ICT UAR 2599, 118 Route de Narbonne 31062 Toulouse France
| | - Gwénaël Rapenne
- CEMES, Université de Toulouse, CNRS 29 Rue Marvig 31055 Toulouse France
- Division of Materials Science, Nara Institute of Science and Technology 8916-5 Takayama, Ikoma Nara Japan
| | - Claire Kammerer
- CEMES, Université de Toulouse, CNRS 29 Rue Marvig 31055 Toulouse France
| |
Collapse
|
21
|
Lin YP, Gao Y, Wu Y, Yang XD. Uncovering the Aggregation-Induced Emission Mechanisms of Phenoxazine and Phenothiazine Groups. ACS OMEGA 2024; 9:26112-26120. [PMID: 38911748 PMCID: PMC11191091 DOI: 10.1021/acsomega.4c01565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Revised: 05/12/2024] [Accepted: 05/27/2024] [Indexed: 06/25/2024]
Abstract
Molecules with both aggregation-induced emission (AIE) and thermally activated delayed fluorescence (TADF) properties are potential organic light-emitting diode materials; however, the AIE and TADF mechanisms are still debatable. In this work, four molecules incorporating carbazole (Cz), phenoxazine (PXZ), and phenothiazine (PTZ) as donor groups to the diphenylsulfone acceptor were investigated. The experiment results indicate that a molecule containing Cz exhibits solely TADF properties, whereas molecules containing PXZ and PTZ demonstrate both TADF and AIE characteristics. As for DPS-PTZ, the result indicates that the thin-film environment restricts molecular twisting, consequently reducing nonradiative decay, thereby attributing to the AIE property by density functional theory and molecular dynamics simulation. As for DPS-PXZ, the result suggests that the restricted access to a conical intersection in a singlet excited via an expansion in the C-S-C angle is the pivotal factor for the AIE characteristic. The C-S-C angle twist of DPS-PXZ is impeded in the aggregate state and resulted in luminescence. Understanding the mechanisms serves as a valuable guide for the development of new AIE systems, enabling their application in various practical domains.
Collapse
Affiliation(s)
- Yan-Ping Lin
- Key
Laboratory of Bionic Engineering (Ministry of Education), Jilin University, Changchun 130022, P. R. China
- Jilin
Provincial Key Laboratory of Straw−Based Functional Materials,
Institute for Interdisciplinary Biomass Functional Materials Studies, Jilin Engineering Normal University, Changchun 130052, China
| | - Ying Gao
- Jilin
Provincial Key Laboratory of Straw−Based Functional Materials,
Institute for Interdisciplinary Biomass Functional Materials Studies, Jilin Engineering Normal University, Changchun 130052, China
| | - Yong Wu
- Faculty
of Chemistry, Northeast Normal University, Changchun ,Jilin130024, China
| | - Xiao-Dong Yang
- Jilin
Provincial Key Laboratory of Straw−Based Functional Materials,
Institute for Interdisciplinary Biomass Functional Materials Studies, Jilin Engineering Normal University, Changchun 130052, China
| |
Collapse
|
22
|
Dai W, Yang X, Lv K, Li L, Peng Y, Ma H, An Z. Modulating Heavy Atom Effect in Germylene for Persistent Room Temperature Phosphorescence. Chemistry 2024:e202401882. [PMID: 38820203 DOI: 10.1002/chem.202401882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 05/30/2024] [Accepted: 05/31/2024] [Indexed: 06/02/2024]
Abstract
It is worth but still challenging to develop the low-valent main group compounds with persistent room temperature phosphorescence (pRTP). Herein, we presented germylene-based persistent phosphors by introduction of low-valent Ge center into chromophore. A novel phosphors CzGe and its series of derivatives, namely CzGeS, CzGeSe, CzGeAu, and CzGeCu, were synthesized. Experiments and theoretical calculations reveal that the pRTP behavior were "turn on" due to the heavy atom effect of germylene. More importantly, the low-valent of oxidation state and structural traits propelled GeCz had a balance between the intersystem crossing and the shortening of lifetime caused by the heavy atoms, resulting the ultralong lifetime of 309 ms and phosphorescent quantum efficiency of 15.84 %, which is remarkable among heavy main group phosphors. This research provides valuable insights to the design of heavy atoms in phosphors and expand the applications of germylene chemistry.
Collapse
Affiliation(s)
- Wen Dai
- State Key Laboratory of Physical Chemistry of Solid Surface, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian, 361005, China
| | - Xiaoang Yang
- State Key Laboratory of Physical Chemistry of Solid Surface, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian, 361005, China
| | - Kaiqi Lv
- Key Laboratory of Flexible Electronics and Institute of Advanced Materials, Nanjing Tech University, Nanjing, 211800, China
| | - Lei Li
- State Key Laboratory of Physical Chemistry of Solid Surface, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian, 361005, China
| | - Yanbo Peng
- State Key Laboratory of Physical Chemistry of Solid Surface, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian, 361005, China
| | - Huili Ma
- Key Laboratory of Flexible Electronics and Institute of Advanced Materials, Nanjing Tech University, Nanjing, 211800, China
| | - Zhongfu An
- Key Laboratory of Flexible Electronics and Institute of Advanced Materials, Nanjing Tech University, Nanjing, 211800, China
| |
Collapse
|
23
|
Vyas S, Barot YB, Mishra R. Novel Anthracene and Carbazole Based Aggregation Induced Enhanced Emission Active Schiff Base as a Selective Sensor for Cu 2+ ions. J Fluoresc 2024:10.1007/s10895-024-03713-w. [PMID: 38656644 DOI: 10.1007/s10895-024-03713-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Accepted: 04/08/2024] [Indexed: 04/26/2024]
Abstract
In present work our group has synthesized two novel Schiff-bases, Di-Carbazole based Schiff-base (DB-1) and Di-Anthracene based Schiff-base (DB-2) using condensation reaction and characterized thorough different spectroscopic techniques such as mass spectrometry, IR spectroscopy, 1H and 13C NMR spectroscopy. Furthermore, the AIE(Aggregation induced emission) studies were done using water-THF mixture. As compared to pure THF, the DB-2 showed a 17.8-fold increase in fluorescence intensity with a bathochromic shift of 64 nm in 80% water: THF mixture. For DB-1increase was seen at 70% water-THF combination. The analysis of the dynamic light scattering (DLS) further supported this excellent AIEE (Aggregation induced enhanced emission) characteristic. Furthermore, the spectrofluorometric techniques were used to examine the capacity of both Schiff bases to detect the heavy metals. It was discovered that only DB-1, with a detection limit of 2.4 × 10-8 M, was selective for the Cu2+ ion, whereas DB-2 had no sensing capability for metal ions. The Job's plot was used to determine the stoichiometry ratio of the DB-1 with Cu2+ to further examine the process. It was discovered that the ratio was 1:1 (DB-1:Cu2+). Additionally, the association constant of DB-1 for Cu2+ was 5.1 × 1011 M-1, demonstrating the excellent binding affinity of DB-1 for the Cu2+ ion.
Collapse
Affiliation(s)
- Saurabh Vyas
- Department of Biotechnology and Bioengineering, Institute of Advanced Research, Gandhinagar, 382426, Gujarat, India
| | - Yash B Barot
- Department of Biotechnology and Bioengineering, Institute of Advanced Research, Gandhinagar, 382426, Gujarat, India
| | - Roli Mishra
- Department of Biotechnology and Bioengineering, Institute of Advanced Research, Gandhinagar, 382426, Gujarat, India.
| |
Collapse
|
24
|
Sun K, Kurki L, Silveira OJ, Nishiuchi T, Kubo T, Foster AS, Kawai S. On-Surface Synthesis of Silole and Disila-Cyclooctene Derivatives. Angew Chem Int Ed Engl 2024; 63:e202401027. [PMID: 38415373 DOI: 10.1002/anie.202401027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 02/13/2024] [Accepted: 02/27/2024] [Indexed: 02/29/2024]
Abstract
The incorporation of Si atoms into organic compounds significantly increases a variety of functionality, facilitating further applications. Recently, on-surface synthesis was introduced into organosilicon chemistry as 1,4-disilabenzene bridged nanostructures were obtained via coupling between silicon atoms and brominated phenyl groups at the ortho position on Au(111). Here, we demonstrate a high generality of this strategy via syntheses of silole derivatives and nanoribbon structures with eight-membered sila-cyclic rings from dibrominated molecules at the bay and peri positions on Au(111), respectively. Their structures and electronic properties were investigated by a combination of scanning tunneling microscopy/spectroscopy and density functional theory calculations. This work demonstrates a great potential to deal with heavy group 14 elements in on-surface silicon chemistry.
Collapse
Affiliation(s)
- Kewei Sun
- International Center for Young Scientists, National Institute for Materials Science, 1-2-1 Sengen, Tsukuba, Ibaraki, 305-0047, Japan
| | - Lauri Kurki
- Department of Applied Physics, Aalto University, P.O. Box, 11100, Aalto, Espoo 00076, Finland
| | - Orlando J Silveira
- Department of Applied Physics, Aalto University, P.O. Box, 11100, Aalto, Espoo 00076, Finland
| | - Tomohiko Nishiuchi
- Department of Chemistry, Graduate School of Science, Osaka University, Toyonaka, 560-0043, Japan
| | - Takashi Kubo
- Department of Chemistry, Graduate School of Science, Osaka University, Toyonaka, 560-0043, Japan
| | - Adam S Foster
- Department of Applied Physics, Aalto University, P.O. Box, 11100, Aalto, Espoo 00076, Finland
- Nano Life Science Institute (WPI-NanoLSI), Kanazawa University Kakuma-machi, Kanazawa, 920-1192, Japan
| | - Shigeki Kawai
- Center for Basic Research on Materials, National Institute for Materials Science, 1-2-1 Sengen, Tsukuba, Ibaraki, 305-0047, Japan
- Graduate School of Pure and Applied Sciences, University of Tsukuba, Tsukuba, 305-8571, Japan
| |
Collapse
|
25
|
Sun ZH, Wang Q, Xu LP. Mechanism and Origins of Enantioselectivity in the Nickel-catalyzed Asymmetric Synthesis of Silicon-Stereogenic Benzosiloles. J Org Chem 2024; 89:5675-5682. [PMID: 38569117 DOI: 10.1021/acs.joc.4c00181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2024]
Abstract
As important π-skeletons, benzosiloles often possess unique electronic and optical properties and have been widely used in semiconductor materials. Therefore, great attention has been drawn to the area of developing novel synthetic methods for various benzosiloles. However, the synthesis of enantioenriched silicon-stereogenic benzosiloles is still at an early stage and remains to be explored. Herein, we performed systematic density functional theory studies on the recently reported nickel-catalyzed asymmetric synthesis of silicon-stereogenic benosiloles, which was enabled by an enantioselective desymmetrization of (2-alkenyl)aryl-substituted silacyclobutanes. Our computational study shows that the reaction mechanism involves ligand exchange, oxidative addition, alkene insertion, and hydrogen-transfer coupled reductive-demetalation steps. The proposed transmetalation and β-hydride elimination mechanism was not found, which might be due to the unfavorable ring strain of the multicyclic intermediates. The novel hydrogen-transfer coupled reductive-demetalation mechanism was shown to be reasonable for the generation of the silicon-stereogenic benzosilole. Noncovalent interactions (including C-H···π and hydrogen bonding) in the rate-determining alkene insertion transition state account for the origins of the enantioselectivity. Our computational study sheds light on the detailed reaction mechanism and also provides insights for the development of novel approaches for synthesis of high-value silicon-stereogenic compounds.
Collapse
Affiliation(s)
- Ze-Hua Sun
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo 255000, China
| | - Qian Wang
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo 255000, China
| | - Li-Ping Xu
- School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China
| |
Collapse
|
26
|
Wei B, Li H, Chu H, Dong H, Zhang Y, Sun CL, Li Y. Self-Assembly of Amphiphilic PDI and NDI Derivatives with Opposite Thermoresponsive Fluorescent Behaviors in Aqueous Solution. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:6493-6505. [PMID: 38484325 DOI: 10.1021/acs.langmuir.4c00106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/27/2024]
Abstract
This work presents a study of the thermally induced aggregation of perylene diimide (PDI) and naphthalene diimide (NDI) derivatives modified with oligo ethylene glycol (OEG) chains in aqueous solution. Water-soluble and flexible OEG side chains were introduced into the π-core of glutamate-modified NDI and PDI structures, and the aggregation process was modulated by heating or cooling in water. Interestingly, a rare opposite temperature response of fluorescent behavior from the two amphiphilic chromophores was revealed, in which the PDI exhibited fluorescent enhancement, while fluorescent quenching upon temperature increase was observed from the NDI assembly. The mechanism of thermally induced aggregation is clearly explained by studies with various spectroscopic techniques including UV-visible, fluorescence, 1H NMR, 2D NMR spectroscopy, and SEM observation as well as control experiments operated in DMSO solution. It is found that although similar J-aggregates were formed by both amphiphilic chromophores in aqueous solution, the temperature response of the aggregates to temperature was opposite. The degree of PDI aggregation decreased, while that of NDI increased upon temperature rising. This research paves a valuable way for understanding the complicated supramolecular behaviors of amphiphilic chromophores.
Collapse
Affiliation(s)
- Bizhuo Wei
- College of Chemistry and Chemical Engineering, Xi'an University of Science and Technology, No. 58 Yanta Road, Xi'an 710054, China
| | - Huajing Li
- College of Chemistry and Chemical Engineering, Xi'an University of Science and Technology, No. 58 Yanta Road, Xi'an 710054, China
| | - Huan Chu
- College of Chemistry and Chemical Engineering, Xi'an University of Science and Technology, No. 58 Yanta Road, Xi'an 710054, China
| | - Huanhuan Dong
- College of Chemistry and Chemical Engineering, Xi'an University of Science and Technology, No. 58 Yanta Road, Xi'an 710054, China
| | - Yijun Zhang
- College of Chemistry and Chemical Engineering, Xi'an University of Science and Technology, No. 58 Yanta Road, Xi'an 710054, China
| | - Cai-Li Sun
- College of Chemistry and Chemical Engineering, Xi'an University of Science and Technology, No. 58 Yanta Road, Xi'an 710054, China
| | - Yuangang Li
- College of Chemistry and Chemical Engineering, Xi'an University of Science and Technology, No. 58 Yanta Road, Xi'an 710054, China
| |
Collapse
|
27
|
Ohtani S, Akine S, Kato K, Fa S, Shi TH, Ogoshi T. Silapillar[ n]arenes: Their Enhanced Electronic Conjugation and Conformational Versatility. J Am Chem Soc 2024; 146:4695-4703. [PMID: 38324921 DOI: 10.1021/jacs.3c12093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2024]
Abstract
During recent decades, methylene-bridged macrocyclic arenes have been widely used in supramolecular chemistry. However, their π-conjugations are very weak, as the methylene bridges disrupt the electronic communication between π orbitals of the aromatic units. Herein, we successfully synthesized a series of silapillar[n]arenes (n = 4, 6, and 8) using silylene bridging. These showed enhanced electronic conjugation compared with the parent pillar[n]arenes because of σ*-π* conjugation between σ* (Si-C) orbitals and π* orbitals of the benzenes. Owing to the longer Si-C bond compared with the C-C bond, silylene-bridging provides additional structural flexibility into the pillar[n]arene scaffolds; a strained silapillar[4]arene was formed, which is unavailable in the parent pillar[n]arenes because of the steric requirements. Furthermore, silapillar[n]arenes displayed interesting size-dependent structural and optical properties.
Collapse
Affiliation(s)
- Shunsuke Ohtani
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
| | - Shigehisa Akine
- Graduate School of Natural Science and Technology, Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan
- WPI Nano Life Science Institute (WPI-NanoLSI), Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan
| | - Kenichi Kato
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
| | - Shixin Fa
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
| | - Tan-Hao Shi
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
| | - Tomoki Ogoshi
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
- WPI Nano Life Science Institute (WPI-NanoLSI), Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan
| |
Collapse
|
28
|
Wang Y, Huang S, Zhang Z, Yan X. Synthesis and Photophysical Properties of Silole-Fused Cycloparaphenylenes. J Org Chem 2024; 89:681-686. [PMID: 38065576 DOI: 10.1021/acs.joc.3c01323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2024]
Abstract
Herein, we report the introduction of a silole unit into cycloparaphenylenes (CPPs), and two compounds [12]Si3CPP and [16]Si4CPP are obtained by a platinum- and gold-mediated cyclooligomerization strategy. Their optical and electronic properties are studied by UV-vis absorption and fluorescence spectra, which show red shifts and higher photoluminescence quantum yields (PLQYs) compared with the corresponding CPPs.
Collapse
Affiliation(s)
- Yedong Wang
- Department of Chemistry, Key Laboratory of Advanced Light Conversion Materials and Biophotonics Department of Chemistry, Renmin University of China, Beijing 100872, People's Republic of China
| | - Shiqing Huang
- Department of Chemistry, Key Laboratory of Advanced Light Conversion Materials and Biophotonics Department of Chemistry, Renmin University of China, Beijing 100872, People's Republic of China
| | - Zengyu Zhang
- Department of Chemistry, Key Laboratory of Advanced Light Conversion Materials and Biophotonics Department of Chemistry, Renmin University of China, Beijing 100872, People's Republic of China
| | - Xiaoyu Yan
- Department of Chemistry, Key Laboratory of Advanced Light Conversion Materials and Biophotonics Department of Chemistry, Renmin University of China, Beijing 100872, People's Republic of China
| |
Collapse
|
29
|
Yuan W, Chen L, Yuan C, Zhang Z, Chen X, Zhang X, Guo J, Qian C, Zhao Z, Zhao Y. Cooperative supramolecular polymerization of styrylpyrenes for color-dependent circularly polarized luminescence and photocycloaddition. Nat Commun 2023; 14:8022. [PMID: 38049414 PMCID: PMC10696047 DOI: 10.1038/s41467-023-43830-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 11/22/2023] [Indexed: 12/06/2023] Open
Abstract
Developing facile and efficient methods to obtain circularly polarized luminescence (CPL) materials with a large luminescence dissymmetry factor (glum) and fluorescence quantum yield (ΦY) is attractive but still challenging. Herein, supramolecular polymerization of styrylpyrenes (R/S-PEB) is utilized to attain this aim, which can self-assemble into helical nanoribbons. Benefiting from the dominant CH-π interactions between the chromophores, the supramolecular solution of S-PEB shows remarkable blue-color CPL property (glum: 0.011, ΦY: 69%). From supramolecular solution to gel, the emission color (blue to yellow-green) and handedness of CPL (glum: -0.011 to +0.005) are concurrently manipulated, while the corresponding supramolecular chirality maintains unchanged, representing the rare example of color-dependent CPL materials. Thanks to the supramolecular confine effect, the [2 + 2] cycloaddition reaction rate of the supramolecular solution is 10.5 times higher than that of the monomeric solution. In contrast, no cycloaddition reaction occurs for the gel and assembled solid samples. Our findings provide a vision for fabricating multi-modal and high-performance CPL-active materials, paving the way for the development of advanced photo-responsive chiral systems.
Collapse
Affiliation(s)
- Wei Yuan
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 21 Nanyang Link, Singapore, 637371, Singapore
| | - Letian Chen
- State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, South China University of Technology, Guangzhou, 510640, China
| | - Chuting Yuan
- CAS Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Zidan Zhang
- McKetta Department of Chemical Engineering, University of Texas at Austin, Austin, TX, 78712, USA
| | - Xiaokai Chen
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 21 Nanyang Link, Singapore, 637371, Singapore
| | - Xiaodong Zhang
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 21 Nanyang Link, Singapore, 637371, Singapore
| | - Jingjing Guo
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 21 Nanyang Link, Singapore, 637371, Singapore
| | - Cheng Qian
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 21 Nanyang Link, Singapore, 637371, Singapore
| | - Zujin Zhao
- State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, South China University of Technology, Guangzhou, 510640, China.
| | - Yanli Zhao
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 21 Nanyang Link, Singapore, 637371, Singapore.
| |
Collapse
|
30
|
Oró A, Romeo-Gella F, Perles J, Fernández-García JM, Corral I, Martín N. Tetrahedraphene: A Csp 3 -centered 3D Molecular Nanographene Showing Aggregation-Induced Emission. Angew Chem Int Ed Engl 2023; 62:e202312314. [PMID: 37846849 DOI: 10.1002/anie.202312314] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 10/16/2023] [Accepted: 10/17/2023] [Indexed: 10/18/2023]
Abstract
The bottom-up synthesis of 3D tetrakis(hexa-peri-hexabenzocoronenyl)methane, "tetrahedraphene", is reported. This molecular nanographene constituted by four hexa-peri-hexabenzocoronene (HBC) units attached to a central sp3 carbon atom, shows a highly symmetric arrangement of the HBC units disposed in the apex of a tetrahedron. The X-ray crystal structure reveals a tetrahedral symmetry of the molecule and the packing in the crystal is achieved mostly by CH⋅⋅⋅π interactions since the interstitial solvent molecules prevent the π⋅⋅⋅π interactions. In solution, tetrahedraphene shows the same electrochemical and photophysical properties as the hexa-t Bu-substituted HBC (t Bu-HBC) molecule. However, upon water addition, it undergoes a fluorescence change in solution and in the precipitated solid, showing an aggregation induced emission (AIE) process, probably derived from the restriction in the rotation and/or vibration of the HBCs. Time-Dependent Density Functional Theory (TDDFT) calculations reveal that upon aggregation, the high energy region of the emission band decreases in intensity, whereas the intensity of the red edge emission signal increases and presents a smoother decay, compared to the non-aggregated molecule. All in all, the excellent correlation between our simulations and the experimental findings allows explaining the colour change observed in the different solutions upon increasing the water fraction.
Collapse
Affiliation(s)
- Arturo Oró
- Departamento de Química Orgánica, Facultad de Química, Universidad Complutense de Madrid, Avd. Complutense S/N, 28040, Madrid, Spain
| | - Fernando Romeo-Gella
- Departamento de Química, Facultad de Ciencias, Universidad Autónoma de Madrid, 28049, Madrid, Spain
| | - Josefina Perles
- Laboratorio de Difracción de Rayos X de Monocristal, SIdI, Universidad Autónoma de Madrid, C/Francisco Tomás y Valiente, 7. Campus de Cantoblanco, 28049, Madrid, Spain
| | - Jesús M Fernández-García
- Departamento de Química Orgánica, Facultad de Química, Universidad Complutense de Madrid, Avd. Complutense S/N, 28040, Madrid, Spain
| | - Inés Corral
- Departamento de Química, Facultad de Ciencias, Universidad Autónoma de Madrid, 28049, Madrid, Spain
- Institute for Advanced Research in Chemical Sciences (IAdChem), Universidad Autónoma de Madrid, 28049, Madrid, Spain
| | - Nazario Martín
- Departamento de Química Orgánica, Facultad de Química, Universidad Complutense de Madrid, Avd. Complutense S/N, 28040, Madrid, Spain
- IMDEA-Nanociencia, C/Faraday, 9. Campus de Cantoblanco, 28049, Madrid, Spain
| |
Collapse
|
31
|
Moldovan C, Onaciu A, Toma V, Munteanu RA, Gulei D, Moldovan AI, Stiufiuc GF, Feder RI, Cenariu D, Iuga CA, Stiufiuc RI. Current trends in luminescence-based assessment of apoptosis. RSC Adv 2023; 13:31641-31658. [PMID: 37908656 PMCID: PMC10613953 DOI: 10.1039/d3ra05809c] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Accepted: 10/18/2023] [Indexed: 11/02/2023] Open
Abstract
Apoptosis, the most extensively studied type of cell death, is known to play a crucial role in numerous processes such as elimination of unwanted cells or cellular debris, growth, control of the immune system, and prevention of malignancies. Defective regulation of apoptosis can trigger various diseases and disorders including cancer, neurological conditions, autoimmune diseases and developmental disorders. Knowing the nuances of the cell death type induced by a compound can help decipher which therapy is more effective for specific diseases. The detection of apoptotic cells using classic methods has brought significant contribution over the years, but innovative methods are quickly emerging and allow more in-depth understanding of the mechanisms, aside from a simple quantification. Due to increased sensitivity, time efficiency, pathway specificity and negligible cytotoxicity, these innovative approaches have great potential for both in vitro and in vivo studies. This review aims to shed light on the importance of developing and using novel nanoscale methods as an alternative to the classic apoptosis detection techniques.
Collapse
Affiliation(s)
- Cristian Moldovan
- Medfuture-Research Center for Advanced Medicine, "Iuliu Hatieganu" University of Medicine and Pharmacy Marinescu 23/Louis Pasteur Street No. 4-6 400337 Cluj-Napoca Romania +40-0726-34-02-78
- Department of Pharmaceutical Physics & Biophysics, Faculty of Pharmacy, "Iuliu Hatieganu" University of Medicine and Pharmacy Louis Pasteur Street No. 4-6 400349 Cluj-Napoca Romania
| | - Anca Onaciu
- Medfuture-Research Center for Advanced Medicine, "Iuliu Hatieganu" University of Medicine and Pharmacy Marinescu 23/Louis Pasteur Street No. 4-6 400337 Cluj-Napoca Romania +40-0726-34-02-78
| | - Valentin Toma
- Medfuture-Research Center for Advanced Medicine, "Iuliu Hatieganu" University of Medicine and Pharmacy Marinescu 23/Louis Pasteur Street No. 4-6 400337 Cluj-Napoca Romania +40-0726-34-02-78
| | - Raluca A Munteanu
- Medfuture-Research Center for Advanced Medicine, "Iuliu Hatieganu" University of Medicine and Pharmacy Marinescu 23/Louis Pasteur Street No. 4-6 400337 Cluj-Napoca Romania +40-0726-34-02-78
| | - Diana Gulei
- Medfuture-Research Center for Advanced Medicine, "Iuliu Hatieganu" University of Medicine and Pharmacy Marinescu 23/Louis Pasteur Street No. 4-6 400337 Cluj-Napoca Romania +40-0726-34-02-78
| | - Alin I Moldovan
- Medfuture-Research Center for Advanced Medicine, "Iuliu Hatieganu" University of Medicine and Pharmacy Marinescu 23/Louis Pasteur Street No. 4-6 400337 Cluj-Napoca Romania +40-0726-34-02-78
| | - Gabriela F Stiufiuc
- Faculty of Physics, "Babes Bolyai" University Mihail Kogalniceanu Street No. 1 400084 Cluj-Napoca Romania
| | - Richard I Feder
- Medfuture-Research Center for Advanced Medicine, "Iuliu Hatieganu" University of Medicine and Pharmacy Marinescu 23/Louis Pasteur Street No. 4-6 400337 Cluj-Napoca Romania +40-0726-34-02-78
| | - Diana Cenariu
- Medfuture-Research Center for Advanced Medicine, "Iuliu Hatieganu" University of Medicine and Pharmacy Marinescu 23/Louis Pasteur Street No. 4-6 400337 Cluj-Napoca Romania +40-0726-34-02-78
| | - Cristina A Iuga
- Medfuture-Research Center for Advanced Medicine, "Iuliu Hatieganu" University of Medicine and Pharmacy Marinescu 23/Louis Pasteur Street No. 4-6 400337 Cluj-Napoca Romania +40-0726-34-02-78
- Pharmaceutical Analysis, Faculty of Pharmacy, "Iuliu Hatieganu" University of Medicine and Pharmacy Louis Pasteur Street 6 Cluj-Napoca 400349 Romania
| | - Rares I Stiufiuc
- Medfuture-Research Center for Advanced Medicine, "Iuliu Hatieganu" University of Medicine and Pharmacy Marinescu 23/Louis Pasteur Street No. 4-6 400337 Cluj-Napoca Romania +40-0726-34-02-78
- Department of Pharmaceutical Physics & Biophysics, Faculty of Pharmacy, "Iuliu Hatieganu" University of Medicine and Pharmacy Louis Pasteur Street No. 4-6 400349 Cluj-Napoca Romania
- TRANSCEND Research Center, Regional Institute of Oncology 700483 Iasi Romania
| |
Collapse
|
32
|
Zhang R, Bi Z, Zhang L, Yang H, Wang H, Zhang W, Qiu Z, Zhang C, Xiong Y, Li Y, Zhao Z, Tang BZ. Blood Circulation Assessment by Steadily Fluorescent Near-Infrared-II Aggregation-Induced Emission Nano Contrast Agents. ACS NANO 2023; 17:19265-19274. [PMID: 37728982 DOI: 10.1021/acsnano.3c06061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/22/2023]
Abstract
The dysfunction of the blood circulation system typically induces acute or chronic ischemia in limbs and vital organs, with high disability and mortality. While conventional tomographic imaging modalities have shown good performance in the diagnosis of circulatory diseases, multiple limitations remain for real-time and precise hemodynamic evaluation. Recently, fluorescence imaging in the second region of the near-infrared (NIR-II, 1000-1700 nm) has garnered great attention in monitoring and tracing various biological processes in vivo due to its advantages of high spatial-temporal resolution and real-time feature. Herein, we employed NIR-II imaging to carry out a blood circulation assessment by aggregation-induced emission fluorescent aggregates (AIE nano contrast agent, AIE NPs). Thanks to the longer excited wavelength, enhanced absorptivity, higher brightness in the NIR-II region, and broader optimal imaging window of the AIE NPs, we have realized a multidirectional assessment for blood circulation in mice with a single NIR-II imaging modality. Thus, our work provides a fluorescence contrast agent platform for accurate hemodynamic assessment.
Collapse
Affiliation(s)
- Rongyuan Zhang
- Center for AIE Research, Shenzhen Key Laboratory of Polymer Science and Technology, Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen 518060, People's Republic of China
- College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, People's Republic of China
- School of Science and Engineering, Shenzhen Institute of Aggregate Science and Technology, The Chinese University of Hong Kong, Shenzhen (CUHK-Shenzhen), Guangdong 518172, People's Republic of China
| | - Zhenyu Bi
- School of Science and Engineering, Shenzhen Institute of Aggregate Science and Technology, The Chinese University of Hong Kong, Shenzhen (CUHK-Shenzhen), Guangdong 518172, People's Republic of China
| | - Liping Zhang
- Center for AIE Research, Shenzhen Key Laboratory of Polymer Science and Technology, Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen 518060, People's Republic of China
- College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, People's Republic of China
- School of Science and Engineering, Shenzhen Institute of Aggregate Science and Technology, The Chinese University of Hong Kong, Shenzhen (CUHK-Shenzhen), Guangdong 518172, People's Republic of China
| | - Han Yang
- School of Science and Engineering, Shenzhen Institute of Aggregate Science and Technology, The Chinese University of Hong Kong, Shenzhen (CUHK-Shenzhen), Guangdong 518172, People's Republic of China
| | - Haoran Wang
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, The Hong Kong University of Science and Technology, 100071 Hong Kong, People's Republic of China
| | - Weijie Zhang
- Department of Urology the First Affiliated Hospital of Soochow University Suzhou Suzhou 215006, People's Republic of China
| | - Zijie Qiu
- School of Science and Engineering, Shenzhen Institute of Aggregate Science and Technology, The Chinese University of Hong Kong, Shenzhen (CUHK-Shenzhen), Guangdong 518172, People's Republic of China
| | - Chaoji Zhang
- Department of Cardiac Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing 100730, People's Republic of China
| | - Yu Xiong
- Center for AIE Research, Shenzhen Key Laboratory of Polymer Science and Technology, Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen 518060, People's Republic of China
- College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, People's Republic of China
| | - Yuanyuan Li
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun 130062, People's Republic of China
| | - Zheng Zhao
- School of Science and Engineering, Shenzhen Institute of Aggregate Science and Technology, The Chinese University of Hong Kong, Shenzhen (CUHK-Shenzhen), Guangdong 518172, People's Republic of China
- HKUST Shenzhen Research Institute, Shenzhen 518057, People's Republic of China
| | - Ben Zhong Tang
- School of Science and Engineering, Shenzhen Institute of Aggregate Science and Technology, The Chinese University of Hong Kong, Shenzhen (CUHK-Shenzhen), Guangdong 518172, People's Republic of China
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, The Hong Kong University of Science and Technology, 100071 Hong Kong, People's Republic of China
| |
Collapse
|
33
|
Mahmoudi M, Urbonas E, Volyniuk D, Gudeika D, Dabrovolskas K, Simokaitiene J, Dabuliene A, Keruckiene R, Leitonas K, Guzauskas M, Skhirtladze L, Stanitska M, Grazulevicius JV. Indolocarbazoles with Sterically Unrestricted Electron-Accepting Anchors Showcasing Aggregation-Induced Thermally Activated Delayed Mechanoluminescence for Host-Free Organic Light-Emitting Diodes. Molecules 2023; 28:5999. [PMID: 37630259 PMCID: PMC10457976 DOI: 10.3390/molecules28165999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 08/03/2023] [Accepted: 08/08/2023] [Indexed: 08/27/2023] Open
Abstract
We investigated the effects of sterically nonrestricted electron-accepting substituents of three isomeric indolocarbazole derivatives on their aggregation-induced emission enhancement, mechanochromic luminescence and thermally activated delayed fluorescence. The compounds are potentially efficient emitters for host-free organic light-emitting diodes. The films of indolocarbazole derivatives exhibit emissions with wavelengths of fluorescence intensity maxima from 483 to 500 nm and photoluminescence quantum yields from 31 to 58%. The ionization potentials of the solid samples, measured by photoelectron emission spectrometry, are in the narrow range of 5.78-5.99 eV. The electron affinities of the solid samples are in the range of 2.99-3.19 eV. The layers of the derivatives show diverse charge-transporting properties with maximum hole mobility reaching 10-4 cm2/Vs at high electric fields. An organic light-emitting diode with a light-emitting layer of neat compound shows a turn-on voltage of 4.1 V, a maximum brightness of 24,800 cd/m2, a maximum current efficiency of 12.5 cd/A and an external quantum efficiency of ca. 4.8%. When the compounds are used as hosts, green electroluminescent devices with an external quantum efficiency of ca. 11% are obtained. The linking topology of the isomeric derivatives of indolo[2,3-a]carbazole and indolo[3,2-b]carbazole and the electron-accepting anchors influences their properties differently, such as aggregation-induced emission enhancement, mechanochromic luminescence, thermally activated delayed fluorescence, charge-transporting, and electroluminescent properties. The derivative indolo[3,2-b]carbazole displays good light-emitting properties, while the derivatives of indolo[2,3-a]carbazole show good hosting properties, which make them useful for application in electroluminescent devices.
Collapse
Affiliation(s)
| | | | - Dmytro Volyniuk
- Department of Polymer Chemistry and Technology, Kaunas University of Technology, K. Barsausko g. 59, 51423 Kaunas, Lithuania (K.D.); (J.S.)
| | | | | | | | | | | | | | | | | | | | - Juozas Vidas Grazulevicius
- Department of Polymer Chemistry and Technology, Kaunas University of Technology, K. Barsausko g. 59, 51423 Kaunas, Lithuania (K.D.); (J.S.)
| |
Collapse
|
34
|
Patel DA, Anand T, Sk AK, Sahoo SK. Fluorescence Sensing of pH and p-Nitrophenol Using an AIEE Active Pyridoxal Derived Schiff Base. J Fluoresc 2023; 33:1431-1441. [PMID: 36745310 DOI: 10.1007/s10895-023-03167-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Accepted: 02/02/2023] [Indexed: 02/07/2023]
Abstract
An easy-to-prepare aggregation-induced emission enhancement (AIEE) active Schiff base NPY was synthesized by condensing vitamin B6 cofactor pyridoxal with 3-hydroxy-2-naphthoic hydrazide, and employed for the fluorescent sensing of pH and p-nitrophenol (p-NP). The AIEE phenomenon of NPY was investigated in mixed DMSO/H2O medium. The weakly yellow-fluorescent NPY (λem = 535 nm) in pure DMSO turned to a bright cyan-fluorescent NPY (λem = 490 nm) upon addition of poor solvent water. The DLS and SEM analyses supported the self-aggregation of NPY that restricted the intramolecular rotation and activated the excited state intramolecular proton transfer (ESIPT) process. The AIEE luminogen (AIEEgen) NPY containing 90% of water fraction (fwater) was employed for the fluorescent sensing of pH. AIEEgen NPY displays three distinct fluorescent pH windows: non-fluorescent below pH 3.0 and above pH 10.0, cyan fluorescent between pH 3.0 to 8.0, and yellow fluorescent between pH 8.0 to 10.0. AIEEgen NPY was also applied for the detection of nitroaromatics in HEPES buffer (10% DMSO, 10 mM, pH 7.0). The addition of p-NP selectively quenched the fluorescent intensity of AIEEgen NPY with an estimated detection limit of 1.73 µM. The analytical utility of AIEEgen NPY was examined by quantifying p-NP in different real water samples.
Collapse
Affiliation(s)
- Dhvani A Patel
- Department of Chemistry, Sardar Vallabhbhai National Institute Technology, 395007, Surat, Gujarat, India
| | - Thangaraj Anand
- Department of Chemistry, Sathyabama Institute of Science and Technology, 600119, Chennai, India
| | - Ashok Kumar Sk
- Department of Chemistry, School of Advance Sciences, Vellore Institute of Technology, 632014, Vellore, Tamil Nadu, India
| | - Suban K Sahoo
- Department of Chemistry, Sardar Vallabhbhai National Institute Technology, 395007, Surat, Gujarat, India.
| |
Collapse
|
35
|
Xu J, Hu J, Gao Y, Wang H, Li L, Zheng S. Crosslinking of poly(ethylene-co-vinyl alcohol) with diphenylboronic acid of tetraphenylethene enables reprocessing, shape recovery and photoluminescence. REACT FUNCT POLYM 2023. [DOI: 10.1016/j.reactfunctpolym.2023.105576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/30/2023]
|
36
|
Devarajan K, Sivakalai M, Basu SM, Biswas C, Chauhan M, Hasan U, Panneerselvam Y, Narayanan UM, Raavi SSK, Giri J, Panda TK. Design and synthesis of photostable triphenylamine based neutral AIE nano luminogens: specific and long-term tracking of mitochondria in cells. Biomater Sci 2023; 11:3938-3951. [PMID: 37093244 DOI: 10.1039/d3bm00043e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/25/2023]
Abstract
With the increasing dependence on fluorescence bioimaging, luminogens with aggregation-induced emission (AIE) properties have gained significant attention due to their excellent photostabilization, minimal photobleaching, high reliability, and superior biocompatibility. Since mitochondria are crucial subcellular organelles in eukaryotic cells with important biological functions, organelle-specific AIE emitters with distinct functions have been highly sought after, but with limited success using simple synthetic methods. Here, we describe a strategy for synthesizing two triphenylamine (TPA) based acrylonitriles, tethered to different donor groups, TPA and phenothiazine (PTZ), respectively, with superior AIE properties using Suzuki coupling. We conducted a systematic and detailed experimental analysis of the structural characteristics of both AIE luminogens, which exhibited excellent photostability, a large Stokes shift, and bright solid-state emission. A cell viability study carried out with F1 and F2 dyes revealed that both luminogens exhibited excellent biocompatibility. Based on fluorescence experiments, F2 displayed excellent AIE characteristics, permeability, biocompatibility, and photostability compared to rhodamine 123, allowing it to selectively stain and track mitochondria in cancer cells over an extended period of time. The Pearson correlation coefficient of F2 and rhodamine 123 was estimated to have an r-value of 0.99. Our findings are expected to provide insight into the synthesis of an extensive archive of AIE-based acrylonitriles with fascinating properties for mitochondrial staining.
Collapse
Affiliation(s)
| | - Mayakrishnan Sivakalai
- Organic & Bioorganic Chemistry Laboratory, CSIR-Central Leather Research Institute, Chennai, 600020, India.
- CSIR-North East Institute of Science & Technology (NEIST), Branch Laboratory, Imphal-795004, Manipur, India
| | - Suparna Mercy Basu
- Department of Biomedical Engineering, Indian Institute of Technology Hyderabad, Telangana, India.
| | - Chinmoy Biswas
- Department of Physics, Indian Institute of Technology Hyderabad, 502 285, India.
| | - Meenakshi Chauhan
- Department of Biomedical Engineering, Indian Institute of Technology Hyderabad, Telangana, India.
| | - Uzma Hasan
- Department of Biomedical Engineering, Indian Institute of Technology Hyderabad, Telangana, India.
- Department of Biotechnology, Indian Institute of Technology Hyderabad, Telangana, India
| | - Yuvaraj Panneerselvam
- CSIR-North East Institute of Science & Technology (NEIST), Branch Laboratory, Imphal-795004, Manipur, India
| | - Uma Maheswari Narayanan
- Organic & Bioorganic Chemistry Laboratory, CSIR-Central Leather Research Institute, Chennai, 600020, India.
| | | | - Jyotsnendu Giri
- Department of Biomedical Engineering, Indian Institute of Technology Hyderabad, Telangana, India.
| | - Tarun K Panda
- Department of Chemistry, Indian Institute of Technology Hyderabad, 502285, India.
| |
Collapse
|
37
|
Wang Z, Guo X, Jia L, Zhao Z, Yang R, Zhang Y. Novel 4,4′-Binaphthalimidyl Derivatives with Carboxyalkyl Side Chains: Synthesis, Aggregation-Induced Emission, Hydrogel and Cell Imaging. J Mol Liq 2023. [DOI: 10.1016/j.molliq.2023.121796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/08/2023]
|
38
|
Zhao Y, Wan Y, Yuan Q, Wei J, Zhang Y. Photocatalytic C-Si Bond Formations Using Pentacoordinate Silylsilicates as Silyl Radical Precursors: Synthetic Tricks Using Old Reagents. Org Lett 2023; 25:1386-1391. [PMID: 36861978 DOI: 10.1021/acs.orglett.3c00096] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/03/2023]
Abstract
A visible-light-induced photocatalytic C-Si formation strategy has been disclosed by uncovering the reactivity of Martin's spirosilane-derived pentacoordinate silylsilicates as silyl radical precursors. The hydrosilylation of a broad spectrum of alkenes and alkynes, as well as the C-H silylation of heteroarenes, has been demonstrated. Remarkably, Martin's spirosilane was stable and could be recovered via a simple workup process. Furthermore, the reaction proceeded well using water as the solvent or low-energy green LEDs as an alternative energy source.
Collapse
Affiliation(s)
- Yumo Zhao
- Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, Shanghai Key Laboratory of New Drug Design, and School of Pharmacy, East China University of Science and Technology, Shanghai 200237, P. R. China
| | - Yi Wan
- Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, Shanghai Key Laboratory of New Drug Design, and School of Pharmacy, East China University of Science and Technology, Shanghai 200237, P. R. China
| | - Qiyang Yuan
- Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, Shanghai Key Laboratory of New Drug Design, and School of Pharmacy, East China University of Science and Technology, Shanghai 200237, P. R. China
| | - Jinlian Wei
- State Key Laboratory of Bioreactor Engineering, Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, P. R. China
| | - Yongqiang Zhang
- Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, Shanghai Key Laboratory of New Drug Design, and School of Pharmacy, East China University of Science and Technology, Shanghai 200237, P. R. China
| |
Collapse
|
39
|
Nurnabi M, Gurusamy S, Wu JY, Lee CC, Sathiyendiran M, Huang SM, Chang CH, Chao I, Lee GH, Peng SM, Sathish V, Thanasekaran P, Lu KL. Aggregation-induced emission enhancement (AIEE) of tetrarhenium(I) metallacycles and their application as luminescent sensors for nitroaromatics and antibiotics. Dalton Trans 2023; 52:1939-1949. [PMID: 36691828 DOI: 10.1039/d2dt03408e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
The self-assembly of tetrarhenium metallacycles [{Re(CO)3}2(μ-dhaq)(μ-N-N)]2 (3a, N-N = 1,3-bis(1-butylbenzimidazol-2-yl)benzene; 3b, N-N = 1,3-bis(1-octylbenzimidazol-2-yl)benzene), (H2-dhaq = 1,4-dihydroxy-9,10-anthraquinone) and [{Re(CO)3}2(μ-thaq)(μ-N-N)]2 (4, N-N = 1,3-bis(1-butylbenzimidazol-2-yl)benzene), (H2-thaq = 1,2,4-trihydroxy-9,10-anthraquinone) under solvothermal conditions is described. The metallacycles 3a,b and 4 underwent aggregation-induced emission enhancement (AIEE) in THF upon the incremental addition of water. TEM images revealed that metallacycle 3a in a 60% aqueous THF solution formed rectangular aggregates with a wide size distribution, while a 90% aqueous THF solution resulted in the formation of a mixture of nanorods and amorphous aggregates due to rapid and abrupt aggregation. UV-vis and emission spectral profiles supported the formation of nanoaggregates of metallacycles 3a,b and 4 upon the gradual addition of water to a THF solution containing metallacycles. Further studies indicated that these nanoaggregates were excellent probes for the sensitive and selective detection of nitro group containing picric acid (PA) derivatives as well as antibiotics.
Collapse
Affiliation(s)
| | - Shunmugasundaram Gurusamy
- PG and Research Department of Chemistry, V. O. Chidambaram College, Tuticorin - 628 008, Tamil Nadu, India
| | - Jing-Yun Wu
- Department of Applied Chemistry, National Chi Nan University, Nantou 545, Taiwan
| | - Chung-Chou Lee
- Institute of Chemistry, Academia Sinica, Taipei 115, Taiwan.
| | | | | | - Che-Hao Chang
- Institute of Chemistry, Academia Sinica, Taipei 115, Taiwan.
| | - Ito Chao
- Institute of Chemistry, Academia Sinica, Taipei 115, Taiwan.
| | - Gene-Hsiang Lee
- Department of Chemistry, National Taiwan University, Taipei 107, Taiwan
| | - Shie-Ming Peng
- Department of Chemistry, National Taiwan University, Taipei 107, Taiwan
| | - Veerasamy Sathish
- Department of Chemistry, Bannari Amman Institute of Technology, Sathyamangalam - 638 401, India
| | | | - Kuang-Lieh Lu
- Institute of Chemistry, Academia Sinica, Taipei 115, Taiwan. .,Department of Chemistry, Fu Jen Catholic University, New Taipei City 242, Taiwan
| |
Collapse
|
40
|
Dearomative triple elementalization of quinolines driven by visible light. Nat Commun 2023; 14:652. [PMID: 36746969 PMCID: PMC9902486 DOI: 10.1038/s41467-023-36161-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Accepted: 01/19/2023] [Indexed: 02/08/2023] Open
Abstract
Organoboron and organosilicon compounds are used not only as synthetic building blocks but also as functional materials and pharmaceuticals, and compounds with multiple boryl and silyl groups are beginning to be used for these purposes. Especially in drug discovery, methodology providing easy stereoselective access to aliphatic nitrogen heterocycles bearing multiple boryl or silyl groups from readily available aromatic nitrogen heterocycles would be attractive. However, such transformations remain challenging, and available reactions have been mostly limited to dearomative hydroboration or hydrosilylation reactions. Here, we report the dearomative triple elementalization (carbo-sila-boration) of quinolines via the addition of organolithium followed by photo-boosted silaboration, affording the desired products with complete chemo-, regio-, and stereoselectivity. The reaction proceeds via the formation of silyl radicals instead of silyl anions. We also present preliminary studies to illustrate the potential of silaboration products as synthetic platforms.
Collapse
|
41
|
Majumder R, Dey S, Jana D, Ghorai BK. Donor-acceptor cyanostilbene based nano-AIEgens: Synthesis and properties. RESULTS IN CHEMISTRY 2023. [DOI: 10.1016/j.rechem.2023.100856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2023] Open
|
42
|
Organosilicon Fluorescent Materials. Polymers (Basel) 2023; 15:polym15020332. [PMID: 36679212 PMCID: PMC9862885 DOI: 10.3390/polym15020332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 12/23/2022] [Accepted: 01/04/2023] [Indexed: 01/11/2023] Open
Abstract
In the past few decades, organosilicon fluorescent materials have attracted great attention in the field of fluorescent materials not only due to their abundant and flexible structures, but also because of their intriguing fluorescence properties, distinct from silicon-free fluorescent materials. Considering their unique properties, they have found broad application prospects in the fields of chemosensor, bioimaging, light-emitting diodes, etc. However, a comprehensive review focusing on this field, from the perspective of their catalogs and applications, is still absent. In this review, organosilicon fluorescent materials are classified into two main types, organosilicon small molecules and polymers. The former includes fluorescent aryl silanes and siloxanes, and the latter are mainly fluorescent polysiloxanes. Their synthesis and applications are summarized. In particular, the function of silicon atoms in fluorescent materials is introduced. Finally, the development trend of organosilicon fluorescent materials is prospected.
Collapse
|
43
|
Sharma S, Srinivas S, Rakshit S, Sengupta S. Aminoindole and naphthalimide based charge transfer fluorescent probes for pH sensing and live cell imaging. Org Biomol Chem 2022; 20:9422-9430. [PMID: 36408696 DOI: 10.1039/d2ob01614a] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Fluorescent probes are essential for imaging of cancer cells and for tracking organelles inside cells. We have synthesized three molecular rotors AIN, AINP and F-AINP based on 1-aminoindole (AI) as an electron donor and naphthalimide as an electron acceptor. All compounds showed charge transfer (CT) character, aggregation induced emission (AIE) and emission responsiveness towards temperature variation and solvent viscosity. AINP was most sensitive towards viscosity among all molecules with a viscosity sensitivity of ∼0.37. AIN, AINP and F-AINP showed negative temperature coefficients in chloroform with internal sensitivities of -0.04% °C-1, -0.08% °C-1 and -0.1% °C-1, respectively. Furthermore, all the rotors were sensitive towards the pH of the solvent environment as revealed by acid titration and base back-titration and served as colorimetric pH sensors with intriguing photophysical characteristics. Additionally, AINP and F-AINP were used to image the live cancer cell line A549 and the fibroblast cell line L929, and the imaging studies revealed the incorporation of dyes in the cytoplasmic space of the cells except for the nuclei.
Collapse
Affiliation(s)
- Sushil Sharma
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Mohali, Knowledge City, Sector 81, P.O. Manauli, Mohali, Punjab 140306, India.
| | - Sai Srinivas
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Mohali, Knowledge City, Sector 81, P.O. Manauli, Mohali, Punjab 140306, India.
| | - Sabyasachi Rakshit
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Mohali, Knowledge City, Sector 81, P.O. Manauli, Mohali, Punjab 140306, India.
| | - Sanchita Sengupta
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Mohali, Knowledge City, Sector 81, P.O. Manauli, Mohali, Punjab 140306, India.
| |
Collapse
|
44
|
Zhu L, Song Q, Ma H. Synthesis of hyperbranched polysiloxane/poly(N-isopropylacrylamide) microgel, its stimulus responsive behavior and study for drug release. JOURNAL OF MACROMOLECULAR SCIENCE PART A-PURE AND APPLIED CHEMISTRY 2022. [DOI: 10.1080/10601325.2022.2149341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Affiliation(s)
- Lin Zhu
- School of Chemistry and Chemical Engineering, Hefei University of Technology, Hefei, China
| | - Qiusheng Song
- School of Chemistry and Chemical Engineering, Hefei University of Technology, Hefei, China
| | - Haihong Ma
- School of Chemistry and Chemical Engineering, Hefei University of Technology, Hefei, China
| |
Collapse
|
45
|
Three-arm star-shaped aniline derivatives: Tunable photoluminescence, aggregation-induced emission and reversible acid-base vapor fluorescence response. J Photochem Photobiol A Chem 2022. [DOI: 10.1016/j.jphotochem.2022.114098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
46
|
Yu L, Yu Y, Shi J, Zhang X, Gao F, Li C, Yang Z, Zhao J. Synthesis of a Novel Hyperbranched Polyimide for Reinforcing Toughness and Insulating Properties of Bismaleimide Resin. Polymers (Basel) 2022; 14:polym14194234. [PMID: 36236181 PMCID: PMC9571665 DOI: 10.3390/polym14194234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 09/27/2022] [Accepted: 09/29/2022] [Indexed: 11/16/2022] Open
Abstract
Bismaleimide (BMI) resin has great potential in aerospace, electronic, and machinery fields due to its extraordinary thermal stability. Owing to BMI's lower impact strength, various modified BMI resins have been prepared using CTBN, PEEK, fillers, and hyperbranched polymer to achieve higher impact strength. However, enhancement of toughness causes deterioration of other performance, such as Tg, thermal stability, and brittleness. In this work, BMI resin modified by hyperbranched polyimide (HBPI) was obtained. HBPI designed with flexible segments, unsaturated bonds, and a low degree of branching was synthesized. FT-IR and 13C-NMR were applied to confirm the successful fabrication of HBPI. The mechanical strength and dielectric properties of cured BMI resin containing various levels of HBPI were analyzed systematically. The impact and bending strength were improved significantly with increased HBPI content. When the content of HBPI is 40 wt.%, the impact strength and bending strength reach the maximum value of 32 kJ/mm and 88 MPa. In addition, the BMI cured with HBPI exhibits enhanced bending modulus to the value of 5.9 GPa. Furthermore, the dielectric strength of cured resin was improved to 28.3 kV/mm. The improved mechanical strength and enhanced dielectric properties are attributed to the increasing free volume induced by HBPI. These results indicate the promise of BMI resin modified by HBPI applied in insulating coatings and low dielectric laminates used in high frequency.
Collapse
Affiliation(s)
- Lida Yu
- Harbin University of Science and Technology, Harbin 150080, China
| | - Yang Yu
- Harbin University of Science and Technology, Harbin 150080, China
- Correspondence:
| | - Jiahao Shi
- Harbin University of Science and Technology, Harbin 150080, China
| | - Xiaorui Zhang
- Harbin University of Science and Technology, Harbin 150080, China
| | - Feng Gao
- Harbin University of Science and Technology, Harbin 150080, China
| | - Chenhao Li
- Harbin University of Science and Technology, Harbin 150080, China
| | - Zhou Yang
- Harbin University of Science and Technology, Harbin 150080, China
- Harbin Institute of Large Electrical Machinery, Harbin 150040, China
- State Key Laboratory of Hydropower Equipment, Harbin 150040, China
- Harbin Electric Machinery Company Limited, Harbin 150040, China
| | - Jingui Zhao
- Harbin Electric Machinery Company Limited, Harbin 150040, China
| |
Collapse
|
47
|
Garci A, Abid S, David AHG, Codesal MD, Đorđević L, Young RM, Sai H, Le Bras L, Perrier A, Ovalle M, Brown PJ, Stern CL, Campaña AG, Stupp SI, Wasielewski MR, Blanco V, Stoddart JF. Aggregation-Induced Emission and Circularly Polarized Luminescence Duality in Tetracationic Binaphthyl-Based Cyclophanes. Angew Chem Int Ed Engl 2022; 61:e202208679. [PMID: 35904930 PMCID: PMC9804443 DOI: 10.1002/anie.202208679] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Indexed: 01/05/2023]
Abstract
Here, we report an approach to the synthesis of highly charged enantiopure cyclophanes by the insertion of axially chiral enantiomeric binaphthyl fluorophores into the constitutions of pyridinium-based macrocycles. Remarkably, these fluorescent tetracationic cyclophanes exhibit a significant AIE compared to their neutral optically active binaphthyl precursors. A combination of theoretical calculations and time-resolved spectroscopy reveal that the AIE originates from limited torsional vibrations associated with the axes of chirality present in the chiral enantiomeric binaphthyl units and the fine-tuning of their electronic landscape when incorporated within the cyclophane structure. Furthermore, these highly charged enantiopure cyclophanes display CPL responses both in solution and in the aggregated state. This unique duality of AIE and CPL in these tetracationic cyclophanes is destined to be of major importance in future development of photonic devices and bio-applications.
Collapse
Affiliation(s)
- Amine Garci
- Department of ChemistryNorthwestern University2145 Sheridan RoadEvanstonIL 60208USA
| | - Seifallah Abid
- Department of ChemistryNorthwestern University2145 Sheridan RoadEvanstonIL 60208USA
| | - Arthur H. G. David
- Department of ChemistryNorthwestern University2145 Sheridan RoadEvanstonIL 60208USA
| | - Marcos D. Codesal
- Departamento de Química OrgánicaFacultad de CienciasUnidad de Excelencia de Química Aplicada a Biomedicina y Medioambiente (UEQ)Universidad de Granada (UGR)Avda. Fuente Nueva S/N18071GranadaSpain
| | - Luka Đorđević
- Department of ChemistryNorthwestern University2145 Sheridan RoadEvanstonIL 60208USA
- Center for Bio-inspired Energy ScienceNorthwestern University2145 Sheridan RoadEvanstonIL 60208USA
| | - Ryan M. Young
- Department of ChemistryNorthwestern University2145 Sheridan RoadEvanstonIL 60208USA
- Institute for Sustainability and Energy at NorthwesternNorthwestern University2145 Sheridan RoadEvanstonIL 60208USA
| | - Hiroaki Sai
- Department of ChemistryNorthwestern University2145 Sheridan RoadEvanstonIL 60208USA
- Simpson Querrey Institute for BioNanotechnologyNorthwestern University303 E. Superior StreetChicagoIL 60611USA
- Department of Materials Science and EngineeringNorthwestern University2220 Campus DriveEvanstonIL 60208USA
| | - Laura Le Bras
- Laboratoire Chrono-environnement (UMR 6249)Université de Bourgogne Franche-Comté16 route de Gray25030BesançonFrance
| | - Aurélie Perrier
- Chimie Paris TechPSL Research UniversityCNRSInstitute of Chemistry for Life and Health Sciences (i-CLeHS)UMR 806075005ParisFrance
- Université Paris Cité75006ParisFrance
| | - Marco Ovalle
- Department of ChemistryNorthwestern University2145 Sheridan RoadEvanstonIL 60208USA
| | - Paige J. Brown
- Department of ChemistryNorthwestern University2145 Sheridan RoadEvanstonIL 60208USA
- Institute for Sustainability and Energy at NorthwesternNorthwestern University2145 Sheridan RoadEvanstonIL 60208USA
| | - Charlotte L. Stern
- Department of ChemistryNorthwestern University2145 Sheridan RoadEvanstonIL 60208USA
| | - Araceli G. Campaña
- Departamento de Química OrgánicaFacultad de CienciasUnidad de Excelencia de Química Aplicada a Biomedicina y Medioambiente (UEQ)Universidad de Granada (UGR)Avda. Fuente Nueva S/N18071GranadaSpain
| | - Samuel I. Stupp
- Department of ChemistryNorthwestern University2145 Sheridan RoadEvanstonIL 60208USA
- Center for Bio-inspired Energy ScienceNorthwestern University2145 Sheridan RoadEvanstonIL 60208USA
- Simpson Querrey Institute for BioNanotechnologyNorthwestern University303 E. Superior StreetChicagoIL 60611USA
- Department of Materials Science and EngineeringNorthwestern University2220 Campus DriveEvanstonIL 60208USA
- Department of Biomedical EngineeringNorthwestern University2145 Sheridan RoadEvanstonIL 60208USA
- Department of MedicineNorthwestern University676N St. Clair StreetChicagoIL 60611USA
| | - Michael R. Wasielewski
- Department of ChemistryNorthwestern University2145 Sheridan RoadEvanstonIL 60208USA
- Institute for Sustainability and Energy at NorthwesternNorthwestern University2145 Sheridan RoadEvanstonIL 60208USA
| | - Victor Blanco
- Departamento de Química OrgánicaFacultad de CienciasUnidad de Excelencia de Química Aplicada a Biomedicina y Medioambiente (UEQ)Universidad de Granada (UGR)Avda. Fuente Nueva S/N18071GranadaSpain
| | - J. Fraser Stoddart
- Department of ChemistryNorthwestern University2145 Sheridan RoadEvanstonIL 60208USA
- School of ChemistryUniversity of New South WalesSydneyNSW 2052Australia
- Stoddart Institute of Molecular ScienceDepartment of ChemistryZhejiang UniversityHangzhou310027China
- ZJU-Hangzhou Global Scientific and Technological Innovation CenterHangzhou311215China
| |
Collapse
|
48
|
Hu X, Yu S, Yang G, Long W, Guo T, Tian J, Liu M, Li X, Zhang X, Wei Y. Fabrication of chitosan based luminescent nanoprobe with aggregation-induced emission feature through ultrasonic treatment. Carbohydr Polym 2022; 291:119487. [DOI: 10.1016/j.carbpol.2022.119487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 03/31/2022] [Accepted: 04/12/2022] [Indexed: 11/17/2022]
|
49
|
Hu R, Yuan Y, Gu M, Zou YQ. Recent advances in chiral aggregation-induced emission fluorogens. ENGINEERED REGENERATION 2022. [DOI: 10.1016/j.engreg.2022.07.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
|
50
|
Zhang B, Lyu G, Kelly EA, Evans RC. Förster Resonance Energy Transfer in Luminescent Solar Concentrators. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2201160. [PMID: 35678107 PMCID: PMC9376834 DOI: 10.1002/advs.202201160] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 04/27/2022] [Indexed: 05/20/2023]
Abstract
Luminescent solar concentrators (LSCs) are an emerging technology to collect and channel light from a large absorption area into a smaller one. They are a complementary technology for traditional solar photovoltaics (PV), particularly suitable for application in urban or indoor environments where their custom colors and form factors, and performance under diffuse light conditions may be advantageous. Förster resonance energy transfer (FRET) has emerged as a valuable approach to overcome some of the intrinsic limitations of conventional single lumophore LSCs, such as reabsorption or reduced quantum efficiency. This review outlines the potential of FRET to boost LSC performance, using highlights from the literature to illustrate the key criteria that must be considered when designing an FRET-LSC, including both the photophysical requirements of the FRET lumophores and their interaction with the host material. Based on these criteria, a list of design guidelines intended to aid researchers when they approach the design of a new FRET-LSC system is presented. By highlighting the unanswered questions in this field, the authors aim to demonstrate the potential of FRET-LSCs for both conventional solar-harvesting and emerging LSC-inspired technologies and hope to encourage participation from a diverse researcher base to address this exciting challenge.
Collapse
Affiliation(s)
- Bolong Zhang
- Department of Materials Science and MetallurgyUniversity of Cambridge27 Charles Babbage RoadCambridgeCB3 0FSUK
- CAS Key Laboratory of Design and Assembly of Functional Nanostructures, and Fujian Provincial Key Laboratory of Nanomaterials, Fujian Institute of Research on the Structure of MaterialsChinese Academy of SciencesFuzhouFujian350002China
| | - Guanpeng Lyu
- Department of Materials Science and MetallurgyUniversity of Cambridge27 Charles Babbage RoadCambridgeCB3 0FSUK
| | - Elaine A. Kelly
- Department of Materials Science and MetallurgyUniversity of Cambridge27 Charles Babbage RoadCambridgeCB3 0FSUK
| | - Rachel C. Evans
- Department of Materials Science and MetallurgyUniversity of Cambridge27 Charles Babbage RoadCambridgeCB3 0FSUK
| |
Collapse
|