1
|
Hunter CD, Cairo CW. Detection Strategies for Sialic Acid and Sialoglycoconjugates. Chembiochem 2024; 25:e202400402. [PMID: 39444251 DOI: 10.1002/cbic.202400402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 08/01/2024] [Indexed: 10/25/2024]
Abstract
Glycoconjugates are a vast class of biomolecules implicated in biological processes important for human health and disease. The structural complexity of glycoconjugates remains a challenge to deciphering their precise biological roles and for their development as biomarkers and therapeutics. Human glycoconjugates on the outside of the cell are modified with sialic (neuraminic) acid residues at their termini. The enzymes that install sialic acids are sialyltransferases (SiaTs), a family of 20 different isoenzymes. The removal and degradation of sialic acids is mediated by neuraminidase (NEU; sialidase) enzymes, of which there are four isoenzymes. In this review, we discuss chemical and biochemical approaches for the detection and analysis of sialoglycoconjugate (SGC) structures and their enzymatic products. The most common methods include affinity probes and synthetic substrates. Fluorogenic and radiolabelled substrates are also important tools for many applications, including screening for enzyme inhibitors. Strategies that give insight into the native substrate-specificity of enzymes that regulate SGCs (SiaT & NEU) are necessary to improve our understanding of the role of sialic acid metabolism in health and disease.
Collapse
Affiliation(s)
- Carmanah D Hunter
- Department of Chemistry, University of Alberta, Edmonton, Alberta, T6G 2G2, Canada
| | - Christopher W Cairo
- Department of Chemistry, University of Alberta, Edmonton, Alberta, T6G 2G2, Canada
| |
Collapse
|
2
|
Guan M, DeLiberto TJ, Feng A, Zhang J, Li T, Wang S, Li L, Killian ML, Praena B, Giri E, Deliberto ST, Hang J, Olivier A, Torchetti MK, Tao YJ, Parrish C, Wan XF. Neu5Gc binding loss of subtype H7 influenza A virus facilitates adaptation to gallinaceous poultry following transmission from waterbirds. J Virol 2024; 98:e0011924. [PMID: 39225467 PMCID: PMC11494897 DOI: 10.1128/jvi.00119-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Accepted: 07/10/2024] [Indexed: 09/04/2024] Open
Abstract
Between 2013 and 2018, the novel A/Anhui/1/2013 (AH/13)-lineage H7N9 virus caused at least five waves of outbreaks in humans, totaling 1,567 confirmed human cases in China. Surveillance data indicated a disproportionate distribution of poultry infected with this AH/13-lineage virus, and laboratory experiments demonstrated that this virus can efficiently spread among chickens but not among Pekin ducks. The underlying mechanism of this selective transmission remains unclear. In this study, we demonstrated the absence of Neu5Gc expression in chickens across all respiratory and gastrointestinal tissues. However, Neu5Gc expression varied among different duck species and even within the tissues of the same species. The AH/13-lineage viruses exclusively bind to acetylneuraminic acid (Neu5Ac), in contrast to wild waterbird H7 viruses that bind both Neu5Ac and N-glycolylneuraminic acid (Neu5Gc). The level of Neu5Gc expression influences H7 virus replication and facilitates adaptive mutations in these viruses. In summary, our findings highlight the critical role of Neu5Gc in affecting the host range and interspecies transmission dynamics of H7 viruses among avian species.IMPORTANCEMigratory waterfowl, gulls, and shorebirds are natural reservoirs for influenza A viruses (IAVs) that can occasionally spill over to domestic poultry, and ultimately humans. This study showed wild-type H7 IAVs from waterbirds initially bind to glycan receptors terminated with N-acetylneuraminic acid (Neu5Ac) or N-glycolylneuraminic acid (Neu5Gc). However, after enzootic transmission in chickens, the viruses exclusively bind to Neu5Ac. The absence of Neu5Gc expression in gallinaceous poultry, particularly chickens, exerts selective pressure, shaping IAV populations, and promoting the acquisition of adaptive amino acid substitutions in the hemagglutinin protein. This results in the loss of Neu5Gc binding and an increase in virus transmissibility in gallinaceous poultry, particularly chickens. Consequently, the transmission capability of these poultry-adapted H7 IAVs in wild water birds decreases. Timely intervention, such as stamping out, may help reduce virus adaptation to domestic chicken populations and lower the risk of enzootic outbreaks, including those caused by IAVs exhibiting high pathogenicity.
Collapse
Affiliation(s)
- Minhui Guan
- Center for Influenza and Emerging Infectious Diseases (CIEID), University of Missouri, Columbia, Missouri, USA
- Department of Molecular Microbiology and Immunology, School of Medicine, University of Missouri, Columbia, Missouri, USA
- Bond Life Sciences Center, University of Missouri, Columbia, Missouri, USA
| | - Thomas J. DeLiberto
- US Department of Agriculture Animal and Plant Health Inspection Service, Fort Collins, Colorado, USA
| | - Aijing Feng
- Center for Influenza and Emerging Infectious Diseases (CIEID), University of Missouri, Columbia, Missouri, USA
- Department of Molecular Microbiology and Immunology, School of Medicine, University of Missouri, Columbia, Missouri, USA
- Bond Life Sciences Center, University of Missouri, Columbia, Missouri, USA
| | - Jieze Zhang
- Department of Bioengineering, Rice University, Houston, Texas, USA
| | - Tao Li
- Viral Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, Maryland, USA
| | - Shuaishuai Wang
- Department of Chemistry and Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, Georgia, USA
| | - Lei Li
- Department of Chemistry and Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, Georgia, USA
| | - Mary Lea Killian
- National Veterinary Services Laboratories, Veterinary Services, U.S. Department of Agriculture, Ames, Iowa, USA
| | - Beatriz Praena
- Center for Influenza and Emerging Infectious Diseases (CIEID), University of Missouri, Columbia, Missouri, USA
- Department of Molecular Microbiology and Immunology, School of Medicine, University of Missouri, Columbia, Missouri, USA
- Bond Life Sciences Center, University of Missouri, Columbia, Missouri, USA
| | - Emily Giri
- Center for Influenza and Emerging Infectious Diseases (CIEID), University of Missouri, Columbia, Missouri, USA
- Department of Molecular Microbiology and Immunology, School of Medicine, University of Missouri, Columbia, Missouri, USA
- Bond Life Sciences Center, University of Missouri, Columbia, Missouri, USA
| | - Shelagh T. Deliberto
- US Department of Agriculture Animal and Plant Health Inspection Service, Fort Collins, Colorado, USA
| | - Jun Hang
- Viral Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, Maryland, USA
| | - Alicia Olivier
- Department of Pathobiology and Population Medicine, College of Veterinary Medicine, Mississippi State University, Mississippi State, Mississippi, USA
| | - Mia Kim Torchetti
- National Veterinary Services Laboratories, Veterinary Services, U.S. Department of Agriculture, Ames, Iowa, USA
| | - Yizhi Jane Tao
- Department of BioSciences, Rice University, Houston, Texas, USA
| | - Colin Parrish
- Department of Microbiology and Immunology, College of Veterinary Medicine, Baker Institute for Animal Health, Cornell University, Ithaca, New York, USA
| | - Xiu-Feng Wan
- Center for Influenza and Emerging Infectious Diseases (CIEID), University of Missouri, Columbia, Missouri, USA
- Department of Molecular Microbiology and Immunology, School of Medicine, University of Missouri, Columbia, Missouri, USA
- Bond Life Sciences Center, University of Missouri, Columbia, Missouri, USA
- Department of Electrical Engineering and Computer Science, College of Engineering, University of Missouri, Columbia, Missouri, USA
| |
Collapse
|
3
|
Zhang Q, Lasanajak Y, Song X. Oxidative Release of Natural Glycans: Unraveling the Mechanism for Rapid N-Glycan Glycomics Analysis. Anal Chem 2024; 96:16750-16757. [PMID: 39387489 PMCID: PMC11503514 DOI: 10.1021/acs.analchem.4c03246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 09/27/2024] [Accepted: 09/29/2024] [Indexed: 10/15/2024]
Abstract
N-glycosylation is a critical post-translational modification involved in various biosynthetic pathways and disease mechanisms. In this study, we present an optimized oxidative release of natural glycans (ORNG) method using household bleach that enables the rapid and efficient release of N-glycans from biological samples. We thoroughly investigated the ORNG mechanism, identifying key intermediates and side products and providing valuable insights into the oxidative release process. The method is highly efficient, releasing a wide range of N-glycans, including high-mannose, hybrid, and complex structures, with minimal sample processing. Our ORNG-based specific N-glycan profiling approach has demonstrated high sensitivity and efficiency, particularly in releasing N-glycans resistant to enzymatic digestion, such as core α3-fucosylated N-glycans from soy protein. Validation through mass spectrometry confirmed the method's ability to accurately profile N-glycans from complex biological samples, including human serum, with results comparable to traditional PNGase F digestion. The ORNG-based method's scalability, versatility, and use of low-cost reagents make it especially suited for large-scale glycomics studies. Furthermore, the mass spectrometry data revealed that the ORNG-based method achieves high sensitivity and specificity, positioning it as a robust alternative for comprehensive glycan profiling and functional studies. Our findings highlight ORNG's potential to advance N-glycomics, offering promising improvements in speed, efficiency, and breadth of glycan analysis.
Collapse
Affiliation(s)
- Qing Zhang
- Department
of Biochemistry, Emory University School
of Medicine, Atlanta, Georgia 30322, United States
| | - Yi Lasanajak
- Emory
Glycomics and Molecular Interactions Core, Emory University School of Medicine, Atlanta, Georgia 30322, United States
| | - Xuezheng Song
- Department
of Biochemistry, Emory University School
of Medicine, Atlanta, Georgia 30322, United States
- Emory
Glycomics and Molecular Interactions Core, Emory University School of Medicine, Atlanta, Georgia 30322, United States
| |
Collapse
|
4
|
Ma S, Gao J, Tian Y, Wen L. Recent progress in chemoenzymatic synthesis of human glycans. Org Biomol Chem 2024; 22:7767-7785. [PMID: 39246045 DOI: 10.1039/d4ob01006j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/10/2024]
Abstract
Glycan is an essential cell component that usually exists in either a free form or a glycoconjugated form. Glycosylation affects the regulatory function of glycoconjugates in health and disease development, indicating the key role of glycan in organisms. Because of the complexity and diversity of glycan structures, it is challenging to prepare structurally well-defined glycans, which hinders the investigation of biological functions at the molecular level. Chemoenzymatic synthesis is an attractive approach for preparing complex glycans, because it avoids tedious protecting group manipulations in chemical synthesis and ensures high regio- and stereo-selectivity of glucosides during glycan assembly. Herein, enzymes, such as glycosyltransferases (GTs) and glycosidases (GHs), and sugar donors involved in the chemoenzymatic synthesis of human glycans are initially discussed. Many state-of-the-art chemoenzymatic methodologies are subsequently displayed and summarized to illustrate the development of synthetic human glycans, for example, N- and O-linked glycans, human milk oligosaccharides, and glycosaminoglycans. Thus, we provide an overview of recent chemoenzymatic synthetic designs and applications for synthesizing complex human glycans, along with insights into the limitations and perspectives of the current methods.
Collapse
Affiliation(s)
- Shengzhou Ma
- Carbohydrate-Based Drug Research Center, State Key Laboratory of Chemical Biology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China.
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jinhua Gao
- Carbohydrate-Based Drug Research Center, State Key Laboratory of Chemical Biology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China.
| | - Yinping Tian
- Carbohydrate-Based Drug Research Center, State Key Laboratory of Chemical Biology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China.
| | - Liuqing Wen
- Carbohydrate-Based Drug Research Center, State Key Laboratory of Chemical Biology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China.
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
5
|
Zhu Q, Chaubard JL, Geng D, Shen J, Ban L, Cheung ST, Wei F, Liu Y, Sun H, Calderon A, Dong W, Qin W, Li T, Wen L, Wang PG, Sun S, Yi W, Hsieh-Wilson LC. Chemoenzymatic Labeling, Detection and Profiling of Core Fucosylation in Live Cells. J Am Chem Soc 2024; 146:26408-26415. [PMID: 39279393 DOI: 10.1021/jacs.4c09303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/18/2024]
Abstract
Core fucosylation, the attachment of an α-1,6-linked-fucose to the N-glycan core pentasaccharide, is an abundant protein modification that plays critical roles in various biological processes such as cell signaling, B cell development, antibody-dependent cellular cytotoxicity, and oncogenesis. However, the tools currently used to detect core fucosylation suffer from poor specificity, exhibiting cross-reactivity against all types of fucosylation. Herein we report the development of a new chemoenzymatic strategy for the rapid and selective detection of core fucosylated glycans. This approach employs a galactosyltransferase enzyme identified fromCaenorhabditis elegansthat specifically transfers an azido-appended galactose residue onto core fucose via a β-1,4 glycosidic linkage. We demonstrate that the approach exhibits superior specificity toward core fucose on a variety of complex N-glycans. The method enables detection of core fucosylated glycoproteins from complex cell lysates, as well as on live cell surfaces, and it can be integrated into a diagnostic platform to profile protein-specific core fucosylation levels. This chemoenzymatic labeling approach offers a new strategy for the identification of disease biomarkers and will allow researchers to further characterize the fundamental role of this important glycan in normal and disease physiology.
Collapse
Affiliation(s)
- Qiang Zhu
- College of Life Sciences, Zhejiang University, Hangzhou 310012, China
| | - Jean-Luc Chaubard
- Division of Chemistry and Chemical Engineering, California Institute of Technology, 1200 E. California Blvd, Pasadena, California 91125, United States
| | - Didi Geng
- College of Life Sciences, Zhejiang University, Hangzhou 310012, China
| | - Jiechen Shen
- College of Life Sciences, Northwest University, Xi'an 710069, China
| | - Lan Ban
- Division of Chemistry and Chemical Engineering, California Institute of Technology, 1200 E. California Blvd, Pasadena, California 91125, United States
| | - Sheldon T Cheung
- Division of Chemistry and Chemical Engineering, California Institute of Technology, 1200 E. California Blvd, Pasadena, California 91125, United States
| | - Fangyu Wei
- Carbohydrate-Based Drug Research Center, Shanghai Institute of Materia Medica, The Chinese Academy of Sciences, Shanghai 201203, China
| | - Yating Liu
- Carbohydrate-Based Drug Research Center, Shanghai Institute of Materia Medica, The Chinese Academy of Sciences, Shanghai 201203, China
| | - Haofan Sun
- State Key Laboratory of Proteomics, Beijing Institute of Lifeomics, National Center for Protein Sciences Beijing, Beijing 102206, China
| | - Angie Calderon
- Department of Pharmacology, School of Medicine, Southern University of Science and Technology Institution, Shenzhen, Guangdong 518055, China
| | - Wenbo Dong
- College of Life Sciences, Northwest University, Xi'an 710069, China
| | - Weijie Qin
- State Key Laboratory of Proteomics, Beijing Institute of Lifeomics, National Center for Protein Sciences Beijing, Beijing 102206, China
| | - Tiehai Li
- Carbohydrate-Based Drug Research Center, Shanghai Institute of Materia Medica, The Chinese Academy of Sciences, Shanghai 201203, China
| | - Liuqing Wen
- Carbohydrate-Based Drug Research Center, Shanghai Institute of Materia Medica, The Chinese Academy of Sciences, Shanghai 201203, China
| | - Peng George Wang
- Department of Pharmacology, School of Medicine, Southern University of Science and Technology Institution, Shenzhen, Guangdong 518055, China
| | - Shisheng Sun
- College of Life Sciences, Northwest University, Xi'an 710069, China
| | - Wen Yi
- College of Life Sciences, Zhejiang University, Hangzhou 310012, China
| | - Linda C Hsieh-Wilson
- Division of Chemistry and Chemical Engineering, California Institute of Technology, 1200 E. California Blvd, Pasadena, California 91125, United States
| |
Collapse
|
6
|
Kashiwagi GA, Petrosilli L, Escopy S, Lay L, Stine KJ, De Meo C, Demchenko AV. HPLC-Based Automated Synthesis and Purification of Carbohydrates. Chemistry 2024; 30:e202401214. [PMID: 38684455 PMCID: PMC11586687 DOI: 10.1002/chem.202401214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 04/28/2024] [Accepted: 04/29/2024] [Indexed: 05/02/2024]
Abstract
Reported herein is a new HPLC-based automated synthesizer (HPLC-A) capable of a temperature-controlled synthesis and purification of carbohydrates. The developed platform allows to perform various protecting group manipulations as well as the synthesis of O- and N-glycosides. A fully automated synthesis and purification was showcased in application to different carbohydrate derivatives including glycosides, oligosaccharides, glycopeptides, glycolipids, and nucleosides.
Collapse
Affiliation(s)
- Gustavo A Kashiwagi
- Department of Chemistry, Saint Louis University, 3501Laclede Ave, St. Louis, Missouri, 63103, USA
| | - Laura Petrosilli
- Department of Chemistry, Saint Louis University, 3501Laclede Ave, St. Louis, Missouri, 63103, USA
- Department of Chemistry, University of Milan, Via Golgi 19, Milan, 20133, Italy
| | - Samira Escopy
- Department of Chemistry, Saint Louis University, 3501Laclede Ave, St. Louis, Missouri, 63103, USA
- Department of Chemistry and Biochemistry, University of Missouri St. Louis, One University Boulevard, St. Louis, Missouri, 63121, USA
| | - Luigi Lay
- Department of Chemistry, University of Milan, Via Golgi 19, Milan, 20133, Italy
| | - Keith J Stine
- Department of Chemistry and Biochemistry, University of Missouri St. Louis, One University Boulevard, St. Louis, Missouri, 63121, USA
| | - Cristina De Meo
- Department of Chemistry, Southern Illinois University Edwardsville, 1 Hairpin Dr., Edwardsville, Illinois, 62025, USA
| | - Alexei V Demchenko
- Department of Chemistry, Saint Louis University, 3501Laclede Ave, St. Louis, Missouri, 63103, USA
| |
Collapse
|
7
|
Li Y, Li Y, Guo Y, Chen C, Yang L, Jiang Q, Ling P, Wang S, Li L, Fang J. Enzymatic modular synthesis of asymmetrically branched human milk oligosaccharides. Carbohydr Polym 2024; 333:121908. [PMID: 38494200 DOI: 10.1016/j.carbpol.2024.121908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 01/07/2024] [Accepted: 01/31/2024] [Indexed: 03/19/2024]
Abstract
Human milk oligosaccharides (HMOs) are intricate glycans that promote healthy growth of infants and have been incorporated into infant formula as food additives. Despite their importance, the limited availability of asymmetrically branched HMOs hinders the exploration of their structure and function relationships. Herein, we report an enzymatic modular strategy for the efficient synthesis of these HMOs. The key branching enzyme for the assembly of branched HMOs, human β1,6-N-acetylglucosaminyltransferase 2 (GCNT2), was successfully expressed in Pichia pastoris for the first time. Then, it was integrated with six other bacterial glycosyltransferases to establish seven glycosylation modules. Each module comprises a one-pot multi-enzyme (OPME) system for in-situ generation of costly sugar nucleotide donors, combined with a glycosyltransferase for specific glycosylation. This approach enabled the synthesis of 31 branched HMOs and 13 linear HMOs in a stepwise manner with well-programmed synthetic routes. The binding details of these HMOs with related glycan-binding proteins were subsequently elucidated using glycan microarray assays to provide insights into their biological functions. This comprehensive collection of synthetic HMOs not only serves as standards for HMOs structure identification in complex biological samples but also significantly enhances the fields of HMOs glycomics, opening new avenues for biomedical applications.
Collapse
Affiliation(s)
- Yinshuang Li
- National Glycoengineering Research Center and Shandong Key Laboratory of carbohydrate chemistry and Glycobiology, Shandong University, Qingdao, Shandong 266237, China
| | - Yi Li
- National Glycoengineering Research Center and Shandong Key Laboratory of carbohydrate chemistry and Glycobiology, Shandong University, Qingdao, Shandong 266237, China
| | - Yuxi Guo
- Department of Chemistry and Center for Diagnostics & Therapeutics, Georgia State University, Atlanta, GA 30303, United States of America
| | - Congcong Chen
- National Glycoengineering Research Center and Shandong Key Laboratory of carbohydrate chemistry and Glycobiology, Shandong University, Qingdao, Shandong 266237, China
| | - Lin Yang
- National Glycoengineering Research Center and Shandong Key Laboratory of carbohydrate chemistry and Glycobiology, Shandong University, Qingdao, Shandong 266237, China
| | - Qian Jiang
- National Glycoengineering Research Center and Shandong Key Laboratory of carbohydrate chemistry and Glycobiology, Shandong University, Qingdao, Shandong 266237, China
| | - Peixue Ling
- National Glycoengineering Research Center and Shandong Key Laboratory of carbohydrate chemistry and Glycobiology, Shandong University, Qingdao, Shandong 266237, China
| | - Shuaishuai Wang
- National Glycoengineering Research Center and Shandong Key Laboratory of carbohydrate chemistry and Glycobiology, Shandong University, Qingdao, Shandong 266237, China.
| | - Lei Li
- Department of Chemistry and Center for Diagnostics & Therapeutics, Georgia State University, Atlanta, GA 30303, United States of America.
| | - Junqiang Fang
- National Glycoengineering Research Center and Shandong Key Laboratory of carbohydrate chemistry and Glycobiology, Shandong University, Qingdao, Shandong 266237, China.
| |
Collapse
|
8
|
Wu Y, Bosman GP, Chapla D, Huang C, Moremen KW, de Vries RP, Boons GJ. A Biomimetic Synthetic Strategy Can Provide Keratan Sulfate I and II Oligosaccharides with Diverse Fucosylation and Sulfation Patterns. J Am Chem Soc 2024; 146:9230-9240. [PMID: 38494637 PMCID: PMC10996015 DOI: 10.1021/jacs.4c00363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 03/07/2024] [Accepted: 03/08/2024] [Indexed: 03/19/2024]
Abstract
Keratan sulfate (KS) is a proteoglycan that is widely expressed in the extracellular matrix of various tissue types, where it performs multiple biological functions. KS is the least understood proteoglycan, which in part is due to a lack of panels of well-defined KS oligosaccharides that are needed for structure-binding studies, as analytical standards, to examine substrate specificities of keratinases, and for drug development. Here, we report a biomimetic approach that makes it possible to install, in a regioselective manner, sulfates and fucosides on oligo-N-acetyllactosamine (LacNAc) chains to provide any structural element of KS by using specific enzyme modules. It is based on the observation that α1,3-fucosides, α2,6-sialosides and C-6 sulfation of galactose (Gal6S) are mutually exclusive and cannot occur on the same LacNAc moiety. As a result, the pattern of sulfation on galactosides can be controlled by installing α1,3-fucosides or α2,6-sialosides to temporarily block certain LacNAc moieties from sulfation by keratan sulfate galactose 6-sulfotransferase (CHST1). The patterns of α1,3-fucosylation and α2,6-sialylation can be controlled by exploiting the mutual exclusivity of these modifications, which in turn controls the sites of sulfation by CHST1. Late-stage treatment with a fucosidase or sialidase to remove blocking fucosides or sialosides provides selectively sulfated KS oligosaccharides. These treatments also unmasked specific galactosides for further modification by CHST1. To showcase the potential of the enzymatic strategy, we have prepared a range of poly-LacNAc derivatives having different patterns of fucosylation and sulfation and several N-glycans decorated by specific arrangements of sulfates.
Collapse
Affiliation(s)
- Yunfei Wu
- Department
of Chemical Biology and Drug Discovery, Utrecht Institute for Pharmaceutical
Sciences, and Bijvoet Center for Biomolecular Research, Utrecht University, Universiteitsweg 99, 3584 CG Utrecht, The Netherlands
| | - Gerlof P. Bosman
- Department
of Chemical Biology and Drug Discovery, Utrecht Institute for Pharmaceutical
Sciences, and Bijvoet Center for Biomolecular Research, Utrecht University, Universiteitsweg 99, 3584 CG Utrecht, The Netherlands
| | - Digantkumar Chapla
- Complex
Carbohydrate Research Center, University
of Georgia, 315 Riverbend Road, Athens, Georgia 30602, United States
| | - Chin Huang
- Complex
Carbohydrate Research Center, University
of Georgia, 315 Riverbend Road, Athens, Georgia 30602, United States
- Department
of Biochemistry and Molecular Biology, University
of Georgia, Athens, Georgia 30602, United States
| | - Kelley W. Moremen
- Complex
Carbohydrate Research Center, University
of Georgia, 315 Riverbend Road, Athens, Georgia 30602, United States
- Department
of Biochemistry and Molecular Biology, University
of Georgia, Athens, Georgia 30602, United States
| | - Robert P. de Vries
- Department
of Chemical Biology and Drug Discovery, Utrecht Institute for Pharmaceutical
Sciences, and Bijvoet Center for Biomolecular Research, Utrecht University, Universiteitsweg 99, 3584 CG Utrecht, The Netherlands
| | - Geert-Jan Boons
- Department
of Chemical Biology and Drug Discovery, Utrecht Institute for Pharmaceutical
Sciences, and Bijvoet Center for Biomolecular Research, Utrecht University, Universiteitsweg 99, 3584 CG Utrecht, The Netherlands
- Complex
Carbohydrate Research Center, University
of Georgia, 315 Riverbend Road, Athens, Georgia 30602, United States
- Department
of Chemistry, University of Georgia, Athens, Georgia 30602, United States
| |
Collapse
|
9
|
Hu ZF, Zhong K, Cao H. Recent advances in enzymatic and chemoenzymatic synthesis of N- and O-glycans. Curr Opin Chem Biol 2024; 78:102417. [PMID: 38141531 DOI: 10.1016/j.cbpa.2023.102417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 11/28/2023] [Accepted: 11/30/2023] [Indexed: 12/25/2023]
Abstract
Glycosylation is one of the most common post-translational modifications of proteins, which plays essential roles in regulating the biological functions of proteins. Efficient and versatile methods for the synthesis of homogeneous and well-defined N- and O-glycans remain an urgent need for biological studies and biomedical applications. Despite their structural complexity, tremendous progress has been made in the synthesis of N- and O-glycans in recent years. This review discusses some recent advances in the enzymatic and chemoenzymatic synthesis of N- and O-glycans.
Collapse
Affiliation(s)
- Zhi-Fei Hu
- Key Laboratory of Marine Drugs of Ministry of Education, Shandong Key Laboratory of Glycoscience and Glycotechnology, School of Medicine and Pharmacy, Ocean University of China, Qingdao, Shandong, 266003, China; Laboratory for Marine Drugs and Bioproducts, Laoshan Laboratory, Qingdao, Shandong, 266237, China
| | - Kan Zhong
- Key Laboratory of Marine Drugs of Ministry of Education, Shandong Key Laboratory of Glycoscience and Glycotechnology, School of Medicine and Pharmacy, Ocean University of China, Qingdao, Shandong, 266003, China; Laboratory for Marine Drugs and Bioproducts, Laoshan Laboratory, Qingdao, Shandong, 266237, China
| | - Hongzhi Cao
- Key Laboratory of Marine Drugs of Ministry of Education, Shandong Key Laboratory of Glycoscience and Glycotechnology, School of Medicine and Pharmacy, Ocean University of China, Qingdao, Shandong, 266003, China; Laboratory for Marine Drugs and Bioproducts, Laoshan Laboratory, Qingdao, Shandong, 266237, China.
| |
Collapse
|
10
|
Liu CC, Ye J, Cao H. Chemical Evolution of Enzyme-Catalyzed Glycosylation. Acc Chem Res 2024. [PMID: 38286791 DOI: 10.1021/acs.accounts.3c00754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2024]
Abstract
ConspectusThe limited availability of structurally well-defined diverse glycans remains a major obstacle for deciphering biological functions as well as biomedical applications of carbohydrates. Despite tremendous progress that has been made in past decades, the synthesis of structurally well-defined complex glycans still represents one of the most challenging topics in synthetic chemistry. Chemical synthesis of glycans is a time-consuming and labor-intensive process that requires elaborate planning and skilled personnel. In contrast, glycosyltransferase-catalyzed enzymatic synthesis provides a more efficient, convenient, low-cost, and sustainable alternative to affording diverse and complex glycans. However, the existing methods are still insufficient to fulfill the increasing demand for specific synthetic glycan libraries necessary for functional glycomics research. This is mainly attributed to the inherent character of the glycan biosynthetic pathway. In nature, there are too many glycosyltransferases involved in the in vivo glycan synthesis, but only a small number of them are available for in vitro enzymatic synthesis. For instance, humans have over 200 glycosyltransferases, but only a few of them could be produced from the conventional bacterial expression system, and most of these membrane-associated enzymes could be overexpressed only in eukaryotic cells. Moreover, the glycan biosynthetic pathway is a nontemplate-driven process, which eventually ends up with heterogeneous glycan product mixtures. Therefore, it is not a practical solution for the in vitro enzymatic synthesis of complex glycans by simply copying the glycan biosynthetic pathway.In the past decade, we have tried to develop a simplified and transformable approach to the enzymatic modular assembly of a human glycan library. Despite the structural complexity of human glycans, the glycoinformatic analysis based on the known glycan structure database and the human glycosyltransferase database indicates that there are approximately 56 disaccharide patterns present in the human glycome and only 16 disaccharide linkages are required to account for over 80% of the total disaccharide fragments, while 35 disaccharide linkages are sufficient to cover over 95% of all disaccharide fragments of human glycome. Regardless of the substrate specificity, if one glycosyltransferase could be used for the synthesis of all of the same glycosidic linkages in human glycome, it will require only a few dozen glycosyltransferases for the assembly of entire human glycans. According to the glycobioinformatics analysis results, we rationally designed about two dozen enzyme modules for the synthesis of over 20 common glycosidic linkages in human glycome, in which each enzyme module contains a glycosyltransferase and a group of enzymes for the in situ generation of a nucleotide-activated sugar donor. By sequential glycosylation using orchestrated enzyme modules, we have completed the synthesis of over 200 structurally well-defined complex human glycans including blood group antigens, O-mannosyl glycans, human milk oligosaccharides, and others. To overcome the product microheterogeneity problem of enzymatic synthesis in the nontemplate-driven glycan biosynthetic pathway, we developed several substrate engineering strategies to control or manipulate the outcome of glycosyltransferase-catalyzed reactions for the precise synthesis of structurally well-defined isomeric complex glycans.
Collapse
Affiliation(s)
- Chang-Cheng Liu
- National Glycoengineering Research Center, NMPA Key Laboratory for Quality Research and Evaluation of Carbohydrate-Based Medicine, and Shandong Key Laboratory of Carbohydrate Chemistry and Glycobiology, Shandong University, Qingdao 266237, China
| | - Jinfeng Ye
- National Glycoengineering Research Center, NMPA Key Laboratory for Quality Research and Evaluation of Carbohydrate-Based Medicine, and Shandong Key Laboratory of Carbohydrate Chemistry and Glycobiology, Shandong University, Qingdao 266237, China
| | - Hongzhi Cao
- Key Laboratory of Marine Drugs of Ministry of Education, Shandong Key Laboratory of Glycoscience and Glycotechnology, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
- Laboratory for Marine Drugs and Bioproducts, Laoshan Laboratory, Qingdao 266237, China
| |
Collapse
|
11
|
Sletten ET, Fittolani G, Hribernik N, Dal Colle MCS, Seeberger PH, Delbianco M. Phosphates as Assisting Groups in Glycan Synthesis. ACS CENTRAL SCIENCE 2024; 10:138-142. [PMID: 38292611 PMCID: PMC10823511 DOI: 10.1021/acscentsci.3c00896] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 11/28/2023] [Accepted: 11/30/2023] [Indexed: 02/01/2024]
Abstract
In nature, phosphates are added to and cleaved from molecules to direct biological pathways. The concept was adapted to overcome limitations in the chemical synthesis of complex oligosaccharides. Phosphates were chemically placed on synthetic glycans to ensure site-specific enzymatic elongation by sialylation. In addition, the deliberate placement of phosphates helped to solubilize and isolate aggregating glycans. Upon traceless removal of the phosphates by enzymatic treatment with alkaline phosphatase, the native glycan structure was revealed, and the assembly of glycan nanostructures was triggered.
Collapse
Affiliation(s)
- Eric T. Sletten
- Department
of Biomolecular Systems, Max Planck Institute
of Colloids and Interfaces, Am Mühlenberg 1, 14476 Potsdam, Germany
| | - Giulio Fittolani
- Department
of Biomolecular Systems, Max Planck Institute
of Colloids and Interfaces, Am Mühlenberg 1, 14476 Potsdam, Germany
| | - Nives Hribernik
- Department
of Biomolecular Systems, Max Planck Institute
of Colloids and Interfaces, Am Mühlenberg 1, 14476 Potsdam, Germany
| | - Marlene C. S. Dal Colle
- Department
of Biomolecular Systems, Max Planck Institute
of Colloids and Interfaces, Am Mühlenberg 1, 14476 Potsdam, Germany
- Department
of Chemistry and Biochemistry, Freie Universität
Berlin, Arnimallee 22, 14195 Berlin, Germany
| | - Peter H. Seeberger
- Department
of Biomolecular Systems, Max Planck Institute
of Colloids and Interfaces, Am Mühlenberg 1, 14476 Potsdam, Germany
- Department
of Chemistry and Biochemistry, Freie Universität
Berlin, Arnimallee 22, 14195 Berlin, Germany
| | - Martina Delbianco
- Department
of Biomolecular Systems, Max Planck Institute
of Colloids and Interfaces, Am Mühlenberg 1, 14476 Potsdam, Germany
| |
Collapse
|
12
|
Guan M, Deliberto TJ, Feng A, Zhang J, Li T, Wang S, Li L, Killian ML, Praena B, Giri E, Deliberto ST, Hang J, Olivier A, Torchetti MK, Tao YJ, Parrish C, Wan XF. Neu5Gc binding loss of subtype H7 influenza A virus facilitates adaptation to gallinaceous poultry following transmission from waterbirds but restricts spillback. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.02.573990. [PMID: 38260375 PMCID: PMC10802348 DOI: 10.1101/2024.01.02.573990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
Migratory waterfowl, gulls, and shorebirds serve as natural reservoirs for influenza A viruses, with potential spillovers to domestic poultry and humans. The intricacies of interspecies adaptation among avian species, particularly from wild birds to domestic poultry, are not fully elucidated. In this study, we investigated the molecular mechanisms underlying avian species barriers in H7 transmission, particularly the factors responsible for the disproportionate distribution of poultry infected with A/Anhui/1/2013 (AH/13)-lineage H7N9 viruses. We hypothesized that the differential expression of N-glycolylneuraminic acid (Neu5Gc) among avian species exerts selective pressure on H7 viruses, shaping their evolution and enabling them to replicate and transmit efficiently among gallinaceous poultry, particularly chickens. Our glycan microarray and biolayer interferometry experiments showed that AH/13-lineage H7N9 viruses exclusively bind to Neu5Ac, in contrast to wild waterbird H7 viruses that bind both Neu5Ac and Neu5Gc. Significantly, reverting the V179 amino acid in AH/13-lineage back to the I179, predominantly found in wild waterbirds, expanded the binding affinity of AH/13-lineage H7 viruses from exclusively Neu5Ac to both Neu5Ac and Neu5Gc. When cultivating H7 viruses in cell lines with varied Neu5Gc levels, we observed that Neu5Gc expression impairs the replication of Neu5Ac-specific H7 viruses and facilitates adaptive mutations. Conversely, Neu5Gc deficiency triggers adaptive changes in H7 viruses capable of binding to both Neu5Ac and Neu5Gc. Additionally, we assessed Neu5Gc expression in the respiratory and gastrointestinal tissues of seven avian species, including chickens, Canada geese, and various dabbling ducks. Neu5Gc was absent in chicken and Canada goose, but its expression varied in the duck species. In summary, our findings reveal the crucial role of Neu5Gc in shaping the host range and interspecies transmission of H7 viruses. This understanding of virus-host interactions is crucial for developing strategies to manage and prevent influenza virus outbreaks in diverse avian populations.
Collapse
Affiliation(s)
- Minhui Guan
- Center for Influenza and Emerging Infectious Diseases (CIEID), University of Missouri, Columbia, MO, USA
- Department of Molecular Microbiology and Immunology, School of Medicine, University of Missouri, Columbia, MO 65212
- Bond Life Sciences Center, University of Missouri, Columbia, MO, USA
| | - Thomas J. Deliberto
- US Department of Agriculture Animal and Plant Health Inspection Service, Fort Collins, Colorado, USA
| | - Aijing Feng
- Center for Influenza and Emerging Infectious Diseases (CIEID), University of Missouri, Columbia, MO, USA
- Department of Molecular Microbiology and Immunology, School of Medicine, University of Missouri, Columbia, MO 65212
- Bond Life Sciences Center, University of Missouri, Columbia, MO, USA
| | - Jieze Zhang
- Department of Bioengineering, Rice University, Houston, TX, 77030 USA
| | - Tao Li
- Viral Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, Maryland, USA
| | - Shuaishuai Wang
- Department of Chemistry and Center for Diagnostics & Therapeutics, Georgia State University, Atlanta, Georgia, USA
| | - Lei Li
- Department of Chemistry and Center for Diagnostics & Therapeutics, Georgia State University, Atlanta, Georgia, USA
| | - Mary Lea Killian
- National Veterinary Services Laboratories, Veterinary Services, U.S. Department of Agriculture, Ames, Iowa, USA
| | - Beatriz Praena
- Center for Influenza and Emerging Infectious Diseases (CIEID), University of Missouri, Columbia, MO, USA
- Department of Molecular Microbiology and Immunology, School of Medicine, University of Missouri, Columbia, MO 65212
- Bond Life Sciences Center, University of Missouri, Columbia, MO, USA
| | - Emily Giri
- Center for Influenza and Emerging Infectious Diseases (CIEID), University of Missouri, Columbia, MO, USA
- Department of Molecular Microbiology and Immunology, School of Medicine, University of Missouri, Columbia, MO 65212
- Bond Life Sciences Center, University of Missouri, Columbia, MO, USA
| | - Shelagh T Deliberto
- US Department of Agriculture Animal and Plant Health Inspection Service, Fort Collins, Colorado, USA
| | - Jun Hang
- Viral Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, Maryland, USA
| | - Alicia Olivier
- Department of Pathobiology and Population Medicine, College of Veterinary Medicine, Mississippi State University, Mississippi State, Mississippi, USA
| | - Mia Kim Torchetti
- National Veterinary Services Laboratories, Veterinary Services, U.S. Department of Agriculture, Ames, Iowa, USA
| | - Yizhi Jane Tao
- Department of BioSciences, Rice University, Houston, TX 77251, USA
| | - Colin Parrish
- Department of Microbiology and Immunology, College of Veterinary Medicine, Baker Institute for Animal Health, Cornell University, Ithaca, NY, USA
| | - Xiu-Feng Wan
- Center for Influenza and Emerging Infectious Diseases (CIEID), University of Missouri, Columbia, MO, USA
- Department of Molecular Microbiology and Immunology, School of Medicine, University of Missouri, Columbia, MO 65212
- Bond Life Sciences Center, University of Missouri, Columbia, MO, USA
- Department of Electrical Engineering & Computer Science, College of Engineering, University of Missouri, Columbia, MO, USA
| |
Collapse
|
13
|
Kofsky JM, Babulic JL, Boddington ME, De León González FV, Capicciotti CJ. Glycosyltransferases as versatile tools to study the biology of glycans. Glycobiology 2023; 33:888-910. [PMID: 37956415 DOI: 10.1093/glycob/cwad092] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 11/05/2023] [Accepted: 11/06/2023] [Indexed: 11/15/2023] Open
Abstract
All cells are decorated with complex carbohydrate structures called glycans that serve as ligands for glycan-binding proteins (GBPs) to mediate a wide range of biological processes. Understanding the specific functions of glycans is key to advancing an understanding of human health and disease. However, the lack of convenient and accessible tools to study glycan-based interactions has been a defining challenge in glycobiology. Thus, the development of chemical and biochemical strategies to address these limitations has been a rapidly growing area of research. In this review, we describe the use of glycosyltransferases (GTs) as versatile tools to facilitate a greater understanding of the biological roles of glycans. We highlight key examples of how GTs have streamlined the preparation of well-defined complex glycan structures through chemoenzymatic synthesis, with an emphasis on synthetic strategies allowing for site- and branch-specific display of glyco-epitopes. We also describe how GTs have facilitated expansion of glyco-engineering strategies, on both glycoproteins and cell surfaces. Coupled with advancements in bioorthogonal chemistry, GTs have enabled selective glyco-epitope editing of glycoproteins and cells, selective glycan subclass labeling, and the introduction of novel biomolecule functionalities onto cells, including defined oligosaccharides, antibodies, and other proteins. Collectively, these approaches have contributed great insight into the fundamental biological roles of glycans and are enabling their application in drug development and cellular therapies, leaving the field poised for rapid expansion.
Collapse
Affiliation(s)
- Joshua M Kofsky
- Department of Chemistry, Queen's University, 90 Bader Lane, Kingston, ON K7L 3N6, Canada
| | - Jonathan L Babulic
- Department of Biomedical and Molecular Sciences, Queen's University, 18 Stuart Street, Kingston, ON K7L 2V7, Canada
| | - Marie E Boddington
- Department of Biomedical and Molecular Sciences, Queen's University, 18 Stuart Street, Kingston, ON K7L 2V7, Canada
| | | | - Chantelle J Capicciotti
- Department of Chemistry, Queen's University, 90 Bader Lane, Kingston, ON K7L 3N6, Canada
- Department of Biomedical and Molecular Sciences, Queen's University, 18 Stuart Street, Kingston, ON K7L 2V7, Canada
- Department of Surgery, Queen's University, 76 Stuart Street, Kingston, ON K7L 2V7, Canada
| |
Collapse
|
14
|
Ramírez AS, Locher KP. Structural and mechanistic studies of the N-glycosylation machinery: from lipid-linked oligosaccharide biosynthesis to glycan transfer. Glycobiology 2023; 33:861-872. [PMID: 37399117 PMCID: PMC10859629 DOI: 10.1093/glycob/cwad053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 06/26/2023] [Accepted: 06/27/2023] [Indexed: 07/05/2023] Open
Abstract
N-linked protein glycosylation is a post-translational modification that exists in all domains of life. It involves two consecutive steps: (i) biosynthesis of a lipid-linked oligosaccharide (LLO), and (ii) glycan transfer from the LLO to asparagine residues in secretory proteins, which is catalyzed by the integral membrane enzyme oligosaccharyltransferase (OST). In the last decade, structural and functional studies of the N-glycosylation machinery have increased our mechanistic understanding of the pathway. The structures of bacterial and eukaryotic glycosyltransferases involved in LLO elongation provided an insight into the mechanism of LLO biosynthesis, whereas structures of OST enzymes revealed the molecular basis of sequon recognition and catalysis. In this review, we will discuss approaches used and insight obtained from these studies with a special emphasis on the design and preparation of substrate analogs.
Collapse
Affiliation(s)
- Ana S Ramírez
- Institute of Molecular Biology and Biophysics, Eidgenössische Technische Hochschule (ETH), Zürich 8093, Switzerland
| | - Kaspar P Locher
- Institute of Molecular Biology and Biophysics, Eidgenössische Technische Hochschule (ETH), Zürich 8093, Switzerland
| |
Collapse
|
15
|
Fukase K, Manabe Y, Shimoyama A. Diacetyl strategy for synthesis of NHAc containing glycans: enhancing glycosylation reactivity via diacetyl imide protection. Front Chem 2023; 11:1319883. [PMID: 38116104 PMCID: PMC10728286 DOI: 10.3389/fchem.2023.1319883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 11/21/2023] [Indexed: 12/21/2023] Open
Abstract
The presence of NHAc groups in the substrates (both glycosyl donors and acceptors) significantly reduced the reactivity of glycosylation. This decrease was attributed to the NHAc groups forming intermolecular hydrogen bonds by the NHAc groups, thereby reducing molecular mobility. Hence, a diacetyl strategy involving the temporary conversion of NHAc to diacetyl imide (NAc2) was developed for the synthesis of NHAc-containing glycans. This strategy has two significant advantages for oligosaccharide synthesis. The NAc2 protection of NHAc substantially enhances the rate of glycosylation reactions, resulting in improved yields. Moreover, NAc2 can be readily reverted to NHAc by the simple removal of one acetyl group under mild basic conditions, obviating the necessity for treating the polar amino group. We have achieved the efficient synthesis of oligosaccharides containing GlcNHAc and N-glycans containing sialic acid using the diacetyl strategy.
Collapse
Affiliation(s)
- Koichi Fukase
- Department of Chemistry, Graduate School of Science, Osaka University, Osaka, Japan
- Forefront Research Center, Graduate School of Science, Osaka University, Osaka, Japan
| | - Yoshiyuki Manabe
- Department of Chemistry, Graduate School of Science, Osaka University, Osaka, Japan
- Forefront Research Center, Graduate School of Science, Osaka University, Osaka, Japan
| | - Atsushi Shimoyama
- Department of Chemistry, Graduate School of Science, Osaka University, Osaka, Japan
- Forefront Research Center, Graduate School of Science, Osaka University, Osaka, Japan
| |
Collapse
|
16
|
Ma W, Xu Z, Jiang Y, Liu J, Xu D, Huang W, Li T. Divergent Enzymatic Assembly of a Comprehensive 64-Membered IgG N-Glycan Library for Functional Glycomics. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2303832. [PMID: 37632720 PMCID: PMC10602528 DOI: 10.1002/advs.202303832] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 07/25/2023] [Indexed: 08/28/2023]
Abstract
N-Glycosylation, a main post-translational modification of Immunoglobulin G (IgG), plays a significant role in modulating the immune functions of IgG. However, the precise function elucidation of IgG N-glycosylation remains impeded due to the obstacles in obtaining comprehensive and well-defined N-glycans. Here, an easy-to-implement divergent approach is described to synthesize a 64-membered IgG N-glycan library covering all possible biantennary and bisected N-glycans by reprogramming biosynthetic assembly lines based on the inherent branch selectivity and substrate specificity of enzymes. The unique binding specificities of 64 N-glycans with different proteins are deciphered by glycan microarray technology. This unprecedented collection of synthetic IgG N-glycans can serve as standards for N-glycan structure identification in complex biological samples and the microarray data enrich N-glycan glycomics to facilitate biomedical applications.
Collapse
Affiliation(s)
- Wenjing Ma
- State Key Laboratory of Chemical Biology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zhuojia Xu
- State Key Laboratory of Chemical Biology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yuhan Jiang
- State Key Laboratory of Chemical Biology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Jialin Liu
- State Key Laboratory of Chemical Biology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Dandan Xu
- School of Pharmaceutical Science and Technology, Hangzhou Institute of Advanced Study, Hangzhou, 310024, China
| | - Wei Huang
- State Key Laboratory of Chemical Biology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
- School of Pharmaceutical Science and Technology, Hangzhou Institute of Advanced Study, Hangzhou, 310024, China
| | - Tiehai Li
- State Key Laboratory of Chemical Biology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
17
|
Tran PMH, Dong F, Kim E, Richardson KP, Tran LKH, Waugh K, Hopkins D, Cummings RD, Wang PG, Rewers MJ, She JX, Purohit S. Use of a glycomics array to establish the anti-carbohydrate antibody repertoire in type 1 diabetes. Nat Commun 2022; 13:6527. [PMID: 36316364 PMCID: PMC9622713 DOI: 10.1038/s41467-022-34341-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Accepted: 10/24/2022] [Indexed: 11/07/2022] Open
Abstract
Type 1 diabetes (T1D) is an autoimmune disease, characterized by the presence of autoantibodies to protein and non-protein antigens. Here we report the identification of specific anti-carbohydrate antibodies (ACAs) that are associated with pathogenesis and progression to T1D. We compare circulatory levels of ACAs against 202 glycans in a cross-sectional cohort of T1D patients (n = 278) and healthy controls (n = 298), as well as in a longitudinal cohort (n = 112). We identify 11 clusters of ACAs associated with glycan function class. Clusters enriched for aminoglycosides, blood group A and B antigens, glycolipids, ganglio-series, and O-linked glycans are associated with progression to T1D. ACAs against gentamicin and its related structures, G418 and sisomicin, are also associated with islet autoimmunity. ACAs improve discrimination of T1D status of individuals over a model with only clinical variables and are potential biomarkers for T1D.
Collapse
Affiliation(s)
- Paul M H Tran
- Center for Biotechnology and Genomic Medicine, Medical College of Georgia, Augusta University, 1120 15th Street, Augusta, GA, 30912, USA
- Department of Internal Medicine, Yale School of Medicine, New Haven, CT, CT06510, USA
| | - Fran Dong
- Barbara Davis Center for Diabetes, University of Colorado Denver, Mail Stop A-140, 1775 Aurora Court, Aurora, CO, 80045, USA
| | - Eileen Kim
- Center for Biotechnology and Genomic Medicine, Medical College of Georgia, Augusta University, 1120 15th Street, Augusta, GA, 30912, USA
| | - Katherine P Richardson
- Center for Biotechnology and Genomic Medicine, Medical College of Georgia, Augusta University, 1120 15th Street, Augusta, GA, 30912, USA
| | - Lynn K H Tran
- Center for Biotechnology and Genomic Medicine, Medical College of Georgia, Augusta University, 1120 15th Street, Augusta, GA, 30912, USA
| | - Kathleen Waugh
- Barbara Davis Center for Diabetes, University of Colorado Denver, Mail Stop A-140, 1775 Aurora Court, Aurora, CO, 80045, USA
| | - Diane Hopkins
- Center for Biotechnology and Genomic Medicine, Medical College of Georgia, Augusta University, 1120 15th Street, Augusta, GA, 30912, USA
| | - Richard D Cummings
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, 02115, USA
| | - Peng George Wang
- School of Medicine, Southern University of Science and Technology, Shenzhen, 518055, Guangdong, China
| | - Marian J Rewers
- Barbara Davis Center for Diabetes, University of Colorado Denver, Mail Stop A-140, 1775 Aurora Court, Aurora, CO, 80045, USA
| | - Jin-Xiong She
- Center for Biotechnology and Genomic Medicine, Medical College of Georgia, Augusta University, 1120 15th Street, Augusta, GA, 30912, USA
| | - Sharad Purohit
- Center for Biotechnology and Genomic Medicine, Medical College of Georgia, Augusta University, 1120 15th Street, Augusta, GA, 30912, USA.
- Department of Obstetrics and Gynecology, Medical College of Georgia, Augusta University, 1120 15th Street, Augusta, GA, 30912, USA.
- Department of Undergraduate Health Professionals, College of Allied Health Sciences Augusta University, 1120 15th Street, Augusta, GA, 30912, USA.
| |
Collapse
|
18
|
Guan M, Olivier AK, Lu X, Epperson W, Zhang X, Zhong L, Waters K, Mamaliger N, Li L, Wen F, Tao YJ, DeLiberto TJ, Wan XF. The Sialyl Lewis X Glycan Receptor Facilitates Infection of Subtype H7 Avian Influenza A Viruses. J Virol 2022; 96:e0134422. [PMID: 36125302 PMCID: PMC9555156 DOI: 10.1128/jvi.01344-22] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Subtype H7 avian influenza A viruses (IAVs) are enzootic in wild aquatic birds and have caused sporadic spillovers into domestic poultry and humans. Here, we determined the distribution of fucosylated α2,3 sialoglycan (i.e., sialyl Lewis X [SLeX]) in chickens and five common dabbling duck species and the association between SLeX and cell/tissue/host tropisms of H7 IAVs. Receptor binding analyses showed that H7 IAVs bind to both α2,3-linked (SA2,3Gal) and α2,6-linked sialic acids (SA2,6Gal), but with a higher preference for SLeX; H7 IAVs replicated more efficiently in SLeX-overexpressed than SLeX-deficient MDCK cells. While chickens and all tested dabbling ducks expressed abundant SA2,3Gal and SA2,6Gal, SLeX was detected in both respiratory and gastrointestinal tissues of chickens and mallard ducks and in only the respiratory tissues of gadwall, green-wing teal, and northern shoveler but not in wood ducks. Viral-tissue binding assays showed that H7 IAVs bind to chicken colon crypt cells that express SLeX but fewer bind to mallard colon crypt cells, which do not express SLeX; H7 IAVs bind efficiently to epithelial cells of all tissues expressing SA2,3Gal. High viral replication was identified in both chickens and mallards infected with an H7 virus, regardless of SLeX expression, and viruses were detected in all cells to the same degree as viruses detected in the viral-tissue binding assays. In summary, this study suggests that SLeX facilitates infection of H7 viruses, but other types of SA2,3Gal glycan receptors shape the tissue/host tropisms of H7 IAVs. IMPORTANCE In addition to causing outbreaks in domestic poultry, subtype H7 IAVs can cause sporadic spillover infections in lower mammals and humans. In this study, we showed that SLeX expression varies among wild dabbling ducks. Although it facilitated virus binding and affected infection of H7 IAV in cells, SLeX expression is not the only determinant of viral replication at either the tissue or host level. This study suggested that access to heterologous SA2,3Gal glycan receptors, including fucosylated α2,3-linked sialoglycans, shape tissue and host tropism of H7 IAVs in aquatic wild birds.
Collapse
Affiliation(s)
- Minhui Guan
- Center for Influenza and Emerging Infectious Diseases (CIEID), University of Missouri, Columbia, Missouri, USA
- Department of Molecular Microbiology and Immunology, School of Medicine, University of Missouri, Columbia, Missouri, USA
- Bond Life Sciences Center, University of Missouri, Columbia, Missouri, USA
- Department of Basic Sciences, College of Veterinary Medicine, Mississippi State Universitygrid.260120.7, Starkville, Mississippi, USA
| | - Alicia K. Olivier
- Department of Pathobiology and Population Medicine, College of Veterinary Medicine, Mississippi State Universitygrid.260120.7, Starkville, Mississippi, USA
| | - Xiaotong Lu
- Department of BioSciences, Rice Universitygrid.21940.3e, Houston, Texas, USA
| | - William Epperson
- Department of Pathobiology and Population Medicine, College of Veterinary Medicine, Mississippi State Universitygrid.260120.7, Starkville, Mississippi, USA
| | - Xiaojian Zhang
- Center for Influenza and Emerging Infectious Diseases (CIEID), University of Missouri, Columbia, Missouri, USA
- Department of Molecular Microbiology and Immunology, School of Medicine, University of Missouri, Columbia, Missouri, USA
- Bond Life Sciences Center, University of Missouri, Columbia, Missouri, USA
| | - Lei Zhong
- Department of Basic Sciences, College of Veterinary Medicine, Mississippi State Universitygrid.260120.7, Starkville, Mississippi, USA
| | - Kaitlyn Waters
- Center for Influenza and Emerging Infectious Diseases (CIEID), University of Missouri, Columbia, Missouri, USA
- Department of Molecular Microbiology and Immunology, School of Medicine, University of Missouri, Columbia, Missouri, USA
- Bond Life Sciences Center, University of Missouri, Columbia, Missouri, USA
| | - Nataly Mamaliger
- Department of Pathobiology and Population Medicine, College of Veterinary Medicine, Mississippi State Universitygrid.260120.7, Starkville, Mississippi, USA
| | - Lei Li
- Department of Chemistry, Georgia State Universitygrid.256304.6, Atlanta, Georgia, USA
| | - Feng Wen
- Department of Basic Sciences, College of Veterinary Medicine, Mississippi State Universitygrid.260120.7, Starkville, Mississippi, USA
| | - Yizhi J. Tao
- Department of BioSciences, Rice Universitygrid.21940.3e, Houston, Texas, USA
| | - Thomas J. DeLiberto
- U.S. Department of Agriculture Animal and Plant Health Inspection Service, Wildlife Services, Fort Collins, Colorado, USA
| | - Xiu-Feng Wan
- Center for Influenza and Emerging Infectious Diseases (CIEID), University of Missouri, Columbia, Missouri, USA
- Department of Molecular Microbiology and Immunology, School of Medicine, University of Missouri, Columbia, Missouri, USA
- Bond Life Sciences Center, University of Missouri, Columbia, Missouri, USA
- Department of Basic Sciences, College of Veterinary Medicine, Mississippi State Universitygrid.260120.7, Starkville, Mississippi, USA
- Department of Electrical Engineering & Computer Science, College of Engineering, University of Missouri, Columbia, Missouri, USA
| |
Collapse
|
19
|
Anwar MT, Adak AK, Kawade SK, Wu HR, Angata T, Lin CC. Combining CuAAC reaction enables sialylated Bi- and triantennary pseudo mannose N-glycans for investigating Siglec-7 interactions. Bioorg Med Chem 2022; 67:116839. [PMID: 35640379 DOI: 10.1016/j.bmc.2022.116839] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Revised: 05/16/2022] [Accepted: 05/17/2022] [Indexed: 11/02/2022]
Abstract
Naturally occurring N-glycans display much diversity in modifications, linkages, and peripheral presentation of the oligosaccharide chain. Despite continued advancements in oligosaccharide synthesis, synthetic access to these natural glycans remains challenging. Biologically relevant complex N-glycan mimetics with various natural and unnatural modifications are an alternate way for investigating glycan-protein interactions. Further supporting this pattern, we report here a new class of sialylated bi- and triantennary pseudo mannose N-glycans reproducing orientation of the underlying glycan chain and branching patterns and replacing the two inner mannopyranosyl units with 1,2,3-triazole rings. Such mimetics are straightforwardly generated by implementing multiple intermolecular Cu(I)-catalyzed azide-alkyne cycloaddition between chemoenzymatically synthesized azido sialosides and rationally designed C-3 and C-6 di-O- or C-2, C-3, and C-6 tri-O-alkynylated mannoside. Human recombinant Siglec-7-Fc fusion protein recognizes almost all sialylated pseudo mannose N-glycans in the microarray. However, a differential Sia-binding pattern was also observed. Given the library size, comparison of pairwise mannose N-glycan combinations showed that biantennary linear α(2,3)α(2,8)- and α(2,6)α(2,8)- or branched α(2,3)α(2,6)-, and triantennary branched α(2,3)α(2,6)-sialyl pseudo N-glycans possess similar binding capabilities and affinity to recombinant Siglec-7-Fc. While the full range of topological mannose arms remain elusive, the bi- and triantennary mimics are simpler structures for interrogating Siglec interactions.
Collapse
Affiliation(s)
| | - Avijit K Adak
- Department of Chemistry, National Tsing Hua University, Hsinchu 30044, Taiwan
| | - Sachin Kisan Kawade
- Department of Chemistry, National Tsing Hua University, Hsinchu 30044, Taiwan
| | - Hsin-Ru Wu
- Instrumentation Center, National Tsing Hua University, Hsinchu 30044, Taiwan
| | - Takashi Angata
- Institute of Biological Chemistry, Academia Sinica, Taipei 11529, Taiwan
| | - Chun-Cheng Lin
- Department of Chemistry, National Tsing Hua University, Hsinchu 30044, Taiwan; Department of Medicinal and Applied Chemistry, Kaohsiung Medical University, Kaohsiung 80708, Taiwan.
| |
Collapse
|
20
|
Escopy S, Singh Y, Stine KJ, Demchenko AV. HPLC-Based Automated Synthesis of Glycans in Solution. Chemistry 2022; 28:e202201180. [PMID: 35513346 PMCID: PMC9403992 DOI: 10.1002/chem.202201180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2022] [Indexed: 11/09/2022]
Abstract
As the 21st century unfolds with rapid changes, new challenges in research and development emerge. These new challenges prompted us to repurpose our HPLC-A platform that was previously used in solid phase glycan synthesis to a solution phase batch synthesis described herein. The modular character of HPLC allows for implementing new attachments. To enable sequential synthesis of multiple oligosaccharides with the single press of a button, we supplemented our system with a four-way split valve and an automated fraction collector. This enabled the operator to load all reagents and all reactants in the autosampler, press the button to start the repetitive automation sequence, leave the lab, and upon return find products of multiple reactions ready for purification, analysis, and subsequent application.
Collapse
Affiliation(s)
- Samira Escopy
- Department of Chemistry and Biochemistry, University of Missouri - St. Louis, One University Boulevard, St. Louis, Missouri, 63121, USA
- Department of Chemistry, Saint Louis University, 3501 Laclede Ave, St. Louis, Missouri, 63103, USA
| | - Yashapal Singh
- Department of Chemistry and Biochemistry, University of Missouri - St. Louis, One University Boulevard, St. Louis, Missouri, 63121, USA
| | - Keith J Stine
- Department of Chemistry and Biochemistry, University of Missouri - St. Louis, One University Boulevard, St. Louis, Missouri, 63121, USA
| | - Alexei V Demchenko
- Department of Chemistry and Biochemistry, University of Missouri - St. Louis, One University Boulevard, St. Louis, Missouri, 63121, USA
- Department of Chemistry, Saint Louis University, 3501 Laclede Ave, St. Louis, Missouri, 63103, USA
| |
Collapse
|
21
|
Silva J, Spiess R, Marchesi A, Flitsch SL, Gough JE, Webb SJ. Enzymatic elaboration of oxime-linked glycoconjugates in solution and on liposomes. J Mater Chem B 2022; 10:5016-5027. [PMID: 35723603 PMCID: PMC9258907 DOI: 10.1039/d2tb00714b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 06/11/2022] [Indexed: 11/21/2022]
Abstract
Oxime formation is a convenient one-step method for ligating reducing sugars to surfaces, producing a mixture of closed ring α- and β-anomers along with open-chain (E)- and (Z)-isomers. Here we show that despite existing as a mixture of isomers, N-acetylglucosamine (GlcNAc) oximes can still be substrates for β(1,4)-galactosyltransferase (β4GalT1). β4GalT1 catalysed the galactosylation of GlcNAc oximes by a galactose donor (UDP-Gal) both in solution and in situ on the surface of liposomes, with conversions up to 60% in solution and ca. 15-20% at the liposome surface. It is proposed that the β-anomer is consumed preferentially but long reaction times allow this isomer to be replenished by equilibration from the remaining isomers. Adding further enzymes gave more complex oligosaccharides, with a combination of α-1,3-fucosyltransferase, β4GalT1 and the corresponding sugar donors providing Lewis X coated liposomes. However, sialylation using T. cruzi trans-sialidase and sialyllactose provided only very small amounts of sialyl Lewis X (sLex) capped lipid. These observations show that combining oxime formation with enzymatic elaboration will be a useful method for the high-throughput surface modification of drug delivery vehicles, such as liposomes, with cell-targeting oligosaccharides.
Collapse
Affiliation(s)
- Joana Silva
- Department of Chemistry, University of Manchester, Oxford Road, Manchester M13 9PL, UK.
- Manchester Institute of Biotechnology, University of Manchester, 131 Princess St, Manchester M1 7DN, UK
| | - Reynard Spiess
- Manchester Institute of Biotechnology, University of Manchester, 131 Princess St, Manchester M1 7DN, UK
| | - Andrea Marchesi
- Department of Chemistry, University of Manchester, Oxford Road, Manchester M13 9PL, UK.
- Manchester Institute of Biotechnology, University of Manchester, 131 Princess St, Manchester M1 7DN, UK
| | - Sabine L Flitsch
- Department of Chemistry, University of Manchester, Oxford Road, Manchester M13 9PL, UK.
- Manchester Institute of Biotechnology, University of Manchester, 131 Princess St, Manchester M1 7DN, UK
| | - Julie E Gough
- Department of Materials and Henry Royce Institute, The University of Manchester, Manchester M13 9PL, UK
| | - Simon J Webb
- Department of Chemistry, University of Manchester, Oxford Road, Manchester M13 9PL, UK.
- Manchester Institute of Biotechnology, University of Manchester, 131 Princess St, Manchester M1 7DN, UK
| |
Collapse
|
22
|
Cao X, Wang S, Gadi MR, Liu D, Wang PG, Wan XF, Zhang J, Chen X, Pepi LE, Azadi P, Li L. Systematic synthesis of bisected N-glycans and unique recognitions by glycan-binding proteins. Chem Sci 2022; 13:7644-7656. [PMID: 35872821 PMCID: PMC9241959 DOI: 10.1039/d1sc05435j] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Accepted: 05/29/2022] [Indexed: 12/13/2022] Open
Abstract
Bisected N-glycans represent a unique class of protein N-glycans that play critical roles in many biological processes. Herein, we describe the systematic synthesis of these structures. A bisected N-glycan hexasaccharide was chemically assembled with two orthogonal protecting groups attached at the C2 of the branching mannose residues, followed by sequential installation of GlcNAc and LacNAc building blocks to afford two asymmetric bisecting "cores". Subsequent enzymatic modular extension of the "cores" yielded a comprehensive library of biantennary N-glycans containing the bisecting GlcNAc and presenting 6 common glycan determinants in a combinatorial fashion. These bisected N-glycans and their non-bisected counterparts were used to construct a distinctive glycan microarray to study their recognition by a wide variety of glycan-binding proteins (GBPs), including plant lectins, animal lectins, and influenza A virus hemagglutinins. Significantly, the bisecting GlcNAc could bestow (PHA-L, rDCIR2), enhance (PHA-E), or abolish (ConA, GNL, anti-CD15s antibody, etc.) N-glycan recognition of specific GBPs, and is tolerated by many others. In summary, synthesized compounds and the unique glycan microarray provide ideal standards and tools for glycoanalysis and functional glycomic studies. The microarray data provide new information regarding the fine details of N-glycan recognition by GBPs, and in turn improve their applications.
Collapse
Affiliation(s)
- Xuefeng Cao
- Department of Chemistry, Georgia State UniversityAtlantaGAUSA
| | - Shuaishuai Wang
- Department of Chemistry, Georgia State UniversityAtlantaGAUSA
| | | | - Ding Liu
- Department of Chemistry, Georgia State UniversityAtlantaGAUSA
| | - Peng G. Wang
- Department of Chemistry, Georgia State UniversityAtlantaGAUSA
| | - Xiu-Feng Wan
- MU Center for Research on Influenza Systems Biology (CRISB), University of MissouriColumbiaMOUSA,Department of Molecular Microbiology and Immunology, School of Medicine, University of MissouriColumbiaMOUSA,Bond Life Sciences Center, University of MissouriColumbiaMOUSA,Department of Electrical Engineering & Computer Science, College of Engineering, University of MissouriColumbiaMOUSA
| | | | - Xi Chen
- Department of Chemistry, University of CaliforniaOne Shields AvenueDavisCAUSA
| | - Lauren E. Pepi
- Complex Carbohydrate Research Center, University of GeorgiaAthensGAUSA
| | - Parastoo Azadi
- Complex Carbohydrate Research Center, University of GeorgiaAthensGAUSA
| | - Lei Li
- Department of Chemistry, Georgia State UniversityAtlantaGAUSA
| |
Collapse
|
23
|
Zhao X, Huang Y, Zhou S, Ao J, Cai H, Tanaka K, Ito Y, Ishiwata A, Ding F. Recent Chemical and Chemoenzymatic Strategies to Complex-Type N-Glycans. Front Chem 2022; 10:880128. [PMID: 35720985 PMCID: PMC9204336 DOI: 10.3389/fchem.2022.880128] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Accepted: 04/12/2022] [Indexed: 12/01/2022] Open
Abstract
Glycosylation is one of the major forms of protein post-translational modification. N-glycans attached to proteins by covalent bonds play an indispensable role in intercellular interaction and immune function. In human bodies, most of the cell surface glycoproteins and secreted glycopeptides are modified with complex-type N-glycans. Thus, for analytical or medicinal purposes, efficient and universal methods to provide homogeneous complex-type N-glycans have been an urgent need. Despite the extremely complicated structures, tremendous progress in the synthesis of N-glycans has been achieved. On one hand, chemical strategies are shown to be effective to prepare core oligosaccharides of N-glycans by focusing on stereoselective glycosylations such as β-mannosylation and α-sialylation, as well as the methodology of the N-glycan assembly. On the other hand, chemoenzymatic strategies have also become increasingly powerful in recent years. This review attempts to highlight the very recent advancements in chemical and chemoenzymatic strategies for eukaryotic complex-type N-glycans.
Collapse
Affiliation(s)
- Xiaoya Zhao
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen, China
| | - Yan Huang
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen, China
| | - Siai Zhou
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen, China
| | - Jiaming Ao
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen, China
| | - Hui Cai
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen, China
- *Correspondence: Hui Cai, ; Akihiro Ishiwata, ; Feiqing Ding,
| | - Katsunori Tanaka
- RIKEN Cluster for Pioneering Research, Saitama, Japan
- School of Materials and Chemical Technology, Tokyo Institute of Technology, Tokyo, Japan
- Alexander Butlerov Institute of Chemistry, Kazan Federal University, Kazan, Russian Federation
| | - Yukishige Ito
- RIKEN Cluster for Pioneering Research, Saitama, Japan
- Graduate School of Science, Osaka University, Osaka, Japan
| | - Akihiro Ishiwata
- RIKEN Cluster for Pioneering Research, Saitama, Japan
- *Correspondence: Hui Cai, ; Akihiro Ishiwata, ; Feiqing Ding,
| | - Feiqing Ding
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen, China
- *Correspondence: Hui Cai, ; Akihiro Ishiwata, ; Feiqing Ding,
| |
Collapse
|
24
|
Zhang Q, Wang S, Li Z, Lasanajak Y, Li L, Song X. Regeneration of Free Reducing Glycans from Reductive Amination-Tagged Glycans by Oxone. J Org Chem 2022; 87:3736-3740. [PMID: 35143205 DOI: 10.1021/acs.joc.1c02709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Glycans are usually fluorescently tagged by reductive amination for analytic tools. However, free reducing glycan regeneration is sometimes important and necessary for further structural or functional studies. Here, we introduce a new method for efficiently removing fluorescent tags from glycoconjugates by a simple treatment with Oxone. This method is proven to be fast and general after being tested on a series of common saccharides and widely used tags. We successfully achieved N-glycopeptide synthesis by using the regenerated glycans.
Collapse
Affiliation(s)
- Qing Zhang
- Department of Biochemistry, Emory University School of Medicine, Atlanta, Georgia 30322, United States
| | - Shuaishuai Wang
- Department of Chemistry, Georgia State University, Atlanta, Georgia 30302, United States
| | - Zhonghua Li
- Department of Biochemistry, Emory University School of Medicine, Atlanta, Georgia 30322, United States
| | - Yi Lasanajak
- Emory Glycomics and Molecular Interactions Core, Emory University School of Medicine, Atlanta, Georgia 30322, United States
| | - Lei Li
- Department of Chemistry, Georgia State University, Atlanta, Georgia 30302, United States
| | - Xuezheng Song
- Department of Biochemistry, Emory University School of Medicine, Atlanta, Georgia 30322, United States.,Emory Glycomics and Molecular Interactions Core, Emory University School of Medicine, Atlanta, Georgia 30322, United States
| |
Collapse
|
25
|
Shirakawa A, Manabe Y, Marchetti R, Yano K, Masui S, Silipo A, Molinaro A, Fukase K. Chemical Synthesis of Sialyl
N
‐Glycans and Analysis of Their Recognition by Neuraminidase. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202111035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Asuka Shirakawa
- Department of Chemistry Graduate School of Science Osaka University 1-1 Machikaneyama, Toyonaka Osaka 560-0043 Japan
| | - Yoshiyuki Manabe
- Department of Chemistry Graduate School of Science Osaka University 1-1 Machikaneyama, Toyonaka Osaka 560-0043 Japan
- Core for Medicine and Science Collaborative Research and Education Project Research Center for Fundamental Sciences Graduate School of Science Osaka University 1-1 Machikaneyama, Toyonaka Osaka 560-0043 Japan
| | - Roberta Marchetti
- Department of Chemical Science University of Naples Federico II Via Cinthia 4 80126 Naples Italy
| | - Kumpei Yano
- Department of Chemistry Graduate School of Science Osaka University 1-1 Machikaneyama, Toyonaka Osaka 560-0043 Japan
| | - Seiji Masui
- Department of Chemistry Graduate School of Science Osaka University 1-1 Machikaneyama, Toyonaka Osaka 560-0043 Japan
| | - Alba Silipo
- Department of Chemistry Graduate School of Science Osaka University 1-1 Machikaneyama, Toyonaka Osaka 560-0043 Japan
- Department of Chemical Science University of Naples Federico II Via Cinthia 4 80126 Naples Italy
| | - Antonio Molinaro
- Department of Chemistry Graduate School of Science Osaka University 1-1 Machikaneyama, Toyonaka Osaka 560-0043 Japan
- Department of Chemical Science University of Naples Federico II Via Cinthia 4 80126 Naples Italy
| | - Koichi Fukase
- Department of Chemistry Graduate School of Science Osaka University 1-1 Machikaneyama, Toyonaka Osaka 560-0043 Japan
- Core for Medicine and Science Collaborative Research and Education Project Research Center for Fundamental Sciences Graduate School of Science Osaka University 1-1 Machikaneyama, Toyonaka Osaka 560-0043 Japan
| |
Collapse
|
26
|
Shirakawa A, Manabe Y, Marchetti R, Yano K, Masui S, Silipo A, Molinaro A, Fukase K. Chemical Synthesis of Sialyl N-Glycans and Analysis of Their Recognition by Neuraminidase. Angew Chem Int Ed Engl 2021; 60:24686-24693. [PMID: 34520098 DOI: 10.1002/anie.202111035] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Indexed: 11/07/2022]
Abstract
The chemical synthesis of a fully sialylated tetraantennary N-glycan has been achieved for the first time by using the diacetyl strategy, in which NHAc is protected as NAc2 to improve reactivity by preventing intermolecular hydrogen bonds. Another key was the glycosylation to the branched mannose in an ether solvent, which promoted the desired glycosylation by stabilizing the oxocarbenium ion intermediate. Furthermore, high α-selectivity of these glycosylation reactions was realized by utilizing remote participation. Two asymmetrically deuterium labeled sialyl N-glycans were also synthesized by the same strategy. The synthesized N-glycans were used to probe the molecular basis of H1N1 neuraminidase recognition. The asymmetrically deuterated N-glycans revealed a difference in the recognition of sialic acid on each branch. Meanwhile, the tetraantennary N-glycan was used to evaluate the effects of multivalency and steric hinderance by forming branching structures.
Collapse
Affiliation(s)
- Asuka Shirakawa
- Department of Chemistry, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka, 560-0043, Japan
| | - Yoshiyuki Manabe
- Department of Chemistry, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka, 560-0043, Japan.,Core for Medicine and Science Collaborative Research and Education, Project Research Center for Fundamental Sciences, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka, 560-0043, Japan
| | - Roberta Marchetti
- Department of Chemical Science, University of Naples Federico II, Via Cinthia 4, 80126, Naples, Italy
| | - Kumpei Yano
- Department of Chemistry, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka, 560-0043, Japan
| | - Seiji Masui
- Department of Chemistry, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka, 560-0043, Japan
| | - Alba Silipo
- Department of Chemistry, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka, 560-0043, Japan.,Department of Chemical Science, University of Naples Federico II, Via Cinthia 4, 80126, Naples, Italy
| | - Antonio Molinaro
- Department of Chemistry, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka, 560-0043, Japan.,Department of Chemical Science, University of Naples Federico II, Via Cinthia 4, 80126, Naples, Italy
| | - Koichi Fukase
- Department of Chemistry, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka, 560-0043, Japan.,Core for Medicine and Science Collaborative Research and Education, Project Research Center for Fundamental Sciences, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka, 560-0043, Japan
| |
Collapse
|
27
|
Liu M, Qin X, Ye XS. Glycan Assembly Strategy: From Concept to Application. CHEM REC 2021; 21:3256-3277. [PMID: 34498347 DOI: 10.1002/tcr.202100183] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 08/30/2021] [Indexed: 12/11/2022]
Abstract
Glycans have been hot topics in recent years due to their exhibition of numerous biological activities. However, the heterogeneity of their natural source and the complexity of their chemical synthesis impede the progress in their biological research. Thus, the development of glycan assembly strategies to acquire plenty of structurally well-defined glycans is an important issue in carbohydrate chemistry. In this review, the latest advances in glycan assembly strategies from concepts to their applications in carbohydrate synthesis, including chemical and enzymatic/chemo-enzymatic approaches, as well as solution-phase and solid-phase/tag-assisted synthesis, are summarized. Furthermore, the automated glycan assembly techniques are also outlined.
Collapse
Affiliation(s)
- Mingli Liu
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Xue Yuan Road No. 38, Beijing, 100191, China
| | - Xianjin Qin
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Xue Yuan Road No. 38, Beijing, 100191, China
| | - Xin-Shan Ye
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Xue Yuan Road No. 38, Beijing, 100191, China
| |
Collapse
|
28
|
Dyukova I, Ben Faleh A, Warnke S, Yalovenko N, Yatsyna V, Bansal P, Rizzo TR. A new approach for identifying positional isomers of glycans cleaved from monoclonal antibodies. Analyst 2021; 146:4789-4795. [PMID: 34231555 PMCID: PMC8311261 DOI: 10.1039/d1an00780g] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Accepted: 06/29/2021] [Indexed: 12/15/2022]
Abstract
Glycosylation patterns in monoclonal antibodies (mAbs) can vary significantly between different host cell types, and these differences may affect mAbs safety, efficacy, and immunogenicity. Recent studies have demonstrated that glycan isomers with the terminal galactose position on either the Man α1-3 arm or the Man α1-6 arm have an impact on the effector functions and dynamic structure of mAbs. The development of a robust method to distinguish positional isomers of glycans is thus critical to guarantee mAb quality. In this work, we apply high-resolution ion mobility combined with cryogenic infrared spectroscopy to distinguish isomeric glycans with different terminal galactose positions, using G1F as an example. Selective enzymatic synthesis of the G1(α1-6)F isomer allows us to assign the peaks in the arrival-time distributions and the infrared spectra to their respective isomeric forms. Moreover, we demonstrate the impact of the host cell line (CHO and HEK-293) on the IgG G1F gycan profile at the isomer level. This work illustrates the potential of our approach for glycan analysis of mAbs.
Collapse
Affiliation(s)
- Irina Dyukova
- Laboratoire de Chimie Physique Moléculaire, École Polytechnique Fédérale de Lausanne, EPFL SB ISIC LCPMStation 6CH-1015 LausanneSwitzerland
| | - Ahmed Ben Faleh
- Laboratoire de Chimie Physique Moléculaire, École Polytechnique Fédérale de Lausanne, EPFL SB ISIC LCPMStation 6CH-1015 LausanneSwitzerland
| | - Stephan Warnke
- Laboratoire de Chimie Physique Moléculaire, École Polytechnique Fédérale de Lausanne, EPFL SB ISIC LCPMStation 6CH-1015 LausanneSwitzerland
| | - Natalia Yalovenko
- Laboratoire de Chimie Physique Moléculaire, École Polytechnique Fédérale de Lausanne, EPFL SB ISIC LCPMStation 6CH-1015 LausanneSwitzerland
| | - Vasyl Yatsyna
- Laboratoire de Chimie Physique Moléculaire, École Polytechnique Fédérale de Lausanne, EPFL SB ISIC LCPMStation 6CH-1015 LausanneSwitzerland
- University of Gothenburg, Department of Physics412 96 GothenburgSweden
| | - Priyanka Bansal
- Laboratoire de Chimie Physique Moléculaire, École Polytechnique Fédérale de Lausanne, EPFL SB ISIC LCPMStation 6CH-1015 LausanneSwitzerland
| | - Thomas R. Rizzo
- Laboratoire de Chimie Physique Moléculaire, École Polytechnique Fédérale de Lausanne, EPFL SB ISIC LCPMStation 6CH-1015 LausanneSwitzerland
| |
Collapse
|
29
|
Comparative studies on the substrate specificity and defucosylation activity of three α-l-fucosidases using synthetic fucosylated glycopeptides and glycoproteins as substrates. Bioorg Med Chem 2021; 42:116243. [PMID: 34126284 DOI: 10.1016/j.bmc.2021.116243] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Revised: 05/24/2021] [Accepted: 05/25/2021] [Indexed: 11/24/2022]
Abstract
Core fucosylation is the attachment of an α-1,6-fucose moiety to the innermost N-acetyl glucosamine (GlcNAc) in N-glycans in mammalian systems. It plays a pivotal role in modulating the structural and biological functions of glycoproteins including therapeutic antibodies. Yet, few α-l-fucosidases appear to be capable of removing core fucose from intact glycoproteins. This paper describes a comparative study of the substrate specificity and relative activity of the human α-l-fucosidase (FucA1) and two bacterial α-l-fucosidases, the AlfC from Lactobacillus casei and the BfFuc from Bacteroides fragilis. This study was enabled by the synthesis of an array of structurally well-defined core-fucosylated substrates, including core-fucosylated N-glycopeptides and a few antibody glycoforms. It was found that AlfC and BfFuc could not remove core fucose from intact full-length N-glycopeptides or N-glycoproteins but could hydrolyze only the truncated Fucα1,6GlcNAc-peptide substrates. In contrast, the human α-l-fucosidase (FucA1) showed low activity on truncated Fucα1,6GlcNAc substrates but was able to remove core fucose from intact and full-length core-fucosylated N-glycopeptides and N-glycoproteins. In addition, it was found that FucA1 was the only α-l-fucosidase that showed low but apparent activity to remove core fucose from intact IgG antibodies. The ability of FucA1 to defucosylate intact monoclonal antibodies reveals an opportunity to evolve the human α-l-fucosidase for direct enzymatic defucosylation of therapeutic antibodies to improve their antibody-dependent cellular cytotoxicity.
Collapse
|
30
|
Xu Z, Deng Y, Zhang Z, Ma W, Li W, Wen L, Li T. Diversity-Oriented Chemoenzymatic Synthesis of Sulfated and Nonsulfated Core 2 O-GalNAc Glycans. J Org Chem 2021; 86:10819-10828. [PMID: 34254798 DOI: 10.1021/acs.joc.1c01115] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
A diversity-oriented chemoenzymatic approach for the collective preparation of sulfated core 2 O-GalNAc glycans and their nonsulfated counterparts was described. A sulfated trisaccharide and a nonsulfated trisaccharide were chemically synthesized by combining flexible protected group manipulations and sequential one-pot glycosylations. The divergent enzymatic extension of these two trisaccharides, using a panel of robust glycosyltransferases that can recognize sulfated substrates and differentiating the branches with specifically designed glycosylation sequences to achieve regioselective sialylation, provided 36 structurally well-defined O-GalNAc glycans.
Collapse
Affiliation(s)
- Zhuojia Xu
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yaqi Deng
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Zhumin Zhang
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Wenjing Ma
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wanjin Li
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Liuqing Wen
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Tiehai Li
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China.,State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin 300350, China
| |
Collapse
|
31
|
Manabe Y. Chemical Biology Study on N-glycans. TRENDS GLYCOSCI GLYC 2021. [DOI: 10.4052/tigg.2109.2j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Affiliation(s)
- Yoshiyuki Manabe
- Department of Chemistry, Graduate School of Science, Osaka University
- Core for Medicine and Science Collaborative Research and Education, Project Research Center for Fundamental Sciences, Osaka University
| |
Collapse
|
32
|
Manabe Y. Chemical Biology Study on N-glycans. TRENDS GLYCOSCI GLYC 2021. [DOI: 10.4052/tigg.2109.2e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Affiliation(s)
- Yoshiyuki Manabe
- Department of Chemistry, Graduate School of Science, Osaka University
- Core for Medicine and Science Collaborative Research and Education, Project Research Center for Fundamental Sciences, Osaka University
| |
Collapse
|
33
|
Wang S, Chen C, Guan M, Liu D, Wan XF, Li L. Terminal Epitope-Dependent Branch Preference of Siglecs Toward N-Glycans. Front Mol Biosci 2021; 8:645999. [PMID: 33996901 PMCID: PMC8116747 DOI: 10.3389/fmolb.2021.645999] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Accepted: 02/18/2021] [Indexed: 12/21/2022] Open
Abstract
Siglecs are sialic acid–binding immunoglobulin-like lectins that play vital roles in immune cell signaling. Siglecs help the immune system distinguish between self and nonself through the recognition of glycan ligands. While the primary binding specificities of Siglecs are known to be divergent, their specificities for complex glycans remain unclear. Herein, we determined N-glycan binding profiles of a set of Siglecs by using a complex asymmetric N-glycan microarray. Our results showed that Siglecs had unique terminal epitope-dependent branch preference when recognizing asymmetric N-glycans. Specifically, human Siglec-3, -9, and -10 prefer the α1-3 branch when Siaα2-6Galβ1-4GlcNAc terminal epitope serves as the binding ligand but prefer the opposite α1-6 branch when Siaα2-3Galβ1-4GlcNAc epitope serves as the ligand. Interestingly, Siglec-10 exhibited dramatic binding divergence toward a pair of Neu5Ac-containing asymmetric N-glycan isomers, as well as their Neu5Gc-containing counterparts. This new information on complex glycan recognition by Siglecs provides insights into their biological roles and applications.
Collapse
Affiliation(s)
- Shuaishuai Wang
- Department of Chemistry, Georgia State University, Atlanta, GA, United States
| | - Congcong Chen
- Department of Chemistry, Georgia State University, Atlanta, GA, United States
| | - Minhui Guan
- MU Center for Influenza and Emerging Infectious Diseases, University of Missouri, Columbia, MO, United States.,Department of Molecular Microbiology and Immunology, School of Medicine, University of Missouri, Columbia, MO, United States.,Bond Life Sciences Center, University of Missouri, Columbia, MO, United States
| | - Ding Liu
- Department of Chemistry, Georgia State University, Atlanta, GA, United States
| | - Xiu-Feng Wan
- MU Center for Influenza and Emerging Infectious Diseases, University of Missouri, Columbia, MO, United States.,Department of Molecular Microbiology and Immunology, School of Medicine, University of Missouri, Columbia, MO, United States.,Bond Life Sciences Center, University of Missouri, Columbia, MO, United States.,Department of Electrical Engineering and Computer Science, College of Engineering, University of Missouri, Columbia, MO, United States
| | - Lei Li
- Department of Chemistry, Georgia State University, Atlanta, GA, United States
| |
Collapse
|
34
|
Wang S, Liu D, Qu J, Zhu H, Chen C, Gibbons C, Greenway H, Wang P, Bollag RJ, Liu K, Li L. Streamlined Subclass-Specific Absolute Quantification of Serum IgG Glycopeptides Using Synthetic Isotope-Labeled Standards. Anal Chem 2021; 93:4449-4455. [PMID: 33630567 PMCID: PMC8715724 DOI: 10.1021/acs.analchem.0c04462] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Absolute glycoproteomics quantification has drawn tremendous attention owing to its prospects in biomarker discovery and clinical implementation but is impeded by a general lack of suitable heavy isotope-labeled glycopeptide standards. In this study, we devised a facile chemoenzymatic strategy to synthesize a total of 36 human IgG glycopeptides attached with well-defined glycoforms, including 15 isotope-labeled ones with a mass increment of 6 Da to their native counterparts. Spiking of these standards into human sera enabled simplified, robust, and precise absolute quantification of IgG glycopeptides in a subclass-specific fashion. Additionally, the implementation of the absolute quantification approach revealed subclass-dependent alteration of serum IgG galactosylation and sialylation in colon cancer samples.
Collapse
Affiliation(s)
- Shuaishuai Wang
- Department of Chemistry, Georgia State University, Atlanta, Georgia 30303, United States
| | - Ding Liu
- Department of Chemistry, Georgia State University, Atlanta, Georgia 30303, United States
| | - Jingyao Qu
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, Shandong, China
| | - He Zhu
- Department of Chemistry, Georgia State University, Atlanta, Georgia 30303, United States
| | - Congcong Chen
- Department of Chemistry, Georgia State University, Atlanta, Georgia 30303, United States
| | - Christopher Gibbons
- Department of Chemistry, Georgia State University, Atlanta, Georgia 30303, United States
| | - Harmon Greenway
- Department of Chemistry, Georgia State University, Atlanta, Georgia 30303, United States
| | - Peng Wang
- Department of Chemistry, Georgia State University, Atlanta, Georgia 30303, United States
| | - Roni J Bollag
- Department of Pathology, Augusta University, Augusta, Georgia 30912, United States
| | - Kebin Liu
- Department of Biochemistry and Molecular Biology, Augusta University, Augusta, Georgia 30912, United States
| | - Lei Li
- Department of Chemistry, Georgia State University, Atlanta, Georgia 30303, United States
| |
Collapse
|
35
|
Shirakawa A, Manabe Y, Fukase K. Recent Advances in the Chemical Biology of N-Glycans. Molecules 2021; 26:molecules26041040. [PMID: 33669465 PMCID: PMC7920464 DOI: 10.3390/molecules26041040] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 02/08/2021] [Accepted: 02/14/2021] [Indexed: 12/19/2022] Open
Abstract
Asparagine-linked N-glycans on proteins have diverse structures, and their functions vary according to their structures. In recent years, it has become possible to obtain high quantities of N-glycans via isolation and chemical/enzymatic/chemoenzymatic synthesis. This has allowed for progress in the elucidation of N-glycan functions at the molecular level. Interaction analyses with lectins by glycan arrays or nuclear magnetic resonance (NMR) using various N-glycans have revealed the molecular basis for the recognition of complex structures of N-glycans. Preparation of proteins modified with homogeneous N-glycans revealed the influence of N-glycan modifications on protein functions. Furthermore, N-glycans have potential applications in drug development. This review discusses recent advances in the chemical biology of N-glycans.
Collapse
Affiliation(s)
- Asuka Shirakawa
- Department of Chemistry, Graduate School of Science, Osaka University, 1-1 Machikaneyama-cho, Toyonaka, Osaka 560-0043, Japan;
| | - Yoshiyuki Manabe
- Department of Chemistry, Graduate School of Science, Osaka University, 1-1 Machikaneyama-cho, Toyonaka, Osaka 560-0043, Japan;
- Core for Medicine and Science Collaborative Research and Education, Project Research Center for Fundamental Sciences, Osaka University, 1-1 Machikaneyama-cho, Toyonaka, Osaka 560-0043, Japan
- Correspondence: (Y.M.); (K.F.); Tel.: +81-6-6850-5391 (Y.M.); +81-6-6850-5388 (K.F.)
| | - Koichi Fukase
- Department of Chemistry, Graduate School of Science, Osaka University, 1-1 Machikaneyama-cho, Toyonaka, Osaka 560-0043, Japan;
- Core for Medicine and Science Collaborative Research and Education, Project Research Center for Fundamental Sciences, Osaka University, 1-1 Machikaneyama-cho, Toyonaka, Osaka 560-0043, Japan
- Correspondence: (Y.M.); (K.F.); Tel.: +81-6-6850-5391 (Y.M.); +81-6-6850-5388 (K.F.)
| |
Collapse
|
36
|
Zhao L, Ma Z, Yin J, Shi G, Ding Z. Biological strategies for oligo/polysaccharide synthesis: biocatalyst and microbial cell factory. Carbohydr Polym 2021; 258:117695. [PMID: 33593568 DOI: 10.1016/j.carbpol.2021.117695] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2020] [Revised: 01/20/2021] [Accepted: 01/20/2021] [Indexed: 12/21/2022]
Abstract
Oligosaccharides and polysaccharides constitute the principal components of carbohydrates, which are important biomacromolecules that demonstrate considerable bioactivities. However, the variety and structural complexity of oligo/polysaccharides represent a major challenge for biological and structural explorations. To access structurally defined oligo/polysaccharides, biological strategies using glycoenzyme biocatalysts have shown remarkable synthetic potential attributed to their regioselectivity and stereoselectivity that allow mild, structurally controlled reaction without addition of protecting groups necessary in chemical strategies. This review summarizes recent biotechnological approaches of oligo/polysaccharide synthesis, which mainly includes in vitro enzymatic synthesis and cell factory synthesis. We have discussed the important factors involved in the production of nucleotide sugars. Furthermore, the strategies established in the cell factory and enzymatic syntheses are summarized, and we have highlighted concepts like metabolic flux rebuilding and regulation, enzyme engineering, and route design as important strategies. The research challenges and prospects are also outlined and discussed.
Collapse
Affiliation(s)
- Liting Zhao
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, China; National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, Wuxi, 214122, China.
| | - Zhongbao Ma
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, China; National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, Wuxi, 214122, China.
| | - Jian Yin
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, China.
| | - Guiyang Shi
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, China; National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, Wuxi, 214122, China; Jiangsu Provincial Research Center for Bioactive Product Processing Technology, Jiangnan University, Wuxi, 214122, China.
| | - Zhongyang Ding
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, China; National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, Wuxi, 214122, China; Jiangsu Provincial Research Center for Bioactive Product Processing Technology, Jiangnan University, Wuxi, 214122, China.
| |
Collapse
|
37
|
Boruah BM, Kadirvelraj R, Liu L, Ramiah A, Li C, Zong G, Bosman GP, Yang JY, Wang LX, Boons GJ, Wood ZA, Moremen KW. Characterizing human α-1,6-fucosyltransferase (FUT8) substrate specificity and structural similarities with related fucosyltransferases. J Biol Chem 2020; 295:17027-17045. [PMID: 33004438 PMCID: PMC7863877 DOI: 10.1074/jbc.ra120.014625] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 09/28/2020] [Indexed: 12/18/2022] Open
Abstract
Mammalian Asn-linked glycans are extensively processed as they transit the secretory pathway to generate diverse glycans on cell surface and secreted glycoproteins. Additional modification of the glycan core by α-1,6-fucose addition to the innermost GlcNAc residue (core fucosylation) is catalyzed by an α-1,6-fucosyltransferase (FUT8). The importance of core fucosylation can be seen in the complex pathological phenotypes of FUT8 null mice, which display defects in cellular signaling, development, and subsequent neonatal lethality. Elevated core fucosylation has also been identified in several human cancers. However, the structural basis for FUT8 substrate specificity remains unknown.Here, using various crystal structures of FUT8 in complex with a donor substrate analog, and with four distinct glycan acceptors, we identify the molecular basis for FUT8 specificity and activity. The ordering of three active site loops corresponds to an increased occupancy for bound GDP, suggesting an induced-fit folding of the donor-binding subsite. Structures of the various acceptor complexes were compared with kinetic data on FUT8 active site mutants and with specificity data from a library of glycan acceptors to reveal how binding site complementarity and steric hindrance can tune substrate affinity. The FUT8 structure was also compared with other known fucosyltransferases to identify conserved and divergent structural features for donor and acceptor recognition and catalysis. These data provide insights into the evolution of modular templates for donor and acceptor recognition among GT-B fold glycosyltransferases in the synthesis of diverse glycan structures in biological systems.
Collapse
Affiliation(s)
- Bhargavi M Boruah
- Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia, USA
| | - Renuka Kadirvelraj
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, Georgia, USA
| | - Lin Liu
- Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia, USA
| | - Annapoorani Ramiah
- Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia, USA
| | - Chao Li
- Department of Chemistry and Biochemistry, University of Maryland, College Park, Maryland, USA
| | - Guanghui Zong
- Department of Chemistry and Biochemistry, University of Maryland, College Park, Maryland, USA
| | - Gerlof P Bosman
- Department of Chemical Biology and Drug Discovery, Utrecht Institute for Pharmaceutical Sciences, and Utrecht Institute for Pharmaceutical Sciences, Utrecht, The Netherlands
| | - Jeong-Yeh Yang
- Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia, USA
| | - Lai-Xi Wang
- Department of Chemistry and Biochemistry, University of Maryland, College Park, Maryland, USA
| | - Geert-Jan Boons
- Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia, USA; Department of Chemical Biology and Drug Discovery, Utrecht Institute for Pharmaceutical Sciences, and Utrecht Institute for Pharmaceutical Sciences, Utrecht, The Netherlands
| | - Zachary A Wood
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, Georgia, USA.
| | - Kelley W Moremen
- Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia, USA; Department of Biochemistry and Molecular Biology, University of Georgia, Athens, Georgia, USA.
| |
Collapse
|
38
|
Bacterial sialyltransferases and their use in biocatalytic cascades for sialo-oligosaccharide production. Biotechnol Adv 2020; 44:107613. [DOI: 10.1016/j.biotechadv.2020.107613] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2020] [Revised: 08/13/2020] [Accepted: 08/13/2020] [Indexed: 12/17/2022]
|
39
|
Pawar S, Hsu L, Narendar Reddy T, Ravinder M, Ren CT, Lin YW, Cheng YY, Lin TW, Hsu TL, Wang SK, Wong CH, Wu CY. Synthesis of Asymmetric N-Glycans as Common Core Substrates for Structural Diversification through Selective Enzymatic Glycosylation. ACS Chem Biol 2020; 15:2382-2394. [PMID: 32830946 DOI: 10.1021/acschembio.0c00359] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
N-glycans on the cell surface provide distinct signatures that are recognized by different glycan-binding proteins (GBPs) and pathogens. Most glycans in humans are asymmetric and isomeric, yet their biological functions are not well understood due to their lack of availability for studies. In this work, we have developed an improved strategy for asymmetric N-glycan assembly and diversification using designed common core substrates prepared chemically for selective enzymatic fucosylation and sialylation. The resulting 26 well-defined glycans that carry the sialic acid residue on different antennae were used in a microarray as a representative application to profile the binding specificity of hemagglutinin (HA) from the avian influenza virus (H5N2). We found distinct binding affinity for the Neu5Ac-Gal epitope linked to the N-acetylglucosamine (GlcNAc) of different branches and only a minor effect in binding for the terminal galactose on different branches. Overall, the microarray analysis showed branch-biased and context-based recognition patterns.
Collapse
Affiliation(s)
- Sujeet Pawar
- Genomics Research Center, Academia Sinica, No. 128, Academia Road, Section 2, Nankang District, Taipei, 11529 Taiwan
- Chemical Biology and Molecular Biophysics, Taiwan International Graduate Program, Academia Sinica, Taipei, Taiwan
- Department of Chemistry, National Tsing Hua University, No. 101, Section 2, Kuang-Fu Road, Hsinchu, Taiwan
| | - Li Hsu
- Genomics Research Center, Academia Sinica, No. 128, Academia Road, Section 2, Nankang District, Taipei, 11529 Taiwan
- Department of Chemistry, National Taiwan University, Taipei, 106 Taiwan
| | - Thatikonda Narendar Reddy
- Genomics Research Center, Academia Sinica, No. 128, Academia Road, Section 2, Nankang District, Taipei, 11529 Taiwan
| | - Mettu Ravinder
- Genomics Research Center, Academia Sinica, No. 128, Academia Road, Section 2, Nankang District, Taipei, 11529 Taiwan
| | - Chien-Tai Ren
- Genomics Research Center, Academia Sinica, No. 128, Academia Road, Section 2, Nankang District, Taipei, 11529 Taiwan
| | - Yu-Wei Lin
- Genomics Research Center, Academia Sinica, No. 128, Academia Road, Section 2, Nankang District, Taipei, 11529 Taiwan
| | - Yang-Yu Cheng
- Genomics Research Center, Academia Sinica, No. 128, Academia Road, Section 2, Nankang District, Taipei, 11529 Taiwan
| | - Tzu-Wen Lin
- Genomics Research Center, Academia Sinica, No. 128, Academia Road, Section 2, Nankang District, Taipei, 11529 Taiwan
| | - Tsui-Ling Hsu
- Genomics Research Center, Academia Sinica, No. 128, Academia Road, Section 2, Nankang District, Taipei, 11529 Taiwan
| | - Sheng-Kai Wang
- Department of Chemistry, National Tsing Hua University, No. 101, Section 2, Kuang-Fu Road, Hsinchu, Taiwan
| | - Chi-Huey Wong
- Genomics Research Center, Academia Sinica, No. 128, Academia Road, Section 2, Nankang District, Taipei, 11529 Taiwan
- Department of Chemistry, The Scripps Research Institute, 10550 N. Torrey Pines Rd., La Jolla, California 92037, United States
| | - Chung-Yi Wu
- Genomics Research Center, Academia Sinica, No. 128, Academia Road, Section 2, Nankang District, Taipei, 11529 Taiwan
- Chemical Biology and Molecular Biophysics, Taiwan International Graduate Program, Academia Sinica, Taipei, Taiwan
| |
Collapse
|
40
|
Jaroentomeechai T, Taw MN, Li M, Aquino A, Agashe N, Chung S, Jewett MC, DeLisa MP. Cell-Free Synthetic Glycobiology: Designing and Engineering Glycomolecules Outside of Living Cells. Front Chem 2020; 8:645. [PMID: 32850660 PMCID: PMC7403607 DOI: 10.3389/fchem.2020.00645] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Accepted: 06/22/2020] [Indexed: 12/12/2022] Open
Abstract
Glycans and glycosylated biomolecules are directly involved in almost every biological process as well as the etiology of most major diseases. Hence, glycoscience knowledge is essential to efforts aimed at addressing fundamental challenges in understanding and improving human health, protecting the environment and enhancing energy security, and developing renewable and sustainable resources that can serve as the source of next-generation materials. While much progress has been made, there remains an urgent need for new tools that can overexpress structurally uniform glycans and glycoconjugates in the quantities needed for characterization and that can be used to mechanistically dissect the enzymatic reactions and multi-enzyme assembly lines that promote their construction. To address this technology gap, cell-free synthetic glycobiology has emerged as a simplified and highly modular framework to investigate, prototype, and engineer pathways for glycan biosynthesis and biomolecule glycosylation outside the confines of living cells. From nucleotide sugars to complex glycoproteins, we summarize here recent efforts that harness the power of cell-free approaches to design, build, test, and utilize glyco-enzyme reaction networks that produce desired glycomolecules in a predictable and controllable manner. We also highlight novel cell-free methods for shedding light on poorly understood aspects of diverse glycosylation processes and engineering these processes toward desired outcomes. Taken together, cell-free synthetic glycobiology represents a promising set of tools and techniques for accelerating basic glycoscience research (e.g., deciphering the "glycan code") and its application (e.g., biomanufacturing high-value glycomolecules on demand).
Collapse
Affiliation(s)
- Thapakorn Jaroentomeechai
- Robert Frederick Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, NY, United States
| | - May N. Taw
- Robert Frederick Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, NY, United States
| | - Mingji Li
- Robert Frederick Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, NY, United States
| | - Alicia Aquino
- Robert Frederick Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, NY, United States
| | - Ninad Agashe
- Robert Frederick Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, NY, United States
| | - Sean Chung
- Graduate Field of Biochemistry, Molecular and Cell Biology, Cornell University, Ithaca, NY, United States
| | - Michael C. Jewett
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, IL, United States
- Center for Synthetic Biology, Northwestern University, Evanston, IL, United States
- Chemistry of Life Processes Institute, Northwestern University, Evanston, IL, United States
| | - Matthew P. DeLisa
- Robert Frederick Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, NY, United States
- Graduate Field of Biochemistry, Molecular and Cell Biology, Cornell University, Ithaca, NY, United States
| |
Collapse
|
41
|
Purification of natural neutral N-glycans by using two-dimensional hydrophilic interaction liquid chromatography × porous graphitized carbon chromatography for glycan-microarray assay. Talanta 2020; 221:121382. [PMID: 33076051 DOI: 10.1016/j.talanta.2020.121382] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Revised: 06/06/2020] [Accepted: 07/05/2020] [Indexed: 12/28/2022]
Abstract
Glycan microarray for studying carbohydrate-protein interactions requires diverse classes of well-defined glycan standards. In this study, a purification strategy was established based on two-dimensional hydrophilic interaction liquid chromatography and porous graphitized carbon chromatography (HILIC × PGC) for the acquisition of neutral N-glycan standards from natural source. A total of thirty-one N-glycan compounds including seven pairs of isomers with the amounts from 0.7 to 230.0 nmol were isolated from ovalbumin as the model glycoconjugate. The purified N-glycans covered high-mannose, hybrid as well as multi-antenna asymmetric complex types. The purity of majority of these N-glycans was higher than 90%. Detailed structures of the N-glycan compounds were verified via negative ion tandem MS analysis, in which specific diagnostic ions including D- and E-ions were used to identify isomeric and terminal fine structures. The tag-free glycan compounds with well-defined structures, purity and amounts were finally assembled on the glass slide through neoglycolipid technology. Microarray binding assay of purified glycans with WGA lectin indicated the potential of the established strategy in glycan library expansion and functional glycomics.
Collapse
|
42
|
Zhang Q, Li Z, Song X. Preparation of Complex Glycans From Natural Sources for Functional Study. Front Chem 2020; 8:508. [PMID: 32719769 PMCID: PMC7348041 DOI: 10.3389/fchem.2020.00508] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Accepted: 05/18/2020] [Indexed: 01/03/2023] Open
Abstract
One major barrier in glycoscience is the lack of diverse and biomedically relevant complex glycans in sufficient quantities for functional study. Complex glycans from natural sources serve as an important source of these glycans and an alternative to challenging chemoenzymatic synthesis. This review discusses preparation of complex glycans from several classes of glycoconjugates using both enzymatic and chemical release approaches. Novel technologies have been developed to advance the large-scale preparation of complex glycans from natural sources. We also highlight recent approaches and methods developed in functional and fluorescent tagging and high-performance liquid chromatography (HPLC) isolation of released glycans.
Collapse
Affiliation(s)
- Qing Zhang
- Department of Biochemistry, Emory Comprehensive Glycomics Core, Emory University School of Medicine, Atlanta, GA, United States
| | - Zhonghua Li
- Department of Biochemistry, Emory Comprehensive Glycomics Core, Emory University School of Medicine, Atlanta, GA, United States
| | - Xuezheng Song
- Department of Biochemistry, Emory Comprehensive Glycomics Core, Emory University School of Medicine, Atlanta, GA, United States
| |
Collapse
|
43
|
Chao Q, Ding Y, Chen ZH, Xiang MH, Wang N, Gao XD. Recent Progress in Chemo-Enzymatic Methods for the Synthesis of N-Glycans. Front Chem 2020; 8:513. [PMID: 32612979 PMCID: PMC7309569 DOI: 10.3389/fchem.2020.00513] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Accepted: 05/18/2020] [Indexed: 01/06/2023] Open
Abstract
Asparagine (N)-linked glycosylation is one of the most common co- and post-translational modifications of both intra- and extracellularly distributing proteins, which directly affects their biological functions, such as protein folding, stability and intercellular traffic. Production of the structural well-defined homogeneous N-glycans contributes to comprehensive investigation of their biological roles and molecular basis. Among the various methods, chemo-enzymatic approach serves as an alternative to chemical synthesis, providing high stereoselectivity and economic efficiency. This review summarizes some recent advances in the chemo-enzymatic methods for the production of N-glycans, including the preparation of substrates and sugar donors, and the progress in the glycosyltransferases characterization which leads to the diversity of N-glycan synthesis. We discuss the bottle-neck and new opportunities in exploiting the chemo-enzymatic synthesis of N-glycans based on our research experiences. In addition, downstream applications of the constructed N-glycans, such as automation devices and homogeneous glycoproteins synthesis are also described.
Collapse
Affiliation(s)
| | | | | | | | - Ning Wang
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China
| | - Xiao-Dong Gao
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China
| |
Collapse
|
44
|
Zhu H, Wang S, Liu D, Ding L, Chen C, Liu Y, Wu Z, Bollag R, Liu K, Alexander WM, Yin J, Ma C, Li L, Wang PG. Identifying Sialylation Linkages at the Glycopeptide Level by Glycosyltransferase Labeling Assisted Mass Spectrometry (GLAMS). Anal Chem 2020; 92:6297-6303. [PMID: 32271005 PMCID: PMC7750919 DOI: 10.1021/acs.analchem.9b05068] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Precise assignment of sialylation linkages at the glycopeptide level is of importance in bottom-up glycoproteomics and an indispensable step to understand the function of glycoproteins in pathogen-host interactions and cancer progression. Even though some efforts have been dedicated to the discrimination of α2,3/α2,6-sialylated isomers, unambiguous identification of sialoglycopeptide isomers is still needed. Herein, we developed an innovative glycosyltransferase labeling assisted mass spectrometry (GLAMS) strategy. After specific enzymatic labeling, oxonium ions from higher-energy C-trap dissociation (HCD) fragmentation of α2,3-sailoglycopeptides then generate unique reporters to distinctly differentiate those of α2,6-sailoglycopeptide isomers. With this strategy, a total of 1236 linkage-specific sialoglycopeptides were successfully identified from 161 glycoproteins in human serum.
Collapse
Affiliation(s)
- He Zhu
- Department of Chemistry, Georgia State University, Atlanta, Georgia 30303, United States
| | - Shuaishuai Wang
- Department of Chemistry, Georgia State University, Atlanta, Georgia 30303, United States
| | - Ding Liu
- Department of Chemistry, Georgia State University, Atlanta, Georgia 30303, United States
| | - Lang Ding
- Department of Chemistry, Georgia State University, Atlanta, Georgia 30303, United States
| | - Congcong Chen
- Department of Chemistry, Georgia State University, Atlanta, Georgia 30303, United States
| | - Yunpeng Liu
- Department of Chemistry, Georgia State University, Atlanta, Georgia 30303, United States
| | - Zhigang Wu
- Department of Chemistry, Georgia State University, Atlanta, Georgia 30303, United States
| | - Roni Bollag
- Georgia Cancer Center, Augusta University, Augusta, Georgia 30912, United States
| | - Kebin Liu
- Department of Biochemistry and Molecular Biology, Augusta University, Augusta, Georgia 30912, United States
| | - William Max Alexander
- Department of Cancer Biology and Blais Proteomics Center, Dana-Farber Cancer Institute, Boston, Massachusetts 02215, United States
| | - Jun Yin
- Department of Chemistry, Georgia State University, Atlanta, Georgia 30303, United States
| | - Cheng Ma
- Department of Chemistry, Georgia State University, Atlanta, Georgia 30303, United States
| | - Lei Li
- Department of Chemistry, Georgia State University, Atlanta, Georgia 30303, United States
| | - Peng George Wang
- Department of Chemistry, Georgia State University, Atlanta, Georgia 30303, United States
| |
Collapse
|
45
|
Li L, Guan W, Zhang G, Wu Z, Yu H, Chen X, Wang PG. Microarray analyses of closely related glycoforms reveal different accessibilities of glycan determinants on N-glycan branches. Glycobiology 2020; 30:334-345. [PMID: 32026940 PMCID: PMC7175966 DOI: 10.1093/glycob/cwz100] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Revised: 11/27/2019] [Accepted: 12/02/2019] [Indexed: 01/03/2023] Open
Abstract
Glycans mediate a wide variety of biological roles via recognition by glycan-binding proteins (GBPs). Comprehensive knowledge of such interaction is thus fundamental to glycobiology. While the primary binding feature of GBPs can be easily uncovered by using a simple glycan microarray harboring limited numbers of glycan motifs, their fine specificities are harder to interpret. In this study, we prepared 98 closely related N-glycoforms that contain 5 common glycan epitopes which allowed the determination of the fine binding specificities of several plant lectins and anti-glycan antibodies. These N-glycoforms differ from each other at the monosaccharide level and were presented in an identical format to ensure comparability. With the analysis platform we used, it was found that most tested GBPs have preferences toward only one branch of the complex N-glycans, and their binding toward the epitope-presenting branch can be significantly affected by structures on the other branch. Fine specificities described here are valuable for a comprehensive understanding and applications of GBPs.
Collapse
Affiliation(s)
- Lei Li
- Department of Chemistry, Georgia State University, Atlanta, GA 30303, USA
| | - Wanyi Guan
- Department of Chemistry, Georgia State University, Atlanta, GA 30303, USA
| | - Gaolan Zhang
- Department of Chemistry, Georgia State University, Atlanta, GA 30303, USA
| | - Zhigang Wu
- Department of Chemistry, Georgia State University, Atlanta, GA 30303, USA
| | - Hai Yu
- Department of Chemistry, Georgia State University, Atlanta, GA 30303, USA
| | - Xi Chen
- Department of Chemistry, University of California, One Shields Avenue, Davis, CA, 95616, USA
| | - Peng G Wang
- Department of Chemistry, Georgia State University, Atlanta, GA 30303, USA
| |
Collapse
|
46
|
Absolute quantitation of high abundant Fc-glycopeptides from human serum IgG-1. Anal Chim Acta 2020; 1102:130-139. [DOI: 10.1016/j.aca.2019.12.035] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Revised: 12/01/2019] [Accepted: 12/13/2019] [Indexed: 01/09/2023]
|
47
|
Panza M, Stine KJ, Demchenko AV. HPLC-assisted automated oligosaccharide synthesis: the implementation of the two-way split valve as a mode of complete automation. Chem Commun (Camb) 2020; 56:1333-1336. [PMID: 31930269 PMCID: PMC7656230 DOI: 10.1039/c9cc08876h] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Reported herein is the development of a user-friendly platform for simple and transformative automation based on standard HPLC equipment. We showcase how the improved platform works in application to the completely automated, a "press of the button," synthesis of various glycan sequences.
Collapse
Affiliation(s)
- Matteo Panza
- Department of Chemistry and Biochemistry, University of Missouri - St. Louis, One University Boulevard, St. Louis, Missouri 63121, USA.
| | - Keith J Stine
- Department of Chemistry and Biochemistry, University of Missouri - St. Louis, One University Boulevard, St. Louis, Missouri 63121, USA.
| | - Alexei V Demchenko
- Department of Chemistry and Biochemistry, University of Missouri - St. Louis, One University Boulevard, St. Louis, Missouri 63121, USA.
| |
Collapse
|
48
|
Martinez JER, Thomas B, Flitsch SL. Glycan Array Technology. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2020; 175:435-456. [PMID: 31907566 DOI: 10.1007/10_2019_112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Glycan (or carbohydrate) arrays have become an essential tool in glycomics, providing fast and high-throughput data on protein-carbohydrate interactions with small amounts of carbohydrate ligands. The general concepts of glycan arrays have been adopted from other microarray technologies such as those used for nucleic acid and proteins. However, carbohydrates have presented their own challenges, in particular in terms of access to glycan probes, linker attachment chemistries and analysis, which will be reviewed in this chapter. As more and more glycan probes have become available through chemical and enzymatic synthesis and robust linker chemistries have been developed, the applications of glycan arrays have dramatically increased over the past 10 years, which will be illustrated with recent examples.
Collapse
Affiliation(s)
| | - Baptiste Thomas
- School of Chemistry and MIB, The University of Manchester, Manchester, UK
| | | |
Collapse
|
49
|
Structural basis for the specific cleavage of core-fucosylated N-glycans by endo-β- N-acetylglucosaminidase from the fungus Cordyceps militaris. J Biol Chem 2019; 294:17143-17154. [PMID: 31548313 PMCID: PMC6851319 DOI: 10.1074/jbc.ra119.010842] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Revised: 09/20/2019] [Indexed: 01/07/2023] Open
Abstract
N-Linked glycans play important roles in various cellular and immunological events. Endo-β-N-acetylglucosaminidase (ENGase) can release or transglycosylate N-glycans and is a promising tool for the chemoenzymatic synthesis of glycoproteins with homogeneously modified glycans. The ability of ENGases to act on core-fucosylated glycans is a key factor determining their therapeutic utility because mammalian N-glycans are frequently α-1,6-fucosylated. Although the biochemistries and structures of various ENGases have been studied extensively, the structural basis for the recognition of the core fucose and the asparagine-linked GlcNAc is unclear. Herein, we determined the crystal structures of a core fucose-specific ENGase from the caterpillar fungus Cordyceps militaris (Endo-CoM), which belongs to glycoside hydrolase family 18. Structures complexed with fucose-containing ligands were determined at 1.75-2.35 Å resolutions. The fucose moiety linked to GlcNAc is extensively recognized by protein residues in a round-shaped pocket, whereas the asparagine moiety linked to the GlcNAc is exposed to the solvent. The N-glycan-binding cleft of Endo-CoM is Y-shaped, and several lysine and arginine residues are present at its terminal regions. These structural features were consistent with the activity of Endo-CoM on fucose-containing glycans on rituximab (IgG) and its preference for a sialobiantennary substrate. Comparisons with other ENGases provided structural insights into their core fucose tolerance and specificity. In particular, Endo-F3, a known core fucose-specific ENGase, has a similar fucose-binding pocket, but the surrounding residues are not shared with Endo-CoM. Our study provides a foothold for protein engineering to develop enzymatic tools for the preparation of more effective therapeutic antibodies.
Collapse
|
50
|
Cheng CW, Wu CY, Hsu WL, Wong CH. Programmable One-Pot Synthesis of Oligosaccharides. Biochemistry 2019; 59:3078-3088. [DOI: 10.1021/acs.biochem.9b00613] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Cheng-Wei Cheng
- Genomics Research Center, Academia Sinica, 11529 Taipei, Taiwan
| | - Chung-Yi Wu
- Genomics Research Center, Academia Sinica, 11529 Taipei, Taiwan
| | - Wen-Lian Hsu
- Institute of Information Science, Academia Sinica, 11529 Taipei, Taiwan
| | - Chi-Huey Wong
- Genomics Research Center, Academia Sinica, 11529 Taipei, Taiwan
- Department of Chemistry, The Scripps Research Institute, La Jolla, California 92037, United States
| |
Collapse
|