1
|
Royla P, Schwedtmann K, Gomila RM, Frontera A, Weigand JJ. Zwitterionic 2-Phosphaethene-thiolates [(L C)P=CS(L C/P)] + as PCS Building Blocks (L C=NHC, L P=PR 3). Angew Chem Int Ed Engl 2024:e202419502. [PMID: 39559961 DOI: 10.1002/anie.202419502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Revised: 11/12/2024] [Accepted: 11/14/2024] [Indexed: 11/20/2024]
Abstract
The zwitterionic compounds [(LC)P=CS(LC/P)]+ (3+, LC=NHC, LP=PR3), featuring cationic substituents at the phosphorus and carbon atoms, are synthesized as their triflate salts at a multi-gram scale from the reaction of Lewis base adducts of CS2, namely LC/P-CS2 (4), with a combination of [(LCP)4][OTf]4 (1[OTf]4) and Ph3P. The feasibility of using 3+ as PCS building blocks is showcased in their reactions with representative electrophiles (MeOTf) and nucleophiles (MesMgBr, Ph3PCH2), leading to selective functionalization of the PCS core at the S- and P-terminus, respectively. Additionally, it is reported that 3+ can function as ambident nucleophiles with AgOTf (2 equivalents), affording unprecedented linear coordination polymer [Ag2(OTf)3-μ2:κP,κS-((LC)P=CS(PCy3))]+ (6 b), where the PCS moiety acts as a bridging ligand in transition metal complexes for the first time. Reduction of 3+ facilitates the cleavage of the P- and C-bound substituents leading to the formation of the [PCS]- anion. Moreover, cycloaddition reactions of 3+ with 1[OTf]4 are shown to selectively yield five- and eight-membered polyphosphorus heterocycles. Preliminary results suggest the possibility of activating the C-S bond in [(LC)P=CS(LC)]+, resulting in the formation of [(LC)P=C(LC)-P(LC)][OTf]2, 12[OTf]2, which may serve as a synthon for the PCP unit in future studies.
Collapse
Affiliation(s)
- Philipp Royla
- Faculty of Chemistry and Food Chemistry, Technische Universität Dresden, 01062, Dresden, Germany
| | - Kai Schwedtmann
- Faculty of Chemistry and Food Chemistry, Technische Universität Dresden, 01062, Dresden, Germany
| | - Rosa M Gomila
- Department of Chemistry, Universitat de Illes Balears, 07122, Palma de Mallorca, Spain
| | - Antonio Frontera
- Department of Chemistry, Universitat de Illes Balears, 07122, Palma de Mallorca, Spain
| | - Jan J Weigand
- Faculty of Chemistry and Food Chemistry, Technische Universität Dresden, 01062, Dresden, Germany
| |
Collapse
|
2
|
Nguyen THV, Chelli S, Mallet-Ladeira S, Breugst M, Lakhdar S. Reactivity of the phosphaethynolate anion with stabilized carbocations: mechanistic studies and synthetic applications. Chem Sci 2024:d4sc03518f. [PMID: 39165734 PMCID: PMC11331332 DOI: 10.1039/d4sc03518f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Accepted: 07/27/2024] [Indexed: 08/22/2024] Open
Abstract
The reactivity of sodium phosphaethynolate Na(OCP) towards various Mayr's reference electrophiles was investigated using conventional UV-visible and laser-flash photolysis techniques. The kinetic data, along with density functional theory (DFT) calculations, enabled the first experimental quantification of the phosphorus nucleophilicity of [OCP]-. Product studies of these reactions demonstrate the formation of secondary as well as tertiary phosphines. The mechanism of this unprecedented phosphorus-atom transfer reaction is thoroughly discussed, with key intermediates successfully isolated and characterized. Importantly, some bulky secondary phosphine oxides synthesized using this approach, have demonstrated high efficiency as ligands in the Suzuki coupling reaction.
Collapse
Affiliation(s)
- Thi Hong Van Nguyen
- CNRS, Université Paul Sabatier, Laboratoire Hetérochimie Fondamentale et Appliquée (LHFA, UMR5069) 118 Route de Narbonne 31062 Cedex 09 Toulouse France
| | - Saloua Chelli
- CNRS, Université Paul Sabatier, Laboratoire Hetérochimie Fondamentale et Appliquée (LHFA, UMR5069) 118 Route de Narbonne 31062 Cedex 09 Toulouse France
| | - Sonia Mallet-Ladeira
- Institut de Chimie de Toulouse (FR 2599) 118 Route de Narbonne 31062 Cedex 09 Toulouse France
| | - Martin Breugst
- Institut für Chemie, Technische Universität Chemnitz 09111 Chemnitz Germany
| | - Sami Lakhdar
- CNRS, Université Paul Sabatier, Laboratoire Hetérochimie Fondamentale et Appliquée (LHFA, UMR5069) 118 Route de Narbonne 31062 Cedex 09 Toulouse France
| |
Collapse
|
3
|
Liu K, Chi XW, Guo Y, Wu QY, Hu KQ, Mei L, Chai ZF, Yu JP, Shi WQ. Synthesis of Trapen Ligand-Based U(IV) and Th(IV) 2-Phosphaethynolate Complexes and Comparison of Covalency with Corresponding Ti(IV) Analogues. Inorg Chem 2022; 61:17993-18001. [DOI: 10.1021/acs.inorgchem.2c02263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Kang Liu
- Laboratory of Nuclear Energy Chemistry, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing100049, China
| | - Xiao-Wang Chi
- Laboratory of Nuclear Energy Chemistry, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing100049, China
| | - Yan Guo
- Laboratory of Nuclear Energy Chemistry, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing100049, China
| | - Qun-Yan Wu
- Laboratory of Nuclear Energy Chemistry, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing100049, China
| | - Kong-Qiu Hu
- Laboratory of Nuclear Energy Chemistry, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing100049, China
| | - Lei Mei
- Laboratory of Nuclear Energy Chemistry, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing100049, China
| | - Zhi-Fang Chai
- Laboratory of Nuclear Energy Chemistry, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing100049, China
| | - Ji-Pan Yu
- Laboratory of Nuclear Energy Chemistry, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing100049, China
| | - Wei-Qun Shi
- Laboratory of Nuclear Energy Chemistry, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing100049, China
| |
Collapse
|
4
|
Timofeeva V, Baeza JML, Nougué R, Syroeshkin M, Segundo Rojas Guerrero R, Saffon-Merceron N, Altınbaş Özpınar G, Rathjen S, Müller T, Baceiredo A, Kato T. Reductive Elimination at Pb(II) Center of an (Amino)plumbylene-Substituted Phosphaketene: New Pathway for Phosphinidene Synthesis. Chemistry 2022; 28:e202201615. [PMID: 35638144 PMCID: PMC9401577 DOI: 10.1002/chem.202201615] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Indexed: 12/27/2022]
Abstract
A stable (amino)plumbylene‐substituted phosphaketene 3 was synthesized by the successive reactions of PbCl2 with two anionic reagents (lithium amidophosphine and NaPCO). Of particular interest, the thermal evolution of 3, at 80 °C, leads to the transient formation of corresponding amino‐ and phosphanylidene‐phosphaketenes (6 and 7), via a reductive elimination at the PbII center forming new N−P and P−P bonds. Further evolution of 6 gives a new cyclic (amino)phosphanylidene phosphorane 4, which shows a unique reactivity as a phosphinidene. This result provides a new synthetic route to phosphinidenes, extending and facilitating further their access.
Collapse
Affiliation(s)
- Vladislava Timofeeva
- Laboratoire Hétérochimie Fondamentale et Appliquée (UMR 5069), Université de Toulouse, CNRS, 118 route de Narbonne, 31062, Toulouse, France.,N. D. Zelinsky Institute of Organic Chemistry, Leninsky prosp. 47, 119991, Moscow, Russia
| | - José Miguel Léon Baeza
- Laboratoire Hétérochimie Fondamentale et Appliquée (UMR 5069), Université de Toulouse, CNRS, 118 route de Narbonne, 31062, Toulouse, France.,Departamento de Química Inorganica, Facultad de Química, Pontificia Universidad Catolica de Chile, Casilla 306, Santiago, 22, Chile
| | - Raphael Nougué
- Laboratoire Hétérochimie Fondamentale et Appliquée (UMR 5069), Université de Toulouse, CNRS, 118 route de Narbonne, 31062, Toulouse, France
| | - Mikhail Syroeshkin
- N. D. Zelinsky Institute of Organic Chemistry, Leninsky prosp. 47, 119991, Moscow, Russia
| | - Rene Segundo Rojas Guerrero
- Departamento de Química Inorganica, Facultad de Química, Pontificia Universidad Catolica de Chile, Casilla 306, Santiago, 22, Chile
| | - Nathalie Saffon-Merceron
- Institut de Chimie de Toulouse (FR 2599), Université de Toulouse, CNRS, 118 route de Narbonne, 31062, Toulouse, France
| | - Gül Altınbaş Özpınar
- Institut für Chemie, Carl von Ossietzky Universität Oldenburg, Carl von Ossietzky-Strasse 9-11, 26111, Oldenburg, Germany
| | - Saskia Rathjen
- Institut für Chemie, Carl von Ossietzky Universität Oldenburg, Carl von Ossietzky-Strasse 9-11, 26111, Oldenburg, Germany
| | - Thomas Müller
- Institut für Chemie, Carl von Ossietzky Universität Oldenburg, Carl von Ossietzky-Strasse 9-11, 26111, Oldenburg, Germany
| | - Antoine Baceiredo
- Laboratoire Hétérochimie Fondamentale et Appliquée (UMR 5069), Université de Toulouse, CNRS, 118 route de Narbonne, 31062, Toulouse, France
| | - Tsuyoshi Kato
- Laboratoire Hétérochimie Fondamentale et Appliquée (UMR 5069), Université de Toulouse, CNRS, 118 route de Narbonne, 31062, Toulouse, France
| |
Collapse
|
5
|
Horváth Á, Benkő Z. Understanding the Mechanism of Diels-Alder Reactions with Anionic Dienophiles: A Systematic Comparison of [ECX] - (E = P, As; X = O, S, Se) Anions. Inorg Chem 2022; 61:7922-7934. [PMID: 35533395 PMCID: PMC9131451 DOI: 10.1021/acs.inorgchem.2c00549] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
![]()
While Diels–Alder
(DA) reactions involving neutral or cationic
dienophiles are well-known, the characteristics of the analogous reactions
with anionic dienophiles are practically unexplored. Herein we present
the first comparative computational investigations on the characteristics
of DA cycloadditions with anionic dienophiles on the basis of the
reactions of [ECX]− anions (E = P, As; X = O, S,
Se) with 2H-pyran-2-one. All of these reactions were
found to be both kinetically and thermodynamically feasible, enabling
synthetic access toward 2-phosphaphenolate and arsaphenolate derivatives
in the future. This study also reveals that the [ECO]− anions show clear regioselectivity, while for [ECS]− and [ECSe]− anions, the two possible reaction
channels have very similar energetics. Additionally, the activation
barriers for the [ECO]− anions are lower than those
of the heavier analogues. The observed differences can be traced back
to the starkly differing nucleophilic character of the pnictogen center
in the anions, leading to a barrier-lowering effect in the case of
the [ECO]− anions. Furthermore, analysis of the
geometries and electron distributions of the corresponding transition
states revealed structure–property relationships, and thus
a direct comparison of the cycloaddition reactivity of these anions
was achieved. Along one of the two pathways, a good correlation was
found between the activation barriers and suitable nucleophilicity
descriptors (nucleophilic Parr function and global nucleophilicity).
Additionally, the tendency of the reaction energies can be explained
by the changing aromaticity of the products. In contrast to the phosphaethynolate [PCO]− anion, the cycloaddition reactivity of the heavier congeners ([ECX]−, where E = P, As and X = O, S, Se) is unexplored.
In this computational study, the Diels−Alder reaction between
the known [ECX]− anions and 2-pyrone was employed
to compare the reactivity patterns. The first activation barrier of
these reactions correlates with the nucleophilicity of the anions,
indicating a barrier-lowering effect. The feasibility of the studied
reactions, leading to P and As heterocycles, was also explored.
Collapse
Affiliation(s)
- Ádám Horváth
- Department of Inorganic and Analytical Chemistry, Budapest University of Technology and Economics, Müegyetem rkp. 3, Budapest H-1111, Hungary
| | - Zoltán Benkő
- Department of Inorganic and Analytical Chemistry, Budapest University of Technology and Economics, Müegyetem rkp. 3, Budapest H-1111, Hungary
| |
Collapse
|
6
|
Basappa S, Bhawar R, Nagaraju DH, Bose SK. Recent advances in the chemistry of the phosphaethynolate and arsaethynolate anions. Dalton Trans 2022; 51:3778-3806. [PMID: 35108724 DOI: 10.1039/d1dt03994f] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Over the past decade, the reactivity of 2-phosphaethynolate (OCP-), a heavier analogue of the cyanate anion, has been the subject of momentous interest in the field of modern organometallic chemistry. It is used as a precursor to novel phosphorus-containing heterocycles and as a ligand in decarbonylative processes, serving as a synthetic equivalent of a phosphinidene derivative. This perspective aims to describe advances in the reactivities of phosphaethynolate and arsaethynolate anions (OCE-; E = P, As) with main-group element, transition metal, and f-block metal scaffolds. Further, the unique structures and bonding properties are discussed based on spectroscopic and theoretical studies.
Collapse
Affiliation(s)
- Suma Basappa
- Centre for Nano and Material Sciences (CNMS), Jain University, Jain Global Campus, Bangalore-562112, India.
| | - Ramesh Bhawar
- Centre for Nano and Material Sciences (CNMS), Jain University, Jain Global Campus, Bangalore-562112, India.
| | - D H Nagaraju
- Department of Chemistry, School of Applied Sciences, Reva University, Bangalore 560064, India.
| | - Shubhankar Kumar Bose
- Centre for Nano and Material Sciences (CNMS), Jain University, Jain Global Campus, Bangalore-562112, India.
| |
Collapse
|
7
|
Obi AD, Machost HR, Dickie DA, Gilliard RJ. A Thermally Stable Magnesium Phosphaethynolate Grignard Complex. Inorg Chem 2021; 60:12481-12488. [PMID: 34346670 DOI: 10.1021/acs.inorgchem.1c01700] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
The 2-phosphaethynolate (OCP) anion has found versatile applications across the periodic table but remains underexplored in group 2 chemistry due to challenges in isolating thermally stable complexes. By rationally modifying their coordination environments using 1,3-dialkyl-substituted N-heterocyclic carbenes (NHCs), we have now isolated and characterized thermally stable, structurally diverse, and hydrocarbon soluble magnesium phosphaethynolate complexes (2, 4Me, and 8-10), including the novel phosphaethynolate Grignard reagent (2iPr). The methylmagnesium phosphaethynolate and magnesium diphosphaethynolate complexes readily activate dioxane with subsequent H-atom abstraction to form [(NHC)MgX(μ-OEt)]2 [X = Me (3) or OCP (8 and 9)] complexes. Their reactivities increased with the Lewis acidity of the Mg2+ cation and may be attenuated by Lewis base saturation or a slight increase in carbene sterics. Solvent effects were also investigated and led to the surreptitious isolation of an ether-free sodium phosphaethynolate (NHC)3Na(OCP) (6), which is soluble in aromatic hydrocarbons and can be independently prepared by the reaction of NHC and [Na(dioxane)2][OCP] in toluene. Under forcing conditions (105 °C, 3 days), the magnesium diphosphaethynolate complex (NHC)3Mg(OCP)2 (10) decomposes to a mixture of organophosphorus complexes, among which a thermal decarbonylation product [(NHC)2PI][OCP] (11) was isolated.
Collapse
Affiliation(s)
- Akachukwu D Obi
- Department of Chemistry, University of Virginia, 409 McCormick Road, P.O. Box 400319, Charlottesville, Virginia 22904, United States
| | - Haleigh R Machost
- Department of Chemistry, University of Virginia, 409 McCormick Road, P.O. Box 400319, Charlottesville, Virginia 22904, United States
| | - Diane A Dickie
- Department of Chemistry, University of Virginia, 409 McCormick Road, P.O. Box 400319, Charlottesville, Virginia 22904, United States
| | - Robert J Gilliard
- Department of Chemistry, University of Virginia, 409 McCormick Road, P.O. Box 400319, Charlottesville, Virginia 22904, United States
| |
Collapse
|
8
|
Reinholdt A, Jafari MG, Sandoval-Pauker C, Ballestero-Martínez E, Gau MR, Driess M, Pinter B, Mindiola DJ. Phosphorus and Arsenic Atom Transfer to Isocyanides to Form π-Backbonding Cyanophosphide and Cyanoarsenide Titanium Complexes. Angew Chem Int Ed Engl 2021; 60:17595-17600. [PMID: 34192399 DOI: 10.1002/anie.202104688] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Indexed: 11/07/2022]
Abstract
Decarbonylation along with E atom transfer from Na(OCE) (E=P, As) to an isocyanide coordinated to the tetrahedral TiII complex [(TptBu,Me )TiCl], yielded the [(TptBu,Me )Ti(η3 -ECNAd)] species (Ad=1-adamantyl, TptBu,Me- =hydrotris(3-tert-butyl-5-methylpyrazol-1-yl)borate). In the case of E=P, the cyanophosphide ligand displays nucleophilic reactivity toward Al(CH3 )3 ; moreover, its bent geometry hints to a reduced Ad-NCP3- resonance contributor. The analogous and rarer mono-substituted cyanoarsenide ligand, Ad-NCAs3- , shows the same unprecedented coordination mode but with shortening of the N=C bond. As opposed to TiII , VII fails to promote P atom transfer to AdNC, yielding instead [(TptBu,Me )V(OCP)(CNAd)]. Theoretical studies revealed the rare ECNAd moieties to be stabilized by π-backbonding interactions with the former TiII ion, and their assembly to most likely involve a concerted E atom transfer between Ti-bound OCE- to AdNC ligands when studying the reaction coordinate for E=P.
Collapse
Affiliation(s)
- Anders Reinholdt
- Department of Chemistry, University of Pennsylvania, 231 South 34th Street, Philadelphia, PA, 19104, USA
| | - Mehrafshan G Jafari
- Department of Chemistry, University of Pennsylvania, 231 South 34th Street, Philadelphia, PA, 19104, USA
| | | | - Ernesto Ballestero-Martínez
- Department of Chemistry: Metalorganics and Inorganic Materials, Technische Universität Berlin, Strasse des 17. Juni 135, Sekr. C2, 10623, Berlin, Germany
| | - Michael R Gau
- Department of Chemistry, University of Pennsylvania, 231 South 34th Street, Philadelphia, PA, 19104, USA
| | - Matthias Driess
- Department of Chemistry: Metalorganics and Inorganic Materials, Technische Universität Berlin, Strasse des 17. Juni 135, Sekr. C2, 10623, Berlin, Germany
| | - Balazs Pinter
- Department of Chemistry, Universidad Técnica Federico Santa María, Valparaíso, 2390123, Chile
| | - Daniel J Mindiola
- Department of Chemistry, University of Pennsylvania, 231 South 34th Street, Philadelphia, PA, 19104, USA
| |
Collapse
|
9
|
Reinholdt A, Jafari MG, Sandoval‐Pauker C, Ballestero‐Martínez E, Gau MR, Driess M, Pinter B, Mindiola DJ. Phosphorus and Arsenic Atom Transfer to Isocyanides to Form π‐Backbonding Cyanophosphide and Cyanoarsenide Titanium Complexes. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202104688] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Anders Reinholdt
- Department of Chemistry University of Pennsylvania 231 South 34th Street Philadelphia PA 19104 USA
| | - Mehrafshan G. Jafari
- Department of Chemistry University of Pennsylvania 231 South 34th Street Philadelphia PA 19104 USA
| | | | - Ernesto Ballestero‐Martínez
- Department of Chemistry: Metalorganics and Inorganic Materials Technische Universität Berlin Strasse des 17. Juni 135, Sekr. C2 10623 Berlin Germany
| | - Michael R. Gau
- Department of Chemistry University of Pennsylvania 231 South 34th Street Philadelphia PA 19104 USA
| | - Matthias Driess
- Department of Chemistry: Metalorganics and Inorganic Materials Technische Universität Berlin Strasse des 17. Juni 135, Sekr. C2 10623 Berlin Germany
| | - Balazs Pinter
- Department of Chemistry Universidad Técnica Federico Santa María Valparaíso 2390123 Chile
| | - Daniel J. Mindiola
- Department of Chemistry University of Pennsylvania 231 South 34th Street Philadelphia PA 19104 USA
| |
Collapse
|
10
|
Abstract
![]()
The cyanide ion plays
a key role in a number of industrially relevant
chemical processes, such as the extraction of gold and silver from
low grade ores. Metal cyanide compounds were arguably some of the
earliest coordination complexes studied and can be traced back to
the serendipitous discovery of Prussian blue by Diesbach in 1706.
By contrast, heavier cyanide analogues, such as the cyaphide ion,
C≡P–, are virtually unexplored despite the
enormous potential of such ions as ligands in coordination compounds
and extended solids. This is ultimately due to the lack of a suitable
synthesis of cyaphide salts. Herein we report the synthesis and isolation
of several magnesium–cyaphido complexes by reduction of iPr3SiOCP with a magnesium(I) reagent.
By analogy with Grignard reagents, these compounds can be used for
the incorporation of the cyaphide ion into the coordination sphere
of metals using a simple salt-metathesis protocol.
Collapse
Affiliation(s)
- Daniel W N Wilson
- Department of Chemistry, Chemistry Research Laboratory, University of Oxford, 12 Mansfield Road, Oxford OX1 3TA, U.K
| | - Stephanie J Urwin
- Department of Chemistry, Chemistry Research Laboratory, University of Oxford, 12 Mansfield Road, Oxford OX1 3TA, U.K
| | - Eric S Yang
- Department of Chemistry, Chemistry Research Laboratory, University of Oxford, 12 Mansfield Road, Oxford OX1 3TA, U.K
| | - Jose M Goicoechea
- Department of Chemistry, Chemistry Research Laboratory, University of Oxford, 12 Mansfield Road, Oxford OX1 3TA, U.K
| |
Collapse
|
11
|
Yu J, Liu K, Wu Q, Li B, Kong X, Hu K, Mei L, Yuan L, Chai Z, Shi W. Facile Access to Uranium and Thorium Phosphaethynolate Complexes Supported by Tren: Experimental and Theoretical Study. CHINESE J CHEM 2021. [DOI: 10.1002/cjoc.202100149] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Jipan Yu
- Laboratory of Nuclear Energy Chemistry, Institute of High Energy Physics Chinese Academy of Sciences Beijing 100049 China
| | - Kang Liu
- Laboratory of Nuclear Energy Chemistry, Institute of High Energy Physics Chinese Academy of Sciences Beijing 100049 China
| | - Qunyan Wu
- Laboratory of Nuclear Energy Chemistry, Institute of High Energy Physics Chinese Academy of Sciences Beijing 100049 China
| | - Bin Li
- Laboratory of Nuclear Energy Chemistry, Institute of High Energy Physics Chinese Academy of Sciences Beijing 100049 China
| | - Xianghe Kong
- Laboratory of Nuclear Energy Chemistry, Institute of High Energy Physics Chinese Academy of Sciences Beijing 100049 China
| | - Kongqiu Hu
- Laboratory of Nuclear Energy Chemistry, Institute of High Energy Physics Chinese Academy of Sciences Beijing 100049 China
| | - Lei Mei
- Laboratory of Nuclear Energy Chemistry, Institute of High Energy Physics Chinese Academy of Sciences Beijing 100049 China
| | - Liyong Yuan
- Laboratory of Nuclear Energy Chemistry, Institute of High Energy Physics Chinese Academy of Sciences Beijing 100049 China
| | - Zhifang Chai
- Laboratory of Nuclear Energy Chemistry, Institute of High Energy Physics Chinese Academy of Sciences Beijing 100049 China
- Engineering Laboratory of Advanced Energy Materials Institute of Industrial Technology Chinese Academy of Sciences, Ningbo Zhejiang 315201 China
| | - Weiqun Shi
- Laboratory of Nuclear Energy Chemistry, Institute of High Energy Physics Chinese Academy of Sciences Beijing 100049 China
| |
Collapse
|
12
|
Yuan Q, Cao W, Valiev M, Wang XB. Photoelectron Spectroscopy and Theoretical Study on Monosolvated Cyanate Analogue Clusters ECX -·Sol (ECX - = NCSe -, AsCSe -, and AsCS -; Sol = H 2O, CH 3CN). J Phys Chem A 2021; 125:3928-3935. [PMID: 33949195 DOI: 10.1021/acs.jpca.1c03336] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Six monosolvated cyanate analogue clusters ECX-·Sol (ECX- = NCSe-, AsCSe-, and AsCS-; Sol = H2O and CH3CN) were investigated using negative ion photoelectron spectroscopy (NIPES). NIPES experiments show that these clusters possess similar spectra overall compared to their respective isolated ECX- anions but shift to higher electron binding energy with CH3CN solvent, stabilizing the excess electrons slightly more than H2O. For the ECX-·H2O series, vertical detachment energies and their increments relative to the bare species are measured to be 3.700/0.370, 3.085/0.415, and 3.085/0.430 eV for NCSe-, AsCSe- and AsCS-, respectively, while the corresponding values in the ECX-·CH3CN series are 3.835/0.505, 3.145/0.475, and 3.135/0.480 eV. Ab initio electronic structure calculations indicate that the excess charges were located at the terminal N and Se atoms in NCSe- and migrated to the central C atom in AsCSe- and AsCS-. For NCSe-, the solvation is driven by the interactions with the two negatively charged terminal ends, while for AsCSe- and AsCS-, the solvation revolves around the interactions with the central C atom, where all the excess negative charge is concentrated. Two nearly degenerate isomers for NCSe-·H2O are identified, one forming a single strong N···H-O hydrogen bond (HB) and the other featuring a bidentate HB with two hydroxyl H atoms pointing to N and Se ends. In contrast, the negative central C atom in AsCSe-/AsCS- allows the formation of a bifurcated HB with H2O. Similar effects are observed for the acetonitrile case, in which the three H atoms of the methyl group interact with the two negatively charged terminal ends in NCSe-, while preferring to bind to the central negative carbon atom in AsCSe-/AsCS-. The different binding motifs derived in this work may suggest different solvation properties in NCSe- versus AsCSe-/AsCS- with the former anion leading to asymmetric solvation at the N end of the solute, while the latter species creates more "isotropic" solvation around the central C equatorial plane.
Collapse
Affiliation(s)
- Qinqin Yuan
- Physical Sciences Division, Pacific Northwest National Laboratory, P.O. Box 999, MS K8-88, Richland, Washington 99352, United States
| | - Wenjin Cao
- Physical Sciences Division, Pacific Northwest National Laboratory, P.O. Box 999, MS K8-88, Richland, Washington 99352, United States
| | - Marat Valiev
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, P.O. Box 999, MS K8-88, Richland, Washington 99352, United States
| | - Xue-Bin Wang
- Physical Sciences Division, Pacific Northwest National Laboratory, P.O. Box 999, MS K8-88, Richland, Washington 99352, United States
| |
Collapse
|
13
|
Straub MD, Moreau LM, Qiao Y, Ouellette ET, Boreen MA, Lohrey TD, Settineri NS, Hohloch S, Booth CH, Minasian SG, Arnold J. Amidinate Supporting Ligands Influence Molecularity in Formation of Uranium Nitrides. Inorg Chem 2021; 60:6672-6679. [PMID: 33844509 DOI: 10.1021/acs.inorgchem.1c00471] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Uranium nitride complexes are attractive targets for chemists as molecular models for the bonding, reactivity, and magnetic properties of next-generation nuclear fuels, but these molecules are uncommon and can be difficult to isolate due to their high reactivity. Here, we describe the synthesis of three new multinuclear uranium nitride complexes, [U(BCMA)2]2(μ-N)(μ-κ1:κ1-BCMA) (7), [(U(BIMA)2)2(μ-N)(μ-NiPr)(K2(μ-η3:η3-CH2CHNiPr)]2 (8), and [U(BIMA)2]2(μ-N)(μ-κ1:κ1-BIMA) (9) (BCMA = N,N-bis(cyclohexyl)methylamidinate, BIMA = N,N-bis(iso-propyl)methylamidinate), from U(III) and U(IV) amidinate precursors. By varying the amidinate ligand substituents and azide source, we were able to influence the composition and size of these nitride complexes. 15N isotopic labeling experiments confirmed the bridging nitride moieties in 7-9 were formed via two-electron reduction of azide. The tetra-uranium cluster 8 was isolated in 99% yield via reductive cleavage of the amidinate ligands; this unusual molecule contains nitrogen-based ligands with formal 1-, 2-, and 3- charges. Additionally, chemical oxidation of the U(IV) precursor U(N3)(BCMA)3 yielded the cationic U(V) species [U(N3)(BCMA)3][OTf]. Magnetic susceptibility measurements confirmed a U(IV) oxidation state for the uranium centers in the three nitride-bridged complexes and provided a comparison of magnetic behavior in the structurally related U(III)-U(IV)-U(V) series U(BCMA)3, U(N3)(BCMA)3, and [U(N3)(BCMA)3][OTf]. At 240 K, the magnetic moments in this series decreased with increasing oxidation state, i.e., U(III) > U(IV) > U(V); this trend follows the decreasing number of 5f valence electrons along this series.
Collapse
Affiliation(s)
- Mark D Straub
- Department of Chemistry, University of California, Berkeley, California 94720, United States.,Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Liane M Moreau
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Yusen Qiao
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Erik T Ouellette
- Department of Chemistry, University of California, Berkeley, California 94720, United States.,Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Michael A Boreen
- Department of Chemistry, University of California, Berkeley, California 94720, United States.,Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Trevor D Lohrey
- Department of Chemistry, University of California, Berkeley, California 94720, United States.,Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Nicholas S Settineri
- Department of Chemistry, University of California, Berkeley, California 94720, United States
| | - Stephan Hohloch
- Department of Chemistry, University of California, Berkeley, California 94720, United States
| | - Corwin H Booth
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Stefan G Minasian
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - John Arnold
- Department of Chemistry, University of California, Berkeley, California 94720, United States.,Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| |
Collapse
|
14
|
Watt FA, Burkhardt L, Schoch R, Mitzinger S, Bauer M, Weigend F, Goicoechea JM, Tambornino F, Hohloch S. η
3
‐Coordination and Functionalization of the 2‐Phosphaethynthiolate Anion at Lanthanum(III)**. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202100559] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- Fabian A. Watt
- Department of Chemistry and Center for Sustainable Systems Design (CSSD) Paderborn University Warburger Strasse 100 33098 Paderborn Germany
| | - Lukas Burkhardt
- Department of Chemistry and Center for Sustainable Systems Design (CSSD) Paderborn University Warburger Strasse 100 33098 Paderborn Germany
| | - Roland Schoch
- Department of Chemistry and Center for Sustainable Systems Design (CSSD) Paderborn University Warburger Strasse 100 33098 Paderborn Germany
| | - Stefan Mitzinger
- Department of Chemistry University of Oxford Chemistry Research Laboratory 12 Mansfield Road Oxford OX1 3TA UK
| | - Matthias Bauer
- Department of Chemistry and Center for Sustainable Systems Design (CSSD) Paderborn University Warburger Strasse 100 33098 Paderborn Germany
| | - Florian Weigend
- Fachbereich Chemie und Wissenschaftliches Zentrum für Materialwissenschaften (WZMW) Philipps-Universität Marburg Hans-Meerwein-Strasse 4 35032 Marburg Germany
| | - Jose M. Goicoechea
- Department of Chemistry University of Oxford Chemistry Research Laboratory 12 Mansfield Road Oxford OX1 3TA UK
| | - Frank Tambornino
- Fachbereich Chemie und Wissenschaftliches Zentrum für Materialwissenschaften (WZMW) Philipps-Universität Marburg Hans-Meerwein-Strasse 4 35032 Marburg Germany
| | - Stephan Hohloch
- Institute for General, Inorganic and Theoretical Chemistry University of Innsbruck Innrain 80–82 6020 Innsbruck Austria
| |
Collapse
|
15
|
Watt FA, Burkhardt L, Schoch R, Mitzinger S, Bauer M, Weigend F, Goicoechea JM, Tambornino F, Hohloch S. η 3 -Coordination and Functionalization of the 2-Phosphaethynthiolate Anion at Lanthanum(III)*. Angew Chem Int Ed Engl 2021; 60:9534-9539. [PMID: 33565689 PMCID: PMC8252525 DOI: 10.1002/anie.202100559] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Indexed: 01/08/2023]
Abstract
We present the η3 -coordination of the 2-phosphaethynthiolate anion in the complex (PN)2 La(SCP) (2) [PN=N-(2-(diisopropylphosphanyl)-4-methylphenyl)-2,4,6-trimethylanilide)]. Structural comparison with dinuclear thiocyanate-bridged (PN)2 La(μ-1,3-SCN)2 La(PN)2 (3) and azide-bridged (PN)2 La(μ-1,3-N3 )2 La(PN)2 (4) complexes indicates that the [SCP]- coordination mode is mainly governed by electronic, rather than steric factors. Quantum mechanical investigations reveal large contributions of the antibonding π*-orbital of the [SCP]- ligand to the LUMO of complex 2, rendering it the ideal precursor for the first functionalization of the [SCP]- anion. Complex 2 was therefore reacted with CAACs which induced a selective rearrangement of the [SCP]- ligand to form the first CAAC stabilized group 15-group 16 fulminate-type complexes (PN)2 La{SPC(R CAAC)} (5 a,b, R=Ad, Me). A detailed reaction mechanism for the SCP-to-SPC isomerization is proposed based on DFT calculations.
Collapse
Affiliation(s)
- Fabian A. Watt
- Department of Chemistry and Center for Sustainable Systems Design (CSSD)Paderborn UniversityWarburger Strasse 10033098PaderbornGermany
| | - Lukas Burkhardt
- Department of Chemistry and Center for Sustainable Systems Design (CSSD)Paderborn UniversityWarburger Strasse 10033098PaderbornGermany
| | - Roland Schoch
- Department of Chemistry and Center for Sustainable Systems Design (CSSD)Paderborn UniversityWarburger Strasse 10033098PaderbornGermany
| | - Stefan Mitzinger
- Department of ChemistryUniversity of OxfordChemistry Research Laboratory12 Mansfield RoadOxfordOX1 3TAUK
| | - Matthias Bauer
- Department of Chemistry and Center for Sustainable Systems Design (CSSD)Paderborn UniversityWarburger Strasse 10033098PaderbornGermany
| | - Florian Weigend
- Fachbereich Chemie und Wissenschaftliches Zentrum für Materialwissenschaften (WZMW)Philipps-Universität MarburgHans-Meerwein-Strasse 435032MarburgGermany
| | - Jose M. Goicoechea
- Department of ChemistryUniversity of OxfordChemistry Research Laboratory12 Mansfield RoadOxfordOX1 3TAUK
| | - Frank Tambornino
- Fachbereich Chemie und Wissenschaftliches Zentrum für Materialwissenschaften (WZMW)Philipps-Universität MarburgHans-Meerwein-Strasse 435032MarburgGermany
| | - Stephan Hohloch
- Institute for General, Inorganic and Theoretical ChemistryUniversity of InnsbruckInnrain 80–826020InnsbruckAustria
| |
Collapse
|
16
|
Walley JE, Warring LS, Kertész E, Wang G, Dickie DA, Benkő Z, Gilliard RJ. Indirect Access to Carbene Adducts of Bismuth- and Antimony-Substituted Phosphaketene and Their Unusual Thermal Transformation to Dipnictines and [(NHC) 2OCP][OCP]. Inorg Chem 2021; 60:4733-4743. [PMID: 33689349 PMCID: PMC8277130 DOI: 10.1021/acs.inorgchem.0c03683] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
![]()
The
synthesis and thermal redox chemistry of the first antimony
(Sb)– and bismuth (Bi)–phosphaketene adducts are described.
When diphenylpnictogen chloride [Ph2PnCl (Pn = Sb or Bi)]
is reacted with sodium 2-phosphaethynolate [Na[OCP]·(dioxane)x], tetraphenyldipnictogen (Ph2Pn–PnPh2) compounds are produced, and an insoluble
precipitate forms from solution. In contrast, when the N-heterocyclic carbene adduct (NHC)–PnPh2Cl is combined
with [Na[OCP]·(dioxane)x], Sb–
and Bi–phosphaketene complexes are isolated. Thus, NHC serves
as an essential mediator for the reaction. Immediately after the formation
of an intermediary pnictogen–phosphaketene NHC adduct [NHC–PnPh2(PCO)], the NHC ligand transfers from the Pn center to the
phosphaketene carbon atom, forming NHC–C(O)P-PnPh2 [Pn = Sb (3) or Bi (4)]. In the solid
state, 3 and 4 are dimeric with short intermolecular
Pn–Pn interactions. When compounds 3 and 4 are heated in THF at 90 and 70 °C, respectively, the
pnictogen center PnIII is thermally reduced to PnII to form tetraphenyldipnictines (Ph2Pn–PnPh2) and an unusual bis-carbene-supported OCP
salt, [(NHC)2OCP][OCP] (5). The formation
of compound 5 and Ph2Pn–PnPh2 from 3 or 4 is unique in comparison to
the known thermal reactivity for group 14 carbene–phosphaketene
complexes, further highlighting the diverse reactivity of [OCP]− with main-group elements. All new compounds have been
fully characterized by single-crystal X-ray diffraction, multinuclear
NMR spectroscopy (1H, 13C, and 31P), infrared spectroscopy, and elemental analysis (1, 2, and 5). The electronic structure of 5 and the mechanism of formation were investigated using density
functional theory (DFT). An N-heterocyclic carbene (NHC) was used
to support the otherwise unstable Ph2Sb—P=C=O
and Ph2Bi—P=C=O moieties. Exploration
of the thermal chemistry of these NHC−phosphaketene adducts
reveals the formation of the salt [NHC2OCP][OCP]. This
present work demonstrates the thermal chemistry of the 2-phospaethynolate
anion with heavier pnictogens (Sb and Bi).
Collapse
Affiliation(s)
- Jacob E Walley
- Department of Chemistry, University of Virginia, 409 McCormick Road, P.O. Box 400319, Charlottesville, Virginia 22903, United States
| | - Levi S Warring
- Department of Chemistry, University of Virginia, 409 McCormick Road, P.O. Box 400319, Charlottesville, Virginia 22903, United States
| | - Erik Kertész
- Department of Inorganic and Analytical Chemistry, Budapest University of Technology and Economics, Szent Gellért tér 4, H-1111 Budapest, Hungary
| | - Guocang Wang
- Department of Chemistry, University of Virginia, 409 McCormick Road, P.O. Box 400319, Charlottesville, Virginia 22903, United States
| | - Diane A Dickie
- Department of Chemistry, University of Virginia, 409 McCormick Road, P.O. Box 400319, Charlottesville, Virginia 22903, United States
| | - Zoltán Benkő
- Department of Inorganic and Analytical Chemistry, Budapest University of Technology and Economics, Szent Gellért tér 4, H-1111 Budapest, Hungary
| | - Robert J Gilliard
- Department of Chemistry, University of Virginia, 409 McCormick Road, P.O. Box 400319, Charlottesville, Virginia 22903, United States
| |
Collapse
|
17
|
Escomel L, Del Rosal I, Maron L, Jeanneau E, Veyre L, Thieuleux C, Camp C. Strongly Polarized Iridium δ--Aluminum δ+ Pairs: Unconventional Reactivity Patterns Including CO 2 Cooperative Reductive Cleavage. J Am Chem Soc 2021; 143:4844-4856. [PMID: 33735575 DOI: 10.1021/jacs.1c01725] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
The iridium tetrahydride complex Cp*IrH4 reacts with a range of isobutylaluminum derivatives of general formula Al(iBu)x(OAr)3-x (x = 1, 2) to give the unusual iridium aluminum species [Cp*IrH3Al(iBu)(OAr)] (1) via a reductive elimination route. The Lewis acidity of the Al atom in complex 1 is confirmed by the coordination of pyridine, leading to the adduct [Cp*IrH3Al(iBu)(OAr)(Py)] (2). Spectroscopic, crystallographic, and computational data support the description of these heterobimetallic complexes 1 and 2 as featuring strongly polarized Al(III)δ+-Ir(III)δ- interactions. Reactivity studies demonstrate that the binding of a Lewis base to Al does not quench the reactivity of the Ir-Al motif and that both species 1 and 2 promote the cooperative reductive cleavage of a range of heteroallenes. Specifically, complex 2 promotes the decarbonylation of CO2 and AdNCO, leading to CO (trapped as Cp*IrH2(CO)) and the alkylaluminum oxo ([(iBu)(OAr)Al(Py)]2(μ-O) (3)) and ureate ({Al(OAr)(iBu)[κ2-(N,O)AdNC(O)NHAd]} (4)) species, respectively. The bridged amidinate species Cp*IrH2(μ-CyNC(H)NCy)Al(iBu)(OAr) (5) is formed in the reaction of 2 with dicyclohexylcarbodiimine. Mechanistic investigations via DFT support cooperative heterobimetallic bond activation processes.
Collapse
Affiliation(s)
- Léon Escomel
- Laboratory of Catalysis, Polymerization, Processes and Materials, CP2M UMR 5128, Université de Lyon, Institut de Chimie de Lyon, CNRS, Université Lyon 1, ESCPE Lyon, 43 Bd du 11 Novembre 1918, F-69616 Villeurbanne, France
| | - Iker Del Rosal
- Université de Toulouse, CNRS, INSA, UPS, UMR 5215, LPCNO, 135 Avenue de Rangueil, F-31077 Toulouse, France
| | - Laurent Maron
- Université de Toulouse, CNRS, INSA, UPS, UMR 5215, LPCNO, 135 Avenue de Rangueil, F-31077 Toulouse, France
| | - Erwann Jeanneau
- Université de Lyon, Centre de Diffractométrie Henri Longchambon, 5 Rue de la Doua, 69100 Villeurbanne, France
| | - Laurent Veyre
- Laboratory of Catalysis, Polymerization, Processes and Materials, CP2M UMR 5128, Université de Lyon, Institut de Chimie de Lyon, CNRS, Université Lyon 1, ESCPE Lyon, 43 Bd du 11 Novembre 1918, F-69616 Villeurbanne, France
| | - Chloé Thieuleux
- Laboratory of Catalysis, Polymerization, Processes and Materials, CP2M UMR 5128, Université de Lyon, Institut de Chimie de Lyon, CNRS, Université Lyon 1, ESCPE Lyon, 43 Bd du 11 Novembre 1918, F-69616 Villeurbanne, France
| | - Clément Camp
- Laboratory of Catalysis, Polymerization, Processes and Materials, CP2M UMR 5128, Université de Lyon, Institut de Chimie de Lyon, CNRS, Université Lyon 1, ESCPE Lyon, 43 Bd du 11 Novembre 1918, F-69616 Villeurbanne, France
| |
Collapse
|
18
|
Du J, Balázs G, Wooles AJ, Scheer M, Liddle ST. The “Hidden” Reductive [2+2+1]‐Cycloaddition Chemistry of 2‐Phosphaethynolate Revealed by Reduction of a Th‐OCP Linkage. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202012506] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Jingzhen Du
- Department of Chemistry The University of Manchester Oxford Road Manchester M13 9PL UK
| | - Gábor Balázs
- Institute of Inorganic Chemistry University of Regensburg Universitätsstr. 31 93053 Regensburg Germany
| | - Ashley J. Wooles
- Department of Chemistry The University of Manchester Oxford Road Manchester M13 9PL UK
| | - Manfred Scheer
- Institute of Inorganic Chemistry University of Regensburg Universitätsstr. 31 93053 Regensburg Germany
| | - Stephen T. Liddle
- Department of Chemistry The University of Manchester Oxford Road Manchester M13 9PL UK
| |
Collapse
|
19
|
Du J, Balázs G, Wooles AJ, Scheer M, Liddle ST. The "Hidden" Reductive [2+2+1]-Cycloaddition Chemistry of 2-Phosphaethynolate Revealed by Reduction of a Th-OCP Linkage. Angew Chem Int Ed Engl 2021; 60:1197-1202. [PMID: 33051949 PMCID: PMC7839465 DOI: 10.1002/anie.202012506] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Indexed: 11/27/2022]
Abstract
The reduction chemistry of the newly emerging 2‐phosphaethynolate (OCP)− is not well explored, and many unanswered questions remain about this ligand in this context. We report that reduction of [Th(TrenTIPS)(OCP)] (2, TrenTIPS=[N(CH2CH2NSiPri3)]3−), with RbC8 via [2+2+1] cycloaddition, produces an unprecedented hexathorium complex [{Th(TrenTIPS)}6(μ‐OC2P3)2(μ‐OC2P3H)2Rb4] (5) featuring four five‐membered [C2P3] phosphorus heterocycles, which can be converted to a rare oxo complex [{Th(TrenTIPS)(μ‐ORb)}2] (6) and the known cyclometallated complex [Th{N(CH2CH2NSiPri3)2(CH2CH2SiPri2CHMeCH2)}] (4) by thermolysis; thereby, providing an unprecedented example of reductive cycloaddition reactivity in the chemistry of 2‐phosphaethynolate. This has permitted us to isolate intermediates that might normally remain unseen. We have debunked an erroneous assumption of a concerted fragmentation process for (OCP)−, rather than cycloaddition products that then decompose with [Th(TrenTIPS)O]− essentially acting as a protecting then leaving group. In contrast, when KC8 or CsC8 were used the phosphinidiide C−H bond activation product [{Th(TrenTIPS)}Th{N(CH2CH2NSiPri3)2[CH2CH2SiPri2CH(Me)CH2C(O)μ‐P]}] (3) and the oxo complex [{Th(TrenTIPS)(μ‐OCs)}2] (7) were isolated.
Collapse
Affiliation(s)
- Jingzhen Du
- Department of Chemistry, The University of Manchester, Oxford Road, Manchester, M13 9PL, UK
| | - Gábor Balázs
- Institute of Inorganic Chemistry, University of Regensburg, Universitätsstr. 31, 93053, Regensburg, Germany
| | - Ashley J Wooles
- Department of Chemistry, The University of Manchester, Oxford Road, Manchester, M13 9PL, UK
| | - Manfred Scheer
- Institute of Inorganic Chemistry, University of Regensburg, Universitätsstr. 31, 93053, Regensburg, Germany
| | - Stephen T Liddle
- Department of Chemistry, The University of Manchester, Oxford Road, Manchester, M13 9PL, UK
| |
Collapse
|
20
|
Liu K, Yu JP, Wu QY, Tao XB, Kong XH, Mei L, Hu KQ, Yuan LY, Chai ZF, Shi WQ. Rational Design of a Tripodal Ligand for U(IV): Synthesis and Characterization of a U–Cl Species and Insights into Its Reactivity. Organometallics 2020. [DOI: 10.1021/acs.organomet.0c00638] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- Kang Liu
- Laboratory of Nuclear Energy Chemistry, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, People’s Republic of China
- University of Chinese Academy of Sciences, Beijing 100039, People’s
Republic of China
| | - Ji-Pan Yu
- Laboratory of Nuclear Energy Chemistry, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, People’s Republic of China
| | - Qun-Yan Wu
- Laboratory of Nuclear Energy Chemistry, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, People’s Republic of China
| | - Xue-Bing Tao
- College of Chemistry and Chemical Engineering, University of South China, Hengyang 421001, People’s Republic of China
| | - Xiang-He Kong
- College of Chemistry and Chemical Engineering, University of South China, Hengyang 421001, People’s Republic of China
| | - Lei Mei
- Laboratory of Nuclear Energy Chemistry, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, People’s Republic of China
| | - Kong-Qiu Hu
- Laboratory of Nuclear Energy Chemistry, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, People’s Republic of China
| | - Li-Yong Yuan
- Laboratory of Nuclear Energy Chemistry, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, People’s Republic of China
| | - Zhi-Fang Chai
- Laboratory of Nuclear Energy Chemistry, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, People’s Republic of China
- Engineering Laboratory of Advanced Energy Materials, Ningbo Institute of Industrial Technology, Chinese Academy of Sciences, Ningbo, Zhejiang 315201, People’s Republic of China
| | - Wei-Qun Shi
- Laboratory of Nuclear Energy Chemistry, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, People’s Republic of China
| |
Collapse
|
21
|
Suter R, Wagner M, Querci L, Conti R, Benkő Z, Grützmacher H. 1,3,4-Azadiphospholides as building blocks for scorpionate and bidentate ligands in multinuclear complexes. Dalton Trans 2020; 49:8201-8208. [PMID: 32501468 DOI: 10.1039/d0dt01864c] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Annulated oxy-substituted 1,3,4-azadiphospholides such as the anion in Na[1] are readily accessible phosphorus heterocycles made from the phosphaethynolate anion (OCP)- and 2-chloropyridines. The sodium salt Na[1] reacts with oxophilic element halides such as OPCl3, PhSiCl3, PhBCl2 and CpTiCl3 at room temperature to form exclusively the oxygen bound tris-substituted compounds E(1)3 (with E = OP, PhSi, PhB- or CpTi). Six equivalents of Na[1] with group four metal chlorides MCl4 (M = Ti, Zr, Hf) form cleanly the hexa-substituted dianions (Na2[M(1)6]) which are isolated in excellent yields. The titanium complexes are deeply coloured species due to ligand to metal charge transfer (LMCT) excitations. In all complexes, the phosphorus atoms of the azadiphosphole moieties are able to coordinate to a soft metal center as shown in their reactions with [Mo(CO)3Mes], yielding complexes in which the Mo(CO)3 binds in a fac manner. Functionalization of the oxy group with amino phosphanes allows isolation of tridentate ligands, which have been used as synthons for macrocyclic molybdenum carbonyl complexes.
Collapse
Affiliation(s)
- Riccardo Suter
- Department of Chemistry and Applied Biosciences, ETH Zurich, CH-8093 Zurich, Switzerland.
| | | | | | | | | | | |
Collapse
|
22
|
Boreen MA, Gould CA, Booth CH, Hohloch S, Arnold J. Structure and magnetism of a tetrahedral uranium(iii) β-diketiminate complex. Dalton Trans 2020; 49:7938-7944. [PMID: 32495782 DOI: 10.1039/d0dt01599g] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We describe the functionalisation of the previously reported uranium(iii) β-diketiminate complex (BDI)UI2(THF)2 (1) with one and two equivalents of a sterically demanding 2,6-diisopropylphenolate ligand (ODipp) leading to the formation of two heteroleptic complexes: [(BDI)UI(ODipp)]2 (2) and (BDI)U(ODipp)2 (3). The latter is a rare example of a tetrahedral uranium(iii) complex, and it shows single-molecule magnet behaviour.
Collapse
Affiliation(s)
- Michael A Boreen
- Department of Chemistry, University of California, Berkeley, California 94720, USA.
| | | | | | | | | |
Collapse
|
23
|
Affiliation(s)
- Tara K. K. Dickie
- Department of Chemistry and Biochemistry, University of Lethbridge, 4401 University Drive, Lethbridge, Alberta, Canada T1K 3M4
| | - Ashraf A. Aborawi
- Department of Chemistry and Biochemistry, University of Lethbridge, 4401 University Drive, Lethbridge, Alberta, Canada T1K 3M4
| | - Paul G. Hayes
- Department of Chemistry and Biochemistry, University of Lethbridge, 4401 University Drive, Lethbridge, Alberta, Canada T1K 3M4
| |
Collapse
|
24
|
Boreen MA, McCabe KN, Lohrey TD, Watt FA, Maron L, Hohloch S, Arnold J. Uranium Metallocene Azides, Isocyanates, and Their Borane-Capped Lewis Adducts. Inorg Chem 2020; 59:8580-8588. [DOI: 10.1021/acs.inorgchem.0c01038] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Michael A. Boreen
- Department of Chemistry, University of California, Berkeley, California 94720, United States
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Karl N. McCabe
- LPCNO, Université de Toulouse, INSA Toulouse, 135 Avenue de Rangueil, Toulouse 31077, France
| | - Trevor D. Lohrey
- Department of Chemistry, University of California, Berkeley, California 94720, United States
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Fabian A. Watt
- Paderborn University, Warburger Straße 100, Paderborn 33098, Germany
| | - Laurent Maron
- LPCNO, Université de Toulouse, INSA Toulouse, 135 Avenue de Rangueil, Toulouse 31077, France
| | - Stephan Hohloch
- University of Innsbruck, Faculty of Chemistry and Pharmacy, Institute of General, Inorganic and Theoretical Chemistry, Innrain 80-82, Innsbruck 6020, Austria
| | - John Arnold
- Department of Chemistry, University of California, Berkeley, California 94720, United States
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| |
Collapse
|
25
|
Wilson DWN, Franco MP, Myers WK, McGrady JE, Goicoechea JM. Base induced isomerisation of a phosphaethynolato-borane: mechanistic insights into boryl migration and decarbonylation to afford a triplet phosphinidene. Chem Sci 2019; 11:862-869. [PMID: 34123064 PMCID: PMC8145529 DOI: 10.1039/c9sc05969e] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
We report on the (tert-butyl)isocyanide-catalysed isomersation of a phosphaethynolato-borane, [B]OCP ([B] = N,N′-bis(2,6-diisopropylphenyl)-2,3-dihydro-1H-1,3,2-diazaboryl), to its linkage isomer, a phosphaketenyl-borane, [B]PCO. Mechanistic insight into this unusual isomerisation was gained through a series of stoichiometric reactions of [B]OCP with isocyanides and theoretical calculations at the Density Functional Theory (DFT) level. [B]PCO decarbonylates under photolytic conditions to afford a novel boryl-substituted diphosphene, [B]P
Created by potrace 1.16, written by Peter Selinger 2001-2019
]]>
P[B]. This reaction proceeds via a transient triplet phosphinidene which we have been able to observe spectroscopically by Electron Paramagnetic Resonance (EPR) spectroscopy. We report on the (tert-butyl)isocyanide-catalysed isomersation of a phosphaethynolato-borane, [B]OCP, to its linkage isomer, a phosphaketenyl-borane, [B]PCO.![]()
Collapse
Affiliation(s)
- Daniel W N Wilson
- Department of Chemistry, University of Oxford, Chemistry Research Laboratory 12 Mansfield Road Oxford OX1 3TA UK
| | - Mauricio P Franco
- Department of Chemistry, University of Oxford, Chemistry Research Laboratory 12 Mansfield Road Oxford OX1 3TA UK
| | - William K Myers
- Department of Chemistry, University of Oxford, Centre for Advanced ESR, Inorganic Chemistry Laboratory South Parks Road Oxford OX1 3QR UK
| | - John E McGrady
- Department of Chemistry, University of Oxford, Chemistry Research Laboratory 12 Mansfield Road Oxford OX1 3TA UK
| | - Jose M Goicoechea
- Department of Chemistry, University of Oxford, Chemistry Research Laboratory 12 Mansfield Road Oxford OX1 3TA UK
| |
Collapse
|
26
|
Yuan Q, Tambornino F, Hinz A, Borden WT, Goicoechea JM, Chen B, Wang X. Photoelectron Spectroscopy and Theoretical Studies of PCSe
−
, AsCS
−
, AsCSe
−
, and NCSe
−
: Insights into the Electronic Structures of the Whole Family of ECX
−
Anions (E=N, P, As; X=O, S, Se). Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201906904] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Qinqin Yuan
- Physical Sciences Division Pacific Northwest National Laboratory 902 Battelle Boulevard, P. O. Box 999, MS K8-88 Richland WA 99352 USA
| | - Frank Tambornino
- Department of Chemistry University of Oxford Chemistry Research Laboratory 12 Mansfield Road Oxford OX1 3TA UK
- Fachbereich Chemie Philipps-Universität Marburg Hans-Meerwein-Strasse 4 35043 Marburg Germany
| | - Alexander Hinz
- Karlsruhe Institut of Technology (KIT) Institute for Inorganic Chemistry (AOC) Engesserstraße 15, Geb. 30.45 76131 Karlsruhe Germany
| | - Weston Thatcher Borden
- Department of Chemistry and the Center for Advanced Scientific Computing and Modeling University of North Texas 1155 Union Circle, #305070 Denton TX 76203-5070 USA
| | - Jose M. Goicoechea
- Department of Chemistry University of Oxford Chemistry Research Laboratory 12 Mansfield Road Oxford OX1 3TA UK
| | - Bo Chen
- Department of Chemistry Pennsylvania State University University Park PA 16801 USA
| | - Xue‐Bin Wang
- Physical Sciences Division Pacific Northwest National Laboratory 902 Battelle Boulevard, P. O. Box 999, MS K8-88 Richland WA 99352 USA
| |
Collapse
|
27
|
Grant LN, Mindiola DJ. The Rise of Phosphaethynolate Chemistry in Early Transition Metals, Actinides, and Rare‐Earth Complexes. Chemistry 2019; 25:16171-16178. [DOI: 10.1002/chem.201902871] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2019] [Indexed: 11/10/2022]
Affiliation(s)
- Lauren N. Grant
- Department of Chemistry University of Pennsylvania Philadelphia PA 19104 USA
| | - Daniel J. Mindiola
- Department of Chemistry University of Pennsylvania Philadelphia PA 19104 USA
| |
Collapse
|
28
|
Magnall R, Balázs G, Lu E, Kern M, Slageren J, Tuna F, Wooles AJ, Scheer M, Liddle ST. Photolytic and Reductive Activations of 2‐Arsaethynolate in a Uranium–Triamidoamine Complex: Decarbonylative Arsenic‐Group Transfer Reactions and Trapping of a Highly Bent and Reduced Form. Chemistry 2019; 25:14246-14252. [DOI: 10.1002/chem.201903973] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Indexed: 12/20/2022]
Affiliation(s)
- Rosie Magnall
- School of ChemistryThe University of Manchester Oxford Road Manchester M13 9PL UK
| | - Gábor Balázs
- Institute of Inorganic ChemistryUniversity of Regensburg Universitätsstr.31 Regensburg 93053 Germany
| | - Erli Lu
- School of ChemistryThe University of Manchester Oxford Road Manchester M13 9PL UK
| | - Michal Kern
- Institute of Physical ChemistryUniversity of Stuttgart Pfaffenwaldring 55 Stuttgart 70569 Germany
| | - Joris Slageren
- Institute of Physical ChemistryUniversity of Stuttgart Pfaffenwaldring 55 Stuttgart 70569 Germany
| | - Floriana Tuna
- School of Chemistry and Photon Science InstituteThe University of Manchester Oxford Road Manchester M13 9PL UK
| | - Ashley J. Wooles
- School of ChemistryThe University of Manchester Oxford Road Manchester M13 9PL UK
| | - Manfred Scheer
- Institute of Inorganic ChemistryUniversity of Regensburg Universitätsstr.31 Regensburg 93053 Germany
| | - Stephen T. Liddle
- School of ChemistryThe University of Manchester Oxford Road Manchester M13 9PL UK
| |
Collapse
|
29
|
Ghosh M, Cramer HH, Dechert S, Demeshko S, John M, Hansmann MM, Ye S, Meyer F. A μ-Phosphido Diiron Dumbbell in Multiple Oxidation States. Angew Chem Int Ed Engl 2019; 58:14349-14356. [PMID: 31350785 PMCID: PMC6790664 DOI: 10.1002/anie.201908213] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Indexed: 11/06/2022]
Abstract
The reaction of the ferrous complex [LFe(NCMe)2 ](OTf)2 (1), which contains a macrocyclic tetracarbene as ligand (L), with Na(OCP) generates the OCP- -ligated complex [LFe(PCO)(CO)]OTf (2) together with the dinuclear μ-phosphido complex [(LFe)2 P](OTf)3 (3), which features an unprecedented linear Fe-(μ-P)-Fe motif and a "naked" P-atom bridge that appears at δ=+1480 ppm in the 31 P NMR spectrum. 3 exhibits rich redox chemistry, and both the singly and doubly oxidized species 4 and 5 could be isolated and fully characterized. X-ray crystallography, spectroscopic studies, in combination with DFT computations provide a comprehensive electronic structure description and show that the Fe-(μ-P)-Fe core is highly covalent and structurally invariant over the series of oxidation states that are formally described as ranging from FeIII FeIII to FeIV FeIV . 3-5 now add a higher homologue set of complexes to the many systems with Fe-(μ-O)-Fe and Fe-(μ-N)-Fe core structures that are prominent in bioinorganic chemistry and catalysis.
Collapse
Affiliation(s)
- Munmun Ghosh
- Institut für Anorganische ChemieGeorg-August-Universität GöttingenTammannstrasse 437077GöttingenGermany
| | - Hanna H. Cramer
- Max-Planck Institut für Chemische EnergiekonversionStiftstrasse 34–3645470Mülheim an der RuhrGermany
| | - Sebastian Dechert
- Institut für Anorganische ChemieGeorg-August-Universität GöttingenTammannstrasse 437077GöttingenGermany
| | - Serhiy Demeshko
- Institut für Anorganische ChemieGeorg-August-Universität GöttingenTammannstrasse 437077GöttingenGermany
| | - Michael John
- Institut für Anorganische ChemieGeorg-August-Universität GöttingenTammannstrasse 437077GöttingenGermany
| | - Max M. Hansmann
- Institut für Organische und Biomolekulare ChemieGeorg-August-Universität GöttingenTammannstrasse 237077GöttingenGermany
| | - Shengfa Ye
- Max-Planck Institut für KohlenforschungStiftstrasse 34–3645470Mülheim an der RuhrGermany
| | - Franc Meyer
- Institut für Anorganische ChemieGeorg-August-Universität GöttingenTammannstrasse 437077GöttingenGermany
| |
Collapse
|
30
|
Ghosh M, Cramer HH, Dechert S, Demeshko S, John M, Hansmann MM, Ye S, Meyer F. A μ‐Phosphido Diiron Dumbbell in Multiple Oxidation States. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201908213] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Affiliation(s)
- Munmun Ghosh
- Institut für Anorganische Chemie Georg-August-Universität Göttingen Tammannstrasse 4 37077 Göttingen Germany
| | - Hanna H. Cramer
- Max-Planck Institut für Chemische Energiekonversion Stiftstrasse 34–36 45470 Mülheim an der Ruhr Germany
| | - Sebastian Dechert
- Institut für Anorganische Chemie Georg-August-Universität Göttingen Tammannstrasse 4 37077 Göttingen Germany
| | - Serhiy Demeshko
- Institut für Anorganische Chemie Georg-August-Universität Göttingen Tammannstrasse 4 37077 Göttingen Germany
| | - Michael John
- Institut für Anorganische Chemie Georg-August-Universität Göttingen Tammannstrasse 4 37077 Göttingen Germany
| | - Max M. Hansmann
- Institut für Organische und Biomolekulare Chemie Georg-August-Universität Göttingen Tammannstrasse 2 37077 Göttingen Germany
| | - Shengfa Ye
- Max-Planck Institut für Kohlenforschung Stiftstrasse 34–36 45470 Mülheim an der Ruhr Germany
| | - Franc Meyer
- Institut für Anorganische Chemie Georg-August-Universität Göttingen Tammannstrasse 4 37077 Göttingen Germany
| |
Collapse
|
31
|
Yuan Q, Tambornino F, Hinz A, Borden WT, Goicoechea JM, Chen B, Wang X. Photoelectron Spectroscopy and Theoretical Studies of PCSe
−
, AsCS
−
, AsCSe
−
, and NCSe
−
: Insights into the Electronic Structures of the Whole Family of ECX
−
Anions (E=N, P, As; X=O, S, Se). Angew Chem Int Ed Engl 2019; 58:15062-15068. [DOI: 10.1002/anie.201906904] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Indexed: 11/07/2022]
Affiliation(s)
- Qinqin Yuan
- Physical Sciences Division Pacific Northwest National Laboratory 902 Battelle Boulevard, P. O. Box 999, MS K8-88 Richland WA 99352 USA
| | - Frank Tambornino
- Department of Chemistry University of Oxford Chemistry Research Laboratory 12 Mansfield Road Oxford OX1 3TA UK
- Fachbereich Chemie Philipps-Universität Marburg Hans-Meerwein-Strasse 4 35043 Marburg Germany
| | - Alexander Hinz
- Karlsruhe Institut of Technology (KIT) Institute for Inorganic Chemistry (AOC) Engesserstraße 15, Geb. 30.45 76131 Karlsruhe Germany
| | - Weston Thatcher Borden
- Department of Chemistry and the Center for Advanced Scientific Computing and Modeling University of North Texas 1155 Union Circle, #305070 Denton TX 76203-5070 USA
| | - Jose M. Goicoechea
- Department of Chemistry University of Oxford Chemistry Research Laboratory 12 Mansfield Road Oxford OX1 3TA UK
| | - Bo Chen
- Department of Chemistry Pennsylvania State University University Park PA 16801 USA
| | - Xue‐Bin Wang
- Physical Sciences Division Pacific Northwest National Laboratory 902 Battelle Boulevard, P. O. Box 999, MS K8-88 Richland WA 99352 USA
| |
Collapse
|
32
|
Magnall R, Balázs G, Lu E, Tuna F, Wooles AJ, Scheer M, Liddle ST. Trapping of a Highly Bent and Reduced Form of 2‐Phosphaethynolate in a Mixed‐Valence Diuranium–Triamidoamine Complex. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201904676] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Rosie Magnall
- School of ChemistryThe University of Manchester Oxford Road Manchester M13 9PL UK
| | - Gábor Balázs
- Institute of Inorganic ChemistryUniversity of Regensburg Universitätsstr.31 93053 Regensburg Germany
| | - Erli Lu
- School of ChemistryThe University of Manchester Oxford Road Manchester M13 9PL UK
| | - Floriana Tuna
- School of Chemistry and Photon Science InstituteThe University of Manchester Oxford Road Manchester M13 9PL UK
| | - Ashley J. Wooles
- School of ChemistryThe University of Manchester Oxford Road Manchester M13 9PL UK
| | - Manfred Scheer
- Institute of Inorganic ChemistryUniversity of Regensburg Universitätsstr.31 93053 Regensburg Germany
| | - Stephen T. Liddle
- School of ChemistryThe University of Manchester Oxford Road Manchester M13 9PL UK
| |
Collapse
|
33
|
Magnall R, Balázs G, Lu E, Tuna F, Wooles AJ, Scheer M, Liddle ST. Trapping of a Highly Bent and Reduced Form of 2-Phosphaethynolate in a Mixed-Valence Diuranium-Triamidoamine Complex. Angew Chem Int Ed Engl 2019; 58:10215-10219. [PMID: 31125153 DOI: 10.1002/anie.201904676] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Indexed: 11/07/2022]
Abstract
The chemistry of 2-phosphaethynolate is burgeoning, but there remains much to learn about this ligand, for example its reduction chemistry is scarce as this promotes P-C-O fragmentations or couplings. Here, we report that reduction of [U(TrenTIPS )(OCP)] (TrenTIPS =N(CH2 CH2 NSiPri 3 )3 ) with KC8 /2,2,2-cryptand gives [{U(TrenTIPS )}2 {μ-η2 (OP):η2 (CP)-OCP}][K(2,2,2-cryptand)]. The coordination mode of this trapped 2-phosphaethynolate is unique, and derives from an unprecedented highly reduced and highly bent form of this ligand with the most acute P-C-O angle in any complex to date (P-C-O ∡ ≈127°). The characterisation data support a mixed-valence diuranium(III/IV) formulation, where backbonding from uranium gives a highly reduced form of the P-C-O unit that is perhaps best described as a uranium-stabilised OCP2-. radical dianion. Quantum chemical calculations reveal that this gives unprecedented carbene character to the P-C-O unit, which engages in a weak donor-acceptor interaction with one of the uranium ions.
Collapse
Affiliation(s)
- Rosie Magnall
- School of Chemistry, The University of Manchester, Oxford Road, Manchester, M13 9PL, UK
| | - Gábor Balázs
- Institute of Inorganic Chemistry, University of Regensburg, Universitätsstr.31, 93053, Regensburg, Germany
| | - Erli Lu
- School of Chemistry, The University of Manchester, Oxford Road, Manchester, M13 9PL, UK
| | - Floriana Tuna
- School of Chemistry and Photon Science Institute, The University of Manchester, Oxford Road, Manchester, M13 9PL, UK
| | - Ashley J Wooles
- School of Chemistry, The University of Manchester, Oxford Road, Manchester, M13 9PL, UK
| | - Manfred Scheer
- Institute of Inorganic Chemistry, University of Regensburg, Universitätsstr.31, 93053, Regensburg, Germany
| | - Stephen T Liddle
- School of Chemistry, The University of Manchester, Oxford Road, Manchester, M13 9PL, UK
| |
Collapse
|
34
|
Grant LN, Krzystek J, Pinter B, Telser J, Grützmacher H, Mindiola DJ. Finding a soft spot for vanadium: a P-bound OCP ligand. Chem Commun (Camb) 2019; 55:5966-5969. [PMID: 31050697 DOI: 10.1039/c9cc01500k] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Transmetallation studies with the phosphaethynolate ion, [OCP]-, have largely resulted in coordination according to classical Lewis acid-base theory. That is, for harder early transition metal ions, O-bound coordination has been observed, whereas in the case of softer late transition metal ions, P-bound coordination predominates. Herein, we report the use of a V(iii) complex, namely [(nacnac)VCl(OAr)] (1) (nacnac- = [ArNC(CH3)]2CH; Ar = 2,6-iPr2C6H3), to transmetallate [OCP]- and bind via the P-atom as [(nacnac)V(OAr)(PCO)] (2), the first example of a 3d early transition metal that binds [OCP]-via the P-atom. Full characterization studies of this molecule including HFEPR spectroscopy, SQuID measurements, and theoretical studies are presented.
Collapse
Affiliation(s)
- Lauren N Grant
- Department of Chemistry, University of Pennsylvania, Philadelphia, PA 19104, USA.
| | - J Krzystek
- National High Magnetic Field Laboratory, Florida State University, Tallahassee, FL 32310, USA
| | - Balazs Pinter
- Department of Chemistry, Universidad Técnica Federico Santa María, Valparaíso, 2390123, Chile
| | - Joshua Telser
- Department of Biological, Physical and Health Sciences, Roosevelt University, Chicago, IL 60605, USA
| | - Hansjörg Grützmacher
- Department of Chemistry and Applied Biosciences, ETH Zürich, Vladimir-Prelog Weg1, Hönggerberg, Zürich 8093, Switzerland
| | - Daniel J Mindiola
- Department of Chemistry, University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
35
|
Settineri NS, Shiau AA, Arnold J. Dioxygen reacts with metal-carbon bonds in thorium dialkyls to produce bis(alkoxides). Dalton Trans 2019; 48:5569-5573. [PMID: 30938732 DOI: 10.1039/c9dt00811j] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Exposure of bis-amidinate and -guanidinate supported thorium dialkyl complexes to dioxygen results in facile oxygen atom insertion and formation of the corresponding thorium bis(alkoxide) species. Preliminary mechanistic studies suggest a radical propagation mechanism is operative. All new complexes were fully characterized by 1H and 13C NMR spectroscopy, IR, EA and X-ray crystallography.
Collapse
Affiliation(s)
- Nicholas S Settineri
- Department of Chemistry, University of California, Berkeley, California 94720, USA.
| | | | | |
Collapse
|
36
|
Barluzzi L, Chatelain L, Fadaei-Tirani F, Zivkovic I, Mazzanti M. Facile N-functionalization and strong magnetic communication in a diuranium(v) bis-nitride complex. Chem Sci 2019; 10:3543-3555. [PMID: 30996946 PMCID: PMC6438153 DOI: 10.1039/c8sc05721d] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Accepted: 02/08/2019] [Indexed: 11/21/2022] Open
Abstract
Uranium nitride complexes are of high interest because of their ability to effect dinitrogen reduction and functionalization and to promote magnetic communication, but studies of their properties and reactivity remain rare. Here we have prepared in 73% yield the diuranium(v) bis-nitride complex [K2{[U(OSi(O t Bu)3)3]2(μ-N)2}], 4, from the thermal decomposition of the nitride-, azide-bridged diuranium(iv) complex [K2{[U(OSi(O t Bu)3)3]2(μ-N)(μ-N3)}], 3. The bis-nitride 4 reacts in ambient conditions with 1 equiv. of CS2 and 1 equiv. of CO2 resulting in N-C bond formation to afford the diuranium(v) complexes [K2{[U(OSi(O t Bu)3)3]2(μ-N)(μ-S)(μ-NCS)}], 5 and [K2{[U(OSi(O t Bu)3)3]2(μ-N)(μ-O)(μ-NCO)}], 6, respectively. Both nitrides in 4 react with CO resulting in oxidative addition of CO to one nitride and CO cleavage by the second nitride to afford the diuranium(iv) complex [K2{[U(OSi(O t Bu)3)3]2(μ-CN)(μ-O)(μ-NCO)}], 7. Complex 4 also effects the remarkable oxidative cleavage of H2 in mild conditions to afford the bis-imido bridged diuranium(iv) complex [K2{[U(OSi(O t Bu)3)3]2(μ-NH)2}], 8 that can be further protonated to afford ammonia in 73% yield. Complex 8 provides a good model for hydrogen cleavage by metal nitrides in the Haber-Bosch process. The measured magnetic data show an unusually strong antiferromagnetic coupling between uranium(v) ions in the complexes 4 and 6 with Neel temperatures of 77 K and 60 K respectively, demonstrating that nitrides are attractives linkers for promoting magnetic communication in uranium complexes.
Collapse
Affiliation(s)
- Luciano Barluzzi
- Institut des Sciences et Ingénierie Chimiques , Ecole Polytechnique Fédérale de Lausanne (EPFL) , CH-1015 Lausanne , Switzerland .
| | - Lucile Chatelain
- Institut des Sciences et Ingénierie Chimiques , Ecole Polytechnique Fédérale de Lausanne (EPFL) , CH-1015 Lausanne , Switzerland .
| | - Farzaneh Fadaei-Tirani
- Institut des Sciences et Ingénierie Chimiques , Ecole Polytechnique Fédérale de Lausanne (EPFL) , CH-1015 Lausanne , Switzerland .
| | - Ivica Zivkovic
- Laboratory for Quantum Magnetism , Institute of Physics , Ecole Polytechnique Fédérale de Lausanne (EPFL) , CH-1015 Lausanne , Switzerland
| | - Marinella Mazzanti
- Institut des Sciences et Ingénierie Chimiques , Ecole Polytechnique Fédérale de Lausanne (EPFL) , CH-1015 Lausanne , Switzerland .
| |
Collapse
|
37
|
Ballestero‐Martínez E, Szilvási T, Hadlington TJ, Driess M. From
As
‐Zincoarsasilene (LZn‐As=SiL′) to Arsaethynolato (As≡C−O) and Arsaketenylido (O=C=As) Zinc Complexes. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201813521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Ernesto Ballestero‐Martínez
- Department of Chemistry: Metalorganics and Inorganic MaterialsTechnische Universität Berlin Straße des 17. Juni 135, Sekr. C2 10623 Berlin Germany
| | - Tibor Szilvási
- Department of Chemical & Biological EngineeringUniversity of Wisconsin-Madison 1415 Engineering Drive Madison WI 53706 USA
| | - Terrance J. Hadlington
- Department of Chemistry: Metalorganics and Inorganic MaterialsTechnische Universität Berlin Straße des 17. Juni 135, Sekr. C2 10623 Berlin Germany
| | - Matthias Driess
- Department of Chemistry: Metalorganics and Inorganic MaterialsTechnische Universität Berlin Straße des 17. Juni 135, Sekr. C2 10623 Berlin Germany
| |
Collapse
|
38
|
Ballestero-Martínez E, Szilvási T, Hadlington TJ, Driess M. From As-Zincoarsasilene (LZn-As=SiL') to Arsaethynolato (As≡C-O) and Arsaketenylido (O=C=As) Zinc Complexes. Angew Chem Int Ed Engl 2019; 58:3382-3386. [PMID: 30620428 DOI: 10.1002/anie.201813521] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Indexed: 11/10/2022]
Abstract
The reactivity of the As-zincosilaarsene LZn-As=SiL' A (L=[CH(CMeNDipp)2 ]- , Dipp=2,6-i Pr2 C6 H3 , L'=[{C(H)N(2,6-i Pr2 -C6 H3 )}2 ]2- ) towards small molecules was investigated. Due to the pronounced zwitterionic character of the Si=As bond of A, it undergoes addition reactions with H2 O and NH3 , forming LZnAs(H)SiOH(L') 1 and LZnAs(H)SiNH2 (L') 2. Oxygenation of A with N2 O at -60 °C furnishes the deep blue 1,2-disiloxydiarsene, [LZnOSi(L')As]2 4, presumably via dimerization of the arsinidene intermediate LZnOSi(L')As 3. Oxygenation of A with CO2 leads to the monomeric arsaethynolato siloxido zinc complex LZnOSi(L')(OC≡As) 5, essentially trapping the intermediary arsinidene 3 with liberated CO following initial oxidation of the Si=As bond. DFT calculations confirm the ambident coordination mode of the anionic [AsCO] ligand in solution, with the O-arsaethynolato [As≡C-O].- in 5, and the As-arsaketenylido ligand mode [O=C=As]- present in LZnO-Si(L')(-As=C=O) 5' akin to the analogous phosphorus system, [PCO]- .
Collapse
Affiliation(s)
- Ernesto Ballestero-Martínez
- Department of Chemistry: Metalorganics and Inorganic Materials, Technische Universität Berlin, Straße des 17. Juni 135, Sekr. C2, 10623, Berlin, Germany
| | - Tibor Szilvási
- Department of Chemical & Biological Engineering, University of Wisconsin-Madison, 1415 Engineering Drive, Madison, WI, 53706, USA
| | - Terrance J Hadlington
- Department of Chemistry: Metalorganics and Inorganic Materials, Technische Universität Berlin, Straße des 17. Juni 135, Sekr. C2, 10623, Berlin, Germany
| | - Matthias Driess
- Department of Chemistry: Metalorganics and Inorganic Materials, Technische Universität Berlin, Straße des 17. Juni 135, Sekr. C2, 10623, Berlin, Germany
| |
Collapse
|
39
|
Borger JE, Le Corre G, Mei Y, Suter R, Schrader E, Grützmacher H. Transient Dipnictyl Analogues of Acrylamides, R−E=E′−CONR
2
, and a Related Diphosphadigalletane from Na[OCP] and (R
2
N)
2
ECl (E, E′=P, As, Ga). Chemistry 2019; 25:3957-3962. [DOI: 10.1002/chem.201806116] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Indexed: 11/06/2022]
Affiliation(s)
- Jaap E. Borger
- Department of Chemistry and Applied BiosciencesETH Zürich Vladimir-Prelog Weg 1 Hönggerberg 8093 Zürich Switzerland
| | - Grégoire Le Corre
- Department of Chemistry and Applied BiosciencesETH Zürich Vladimir-Prelog Weg 1 Hönggerberg 8093 Zürich Switzerland
| | - Yanbo Mei
- Department of Chemistry and Applied BiosciencesETH Zürich Vladimir-Prelog Weg 1 Hönggerberg 8093 Zürich Switzerland
| | - Riccardo Suter
- Department of Chemistry and Applied BiosciencesETH Zürich Vladimir-Prelog Weg 1 Hönggerberg 8093 Zürich Switzerland
| | - Erik Schrader
- Department of Chemistry and Applied BiosciencesETH Zürich Vladimir-Prelog Weg 1 Hönggerberg 8093 Zürich Switzerland
| | - Hansjörg Grützmacher
- Department of Chemistry and Applied BiosciencesETH Zürich Vladimir-Prelog Weg 1 Hönggerberg 8093 Zürich Switzerland
- School of ChemistryLehn Institute of Functional Materials (LIFM)Sun Yat-sen University 135 West Xingang Road Guangzhou 510275 P. R. China
| |
Collapse
|
40
|
Hoerger CJ, Heinemann FW, Louyriac E, Rigo M, Maron L, Grützmacher H, Driess M, Meyer K. Cyaarside (CAs - ) and 1,3-Diarsaallendiide (AsCAs 2- ) Ligands Coordinated to Uranium and Generated via Activation of the Arsaethynolate Ligand (OCAs - ). Angew Chem Int Ed Engl 2019; 58:1679-1683. [PMID: 30427562 DOI: 10.1002/anie.201811332] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Revised: 11/12/2018] [Indexed: 11/07/2022]
Abstract
Reaction of the trivalent uranium complex [((Ad,Me ArO)3 N)U(DME)] with one molar equiv [Na(OCAs)(dioxane)3 ], in the presence of 2.2.2-crypt, yields [Na(2.2.2-crypt)][{((Ad,Me ArO)3 N)UIV (THF)}(μ-O){((Ad,Me ArO)3 N)UIV (CAs)}] (1), the first example of a coordinated η1 -cyaarside ligand (CAs- ). Formation of the terminal CAs- is promoted by the highly reducing, oxophilic UIII precursor [((Ad,Me ArO)3 N)U(DME)] and proceeds through reductive C-O bond cleavage of the bound arsaethynolate anion, OCAs- . If two equiv of OCAs- react with the UIII precursor, the binuclear, μ-oxo-bridged U2 IV/IV complex [Na(2.2.2-crypt)]2 [{((Ad,Me ArO)3 N)UIV }2 (μ-O)(μ-AsCAs)] (2), comprising the hitherto unknown μ:η1 ,η1 -coordinated (AsCAs)2- ligand, is isolated. The mechanistic pathway to 2 involves the decarbonylation of a dimeric intermediate formed in the reaction of 1 with OCAs- . An alternative pathway to complex 2 is by conversion of 1 via addition of one further equiv of OCAs- .
Collapse
Affiliation(s)
- Christopher J Hoerger
- Department of Chemistry and Pharmacy, Inorganic Chemistry, Friedrich-Alexander-University of Erlangen-Nürnberg (FAU), Egerlandstrasse 1, 91058, Erlangen, Germany
| | - Frank W Heinemann
- Department of Chemistry and Pharmacy, Inorganic Chemistry, Friedrich-Alexander-University of Erlangen-Nürnberg (FAU), Egerlandstrasse 1, 91058, Erlangen, Germany
| | - Elisa Louyriac
- Université de Toulouse et CNRS INSA, 135 avenue de Rangueil, 31077, Toulouse, France
| | - Massimo Rigo
- Department of Chemistry, Metalorganics and Inorganic Materials, Technische Universität Berlin, Straße des 17. Juni 135, Sekr. C2, 10623, Berlin, Germany
| | - Laurent Maron
- Université de Toulouse et CNRS INSA, 135 avenue de Rangueil, 31077, Toulouse, France
| | - Hansjörg Grützmacher
- Department of Chemistry and Applied Biosciences, ETH Zürich, Vladimir-Prelog Weg 1, Hönggerberg, 8093 Zürich, Switzerland
| | - Matthias Driess
- Department of Chemistry, Metalorganics and Inorganic Materials, Technische Universität Berlin, Straße des 17. Juni 135, Sekr. C2, 10623, Berlin, Germany
| | - Karsten Meyer
- Department of Chemistry and Pharmacy, Inorganic Chemistry, Friedrich-Alexander-University of Erlangen-Nürnberg (FAU), Egerlandstrasse 1, 91058, Erlangen, Germany
| |
Collapse
|
41
|
Tambornino F, Tanner EEL, Amin HMA, Holter J, Claridge T, Compton RG, Goicoechea JM. Electrochemical Oxidation of the Phospha‐ and Arsaethynolate Anions, PCO
–
and AsCO
–. Eur J Inorg Chem 2019. [DOI: 10.1002/ejic.201801503] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Frank Tambornino
- Department of Chemistry University of Oxford Chemistry Research Laboratory 12 Mansfield Road OX1 3TA Oxford United Kingdom
| | - Eden E. L. Tanner
- Department of Chemistry University of Oxford Physical and Theoretical Chemistry Laboratory South Parks Road OX1 3QZ Oxford United Kingdom
| | - Hatem M. A. Amin
- Department of Chemistry University of Oxford Physical and Theoretical Chemistry Laboratory South Parks Road OX1 3QZ Oxford United Kingdom
| | - Jennifer Holter
- Department of Materials University of Oxford Parks Road OX1 3PH Oxford United Kingdom
| | - Tim Claridge
- Department of Chemistry University of Oxford Chemistry Research Laboratory 12 Mansfield Road OX1 3TA Oxford United Kingdom
| | - Richard G. Compton
- Department of Chemistry University of Oxford Physical and Theoretical Chemistry Laboratory South Parks Road OX1 3QZ Oxford United Kingdom
| | - Jose M. Goicoechea
- Department of Chemistry University of Oxford Chemistry Research Laboratory 12 Mansfield Road OX1 3TA Oxford United Kingdom
| |
Collapse
|
42
|
Hoerger CJ, Heinemann FW, Louyriac E, Rigo M, Maron L, Grützmacher H, Driess M, Meyer K. Cyaarside (CAs
−
) and 1,3‐Diarsaallendiide (AsCAs
2−
) Ligands Coordinated to Uranium and Generated via Activation of the Arsaethynolate Ligand (OCAs
−
). Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201811332] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Christopher J. Hoerger
- Department of Chemistry and PharmacyInorganic ChemistryFriedrich-Alexander-University of Erlangen-Nürnberg (FAU) Egerlandstrasse 1 91058 Erlangen Germany
| | - Frank W. Heinemann
- Department of Chemistry and PharmacyInorganic ChemistryFriedrich-Alexander-University of Erlangen-Nürnberg (FAU) Egerlandstrasse 1 91058 Erlangen Germany
| | - Elisa Louyriac
- Université de Toulouse et CNRS INSA 135 avenue de Rangueil 31077 Toulouse France
| | - Massimo Rigo
- Department of ChemistryMetalorganics and Inorganic MaterialsTechnische Universität Berlin Straße des 17. Juni 135, Sekr. C2 10623 Berlin Germany
| | - Laurent Maron
- Université de Toulouse et CNRS INSA 135 avenue de Rangueil 31077 Toulouse France
| | - Hansjörg Grützmacher
- Department of Chemistry and Applied BiosciencesETH Zürich Vladimir-Prelog Weg 1 Hönggerberg 8093 Zürich Switzerland
| | - Matthias Driess
- Department of ChemistryMetalorganics and Inorganic MaterialsTechnische Universität Berlin Straße des 17. Juni 135, Sekr. C2 10623 Berlin Germany
| | - Karsten Meyer
- Department of Chemistry and PharmacyInorganic ChemistryFriedrich-Alexander-University of Erlangen-Nürnberg (FAU) Egerlandstrasse 1 91058 Erlangen Germany
| |
Collapse
|
43
|
Mei Y, Borger JE, Wu DJ, Grützmacher H. Salen supported Al–O–CP and Ga–PCO complexes. Dalton Trans 2019; 48:4370-4374. [DOI: 10.1039/c9dt00485h] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The synthesis and reactivity of salen supported OCP adducts of aluminium and gallium is reported.
Collapse
Affiliation(s)
- Yanbo Mei
- Department of Chemistry and Applied Biosciences
- ETH Zürich
- 8093 Zürich
- Switzerland
| | - Jaap E. Borger
- Department of Chemistry and Applied Biosciences
- ETH Zürich
- 8093 Zürich
- Switzerland
| | - Dong-Jun Wu
- Department of Chemistry and Applied Biosciences
- ETH Zürich
- 8093 Zürich
- Switzerland
- Lehn Institute of Functional Materials (LIFM)
| | - Hansjörg Grützmacher
- Department of Chemistry and Applied Biosciences
- ETH Zürich
- 8093 Zürich
- Switzerland
- Lehn Institute of Functional Materials (LIFM)
| |
Collapse
|
44
|
Affiliation(s)
- Jose M. Goicoechea
- Department of Chemistry University of Oxford Chemistry Research Laboratory 12 Mansfield Road Oxford OX1 3TA Großbritannien
| | | |
Collapse
|
45
|
Goicoechea JM, Grützmacher H. The Chemistry of the 2-Phosphaethynolate Anion. Angew Chem Int Ed Engl 2018; 57:16968-16994. [PMID: 29770548 DOI: 10.1002/anie.201803888] [Citation(s) in RCA: 122] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2018] [Indexed: 11/07/2022]
Abstract
In all likelihood the first synthesis of the phosphaethynolate anion, PCO- , was performed in 1894 when NaPH2 was reacted with CO in an attempt to make Na(CP) accompanied by elimination of water. This reaction was repeated 117 years later when it was discovered that Na(OCP) and H2 are the products of this remarkable transformation. Li(OCP) was synthesized and fully characterized in 1992 but this salt proved to be too unstable to allow for a detailed investigation of its chemistry. It was not until the heavier analogues of this lithium salt were isolated, Na(OCP) and K(OCP) (both of which are remarkably stable and can be even dissolved in water), that the chemistry of this new functional group could be explored. Here we review the chemistry of the 2-phosphaethynolate anion, a heavier phosphorus-containing analogue of the cyanate anion, and describe the wide breadth of chemical transformations for which it has been thus far employed. Its use as a ligand, in decarbonylative and deoxygenative processes, and as a building block for novel heterocycles is described. In the mere twenty-six years since Becker first reported the isolation of this remarkable anion, it has become a fascinating reagent for the synthesis of a vast library of, often unprecedented, molecules and compounds.
Collapse
Affiliation(s)
- Jose M Goicoechea
- Department of Chemistry, University of Oxford, Chemistry Research Laboratory, 12 Mansfield Road, Oxford, OX1 3TA, UK
| | - Hansjörg Grützmacher
- Department of Chemistry and Applied Biology, ETH Zürich, 8093, Zürich, Switzerland
| |
Collapse
|
46
|
Hohloch S, Garner ME, Booth CH, Lukens WW, Gould CA, Lussier DJ, Maron L, Arnold J. Isolation of a TMTAA-Based Radical in Uranium bis-TMTAA Complexes. Angew Chem Int Ed Engl 2018; 57:16136-16140. [PMID: 30328669 DOI: 10.1002/anie.201810971] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2018] [Indexed: 01/02/2023]
Abstract
We report the synthesis, characterization, and electronic structure studies of a series of thorium(IV) and uranium(IV) bis-tetramethyltetraazaannulene complexes. These sandwich complexes show remarkable stability towards air and moisture, even at elevated temperatures. Electrochemical studies show the uranium complex to be stable in three different oxidation states; isolation of the oxidized species reveals a rare case of a non-innocent tetramethyltetraazaannulene (TMTAA) ligand.
Collapse
Affiliation(s)
- Stephan Hohloch
- Department of Chemistry, University of California, Berkeley, Berkeley, CA, 94720, USA.,University of Paderborn, Warburger Straße 100, 33098, Paderborn, Germany
| | - Mary E Garner
- Department of Chemistry, University of California, Berkeley, Berkeley, CA, 94720, USA
| | - Corwin H Booth
- Chemical Science Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Wayne W Lukens
- Chemical Science Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Colin A Gould
- Department of Chemistry, University of California, Berkeley, Berkeley, CA, 94720, USA
| | - Daniel J Lussier
- Department of Chemistry, University of California, Berkeley, Berkeley, CA, 94720, USA.,Chemical Science Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Laurent Maron
- LPCNO, Université de Toulouse, INSA Toulouse, 135 Avenue de Rangueil, 31077, Toulouse, France
| | - John Arnold
- Department of Chemistry, University of California, Berkeley, Berkeley, CA, 94720, USA.,Chemical Science Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| |
Collapse
|
47
|
Hohloch S, Garner ME, Booth CH, Lukens WW, Gould CA, Lussier DJ, Maron L, Arnold J. Isolation of a TMTAA‐Based Radical in Uranium bis‐TMTAA Complexes. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201810971] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Stephan Hohloch
- Department of Chemistry University of California, Berkeley Berkeley CA 94720 USA
- University of Paderborn Warburger Straße 100 33098 Paderborn Germany
| | - Mary E. Garner
- Department of Chemistry University of California, Berkeley Berkeley CA 94720 USA
| | - Corwin H. Booth
- Chemical Science Division Lawrence Berkeley National Laboratory Berkeley CA 94720 USA
| | - Wayne W. Lukens
- Chemical Science Division Lawrence Berkeley National Laboratory Berkeley CA 94720 USA
| | - Colin A. Gould
- Department of Chemistry University of California, Berkeley Berkeley CA 94720 USA
| | - Daniel J. Lussier
- Department of Chemistry University of California, Berkeley Berkeley CA 94720 USA
- Chemical Science Division Lawrence Berkeley National Laboratory Berkeley CA 94720 USA
| | - Laurent Maron
- LPCNO Université de Toulouse, INSA Toulouse 135 Avenue de Rangueil 31077 Toulouse France
| | - John Arnold
- Department of Chemistry University of California, Berkeley Berkeley CA 94720 USA
- Chemical Science Division Lawrence Berkeley National Laboratory Berkeley CA 94720 USA
| |
Collapse
|
48
|
Settineri NS, Shiau AA, Arnold J. Two-electron oxidation of a homoleptic U(iii) guanidinate complex by diphenyldiazomethane. Chem Commun (Camb) 2018; 54:10913-10916. [PMID: 30206592 DOI: 10.1039/c8cc06514d] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Reaction of the first homoleptic U(iii) guanidinate complex with diphenyldiazomethane results in two-electron oxidation of U(iii) to U(v) and isolation of a U(v) hydrazido complex. Corresponding U(v) imido, U(v) oxo, and U(iv) azido complexes were also synthesized for structural comparison.
Collapse
Affiliation(s)
- Nicholas S Settineri
- Department of Chemistry, University of California, Berkeley, California 94720, USA.
| | | | | |
Collapse
|
49
|
Bestgen S, Chen Q, Rees NH, Goicoechea JM. Synthesis and reactivity of rare-earth metal phosphaethynolates. Dalton Trans 2018; 47:13016-13024. [PMID: 30156233 DOI: 10.1039/c8dt03427c] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Over the course of the last six years, research on the synthesis and reactivity of molecular metal phosphaketenes (M-PCO) has gained increasing attention. However, lanthanide complexes of the heavier group 15 cyanate analogue PCO- have not been investigated so far. Herein we present exemplar studies on the nature and reactivity of rare-earth phosphaethynolato-complexes using three characteristic representatives of the rare-earth metals: Y, Nd and Sm. Our investigations comprise both +2 and +3 redox states, and one defined amidinate-based ligand set, as well as novel reaction pathways in the presence of the sequestering agents 18-crown-6 and 2,2,2-crypt.
Collapse
Affiliation(s)
- Sebastian Bestgen
- Department of Chemistry, University of Oxford, Chemistry Research Laboratory, 12 Mansfield Road, OX1 3TA Oxford, UK.
| | - Qien Chen
- Department of Chemistry, University of Oxford, Chemistry Research Laboratory, 12 Mansfield Road, OX1 3TA Oxford, UK.
| | - Nicholas H Rees
- Department of Chemistry, University of Oxford, Chemistry Research Laboratory, 12 Mansfield Road, OX1 3TA Oxford, UK.
| | - Jose M Goicoechea
- Department of Chemistry, University of Oxford, Chemistry Research Laboratory, 12 Mansfield Road, OX1 3TA Oxford, UK.
| |
Collapse
|
50
|
Tambornino F, Hinz A, Köppe R, Goicoechea JM. A General Synthesis of Phosphorus‐ and Arsenic‐Containing Analogues of the Thio‐ and Seleno‐cyanate Anions. Angew Chem Int Ed Engl 2018; 57:8230-8234. [DOI: 10.1002/anie.201805348] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2018] [Indexed: 11/09/2022]
Affiliation(s)
- Frank Tambornino
- Department of ChemistryUniversity of OxfordChemistry Research Laboratory 12 Mansfield Road Oxford OX1 3TA UK
| | - Alexander Hinz
- Karlsruhe Institute of TechnologyInstitute of Inorganic Chemistry Engesserstr. 15 76131 Karlsruhe Germany
| | - Ralf Köppe
- Karlsruhe Institute of TechnologyInstitute of Inorganic Chemistry Engesserstr. 15 76131 Karlsruhe Germany
| | - Jose M. Goicoechea
- Department of ChemistryUniversity of OxfordChemistry Research Laboratory 12 Mansfield Road Oxford OX1 3TA UK
| |
Collapse
|