1
|
Guo Y, Liu C, Qi F, Chen C, Gao Z, Zhang H. Split intein converting peptide protein interaction into electrochemically assisted metal ion catalytic signal in the prenatal screening of pediatric epilepsy. Bioelectrochemistry 2024; 160:108754. [PMID: 38889537 DOI: 10.1016/j.bioelechem.2024.108754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 05/22/2024] [Accepted: 06/01/2024] [Indexed: 06/20/2024]
Abstract
Dravet syndrome is a rare form of epilepsy starting from infancy that can plaque the affected individuals all though his/her life with repeated seizures, and this condition is currently without a complete cure. So prenatal screening of molecular markers of this condition is urgently needed to help couples conceiving new lives to steer clear of this potential danger. And such an assay should ideally be of low cost and could be completed in a point-of-care fashion. This work reports an attempt to construct such an assay using simple peptides in the place of conventional biosensing macro-molecules such as antibodies and enzymes. Specifically, a marker protein of this syndrome can bring the two pieces of a self-splitting peptide "intein" together, which in turn facilitate the formation of metal ion coordination site, recruiting cupric ion to generate catalytically amplified signal readout. Using this method, disease marker protein Nav of this syndrome can be quantitatively detected directly in amniotic fluid samples, and samples associated with potential risk factors such as family history of this syndrome shows statistically evident decrease of this marker protein. These results may promise future application of the proposed method in clinical practice to reduce the social burden of Dravet syndrome by reducing its actual incident rate.
Collapse
Affiliation(s)
- Yujie Guo
- Department of Epilepsy Center, Children's Hospital Affiliated to Shandong University, No. 23976 Jingshi Road, 250022, Jinan, China
| | - Chen Liu
- Neonatology department, Children's Hospital Affiliated to Shandong University, No. 23976 Jingshi Road, 250022, Jinan, China
| | - Fang Qi
- Department of Epilepsy Center, Children's Hospital Affiliated to Shandong University, No. 23976 Jingshi Road, 250022, Jinan, China
| | - Chuanmei Chen
- Department of Epilepsy Center, Children's Hospital Affiliated to Shandong University, No. 23976 Jingshi Road, 250022, Jinan, China
| | - Zaifen Gao
- Department of Epilepsy Center, Children's Hospital Affiliated to Shandong University, No. 23976 Jingshi Road, 250022, Jinan, China.
| | - Haiyan Zhang
- Department of Epilepsy Center, Children's Hospital Affiliated to Shandong University, No. 23976 Jingshi Road, 250022, Jinan, China.
| |
Collapse
|
2
|
Minoshima M, Reja SI, Hashimoto R, Iijima K, Kikuchi K. Hybrid Small-Molecule/Protein Fluorescent Probes. Chem Rev 2024; 124:6198-6270. [PMID: 38717865 DOI: 10.1021/acs.chemrev.3c00549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/23/2024]
Abstract
Hybrid small-molecule/protein fluorescent probes are powerful tools for visualizing protein localization and function in living cells. These hybrid probes are constructed by diverse site-specific chemical protein labeling approaches through chemical reactions to exogenous peptide/small protein tags, enzymatic post-translational modifications, bioorthogonal reactions for genetically incorporated unnatural amino acids, and ligand-directed chemical reactions. The hybrid small-molecule/protein fluorescent probes are employed for imaging protein trafficking, conformational changes, and bioanalytes surrounding proteins. In addition, fluorescent hybrid probes facilitate visualization of protein dynamics at the single-molecule level and the defined structure with super-resolution imaging. In this review, we discuss development and the bioimaging applications of fluorescent probes based on small-molecule/protein hybrids.
Collapse
Affiliation(s)
- Masafumi Minoshima
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, 2-1, Yamadaoka, Suita, Osaka 5650871, Japan
| | - Shahi Imam Reja
- Immunology Frontier Research Center, Osaka University, 2-1, Yamadaoka, Suita, Osaka 5650871, Japan
| | - Ryu Hashimoto
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, 2-1, Yamadaoka, Suita, Osaka 5650871, Japan
| | - Kohei Iijima
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, 2-1, Yamadaoka, Suita, Osaka 5650871, Japan
| | - Kazuya Kikuchi
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, 2-1, Yamadaoka, Suita, Osaka 5650871, Japan
| |
Collapse
|
3
|
Luo L, Manda S, Park Y, Demir B, Sanchez J, Anantram MP, Oren EE, Gopinath A, Rolandi M. DNA nanopores as artificial membrane channels for bioprotonics. Nat Commun 2023; 14:5364. [PMID: 37666808 PMCID: PMC10477224 DOI: 10.1038/s41467-023-40870-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Accepted: 08/14/2023] [Indexed: 09/06/2023] Open
Abstract
Biological membrane channels mediate information exchange between cells and facilitate molecular recognition. While tuning the shape and function of membrane channels for precision molecular sensing via de-novo routes is complex, an even more significant challenge is interfacing membrane channels with electronic devices for signal readout, which results in low efficiency of information transfer - one of the major barriers to the continued development of high-performance bioelectronic devices. To this end, we integrate membrane spanning DNA nanopores with bioprotonic contacts to create programmable, modular, and efficient artificial ion-channel interfaces. Here we show that cholesterol modified DNA nanopores spontaneously and with remarkable affinity span the lipid bilayer formed over the planar bio-protonic electrode surface and mediate proton transport across the bilayer. Using the ability to easily modify DNA nanostructures, we illustrate that this bioprotonic device can be programmed for electronic recognition of biomolecular signals such as presence of Streptavidin and the cardiac biomarker B-type natriuretic peptide, without modifying the biomolecules. We anticipate this robust interface will allow facile electronic measurement and quantification of biomolecules in a multiplexed manner.
Collapse
Affiliation(s)
- Le Luo
- Department of Electrical and Computer Engineering, Jack Baskin School of Engineering, University of California, Santa Cruz, Santa Cruz, CA, 95064, USA
| | - Swathi Manda
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Yunjeong Park
- Department of Electrical and Computer Engineering, Jack Baskin School of Engineering, University of California, Santa Cruz, Santa Cruz, CA, 95064, USA
| | - Busra Demir
- Bionanodesign Laboratory, Department of Biomedical Engineering, TOBB University of Economics and Technology, Ankara, 06560, Turkey
- Department of Materials Science and Nanotechnology Engineering, TOBB University of Economics and Technology, Ankara, 06560, Turkey
- Department of Electrical and Computer Engineering, University of Washington, Seattle, WA, 98195, USA
| | - Jesse Sanchez
- Department of Electrical and Computer Engineering, Jack Baskin School of Engineering, University of California, Santa Cruz, Santa Cruz, CA, 95064, USA
- School of Chemical, Biological, and Environmental Engineering, Oregon State University, Corvallis, OR, 97331, USA
| | - M P Anantram
- Department of Electrical and Computer Engineering, University of Washington, Seattle, WA, 98195, USA
| | - Ersin Emre Oren
- Bionanodesign Laboratory, Department of Biomedical Engineering, TOBB University of Economics and Technology, Ankara, 06560, Turkey
- Department of Materials Science and Nanotechnology Engineering, TOBB University of Economics and Technology, Ankara, 06560, Turkey
| | - Ashwin Gopinath
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA.
| | - Marco Rolandi
- Department of Electrical and Computer Engineering, Jack Baskin School of Engineering, University of California, Santa Cruz, Santa Cruz, CA, 95064, USA.
- UC Santa Cruz Genomics Institute, University of California Santa Cruz, Santa Cruz, CA, 95060, USA.
- Institute for the Biology of Stem Cells, University of California Santa Cruz, Santa Cruz, CA, 95064, USA.
| |
Collapse
|
4
|
Abstract
The ability to manipulate the chemical composition of proteins and peptides has been central to the development of improved polypeptide-based therapeutics and has enabled researchers to address fundamental biological questions that would otherwise be out of reach. Protein ligation, in which two or more polypeptides are covalently linked, is a powerful strategy for generating semisynthetic products and for controlling polypeptide topology. However, specialized tools are required to efficiently forge a peptide bond in a chemoselective manner with fast kinetics and high yield. Fortunately, nature has addressed this challenge by evolving enzymatic mechanisms that can join polypeptides using a diverse set of chemical reactions. Here, we summarize how such nature-inspired protein ligation strategies have been repurposed as chemical biology tools that afford enhanced control over polypeptide composition.
Collapse
Affiliation(s)
- Rasmus Pihl
- Chemical Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Department of Biomedicine, Aarhus University, Aarhus C, Denmark
| | - Qingfei Zheng
- Department of Radiation Oncology, College of Medicine, The Ohio State University, Columbus, OH, USA.
- Center for Cancer Metabolism, James Comprehensive Cancer Center, The Ohio State University, Columbus, OH, USA.
- Department of Biological Chemistry and Pharmacology, College of Medicine, The Ohio State University, Columbus, OH, USA.
| | - Yael David
- Chemical Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
- Department of Pharmacology, Weill Cornell Medicine, New York, NY, USA.
- Department of Physiology, Biophysics and Systems Biology, Weill Cornell Medicine, New York, NY, USA.
| |
Collapse
|
5
|
Dunleavy R, Chandrasekaran S, Crane BR. Enzymatic Spin-Labeling of Protein N- and C-Termini for Electron Paramagnetic Resonance Spectroscopy. Bioconjug Chem 2023:10.1021/acs.bioconjchem.3c00029. [PMID: 36921260 PMCID: PMC10502183 DOI: 10.1021/acs.bioconjchem.3c00029] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/17/2023]
Abstract
Electron paramagnetic resonance (EPR) spectroscopy is a powerful tool for investigating the structure and dynamics of proteins. The introduction of paramagnetic moieties at specific positions in a protein enables precise measurement of local structure and dynamics. This technique, termed site-directed spin-labeling, has traditionally been performed using cysteine-reactive radical-containing probes. However, large proteins are more likely to contain multiple cysteine residues and cysteine labeling at specific sites may be infeasible or impede function. To address this concern, we applied three peptide-ligating enzymes (sortase, asparaginyl endopeptidase, and inteins) for nitroxide labeling of N- and C-termini of select monomeric and dimeric proteins. Continuous wave and pulsed EPR (double electron electron resonance) experiments reveal specific attachment of nitroxide probes to ether N-termini (OaAEP1) or C-termini (sortase and intein) across three test proteins (CheY, CheA, and iLOV), thereby enabling a straightforward, highly specific, and general method for protein labeling. Importantly, the linker length (3, 5, and 9 residues for OaAEP1, intein, and sortase reactions, respectively) between the probe and the target protein has a large impact on the utility of distance measurements by pulsed EPR, with longer linkers leading to broader distributions. As these methods are only dependent on accessible N- and C-termini, we anticipate application to a wide range of protein targets for biomolecular EPR spectroscopy.
Collapse
Affiliation(s)
- Robert Dunleavy
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY 14853, USA
| | | | - Brian R. Crane
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY 14853, USA
| |
Collapse
|
6
|
Udupa S, Nagaraja V, Karambelkar S. Binding Affinity Quantifications of the Bacteriophage Mu DNA Modification Protein Mom Using Microscale Thermophoresis (MST). Bio Protoc 2022; 12:e4472. [PMID: 35978573 PMCID: PMC9350919 DOI: 10.21769/bioprotoc.4472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 05/15/2022] [Accepted: 06/11/2022] [Indexed: 12/29/2022] Open
Abstract
Epigenetic modifications play diverse roles in biological systems. Nucleic acid modifications control gene expression, protein synthesis, and sensitivity to nucleic acid-cleaving enzymes. However, the mechanisms underlying the biosynthesis of nucleic acid modifications can be challenging to identify. Studying protein-ligand interactions helps decipher biosynthetic and regulatory pathways underlying biological reactions. Here, we describe a fluorescence labeling-based quantitative method for unraveling the biomolecular interactions of bacteriophage Mu DNA modification protein Mom with its ligands, using microscale thermophoresis (MST). Compared to traditional methods for studying protein-biomolecular interactions, MST requires significantly lower sample amounts, volumes, and analysis time, thus allowing screening of a large number of candidates for interaction with a protein of interest. Another distinguishing feature of the method is that it obviates the need for protein purification, often a time- and resource-consuming step, and works well with whole or partially purified cell extracts. Importantly, the method is sensitive over a broad range of molecular affinities while offering great specificity and can be used to interrogate ligands ranging from metal ions to macromolecules. Although we established this method for a DNA modification protein, it can easily be adapted to study a variety of molecular interactions engaged by proteins.
Collapse
Affiliation(s)
- Shubha Udupa
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore 560012, India
| | - Valakunja Nagaraja
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore 560012, India
,
Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore 560064, India
,
*For correspondence:
;
| | - Shweta Karambelkar
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore 560012, India
,
Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore 560064, India
,
*For correspondence:
;
| |
Collapse
|
7
|
Wolf P, Gavins G, Beck‐Sickinger AG, Seitz O. Strategies for Site-Specific Labeling of Receptor Proteins on the Surfaces of Living Cells by Using Genetically Encoded Peptide Tags. Chembiochem 2021; 22:1717-1732. [PMID: 33428317 PMCID: PMC8248378 DOI: 10.1002/cbic.202000797] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Revised: 01/08/2021] [Indexed: 12/14/2022]
Abstract
Fluorescence microscopy imaging enables receptor proteins to be investigated within their biological context. A key challenge is to site-specifically incorporate reporter moieties into proteins without interfering with biological functions or cellular networks. Small peptide tags offer the opportunity to combine inducible labeling with small tag sizes that avoid receptor perturbation. Herein, we review the current state of live-cell labeling of peptide-tagged cell-surface proteins. Considering their importance as targets in medicinal chemistry, we focus on membrane receptors such as G protein-coupled receptors (GPCRs) and receptor tyrosine kinases (RTKs). We discuss peptide tags that i) are subject to enzyme-mediated modification reactions, ii) guide the complementation of reporter proteins, iii) form coiled-coil complexes, and iv) interact with metal complexes. Given our own contributions in the field, we place emphasis on peptide-templated labeling chemistry.
Collapse
Affiliation(s)
- Philipp Wolf
- Faculty of Life SciencesInstitute of BiochemistryLeipzig UniversityBrüderstrasse 3404103LeipzigGermany
| | - Georgina Gavins
- Faculty of Mathematics and Natural SciencesDepartment of ChemistryHumboldt-Universität zu BerlinBrook-Taylor-Str. 212489BerlinGermany
| | - Annette G. Beck‐Sickinger
- Faculty of Life SciencesInstitute of BiochemistryLeipzig UniversityBrüderstrasse 3404103LeipzigGermany
| | - Oliver Seitz
- Faculty of Mathematics and Natural SciencesDepartment of ChemistryHumboldt-Universität zu BerlinBrook-Taylor-Str. 212489BerlinGermany
| |
Collapse
|
8
|
Sarkar D, Harms H, Galleano I, Sheikh ZP, Pless SA. Ion channel engineering using protein trans-splicing. Methods Enzymol 2021; 654:19-48. [PMID: 34120713 DOI: 10.1016/bs.mie.2021.01.028] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Conventional site-directed mutagenesis and genetic code expansion approaches have been instrumental in providing detailed functional and pharmacological insight into membrane proteins such as ion channels. Recently, this has increasingly been complemented by semi-synthetic strategies, in which part of the protein is generated synthetically. This means a vast range of chemical modifications, including non-canonical amino acids (ncAA), backbone modifications, chemical handles, fluorescent or spectroscopic labels and any combination of these can be incorporated. Among these approaches, protein trans-splicing (PTS) is particularly promising for protein reconstitution in live cells. It relies on one or more split inteins, which can spontaneously and covalently link flanking peptide or protein sequences. Here, we describe the use of PTS and its variant tandem PTS (tPTS) in semi-synthesis of ion channels in Xenopus laevis oocytes to incorporate ncAAs, post-translational modifications or metabolically stable mimics thereof. This strategy has the potential to expand the type and number of modifications in ion channel research.
Collapse
Affiliation(s)
- Debayan Sarkar
- Department of Drug Design and Pharmacology, University of Copenhagen, Copenhagen, Denmark
| | - Hendrik Harms
- Department of Drug Design and Pharmacology, University of Copenhagen, Copenhagen, Denmark
| | - Iacopo Galleano
- Department of Drug Design and Pharmacology, University of Copenhagen, Copenhagen, Denmark
| | - Zeshan Pervez Sheikh
- Department of Drug Design and Pharmacology, University of Copenhagen, Copenhagen, Denmark
| | | |
Collapse
|
9
|
Bhagawati M, Hoffmann S, Höffgen KS, Piehler J, Busch KB, Mootz HD. In Cellulo Protein Semi‐Synthesis from Endogenous and Exogenous Fragments Using the Ultra‐Fast Split Gp41‐1 Intein. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202006822] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Maniraj Bhagawati
- Department of Chemistry and Pharmacy Institute of Biochemistry, University of Münster Corrensstrasse 36 48149 Münster Germany
| | - Simon Hoffmann
- Department of Chemistry and Pharmacy Institute of Biochemistry, University of Münster Corrensstrasse 36 48149 Münster Germany
| | - Katharina S. Höffgen
- Department of Chemistry and Pharmacy Institute of Biochemistry, University of Münster Corrensstrasse 36 48149 Münster Germany
| | - Jacob Piehler
- Department of Biology and Center for Cellular Nanoanalytics University of Osnabrück Barbarastrasse 11 49076 Osnabrück Germany
| | - Karin B. Busch
- Institute of Molecular Cell Biology University of Münster Schlossplatz 5 48149 Münster Germany
| | - Henning D. Mootz
- Department of Chemistry and Pharmacy Institute of Biochemistry, University of Münster Corrensstrasse 36 48149 Münster Germany
| |
Collapse
|
10
|
Bhagawati M, Hoffmann S, Höffgen KS, Piehler J, Busch KB, Mootz HD. In Cellulo Protein Semi-Synthesis from Endogenous and Exogenous Fragments Using the Ultra-Fast Split Gp41-1 Intein. Angew Chem Int Ed Engl 2020; 59:21007-21015. [PMID: 32777124 PMCID: PMC7693240 DOI: 10.1002/anie.202006822] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 07/15/2020] [Indexed: 12/19/2022]
Abstract
Protein semi-synthesis inside live cells from exogenous and endogenous parts offers unique possibilities for studying proteins in their native context. Split-intein-mediated protein trans-splicing is predestined for such endeavors and has seen some successes, but a much larger variety of established split inteins and associated protocols is urgently needed. We characterized the association and splicing parameters of the Gp41-1 split intein, which favorably revealed a nanomolar affinity between the intein fragments combined with the exceptionally fast splicing rate. Following bead-loading of a chemically modified intein fragment precursor into live mammalian cells, we fluorescently labeled target proteins on their N- and C-termini with short peptide tags, thus ensuring minimal perturbation of their structure and function. In combination with a nuclear-entrapment strategy to minimize cytosolic fluorescence background, we applied our technique for super-resolution imaging and single-particle tracking of the outer mitochondrial protein Tom20 in HeLa cells.
Collapse
Affiliation(s)
- Maniraj Bhagawati
- Department of Chemistry and PharmacyInstitute of Biochemistry, University of MünsterCorrensstrasse 3648149MünsterGermany
| | - Simon Hoffmann
- Department of Chemistry and PharmacyInstitute of Biochemistry, University of MünsterCorrensstrasse 3648149MünsterGermany
| | - Katharina S. Höffgen
- Department of Chemistry and PharmacyInstitute of Biochemistry, University of MünsterCorrensstrasse 3648149MünsterGermany
| | - Jacob Piehler
- Department of Biology and Center for Cellular NanoanalyticsUniversity of OsnabrückBarbarastrasse 1149076OsnabrückGermany
| | - Karin B. Busch
- Institute of Molecular Cell BiologyUniversity of MünsterSchlossplatz 548149MünsterGermany
| | - Henning D. Mootz
- Department of Chemistry and PharmacyInstitute of Biochemistry, University of MünsterCorrensstrasse 3648149MünsterGermany
| |
Collapse
|
11
|
Kawase M, Fujioka M, Takahashi T. Activation of Protease and Luciferase Using Engineered Nostoc punctiforme PCC73102 DnaE Intein with Altered Split Position. Chembiochem 2020; 22:577-584. [PMID: 32969142 DOI: 10.1002/cbic.202000609] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2020] [Revised: 09/17/2020] [Indexed: 12/22/2022]
Abstract
Inteins, self-catalytic enzymes, have been widely used in the field of protein engineering and chemical biology. Here, Nostoc punctiforme PCC73102 (Npu) DnaE intein was engineered to have an altered split position. An 11-residue N-intein of DnaE in which Gly and Asp were substituted for Tyr4 and Glu5, respectively, was designed, and the active C-intein variants were acquired by a GFP fluorescence-based screening. The designed N-intein and the obtained active C-intein variants were used to construct a turn-on system for enzyme activities such as human immunodeficiency 1 protease and NanoLuc luciferase. Based on the NanoLuc-intein fusion, we developed two intein pairs, each of which is capable of reacting preferentially, by interchanging the charged amino acids on N- and C-inteins. The specific splicing reactions were easily monitored and discriminated by bioluminescence resonance energy transfer (BRET).
Collapse
Affiliation(s)
- Misaki Kawase
- Faculty of Engineering, Gunma University, 1-5-1 Tenjin-cho, Kiryu, Gunma, 376-8515, Japan
| | - Meiko Fujioka
- Graduate School of Science and Technology, Gunma University, 1-5-1 Tenjin-cho, Kiryu, Gunma, 376-8515, Japan
| | - Tsuyoshi Takahashi
- Graduate School of Science and Technology, Gunma University, 1-5-1 Tenjin-cho, Kiryu, Gunma, 376-8515, Japan
| |
Collapse
|
12
|
Raducanu VS, Isaioglou I, Raducanu DV, Merzaban JS, Hamdan SM. Simplified detection of polyhistidine-tagged proteins in gels and membranes using a UV-excitable dye and a multiple chelator head pair. J Biol Chem 2020; 295:12214-12223. [PMID: 32647010 PMCID: PMC7443479 DOI: 10.1074/jbc.ra120.014132] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 06/29/2020] [Indexed: 12/22/2022] Open
Abstract
The polyhistidine tag (His-tag) is one of the most popular protein tags used in the life sciences. Traditionally, the detection of His-tagged proteins relies on immunoblotting with anti-His antibodies. This approach is laborious for certain applications, such as protein purification, where time and simplicity are critical. The His-tag can also be directly detected by metal ion-loaded nickel-nitrilotriacetic acid-based chelator heads conjugated to fluorophores, which is a convenient alternative method to immunoblotting. Typically, such chelator heads are conjugated to either green or red fluorophores, the detection of which requires specialized excitation sources and detection systems. Here, we demonstrate that post-run staining is ideal for His-tag detection by metal ion-loaded and fluorescently labeled chelator heads in PAGE and blot membranes. Additionally, by comparing the performances of different chelator heads, we show how differences in microscopic affinity constants translate to macroscopic differences in the detection limits in environments with limited diffusion, such as PAGE. On the basis of these results, we devise a simple approach, called UVHis-PAGE, that uses metal ion-loaded and fluorescently labeled chelator heads to detect His-tagged proteins in PAGE and blot membranes. Our method uses a UV transilluminator as an excitation source, and the results can be visually inspected by the naked eye.
Collapse
Affiliation(s)
- Vlad-Stefan Raducanu
- Division of Biological and Environmental Sciences and Engineering, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - Ioannis Isaioglou
- Division of Biological and Environmental Sciences and Engineering, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - Daniela-Violeta Raducanu
- Division of Biological and Environmental Sciences and Engineering, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - Jasmeen S Merzaban
- Division of Biological and Environmental Sciences and Engineering, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - Samir M Hamdan
- Division of Biological and Environmental Sciences and Engineering, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia.
| |
Collapse
|
13
|
Khoo KK, Galleano I, Gasparri F, Wieneke R, Harms H, Poulsen MH, Chua HC, Wulf M, Tampé R, Pless SA. Chemical modification of proteins by insertion of synthetic peptides using tandem protein trans-splicing. Nat Commun 2020; 11:2284. [PMID: 32385250 PMCID: PMC7210297 DOI: 10.1038/s41467-020-16208-6] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Accepted: 04/20/2020] [Indexed: 12/20/2022] Open
Abstract
Manipulation of proteins by chemical modification is a powerful way to decipher their function. However, most ribosome-dependent and semi-synthetic methods have limitations in the number and type of modifications that can be introduced, especially in live cells. Here, we present an approach to incorporate single or multiple post-translational modifications or non-canonical amino acids into proteins expressed in eukaryotic cells. We insert synthetic peptides into GFP, NaV1.5 and P2X2 receptors via tandem protein trans-splicing using two orthogonal split intein pairs and validate our approach by investigating protein function. We anticipate the approach will overcome some drawbacks of existing protein enigineering methods.
Collapse
Affiliation(s)
- K K Khoo
- Department of Drug Design and Pharmacology, University of Copenhagen, Jagtvej 160, 2100, Copenhagen, Denmark
| | - I Galleano
- Department of Drug Design and Pharmacology, University of Copenhagen, Jagtvej 160, 2100, Copenhagen, Denmark
| | - F Gasparri
- Department of Drug Design and Pharmacology, University of Copenhagen, Jagtvej 160, 2100, Copenhagen, Denmark
| | - R Wieneke
- Institute of Biochemistry, Biocenter, Goethe University Frankfurt, Max-von-Laue Strasse 9, 60438, Frankfurt/Main, Germany
| | - H Harms
- Department of Drug Design and Pharmacology, University of Copenhagen, Jagtvej 160, 2100, Copenhagen, Denmark
| | - M H Poulsen
- Department of Drug Design and Pharmacology, University of Copenhagen, Jagtvej 160, 2100, Copenhagen, Denmark
| | - H C Chua
- Department of Drug Design and Pharmacology, University of Copenhagen, Jagtvej 160, 2100, Copenhagen, Denmark
| | - M Wulf
- Department of Drug Design and Pharmacology, University of Copenhagen, Jagtvej 160, 2100, Copenhagen, Denmark
| | - R Tampé
- Institute of Biochemistry, Biocenter, Goethe University Frankfurt, Max-von-Laue Strasse 9, 60438, Frankfurt/Main, Germany
| | - S A Pless
- Department of Drug Design and Pharmacology, University of Copenhagen, Jagtvej 160, 2100, Copenhagen, Denmark.
| |
Collapse
|
14
|
Abstract
Protein semisynthesis-defined herein as the assembly of a protein from a combination of synthetic and recombinant fragments-is a burgeoning field of chemical biology that has impacted many areas in the life sciences. In this review, we provide a comprehensive survey of this area. We begin by discussing the various chemical and enzymatic methods now available for the manufacture of custom proteins containing noncoded elements. This section begins with a discussion of methods that are more chemical in origin and ends with those that employ biocatalysts. We also illustrate the commonalities that exist between these seemingly disparate methods and show how this is allowing for the development of integrated chemoenzymatic methods. This methodology discussion provides the technical foundation for the second part of the review where we cover the great many biological problems that have now been addressed using these tools. Finally, we end the piece with a short discussion on the frontiers of the field and the opportunities available for the future.
Collapse
Affiliation(s)
| | - Tom W. Muir
- Department of Chemistry, Princeton University, Frick Laboratory, Princeton, New Jersey 08544, United States
| |
Collapse
|
15
|
A mesophilic cysteine-less split intein for protein trans-splicing applications under oxidizing conditions. Proc Natl Acad Sci U S A 2019; 116:22164-22172. [PMID: 31611397 DOI: 10.1073/pnas.1909825116] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Split intein-mediated protein trans-splicing has found extensive applications in chemical biology, protein chemistry, and biotechnology. However, an enduring limitation of all well-established split inteins has been the requirement to carry out the reaction in a reducing environment due to the presence of 1 or 2 catalytic cysteines that need to be in a reduced state for splicing to occur. The concomitant exposure of the fused proteins to reducing agents severely limits the scope of protein trans-splicing by excluding proteins sensitive to reducing conditions, such as those containing critical disulfide bonds. Here we report the discovery, characterization, and engineering of a completely cysteine-less split intein (CL intein) that is capable of efficient trans-splicing at ambient temperatures, without a denaturation step, and in the absence of reducing agents. We demonstrate its utility for the site-specific chemical modification of nanobodies and an antibody Fc fragment by N- and C-terminal trans-splicing with short peptide tags (CysTag) that consist of only a few amino acids and have been prelabeled on a single cysteine using classical cysteine bioconjugation. We also synthesized the short N-terminal fragment of the atypically split CL intein by solid-phase peptide synthesis. Furthermore, using the CL intein in combination with a nanobody-epitope pair as a high-affinity mediator, we showed chemical labeling of the extracellular domain of a cell surface receptor on living mammalian cells with a short CysTag containing a synthetic fluorophore. The CL intein thus greatly expands the scope of applications for protein trans-splicing.
Collapse
|
16
|
Wieneke R, Tampé R. Multivalent Chelators for In Vivo Protein Labeling. Angew Chem Int Ed Engl 2019; 58:8278-8290. [PMID: 30919542 DOI: 10.1002/anie.201811293] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Indexed: 01/09/2023]
Abstract
With the advent of single-molecule methods, chemoselective and site-specific labeling of proteins evolved to become a central aspect in chemical biology as well as cell biology. Protein labeling demands high specificity, rapid as well as efficient conjugation, while maintaining low concentration and biocompatibility under physiological conditions. Generic methods that do not interfere with the function, dynamics, subcellular localization of proteins, and crosstalk with other factors are crucial to probe and image proteins in vitro and in living cells. Alternatives to enzyme-based tags or autofluorescent proteins are short peptide-based recognition tags. These tags provide high specificity, enhanced binding rates, bioorthogonality, and versatility. Here, we report on recent applications of multivalent chelator heads, recognizing oligohistidine-tagged proteins. The striking features of this system has facilitated the analysis of protein complexes by single-molecule approaches.
Collapse
Affiliation(s)
- Ralph Wieneke
- Institute of Biochemistry, Biocenter, Goethe University Frankfurt, Max-von-Laue Str. 9, 60438, Frankfurt/M., Germany
| | - Robert Tampé
- Institute of Biochemistry, Biocenter, Goethe University Frankfurt, Max-von-Laue Str. 9, 60438, Frankfurt/M., Germany
| |
Collapse
|
17
|
Wieneke R, Tampé R. Multivalent Chelators for In Vivo Protein Labeling. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201811293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Ralph Wieneke
- Institute of BiochemistryBiocenterGoethe University Frankfurt Max-von-Laue Str. 9 60438 Frankfurt/M. Germany
| | - Robert Tampé
- Institute of BiochemistryBiocenterGoethe University Frankfurt Max-von-Laue Str. 9 60438 Frankfurt/M. Germany
| |
Collapse
|
18
|
Affiliation(s)
- Seiji SAKAMOTO
- Graduate School of Engineering, Department of Synthetic Chemistry and Biological Chemistry, Kyoto University
| | - Itaru HAMACHI
- Graduate School of Engineering, Department of Synthetic Chemistry and Biological Chemistry, Kyoto University
- ERATO Innovative Molecular Technology for Neuroscience Project, Japan Science and Technology Agency (JST)
| |
Collapse
|
19
|
Di Ventura B, Mootz HD. Switchable inteins for conditional protein splicing. Biol Chem 2018; 400:467-475. [DOI: 10.1515/hsz-2018-0309] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Accepted: 08/20/2018] [Indexed: 12/19/2022]
Abstract
Abstract
Synthetic biologists aim at engineering controllable biological parts such as DNA, RNA and proteins in order to steer biological activities using external inputs. Proteins can be controlled in several ways, for instance by regulating the expression of their encoding genes with small molecules or light. However, post-translationally modifying pre-existing proteins to regulate their function or localization leads to faster responses. Conditional splicing of internal protein domains, termed inteins, is an attractive methodology for this purpose. Here we discuss methods to control intein activity with a focus on those compatible with applications in living cells.
Collapse
Affiliation(s)
- Barbara Di Ventura
- Faculty of Biology, University of Freiburg , 79104 Freiburg , Germany
- BIOSS – Centre for Biological Signalling Studies, University of Freiburg , 79104 Freiburg , Germany
| | - Henning D. Mootz
- Department Chemistry and Pharmacy , Institute of Biochemistry, University of Münster , Münster D-48149 , Germany
| |
Collapse
|
20
|
Pirzer T, Becher KS, Rieker M, Meckel T, Mootz HD, Kolmar H. Generation of Potent Anti-HER1/2 Immunotoxins by Protein Ligation Using Split Inteins. ACS Chem Biol 2018; 13:2058-2066. [PMID: 29920062 DOI: 10.1021/acschembio.8b00222] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Cell targeting protein toxins have gained increasing interest for cancer therapy aimed at increasing the therapeutic window and reducing systemic toxicity. Because recombinant expression of immunotoxins consisting of a receptor-binding and a cell-killing moiety is hampered by their high toxicity in a eukaryotic production host, most applications rely on recombinant production of fusion proteins consisting of an antibody fragment and a protein toxin in bacterial hosts such as Escherichia coli ( E. coli). These fusions often lack beneficial properties of whole antibodies like extended serum half-life or efficient endocytic uptake via receptor clustering. Here, we describe the production of full-length antibody immunotoxins using self-splicing split inteins. To this end, the short (11 amino acids) N-terminal intein part of the artificially designed split intein M86, a derivative of the Ssp DnaB intein, was recombinantly fused to the heavy chain of trastuzumab, a human epidermal growth factor receptor 2 (HER2) receptor targeting antibody and to a nanobody-Fc fusion targeting the HER1 receptor, respectively. Both antibodies were produced in Expi293F cells. The longer C-terminal counterpart of the intein was genetically fused to the protein toxins gelonin or Pseudomonas Exotoxin A, respectively, and expressed in E. coli via fusion to maltose binding protein. Using optimized in vitro splicing conditions, we were able to generate a set of specific and potent immunotoxins with IC50 values in the mid- to subpicomolar range.
Collapse
Affiliation(s)
- Thomas Pirzer
- Institute for Organic Chemistry and Biochemistry , Technische Universität Darmstadt , Alarich-Weiss-Strasse 4 , D-64287 Darmstadt , Germany
| | - Kira-Sophie Becher
- Institute of Biochemistry , University of Münster , Wilhelm-Klemm-Straße 2 , D-48149 Münster , Germany
| | - Marcel Rieker
- Antibody Drug Conjugates and Targeted NBE Therapeutics , Merck KGaA , Frankfurter Straße 250 , D-64293 Darmstadt , Germany
- Protein Engineering and Antibody Technologies , Merck KGaA , Frankfurter Straße 250 , D-64293 Darmstadt , Germany
| | - Tobias Meckel
- Macromolecular Chemistry & Paper Chemistry, Department of Chemistry , Technische Universität Darmstadt , Alarich-Weiss-Straße 8 , D-64287 Darmstadt , Germany
| | - Henning D Mootz
- Institute of Biochemistry , University of Münster , Wilhelm-Klemm-Straße 2 , D-48149 Münster , Germany
| | - Harald Kolmar
- Institute for Organic Chemistry and Biochemistry , Technische Universität Darmstadt , Alarich-Weiss-Strasse 4 , D-64287 Darmstadt , Germany
| |
Collapse
|
21
|
Gatterdam K, Joest EF, Gatterdam V, Tampé R. The Scaffold Design of Trivalent Chelator Heads Dictates Affinity and Stability for Labeling His-tagged Proteins in vitro and in Cells. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201802746] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Affiliation(s)
- Karl Gatterdam
- Institute of Biochemistry; Biocenter; Goethe University Frankfurt; Max-von-Laue-Str. 9 60438 Frankfurt/M Germany
| | - Eike F. Joest
- Institute of Biochemistry; Biocenter; Goethe University Frankfurt; Max-von-Laue-Str. 9 60438 Frankfurt/M Germany
| | - Volker Gatterdam
- Institute of Biochemistry; Biocenter; Goethe University Frankfurt; Max-von-Laue-Str. 9 60438 Frankfurt/M Germany
| | - Robert Tampé
- Institute of Biochemistry; Biocenter; Goethe University Frankfurt; Max-von-Laue-Str. 9 60438 Frankfurt/M Germany
| |
Collapse
|
22
|
Gatterdam K, Joest EF, Gatterdam V, Tampé R. The Scaffold Design of Trivalent Chelator Heads Dictates Affinity and Stability for Labeling His-tagged Proteins in vitro and in Cells. Angew Chem Int Ed Engl 2018; 57:12395-12399. [PMID: 29845721 DOI: 10.1002/anie.201802746] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Revised: 05/01/2018] [Indexed: 11/08/2022]
Abstract
Small chemical/biological interaction pairs are at the forefront in tracing protein function and interaction at high signal-to-background ratios in cellular pathways. However, the optimal design of scaffold, linker, and chelator head still deserve systematic investigation to achieve the highest affinity and kinetic stability for in vitro and especially cellular applications. We report on a library of N-nitrilotriacetic acid (NTA)-based multivalent chelator heads (MCHs) built on linear, cyclic, and dendritic scaffolds and compare these with regard to their binding affinity and stability for the labeling of cellular His-tagged proteins. Furthermore, we describe a new approach for tracing cellular target proteins at picomolar probe concentrations in cells. Finally, we outline fundamental differences between the MCH scaffolds and define a cyclic trisNTA chelator that displays the highest affinity and kinetic stability of all reported reversible, low-molecular-weight interaction pairs.
Collapse
Affiliation(s)
- Karl Gatterdam
- Institute of Biochemistry, Biocenter, Goethe University Frankfurt, Max-von-Laue-Str. 9, 60438, Frankfurt/M, Germany
| | - Eike F Joest
- Institute of Biochemistry, Biocenter, Goethe University Frankfurt, Max-von-Laue-Str. 9, 60438, Frankfurt/M, Germany
| | - Volker Gatterdam
- Institute of Biochemistry, Biocenter, Goethe University Frankfurt, Max-von-Laue-Str. 9, 60438, Frankfurt/M, Germany
| | - Robert Tampé
- Institute of Biochemistry, Biocenter, Goethe University Frankfurt, Max-von-Laue-Str. 9, 60438, Frankfurt/M, Germany
| |
Collapse
|
23
|
Bartoschik T, Galinec S, Kleusch C, Walkiewicz K, Breitsprecher D, Weigert S, Muller YA, You C, Piehler J, Vercruysse T, Daelemans D, Tschammer N. Near-native, site-specific and purification-free protein labeling for quantitative protein interaction analysis by MicroScale Thermophoresis. Sci Rep 2018; 8:4977. [PMID: 29563556 PMCID: PMC5862892 DOI: 10.1038/s41598-018-23154-3] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2017] [Accepted: 03/05/2018] [Indexed: 12/21/2022] Open
Abstract
MicroScale Thermophoresis (MST) is a frequently used method for the quantitative characterization of intermolecular interactions with several advantages over other technologies. One of these is its capability to determine equilibrium constants in solution including complex biological matrices such as cell lysates. MST requires one binding partner to be fluorescent, which is typically achieved by labeling target proteins with a suitable fluorophore. Here, we present a near-native, site-specific in situ labeling strategy for MST experiments that enables reliable measurements in cell lysates and that has distinct advantages over routine covalent labeling techniques. To this end, we exploited the high-affinity interaction of tris-NTA with oligohistidine-tags, which are popular for purification, immobilization or detection of recombinant proteins. We used various DYE-tris-NTA conjugates to successfully label His-tagged proteins that were either purified or a component of cell lysate. The RED-tris-NTA was identified as the optimal dye conjugate with a high affinity towards oligohistidine-tags, a high fluorescence signal and an optimal signal-to-noise ratio in MST binding experiments. Owing to its emission in the red region of the spectrum, it also enables reliable measurements in complex biological matrices such as cell lysates allowing a more physiologically realistic assessment and eliminating the need for protein purification.
Collapse
Affiliation(s)
- Tanja Bartoschik
- NanoTemper Technologies GmbH, Floessergasse 4, 81069, München, Germany
| | - Stefanie Galinec
- NanoTemper Technologies GmbH, Floessergasse 4, 81069, München, Germany
| | - Christian Kleusch
- NanoTemper Technologies GmbH, Floessergasse 4, 81069, München, Germany
| | | | | | - Sebastian Weigert
- Division of Biotechnology, Department of Biology, Friedrich-Alexander University Erlangen, Nuremberg Henkestr 91, 91052, Erlangen, Germany
| | - Yves A Muller
- Division of Biotechnology, Department of Biology, Friedrich-Alexander University Erlangen, Nuremberg Henkestr 91, 91052, Erlangen, Germany
| | - Changjiang You
- Division of Biophysics, Department of Biology, University Osnabrück, Barbarastr 11, 49076, Osnabrück, Germany
| | - Jacob Piehler
- Division of Biophysics, Department of Biology, University Osnabrück, Barbarastr 11, 49076, Osnabrück, Germany
| | - Thomas Vercruysse
- KU Leuven Department of Immunology and Microbiology, Laboratory of Virology and Chemotherapy, Rega Institute for Medical Research, Herestraat 49, 3000, Leuven, Belgium
| | - Dirk Daelemans
- KU Leuven Department of Immunology and Microbiology, Laboratory of Virology and Chemotherapy, Rega Institute for Medical Research, Herestraat 49, 3000, Leuven, Belgium
| | - Nuska Tschammer
- NanoTemper Technologies GmbH, Floessergasse 4, 81069, München, Germany.
| |
Collapse
|
24
|
Altissimo M, Kiskinova M, Mincigrucci R, Vaccari L, Guarnaccia C, Masciovecchio C. Perspective: A toolbox for protein structure determination in physiological environment through oriented, 2D ordered, site specific immobilization. STRUCTURAL DYNAMICS (MELVILLE, N.Y.) 2017; 4:044017. [PMID: 28428974 PMCID: PMC5392127 DOI: 10.1063/1.4981224] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2017] [Accepted: 04/05/2017] [Indexed: 05/19/2023]
Abstract
Revealing the structure of complex biological macromolecules, such as proteins, is an essential step for understanding the chemical mechanisms that determine the diversity of their functions. Synchrotron based X-ray crystallography and cryo-electron microscopy have made major contributions in determining thousands of protein structures even from micro-sized crystals. They suffer from some limitations that have not been overcome, such as radiation damage, the natural inability to crystallize a number of proteins, and experimental conditions for structure determination that are incompatible with the physiological environment. Today, the ultra-short and ultra-bright pulses of X-ray free-electron lasers have made attainable the dream to determine protein structures before radiation damage starts to destroy the samples. However, the signal-to-noise ratio remains a great challenge to obtain usable diffraction patterns from a single protein molecule. With the perspective to overcome these challenges, we describe here a new methodology that has the potential to overcome the signal-to-noise-ratio and protein crystallization limits. Using a multidisciplinary approach, we propose to create ordered, two dimensional protein arrays with defined orientation attached on a self-assembled-monolayer. We develop a literature-based flexible toolbox capable of assembling different kinds of proteins on a functionalized surface and consider using a graphene cover layer that will allow performing experiments with proteins in physiological conditions.
Collapse
Affiliation(s)
- M Altissimo
- Elettra Sincrotrone Trieste, S. S. 14 km 163, 34149 Trieste, Basovizza, Italy
| | - M Kiskinova
- Elettra Sincrotrone Trieste, S. S. 14 km 163, 34149 Trieste, Basovizza, Italy
| | - R Mincigrucci
- Elettra Sincrotrone Trieste, S. S. 14 km 163, 34149 Trieste, Basovizza, Italy
| | - L Vaccari
- Elettra Sincrotrone Trieste, S. S. 14 km 163, 34149 Trieste, Basovizza, Italy
| | - C Guarnaccia
- International Centre for Genetic Engineering and Biotechnology, Padriciano 99, 34149 Trieste, Italy
| | - C Masciovecchio
- Elettra Sincrotrone Trieste, S. S. 14 km 163, 34149 Trieste, Basovizza, Italy
| |
Collapse
|
25
|
Schumacher D, Lemke O, Helma J, Gerszonowicz L, Waller V, Stoschek T, Durkin PM, Budisa N, Leonhardt H, Keller BG, Hackenberger CPR. Broad substrate tolerance of tubulin tyrosine ligase enables one-step site-specific enzymatic protein labeling. Chem Sci 2017; 8:3471-3478. [PMID: 28507719 PMCID: PMC5418632 DOI: 10.1039/c7sc00574a] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2017] [Accepted: 03/18/2017] [Indexed: 12/31/2022] Open
Abstract
The broad substrate tolerance of tubulin tyrosine ligase enables its wide applicability for protein functionalization.
The broad substrate tolerance of tubulin tyrosine ligase is the basic rationale behind its wide applicability for chemoenzymatic protein functionalization. In this context, we report that the wild-type enzyme enables ligation of various unnatural amino acids that are substantially bigger than and structurally unrelated to the natural substrate, tyrosine, without the need for extensive protein engineering. This unusual substrate flexibility is due to the fact that the enzyme's catalytic pocket forms an extended cavity during ligation, as confirmed by docking experiments and all-atom molecular dynamics simulations. This feature enabled one-step C-terminal biotinylation and fluorescent coumarin labeling of various functional proteins as demonstrated with ubiquitin, an antigen binding nanobody, and the apoptosis marker Annexin V. Its broad substrate tolerance establishes tubulin tyrosine ligase as a powerful tool for in vitro enzyme-mediated protein modification with single functional amino acids in a specific structural context.
Collapse
Affiliation(s)
- Dominik Schumacher
- Department of Chemical-Biology , Leibniz-Institut für Molekulare Pharmakologie (FMP) , Robert-Rössle-Str. 10 , 13125 Berlin , Germany . .,Department of Chemistry , Humboldt Universität zu Berlin , Brook-Taylor-Strasse 2 , 12489 Berlin , Germany
| | - Oliver Lemke
- Department of Biology, Chemistry, Pharmacy , Freie Universität Berlin , Takustr. 3 , 14195 Berlin , Germany .
| | - Jonas Helma
- Department of Biology II , Ludwig Maximilians Universität München and Center for Integrated Protein Science Munich , Großhadenerstr. 2 , 82152 Martinsried , Germany
| | - Lena Gerszonowicz
- Department of Chemistry , Humboldt Universität zu Berlin , Brook-Taylor-Strasse 2 , 12489 Berlin , Germany
| | - Verena Waller
- Department of Biology II , Ludwig Maximilians Universität München and Center for Integrated Protein Science Munich , Großhadenerstr. 2 , 82152 Martinsried , Germany
| | - Tina Stoschek
- Department of Biology II , Ludwig Maximilians Universität München and Center for Integrated Protein Science Munich , Großhadenerstr. 2 , 82152 Martinsried , Germany
| | - Patrick M Durkin
- Department of Chemistry , TU Berlin , Müller-Breslau-Str. 10 , 10623 Berlin , Germany
| | - Nediljko Budisa
- Department of Chemistry , TU Berlin , Müller-Breslau-Str. 10 , 10623 Berlin , Germany
| | - Heinrich Leonhardt
- Department of Biology II , Ludwig Maximilians Universität München and Center for Integrated Protein Science Munich , Großhadenerstr. 2 , 82152 Martinsried , Germany
| | - Bettina G Keller
- Department of Biology, Chemistry, Pharmacy , Freie Universität Berlin , Takustr. 3 , 14195 Berlin , Germany .
| | - Christian P R Hackenberger
- Department of Chemical-Biology , Leibniz-Institut für Molekulare Pharmakologie (FMP) , Robert-Rössle-Str. 10 , 13125 Berlin , Germany . .,Department of Chemistry , Humboldt Universität zu Berlin , Brook-Taylor-Strasse 2 , 12489 Berlin , Germany
| |
Collapse
|
26
|
Braner M, Wieneke R, Tampé R. Nanomolar affinity protein trans-splicing monitored in real-time by fluorophore–quencher pairs. Chem Commun (Camb) 2017; 53:545-548. [DOI: 10.1039/c6cc08862g] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We combined high-affinity protein trans-splicing with fluorophore/quencher pairs for online detection of covalent N-terminal ‘traceless’ protein labeling at nanomolar concentrations under physiological conditions in cellular environment.
Collapse
Affiliation(s)
- M. Braner
- Institute of Biochemistry, Biocenter
- Goethe University Frankfurt
- 60438 Frankfurt a.M
- Germany
| | - R. Wieneke
- Institute of Biochemistry, Biocenter
- Goethe University Frankfurt
- 60438 Frankfurt a.M
- Germany
| | - R. Tampé
- Institute of Biochemistry, Biocenter
- Goethe University Frankfurt
- 60438 Frankfurt a.M
- Germany
| |
Collapse
|
27
|
Lotze J, Reinhardt U, Seitz O, Beck-Sickinger AG. Peptide-tags for site-specific protein labelling in vitro and in vivo. MOLECULAR BIOSYSTEMS 2016; 12:1731-45. [DOI: 10.1039/c6mb00023a] [Citation(s) in RCA: 129] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Peptide-tag based labelling can be achieved by (i) enzymes (ii) recognition of metal ions or small molecules and (iii) peptide–peptide interactions and enables site-specific protein visualization to investigate protein localization and trafficking.
Collapse
Affiliation(s)
- Jonathan Lotze
- Institut für Biochemie
- Universität Leipzig
- D-04103 Leipzig
- Germany
| | - Ulrike Reinhardt
- Institut für Chemie
- Humboldt-Universität zu Berlin
- D-12489 Berlin
- Germany
| | - Oliver Seitz
- Institut für Chemie
- Humboldt-Universität zu Berlin
- D-12489 Berlin
- Germany
| | | |
Collapse
|