1
|
Gogoi D, Puri S, Chauhan A, Singh A. Segregation kinetics of miktoarm star polymers: A dissipative particle dynamics study. Phys Rev E 2024; 110:034504. [PMID: 39425331 DOI: 10.1103/physreve.110.034504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Accepted: 09/05/2024] [Indexed: 10/21/2024]
Abstract
We study the phase separation kinetics of miktoarm star polymer (MSP) melts/blends with diverse architectures using dissipative particle dynamics simulation. Our study focuses on symmetric and asymmetric miktoarm star polymer (SMSP/AMSP) mixtures based on arm composition and number. For a fixed MSP chain size, the characteristic microphase-separated domains initially show diffusive growth with a growth exponent ϕ∼1/3 for both melts that gradually crossover to saturation at late times. The simulation results demonstrate that the evolution morphology of SMSP melt exhibits perfect dynamic scaling with varying arm numbers; the timescale follows a power-law decay with an exponent θ≃1 as the number of arms increases. The structural constraints on AMSP melts cause the domain growth rate to decrease as the number of one type of arms increases while their length remains fixed. This increase in the number of arms for AMSP corresponds to increased off-criticality. The saturation length in AMSP follows a power-law increase with an exponent λ≃2/3 as off-criticality decreases. Additionally, macrophase separation kinetics in SMSP/AMSP blends show a transition from viscous (ϕ∼1) to inertial (ϕ∼2/3) hydrodynamic growth regimes at late times; this exhibits the same dynamical universality class as linear polymer blends, with slight deviations at early stages.
Collapse
|
2
|
Du M, Yan X, Zhao N, Wang X, Xu D. Self-assembly of rigid amphiphilic graft cyclic-brush copolymers to nanochannels using dissipative particle dynamics simulation. SOFT MATTER 2024; 20:2321-2330. [PMID: 38372026 DOI: 10.1039/d3sm01674a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/20/2024]
Abstract
The synthesis of specific artificial nanochannels remains a formidable challenge in the field of nanomaterials and synthetic chemistry. In particular, the preparation of artificial nanochannels using amphiphilic graft cyclic-brush copolymers (AGCCs) as monomers has garnered substantial attention. Nevertheless, because of the constrained time and length scales inherent in traditional molecular dynamics simulations, a comprehensive theoretical understanding of the morphological regulation mechanism governing the self-assembly of AGCCs into nanochannels remains elusive. In this study, we employed the dissipative particle dynamics (DPD) method to explore the self-assembly mechanism considering factors such as the DPD interaction parameters, concentrations, and sizes of AGCCs. By calculating the phase diagrams, we predicted the emergence of four distinct nanochannel types: short independent, long independent, parallel, and disordered channels. Importantly, the formation of these nanochannels is highly contingent on specific environmental conditions. Furthermore, we extensively discussed self-assembly processes that lead to different types of nanochannels. The self-assembly of AGCCs is revealed as a multistep process primarily influenced by the interaction parameters. However, while the monomer size and concentration do not introduce novel self-assembly morphologies, they do influence the final aggregation state. The elucidation of the self-assembly mechanism presented in this study deepens our understanding of AGCC nanochannel formation. Consequently, this is a valuable guide for the preparation of copolymer materials with specific functionalities, offering insights into targeted copolymer material design.
Collapse
Affiliation(s)
- Meng Du
- MOE Key Laboratory of Green Chemistry and Technology, College of Chemistry, Sichuan University, Chengdu, Sichuan 610064, PR China.
| | - Xinrong Yan
- MOE Key Laboratory of Green Chemistry and Technology, College of Chemistry, Sichuan University, Chengdu, Sichuan 610064, PR China.
| | - Nanrong Zhao
- MOE Key Laboratory of Green Chemistry and Technology, College of Chemistry, Sichuan University, Chengdu, Sichuan 610064, PR China.
| | - Xin Wang
- MOE Key Laboratory of Green Chemistry and Technology, College of Chemistry, Sichuan University, Chengdu, Sichuan 610064, PR China.
| | - Dingguo Xu
- MOE Key Laboratory of Green Chemistry and Technology, College of Chemistry, Sichuan University, Chengdu, Sichuan 610064, PR China.
- Research Center for Materials Genome Engineering, Sichuan University, Chengdu, Sichuan 610065, PR China
| |
Collapse
|
3
|
Zhu Q, Tree DR. Simulations of morphology control of self‐assembled amphiphilic surfactants. JOURNAL OF POLYMER SCIENCE 2023. [DOI: 10.1002/pol.20220771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/19/2023]
Affiliation(s)
- Qinyu Zhu
- Department of Chemical Engineering Brigham Young University Provo Utah USA
| | - Douglas R. Tree
- Department of Chemical Engineering Brigham Young University Provo Utah USA
| |
Collapse
|
4
|
Brito ME, Mikhtaniuk SE, Neelov IM, Borisov OV, Holm C. Implicit-Solvent Coarse-Grained Simulations of Linear-Dendritic Block Copolymer Micelles. Int J Mol Sci 2023; 24:2763. [PMID: 36769091 PMCID: PMC9917066 DOI: 10.3390/ijms24032763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 01/20/2023] [Accepted: 01/30/2023] [Indexed: 02/04/2023] Open
Abstract
The design of nanoassemblies can be conveniently achieved by tuning the strength of the hydrophobic interactions of block copolymers in selective solvents. These block copolymer micelles form supramolecular aggregates, which have attracted great attention in the area of drug delivery and imaging in biomedicine due to their easy-to-tune properties and straightforward large-scale production. In the present work, we have investigated the micellization process of linear-dendritic block copolymers in order to elucidate the effect of branching on the micellar properties. We focus on block copolymers formed by linear hydrophobic blocks attached to either dendritic neutral or charged hydrophilic blocks. We have implemented a simple protocol for determining the equilibrium micellar size, which permits the study of linear-dendritic block copolymers in a wide range of block morphologies in an efficient and parallelizable manner. We have explored the impact of different topological and charge properties of the hydrophilic blocks on the equilibrium micellar properties and compared them to predictions from self-consistent field theory and scaling theory. We have found that, at higher degrees of branching in the corona and for short polymer chains, excluded volume interactions strongly influence the micellar aggregation as well as their effective charge.
Collapse
Affiliation(s)
- Mariano E. Brito
- Institute for Computational Physics, University of Stuttgart, D-70569 Stuttgart, Germany
| | - Sofia E. Mikhtaniuk
- School of Computer Technologies and Control, St. Petersburg National Research University of Information Technologies, Mechanics and Optics, 197101 St. Petersburg, Russia
| | - Igor M. Neelov
- School of Computer Technologies and Control, St. Petersburg National Research University of Information Technologies, Mechanics and Optics, 197101 St. Petersburg, Russia
| | - Oleg V. Borisov
- School of Computer Technologies and Control, St. Petersburg National Research University of Information Technologies, Mechanics and Optics, 197101 St. Petersburg, Russia
- Institut des Sciences Analytiques et de Physico-Chimie pour l’Environnement et les Matériaux, UMR 5254 CNRS UPPA, 64053 Pau, France
| | - Christian Holm
- Institute for Computational Physics, University of Stuttgart, D-70569 Stuttgart, Germany
| |
Collapse
|
5
|
Hybrid Molecules Consisting of Lysine Dendrons with Several Hydrophobic Tails: A SCF Study of Self-Assembling. Int J Mol Sci 2023; 24:ijms24032078. [PMID: 36768408 PMCID: PMC9916814 DOI: 10.3390/ijms24032078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 01/14/2023] [Accepted: 01/16/2023] [Indexed: 01/21/2023] Open
Abstract
In this article, we used the numerical self-consistent field method of Scheutjens-Fleer to study the micellization of hybrid molecules consisting of one polylysine dendron with charged end groups and several linear hydrophobic tails attached to its root. The main attention was paid to spherical micelles and the determination of the range of parameters at which they can appear. A relationship has been established between the size and internal structure of the resulting spherical micelles and the length and number of hydrophobic tails, as well as the number of dendron generations. It is shown that the splitting of the same number of hydrophobic monomers from one long tail into several short tails leads to a decrease in the aggregation number and, accordingly, the number of terminal charges in micelles. At the same time, it was shown that the surface area per dendron does not depend on the number of hydrophobic monomers or tails in the hybrid molecule. The relationship between the structure of hybrid molecules and the electrostatic properties of the resulting micelles has also been studied. It is found that the charge distribution in the corona depends on the number of dendron generations G in the hybrid molecule. For a small number of generations (up to G=3), a standard double electric layer is observed. For a larger number of generations (G=4), the charges of dendrons in the corona are divided into two populations: in the first population, the charges are in the spherical layer near the boundary between the micelle core and shell, and in the second population, the charges are near the periphery of the spherical shell. As a result, a part of the counterions is localized in the wide region between them. These results are of potential interest for the use of spherical dendromicelles as nanocontainers for drug delivery.
Collapse
|
6
|
Mesoscale Modeling of Agglomeration of Molecular Bottlebrushes: Focus on Conformations and Clustering Criteria. Polymers (Basel) 2022; 14:polym14122339. [PMID: 35745920 PMCID: PMC9227207 DOI: 10.3390/polym14122339] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 06/03/2022] [Accepted: 06/06/2022] [Indexed: 02/04/2023] Open
Abstract
Using dissipative particle dynamics, we characterize dynamics of aggregation of molecular bottlebrushes in solvents of various qualities by tracking the number of clusters, the size of the largest cluster, and an average aggregation number. We focus on a low volume fraction of bottlebrushes in a range of solvents and probe three different cutoff criteria to identify bottlebrushes belonging to the same cluster. We demonstrate that the cutoff criteria which depend on both the coordination number and the length of the side chain allows one to correlate the agglomeration status with the structural characteristics of bottlebrushes in solvents of various qualities. We characterize conformational changes of the bottlebrush within the agglomerates with respect to those of an isolated bottlebrush in the same solvents. The characterization of bottlebrush conformations within the agglomerates is an important step in understanding the relationship between the bottlebrush architecture and material properties. An analysis of three distinct cutoff criteria to identify bottlebrushes belonging to the same cluster introduces a framework to identify both short-lived transient and long-lived agglomerates; the same approach could be further extended to characterize agglomerates of various macromolecules with complex architectures beyond the specific bottlebrush architecture considered herein.
Collapse
|
7
|
Procházka K, Limpouchová Z, Štěpánek M, Šindelka K, Lísal M. DPD Modelling of the Self- and Co-Assembly of Polymers and Polyelectrolytes in Aqueous Media: Impact on Polymer Science. Polymers (Basel) 2022; 14:404. [PMID: 35160394 PMCID: PMC8838752 DOI: 10.3390/polym14030404] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 01/17/2022] [Accepted: 01/18/2022] [Indexed: 02/04/2023] Open
Abstract
This review article is addressed to a broad community of polymer scientists. We outline and analyse the fundamentals of the dissipative particle dynamics (DPD) simulation method from the point of view of polymer physics and review the articles on polymer systems published in approximately the last two decades, focusing on their impact on macromolecular science. Special attention is devoted to polymer and polyelectrolyte self- and co-assembly and self-organisation and to the problems connected with the implementation of explicit electrostatics in DPD numerical machinery. Critical analysis of the results of a number of successful DPD studies of complex polymer systems published recently documents the importance and suitability of this coarse-grained method for studying polymer systems.
Collapse
Affiliation(s)
- Karel Procházka
- Department of Physical and Macromolecular Chemistry, Faculty of Science, Charles University, Hlavova 8, 128 43 Prague, Czech Republic; (Z.L.); (M.Š.)
| | - Zuzana Limpouchová
- Department of Physical and Macromolecular Chemistry, Faculty of Science, Charles University, Hlavova 8, 128 43 Prague, Czech Republic; (Z.L.); (M.Š.)
| | - Miroslav Štěpánek
- Department of Physical and Macromolecular Chemistry, Faculty of Science, Charles University, Hlavova 8, 128 43 Prague, Czech Republic; (Z.L.); (M.Š.)
| | - Karel Šindelka
- Department of Molecular and Mesoscopic Modelling, Institute of Chemical Process Fundamentals, Czech Academy of Sciences, Rozvojová 135, 165 02 Prague, Czech Republic; (K.Š.); (M.L.)
| | - Martin Lísal
- Department of Molecular and Mesoscopic Modelling, Institute of Chemical Process Fundamentals, Czech Academy of Sciences, Rozvojová 135, 165 02 Prague, Czech Republic; (K.Š.); (M.L.)
- Department of Physics, Faculty of Science, Jan Evangelista Purkyně University in Ústí nad Labem, Pasteurova 3632, 400 96 Ústí n. Labem, Czech Republic
| |
Collapse
|
8
|
Wang H, Zheng X. Theoretical Study of Macrocyclic Host Molecules: From Supramolecular Recognition to Self-Assembly. Phys Chem Chem Phys 2022; 24:19011-19028. [DOI: 10.1039/d2cp02152h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Supramolecular chemistry focuses on molecular recognition and self-assembly of various building blocks through weak non-covalent interactions, including anion-π, hydrogen bond (HB), hydrophobic interactions, van der Waals (vdW) interactions, etc, which...
Collapse
|
9
|
Feng YH, Chen BZ, Fei WM, Cui Y, Zhang CY, Guo XD. Mechanism studies on the cellular internalization of nanoparticles using computer simulations: A review. AIChE J 2021. [DOI: 10.1002/aic.17507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Yun Hao Feng
- Beijing Laboratory of Biomedical Materials College of Materials Science and Engineering, Beijing University of Chemical Technology Beijing China
| | - Bo Zhi Chen
- Beijing Laboratory of Biomedical Materials College of Materials Science and Engineering, Beijing University of Chemical Technology Beijing China
| | - Wen Min Fei
- Department of Dermatology China‐Japan Friendship Hospital Beijing China
- Graduate School Peking Union Medical College and Chinese Academy of Medical Sciences Beijing China
| | - Yong Cui
- Department of Dermatology China‐Japan Friendship Hospital Beijing China
- Graduate School Peking Union Medical College and Chinese Academy of Medical Sciences Beijing China
| | - Can Yang Zhang
- Biopharmaceutical and Health Engineering Division Tsinghua Shenzhen International Graduate School Shenzhen China
| | - Xin Dong Guo
- Beijing Laboratory of Biomedical Materials College of Materials Science and Engineering, Beijing University of Chemical Technology Beijing China
| |
Collapse
|
10
|
Song J, Ju Y, Amarasena TH, Lin Z, Mettu S, Zhou J, Rahim MA, Ang CS, Cortez-Jugo C, Kent SJ, Caruso F. Influence of Poly(ethylene glycol) Molecular Architecture on Particle Assembly and Ex Vivo Particle-Immune Cell Interactions in Human Blood. ACS NANO 2021; 15:10025-10038. [PMID: 34009935 DOI: 10.1021/acsnano.1c01642] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Poly(ethylene glycol) (PEG) is widely used in particle assembly to impart biocompatibility and stealth-like properties in vivo for diverse biomedical applications. Previous studies have examined the effect of PEG molecular weight and PEG coating density on the biological fate of various particles; however, there are few studies that detail the fundamental role of PEG molecular architecture in particle engineering and bio-nano interactions. Herein, we engineered PEG particles using a mesoporous silica (MS) templating method and investigated how the PEG building block architecture impacted the physicochemical properties (e.g., surface chemistry and mechanical characteristics) of the PEG particles and subsequently modulated particle-immune cell interactions in human blood. Varying the PEG architecture from 3-arm to 4-arm, 6-arm, and 8-arm generated PEG particles with a denser, stiffer structure, with increasing elastic modulus from 1.5 to 14.9 kPa, inducing an increasing level of immune cell association (from 15% for 3-arm to 45% for 8-arm) with monocytes. In contrast, the precursor PEG particles with the template intact (MS@PEG) were stiffer and generally displayed higher levels of immune cell association but showed the opposite trend-immune cell association decreased with increasing PEG arm numbers. Proteomics analysis demonstrated that the biomolecular corona that formed on the PEG particles minimally influenced particle-immune cell interactions, whereas the MS@PEG particle-cell interactions correlated with the composition of the corona that was abundant in histidine-rich glycoproteins. Our work highlights the role of PEG architecture in the design of stealth PEG-based particles, thus providing a link between the synthetic nature of particles and their biological behavior in blood.
Collapse
Affiliation(s)
- Jiaying Song
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, and the Department of Chemical Engineering, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Yi Ju
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, and the Department of Chemical Engineering, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Thakshila H Amarasena
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, and Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Zhixing Lin
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, and the Department of Chemical Engineering, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Srinivas Mettu
- Department of Chemical Engineering, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Jiajing Zhou
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, and the Department of Chemical Engineering, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Md Arifur Rahim
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, and the Department of Chemical Engineering, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Ching-Seng Ang
- Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Christina Cortez-Jugo
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, and the Department of Chemical Engineering, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Stephen J Kent
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, and Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Frank Caruso
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, and the Department of Chemical Engineering, The University of Melbourne, Parkville, Victoria 3010, Australia
| |
Collapse
|
11
|
Workineh ZG, Pellicane G, Tsige M. Tuning Solvent Quality Induces Morphological Phase Transitions in Miktoarm Star Polymer Films. Macromolecules 2020. [DOI: 10.1021/acs.macromol.0c00770] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
| | - Giuseppe Pellicane
- Dipartimento di Scienze Biomediche, Odontoiatriche e delle Immagini Morfologiche e Funzionali, Università degli Studi di Messina, Via Consolare Valeria 1 (Azienda Ospedaliera Universitaria Policlinico “G.Martino”), 98125 Messina, Italy
- CNR-IPCF, Viale F. Stagno d’Alcontres, 37-98158 Messina, Italy
- School of Chemistry and Physics, University of Kwazulu-Natal, Private Bag X01, Scottsville, 3209 Pietermaritzburg, South Africa
| | - Mesfin Tsige
- Department of Polymer Science, University of Akron, Akron, Ohio United States
| |
Collapse
|
12
|
Feng YH, Zhang XP, Zhao ZQ, Guo XD. Dissipative Particle Dynamics Aided Design of Drug Delivery Systems: A Review. Mol Pharm 2020; 17:1778-1799. [DOI: 10.1021/acs.molpharmaceut.0c00175] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Yun Hao Feng
- Beijing Laboratory of Biomedical Materials, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, P.R. China
- Key Lab of Biomedical Materials of Natural Macromolecules (Beijing University of Chemical Technology), Ministry of Education, Beijing 100029, China
| | - Xiao Peng Zhang
- Beijing Laboratory of Biomedical Materials, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, P.R. China
- Key Lab of Biomedical Materials of Natural Macromolecules (Beijing University of Chemical Technology), Ministry of Education, Beijing 100029, China
| | - Ze Qiang Zhao
- Beijing Laboratory of Biomedical Materials, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, P.R. China
- Key Lab of Biomedical Materials of Natural Macromolecules (Beijing University of Chemical Technology), Ministry of Education, Beijing 100029, China
| | - Xin Dong Guo
- Beijing Laboratory of Biomedical Materials, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, P.R. China
- Key Lab of Biomedical Materials of Natural Macromolecules (Beijing University of Chemical Technology), Ministry of Education, Beijing 100029, China
| |
Collapse
|
13
|
Hao T, Tan H, Li S, Wang Y, Zhou Z, Yu C, Zhou Y, Yan D. Multilayer onion‐like vesicles self‐assembled from amphiphilic hyperbranched multiarm copolymers via simulation. JOURNAL OF POLYMER SCIENCE 2020. [DOI: 10.1002/pol.20190163] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Tongfan Hao
- School of Chemistry and Chemical Engineering, Shanghai Key Laboratory of Electrical Insulation and Thermal Aging, State Key Laboratory of Metal Matrix CompositesShanghai Jiao Tong University Shanghai China
- Institute of Green Chemistry and Chemical Technology, School of Chemistry and Chemical EngineeringJiangsu University Zhenjiang China
| | - Haina Tan
- School of Chemistry and Chemical Engineering, Shanghai Key Laboratory of Electrical Insulation and Thermal Aging, State Key Laboratory of Metal Matrix CompositesShanghai Jiao Tong University Shanghai China
| | - Shanlong Li
- School of Chemistry and Chemical Engineering, Shanghai Key Laboratory of Electrical Insulation and Thermal Aging, State Key Laboratory of Metal Matrix CompositesShanghai Jiao Tong University Shanghai China
| | - Yuling Wang
- School of Chemistry and Chemical Engineering, Shanghai Key Laboratory of Electrical Insulation and Thermal Aging, State Key Laboratory of Metal Matrix CompositesShanghai Jiao Tong University Shanghai China
| | - Zhiping Zhou
- Institute of Polymer Materials, School of Materials Science and EngineeringJiangsu University Zhenjiang China
| | - Chunyang Yu
- School of Chemistry and Chemical Engineering, Shanghai Key Laboratory of Electrical Insulation and Thermal Aging, State Key Laboratory of Metal Matrix CompositesShanghai Jiao Tong University Shanghai China
| | - Yongfeng Zhou
- School of Chemistry and Chemical Engineering, Shanghai Key Laboratory of Electrical Insulation and Thermal Aging, State Key Laboratory of Metal Matrix CompositesShanghai Jiao Tong University Shanghai China
| | - Deyue Yan
- School of Chemistry and Chemical Engineering, Shanghai Key Laboratory of Electrical Insulation and Thermal Aging, State Key Laboratory of Metal Matrix CompositesShanghai Jiao Tong University Shanghai China
| |
Collapse
|
14
|
Li C, Fu X, Zhong W, Liu J. Dissipative Particle Dynamics Simulations of a Protein-Directed Self-Assembly of Nanoparticles. ACS OMEGA 2019; 4:10216-10224. [PMID: 31460113 PMCID: PMC6648767 DOI: 10.1021/acsomega.9b01078] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Accepted: 05/31/2019] [Indexed: 06/10/2023]
Abstract
Design and fabrication of multifunctional porous structures play key roles in the development of high-performance energy storage devices. Our experiments demonstrated that nanostructured porous components, such as electrodes and interlayers, generated from the protein-directed self-assembly of nanoparticles can significantly improve the battery performances. The protein-directed assembly of nanoparticles in solution is a complex process involving the complicated interactions among proteins, particles, and solvent molecules. In this paper, we investigate the effects of coating proteins and specific solvent environments on the assembled porous structures. Comprehensive dissipative particle dynamics (DPD) simulations have been implemented to explore the molecular interactions and uncover the fundamental mechanisms in a gelatin-directed self-assembly of carbon black particles under different solvent conditions. Our simulations show that compact triple-strand "rod-like" structures are formed in water while loose curved "sheet-like" structures are formed in an acetic acid/water mixture. The structural difference is mainly due to the redistribution of the charges on the gelatin side chains under specific acid-solvent conditions. The strong and flexible "sheet-like" structures lead to a homogenous porous structure with high porosity and with large functionalized surfaces. Our simulations results can reasonably explain the experimental observations; this work demonstrates the great potential of DPD as a powerful tool in guiding future experimental design and optimization.
Collapse
|
15
|
Tan H, Li S, Li K, Yu C, Lu Z, Zhou Y. Shape Transformations of Vesicles Self-Assembled from Amphiphilic Hyperbranched Multiarm Copolymers via Simulation. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:6929-6938. [PMID: 30091926 DOI: 10.1021/acs.langmuir.8b02206] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
The understanding of shape transformations of vesicles is of fundamental importance in biological and clinical sciences. Hyperbranched polymer vesicles (branched polymersomes) are newly emerging polymer vesicles with special structure and property. They have also been regarded as a good model for biomembranes. However, the shape transformations of hyperbranched polymer vesicles have not been studied from either an experimental or theoretical level. Herein, the shape transformations of vesicles self-assembled from amphiphilic hyperbranched multiarm copolymers (HMCs) in response to the interaction parameters between the hydrophobic core and hydrophilic arms and the polymer concentrations are investigated carefully through dissipative particle dynamics (DPD) simulations. In the morphological phase diagram, two types of vesicles are obtained: one type corresponds to vesicles without holes formed at low concentrations including unilamellar vesicles, double-lamellar vesicles, discocyte-shaped vesicles, and tubular vesicles, and the other type corresponds to vesicles with holes formed at high concentrations including stomatocyte-shaped vesicles, toroidal vesicles, genus-3 (G-3) toroidal vesicles with three holes, and genus-4 (G-4) toroidal vesicles with four holes. In addition, both the self-assembly mechanisms and the dynamics for the formation of these vesicles have been systematically studied. The current work will offer theoretical support for fabricating novel vesicles with various shapes from hyperbranched polymers.
Collapse
Affiliation(s)
- Haina Tan
- School of Chemistry & Chemical Engineering, State Key Laboratory of Metal Matrix Composites , Shanghai Jiao Tong University , 800 Dongchuan Road , Shanghai , China 200240
| | - Shanlong Li
- School of Chemistry & Chemical Engineering, State Key Laboratory of Metal Matrix Composites , Shanghai Jiao Tong University , 800 Dongchuan Road , Shanghai , China 200240
| | - Ke Li
- School of Chemistry & Chemical Engineering, State Key Laboratory of Metal Matrix Composites , Shanghai Jiao Tong University , 800 Dongchuan Road , Shanghai , China 200240
| | - Chunyang Yu
- School of Chemistry & Chemical Engineering, State Key Laboratory of Metal Matrix Composites , Shanghai Jiao Tong University , 800 Dongchuan Road , Shanghai , China 200240
| | - Zhongyuan Lu
- Institute of Theoretical Chemistry, State Key Laboratory of Supramolecular Structure and Materials , Jilin University , Changchun , China 130021
| | - Yongfeng Zhou
- School of Chemistry & Chemical Engineering, State Key Laboratory of Metal Matrix Composites , Shanghai Jiao Tong University , 800 Dongchuan Road , Shanghai , China 200240
| |
Collapse
|
16
|
Chen A, Zhao N. Comparative study of the crowding-induced collapse effect in hard-sphere, flexible polymer and rod-like polymer systems. Phys Chem Chem Phys 2019; 21:12335-12345. [DOI: 10.1039/c9cp01731c] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A systematic Langevin simulation is performed to study the crowding-induced collapse effect on a probed chain in three typical systems: hard sphere (HS), flexible polymer and rod-like polymer.
Collapse
Affiliation(s)
- Anpu Chen
- College of Chemistry
- Sichuan University
- Chengdu 610064
- China
| | - Nanrong Zhao
- College of Chemistry
- Sichuan University
- Chengdu 610064
- China
| |
Collapse
|
17
|
Phase diagrams, mechanisms and unique characteristics of alternating-structured polymer self-assembly via simulations. Sci China Chem 2018. [DOI: 10.1007/s11426-018-9360-3] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
18
|
Shavykin OV, Leermakers FAM, Neelov IM, Darinskii AA. Self-Assembly of Lysine-Based Dendritic Surfactants Modeled by the Self-Consistent Field Approach. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2018; 34:1613-1626. [PMID: 29286663 DOI: 10.1021/acs.langmuir.7b03825] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Implementing a united atom model, we apply self-consistent field theory to study structure and thermodynamic properties of spherical micelles composed of surfactants that combine an alkyl tail with a charged lysine-based dendritic headgroup. Following experiments, the focus was on dendron surfactants with varying tail length and dendron generations G0, G1, G2. The heads are subject to acetylation modification which reduces the charge and hydrophilicity. We establish a reasonable parameter set which results in semiquantitative agreement with the available experiments. The critical micellization concentration, aggregation number, and micelle size are discussed. The strongly charged dendronic surfactants micelles are stable for generation numbers G0 and G1, for progressively higher ionic strengths. Associates of G2 surfactants are very small and can only be found at extreme surfactant concentration and salt strengths. Micelles of corresponding weaker charged acetylated variants exist up to G2, tolerate significantly lower salt concentrations, but lose the spherical micelle topology for G0 at high ionic strengths.
Collapse
Affiliation(s)
- O V Shavykin
- St. Petersburg National Research University of Information Technologies, Mechanics and Optics (ITMO University), Kronverkskiy pr. 49, St. Petersburg 197101, Russia
| | - F A M Leermakers
- Physical Chemistry and Soft Matter, Wageningen University , 6703 HB Wageningen, The Netherlands
| | - I M Neelov
- St. Petersburg National Research University of Information Technologies, Mechanics and Optics (ITMO University), Kronverkskiy pr. 49, St. Petersburg 197101, Russia
- Institute of Macromolecular Compounds, Russian Academy of Sciences , Bolshoi Prospect 31, V.O., St. Petersburg 199004, Russia
| | - A A Darinskii
- St. Petersburg National Research University of Information Technologies, Mechanics and Optics (ITMO University), Kronverkskiy pr. 49, St. Petersburg 197101, Russia
- Institute of Macromolecular Compounds, Russian Academy of Sciences , Bolshoi Prospect 31, V.O., St. Petersburg 199004, Russia
| |
Collapse
|
19
|
Zhang Q, Lin J, Wang L, Xu Z. Theoretical modeling and simulations of self-assembly of copolymers in solution. Prog Polym Sci 2017. [DOI: 10.1016/j.progpolymsci.2017.04.003] [Citation(s) in RCA: 77] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
20
|
Zhang H, Yuan S, Sun J, Liu J, Li H, Du N, Hou W. Molecular dynamics simulation of sodium dodecylsulfate (SDS) bilayers. J Colloid Interface Sci 2017; 506:227-235. [DOI: 10.1016/j.jcis.2017.07.042] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2017] [Revised: 07/13/2017] [Accepted: 07/14/2017] [Indexed: 11/30/2022]
|
21
|
Li S, Zhang Y, Liu H, Yu C, Zhou Y, Yan D. Asymmetric Polymersomes from an Oil-in-Oil Emulsion: A Computer Simulation Study. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2017; 33:10084-10093. [PMID: 28857572 DOI: 10.1021/acs.langmuir.7b02411] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Asymmetric vesicles are valuable for understanding and mimicking cell and practical biomedicine applications. Recently, a very straightforward methodology for fabricating asymmetric polymersome was developed by Lodge's group through the coassembly of polystyrene-b-poly(ethylene oxide) (PS-b-PEO) and polybutadiene-b-poly(ethylene oxide) (PB-b-PEO) block copolymers at the interface of a polystyrene/polybutadiene/chloroform (PS/PB/CHCl3) emulsion. However, the in-depth microscopic mechanism for the formation of asymmetric polymersomes remains unclear. To address this issue, in this article, the coassembly process for the formation of the asymmetric polymersomes in Asano's experimental system was systematically investigated by employing a dissipative particle dynamics (DPD) simulation. Our results definitely demonstrate the formation of the asymmetric polymersomes such as that in the experiments and that the bilayer formed through the folding and crossing of the PEO blocks. Besides, from the microscopic view, three stages can be discerned in the formation process: (1) the formation of micelles, (2) the micelle diffusion to the interface, and (3) the micelle rearrangement at the interface to form an asymmetric polymersome. Meanwhile, the incompatibility among PS, PB, and PEO is proven to be the main driving force for asymmetric polymersome formation. Moreover, the effects of the order of addition of copolymers and the volume fraction of PEO blocks on the structure of the asymmetric polymersomes are also investigated. We find that the formation process is affected severely by the order of addition, and adding PS-b-PEO first can make the asymmetric bilayer more perfect. Not only that, but perfect asymmetric polymersomes can be formed only when the volume fraction of PEO (fPEO) is greater than 0.55. We believe the present work can extend the knowledge of the self-assembly of asymmetric polymersomes, especially with respect to the self-assembly mechanism.
Collapse
Affiliation(s)
- Shanlong Li
- School of Chemistry & Chemical Engineering, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University , 800 Dongchuan Road, Shanghai, China 200240
| | - Yinglin Zhang
- School of Chemistry & Chemical Engineering, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University , 800 Dongchuan Road, Shanghai, China 200240
| | - Hong Liu
- Institute of Theoretical Chemistry, State Key Laboratory of Supramolecular Structure and Materials, Jilin University , Changchun, China 130021
| | - Chunyang Yu
- School of Chemistry & Chemical Engineering, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University , 800 Dongchuan Road, Shanghai, China 200240
| | - Yongfeng Zhou
- School of Chemistry & Chemical Engineering, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University , 800 Dongchuan Road, Shanghai, China 200240
| | - Deyue Yan
- School of Chemistry & Chemical Engineering, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University , 800 Dongchuan Road, Shanghai, China 200240
| |
Collapse
|
22
|
Tan H, Yu C, Lu Z, Zhou Y, Yan D. A dissipative particle dynamics simulation study on phase diagrams for the self-assembly of amphiphilic hyperbranched multiarm copolymers in various solvents. SOFT MATTER 2017; 13:6178-6188. [PMID: 28798969 DOI: 10.1039/c7sm01170a] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Self-assembly of amphiphilic hyperbranched multiarm copolymers (HMCs) has shown great potential for preparing all kinds of delicate supramolecular structures in all scales and dimensions in solution. However, theoretical studies on the influencing factors for the self-assembly of HMCs have been greatly lagging behind. The phase diagram of HMCs in selective solvents is very necessary but has not been disclosed up to now. Here, the self-assembly of HMCs with different hydrophilic fractions in various solvents was studied systematically by using dissipative particle dynamics (DPD) simulations. Three morphological phase diagrams are constructed and a rich variety of morphologies, ranging from spherical micelles, worm-like micelles, membranes, vesicles, vesosomes, small micellar aggregates (SMAs), and aggregates of spherical and worm-like micelles to helical micelles, are obtained. In addition, both the self-assembly mechanisms and the dynamic processes for the formation of these self-assemblies have been systematically investigated. The simulation results are consistent with available experimental observations. Besides, several novel structures, like aggregates of spherical and worm-like micelles, vesosomes and helical micelles, are firstly discovered for HMC self-assembly. We believe the current work will extend the knowledge on the self-assembly of HMCs, especially on the control of supramolecular structures and on fabricating novel self-assemblies.
Collapse
Affiliation(s)
- Haina Tan
- School of Chemistry and Chemical Engineering, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, P. R. China.
| | | | | | | | | |
Collapse
|
23
|
Yu C, Ma L, Li K, Li S, Liu Y, Liu L, Zhou Y, Yan D. Computer Simulation Studies on the pH-Responsive Self-Assembly of Amphiphilic Carboxy-Terminated Polyester Dendrimers in Aqueous Solution. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2017; 33:388-399. [PMID: 28001081 DOI: 10.1021/acs.langmuir.6b03480] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
This paper investigates the pH-responsive self-assembly of an amphiphilic carboxyl-terminated polyester dendrimer, H20-COOH, in aqueous solution using the dissipative particle dynamics method. The electrostatic interactions were described by introducing the explicit interaction between the smeared charges on ionized polymer beads and the counterions. The results show that the self-assemblies could change from unimolecular micelles, microphase-separated small micelles, wormlike micelles, sheetlike micelles, and small vesicles to large vesicles with the decrease in the degree of ionization (α) of carboxylic acid groups. In addition, the detailed self-assembly mechanisms and the molecular packing models have also been disclosed for each self-assembly stages. Interestingly, the wormlike micelles are found to change from linear to branched when α decreases from 0.182 to 0.109. The current work might serve as a comprehensive understanding on the effect of carboxylic acid groups on the self-assembly behaviors of dendritic polymers.
Collapse
Affiliation(s)
- Chunyang Yu
- School of Chemistry & Chemical Engineering, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University , 800 Dongchuan Road, Shanghai 200240, China
| | - Li Ma
- School of Chemistry & Chemical Engineering, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University , 800 Dongchuan Road, Shanghai 200240, China
| | - Ke Li
- School of Chemistry & Chemical Engineering, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University , 800 Dongchuan Road, Shanghai 200240, China
| | - Shanlong Li
- School of Chemistry & Chemical Engineering, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University , 800 Dongchuan Road, Shanghai 200240, China
| | - Yannan Liu
- School of Chemistry & Chemical Engineering, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University , 800 Dongchuan Road, Shanghai 200240, China
| | - Lifen Liu
- Center for Membrane and Water Science and Technology, Ocean College, Zhejiang University of Technology , Hangzhou 310014, China
| | - Yongfeng Zhou
- School of Chemistry & Chemical Engineering, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University , 800 Dongchuan Road, Shanghai 200240, China
| | - Deyue Yan
- School of Chemistry & Chemical Engineering, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University , 800 Dongchuan Road, Shanghai 200240, China
| |
Collapse
|
24
|
Ma Y, Mou Q, Wang D, Zhu X, Yan D. Dendritic Polymers for Theranostics. Theranostics 2016; 6:930-47. [PMID: 27217829 PMCID: PMC4876620 DOI: 10.7150/thno.14855] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2015] [Accepted: 03/09/2016] [Indexed: 12/14/2022] Open
Abstract
Dendritic polymers are highly branched polymers with controllable structures, which possess a large population of terminal functional groups, low solution or melt viscosity, and good solubility. Their size, degree of branching and functionality can be adjusted and controlled through the synthetic procedures. These tunable structures correspond to application-related properties, such as biodegradability, biocompatibility, stimuli-responsiveness and self-assembly ability, which are the key points for theranostic applications, including chemotherapeutic theranostics, biotherapeutic theranostics, phototherapeutic theranostics, radiotherapeutic theranostics and combined therapeutic theranostics. Up to now, significant progress has been made for the dendritic polymers in solving some of the fundamental and technical questions toward their theranostic applications. In this review, we briefly summarize how to control the structures of dendritic polymers, the theranostics-related properties derived from their structures and their theranostics-related applications.
Collapse
Affiliation(s)
- Yuan Ma
- School of Chemistry and Chemical Engineering, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, P. R. China
| | - Quanbing Mou
- School of Chemistry and Chemical Engineering, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, P. R. China
| | - Dali Wang
- School of Chemistry and Chemical Engineering, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, P. R. China
| | - Xinyuan Zhu
- School of Chemistry and Chemical Engineering, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, P. R. China
| | - Deyue Yan
- School of Chemistry and Chemical Engineering, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, P. R. China
| |
Collapse
|